

--------- ------------------------------------

I ntroduction to

RC BASIC/COMAL

A Structured Programming Language

First Edition
A/S~ April 1978
Information Department RæL 42-i 0784

Author:

Text Editor:

KEY \tX)RDS:

ABSTRACl':

Thorkild Maaetoft and BØrge Christensen
Inga Marcussen

RC 7000, RC 3600, RC OOMAL, BASIC, Introduction,
Brief language sunmary.

'Ibis introduction defines the extensions, regarding
the BASIC generally used, which are implemented in RC
CG1AL. '1he special use of the floppy disc and card
reader are also described. 'lbe final chapters contain a
summary of RC COMAL.

REMARKS: 	 Issued by A/S Regneoentralen in co-operation with the
Canputer Divison of the TØnder Statsseminarium.

Users of this manual are cautioned that the specifications
contained herein are subject to change by Re at any time
without prior notice. RC is nat responsibie for typographi­
cal or arithmetic errors which may appear in this manual
and shall not be responsibie for any damages caused by
reliance an any of the materials presented.

Copyright © A/S Ie]necentralen, 1978
Printed by A/S Regnecentralen, Copenhagen

Contents

1 WHAT IS OC CDMAL

2 NAMES OF VARIABLES, ASSIGI4ENT OF VARIABLES
2.1 Names of var iables
2.2 Assignment of variables

3 A.lJ\TANCED OONTroL STRtX:TURES
3.1 If P '!'HEN •• ELSE •• ENDIF
3.2 If P THEN •• ENOIF

3.3 REPEAT •• UNTIL P
3.4 waILE P 00 •• ~ILE

3.5 CASE expr OF •• \tJEN •• 'fNDCASE
3.6 Procedures

4 OPERA'IDÆ;

4.1 Boolean expressions

5 TERMINAL 0lMMANDS

6 SYSTEMS WITH A CA.RD READER

7 SYSTEMS WITH FI.DPPY DISes

8 SUMMARY OF Re a::>MAL
8.1 Re CDMAL statement types
8.2 Re CDMAL standard funetions

8.2.1 Funetions for processing text strings
8.3 Matrix operations in RC COMAL
8.4 Coo'mands to logical dises
8.5 Statements for file processing
8.6 System camtands in RC OOMAL
8.7 COOI1Iands in conneetion with batch runs

Page I)

7
7

7

8
8
9

10
11

12
14

16
16

18

19

21

23
24

28
30
30

32
3.1

35

37

1

5

What is RC COMAL

Since 1970 Regnecentralen has marketed the Re 7000 Minicomputer
System, primarily for teachinq institutions.

Today, in 1978, there are RC 7000' s installed in OlIer 100 schools,
colleges, tmiversities and other educational institutions, \Ilhich
makes it the most used mini-computer system for educational
purposes.

Originally the Re 7000 was based on the hardware aoo software of
the American firm Data General. 'Ihe roost frequently used pro­
granming language was BASIC, due to the many benefits contained
in this language, especially for elementary teaching.

The Re 7000 is an all-Danish computer as both hardware aoo soft ­
ware are developed and produced in Derwnark by Regnecentralen. As

early as 1974, users of the RC 7000 expressed their wish for an
extension of Data General' s exteooed BASIC. It was found that
BASIC had same general shortcomings Which made it less suitable,
for example, for procedure orientated structures.

The programning language COMAL was defined by Lecturer Benedict
røfstedt, Arhus UniversitY , ard Lecturer BØrge Christensen,
TØnder Statsseminar iwn (Teacher Training COllege). '1be language
contains extended BASIC, as the aim was that C('&L should be a
further development of BASIC.

A first version of CXM\L was developed on an RC 7000 by Per
Christiansen and Knud Christensen at the computer division of the
TØnder Statsseminar iwn in 1975. fot>re than three years experience
with COMAL EDP teaching at commercial schools, teacher training
colleges and in ordinary schools has shown that COMAL is easier
to learn than BASIC, one of the reasons being that it results in
programs Which have a clearer structure and are therefore easier
to read than the corresponding BASIC programs. By reading through
this introduction to RC mMlU., the reader will understaOO why
this is so.

RC CDMAL is the final version of the c:..'CJo1AL language, and has been
developed by Als aegneoentralen in oontinuous oo-operation with
teachers from teacher training colleges, high schools ard other
schools. Re CDMAL contains significant improvements in relation
to the originally defined COMAL, and these improvements all aim

6

at making the language into an easy and flexible tool for
teaching in all places of education.

Incidentally, CDMAL is an abbreviation of: CXMnon Algorithmic
Language. In the definition of the language, emphasis has been
put on the basic algorithm structures being easy to describe am
easy to recognise.

This introduction is not meant as a textbook of Re CDMAL. 'nle
introduction has been written for readers who know the rost
important language elements in BASIC, and contains therefore no
definitions or explanations of the most simple RC ODMAL/BASIC
sentences.

This hook oontains first a description of extensions and new
language elements in RC CDMAL in relation to BASIC. The last
chapter is a total survey, in diagrammatic fonn, of Re ~.

Additional literature about RC COMAL:

"Re CDMAL Progranming Guide", published by A/S Regnecentralen.
BØrge Christensen: "mJN ~", p.Jblished by Studentlitteratur•
BØrge Christensen: Problems for "RUN COMAL", by the same publisher.

7

2 Names of variables, assignment of variables

2.1 Names of variables

In Re <X>MAL, variables of all types are named according to the
prescription:

where ti 	is a letter, whi1e t , ••••••• ti are 1etters or digits.
l

Examp1es

ær INrEREST = CAPlTAL ." INTEREST RATe ." NUMM.YS/360/100
LET NAME$ = ·OLE OLSEN­
LET TABLE (NUMSER, YEAR) = 126

2.2 	 Assignment of variables

In Re COMAL, LET sentences may contain rrore than one assignment:

where var, , var
2

, ••••• , var are names of variables, while expr ' n 	 l
expr

2
, ••••• , expr are constants, variables or formulae. A LETn

sentence may contain as many assignments as the 1ength of the
line perl1lits.

Examples

LET IN'1'EREST RATE = 12; CAPlTAL = 15000; NAME$.: "OLE OLSEN"

This sentence has the same effect as three consecutive LET
sentences, each with its own assignment.

r---­

3

3.1

8

Advanced control structures

In addition to the control structures in BASIC, the following are
found in Re OOMAL:

(1) IF P THEN •• ELSE •• moIF
(2) IF P THEN •• moIF
(3) REPEAT •• UNTIL P
(4) WHlLE P 00 •• mrørILE

(5) CASE expr OF •• WlIEN •• 1HJCASE

If p THEN .. ELSE .. ENDI F

The structure is built up as follows:

IF P TREN

[----] ---~-- t f

ELSE

[--B--J

ENDI F

p is a Boolean expression (an open statement): if p has the value
"true", then the program portion A described between IF p mm
and Er.SE is carried out, and if p has the value "false", the pro­
gram portion B described between ELSE and ENDIF is carried out.
When either A or B has !:leen carried out, the program continues
with the next sentence after ENDIF.

The portion of the program text positioned between the control
sentences is inserted when a program list has !:leen printed out
(see FOR •• NEXT in BASIC).

9

Exanples

IF PRICE < 100 mEN
PRINT "YaJ KJST PAY (IOCL. CHAR:,;E): "1 PRICE + 15:"KR...

ELSE
PRINT ·YOU KJST PAY: • 1 PRICE; "'KR."

ENDIF

INPt1l' "CHARACTER: ", CRARAC
Ler SUM :II SUM + CHARAC: l\IJK:AR - Nt.J'fCAR + 1

IF QfAR.AC < MIN mEN
Ler NEX'lMIN - MIN; MIN :II CBARAC

EISE
IF QfAR.AC < NEXTMIN mEN LET NEXTMIN = CHARAC

ENDIF

3.2 If p THEN .. ENDIF

The structure is built up as follows:

IF P TREN

f
ENDI F

p is a Boolean expression; if p has the value "true", then the
program section A descr ibed between IF p 'l'HEN and Et.IDIF is
carried out, arrl if P has the value "false", then A is skipped.
In either case, the program continues with the next sentence
after ENDIF. 'lbe text bet\1leen IF 9 mm and ENDIF is inserted
when program lists are pcinted out.

In an Re CX>MAL program, up to seven IF p TREN •• (ELSE) •• fNDIF
branches inside one another are a1lowed.

10

Exæples

READ 'mL1, TAL2

IF TAL1 > TAL2 '!HEN

LET BUFFER == TAL1: 'fAL1 .: TAU = BUFFER

ENDIF
PRINT TAL1, 'mL2

IF RND (O) < 3/10 TREN
LET H1 :: H1 + 1

ELSE
IF RID (O) < 3/9 '!HEN

LEn' H2 = H2 + 1

ELSE
IF RID (O) < 3/8 TREN

LEn' H3 :: 83 + 1

ELSE
IF RND (O) < 3/7 '!HEN

LET 84 = H4 + 1

ELSE
LFn'H5=85+1

ENDIF

ENDIF

ENDIF

ENDIF

3.3 REPEAT .. UNTIL p

The structure is built up as follows:

REPEAT .

[---;--]

UNTIL P t

p is a Boolean expressioni the program section A described bet'Ween
REPEAT and UNTIL p is repeated until p has the value "true". iilen p
obtains this value, the pcogram continues with the next sentenoe
after UNTIL p.

It should be noted that the program section A is carried out at least
once if the interpreter reaches the REPEAT sentence, because the
control of the loop starts fran the UNTIL sentenoe. 'lhe text between
REPEAT and UNTIL p is inserted when a program list is printed out.

11

3.4 WHILE p DO .. ENOWHILE

The structure is built up as follows:

WHILE P 00

t

[---A---J
f

ENIHiILE

p is a Boolean expression; the program section A described
between WHILE p 00 and ENOOIILE is repeated as 10ng as p has the
va1ue "true". When p has the va1ue "false" the program continues
with the next sentence after ENDWHILE.

It should be noted that if p has the va1ue "false" when the
program reaches the WHILE sentence, the section A wi11 not be
carried out at all, and the interpreter wi11 just go straight on
to the next sentence af ter ENDWHlLE. '1be text between WHlLE p 00

and ENDWHILE wi11 be inserted when a program list is printed.

In RC OJMAL it is possib1e to have up to seven REPEAT •• UNTIL
100ps and up to seven WHILE •• F.NDWHILE 100ps inside and
independent of one another. For examp1e, there may be a total of
fourteen 100ps of the two types inside one another independent of
sequence, as 10ng as seven of them are REPEAT 100ps and the res t
are WHlLE loops.

The FOR •• NEXT loop inherited from BASIC has no influence on the
nunDer of REPEAT and WHILE 100ps that there may be inside one
another (in RC CC>MT\L there may be up to seven FOR •• f.ÆXT 100ps
inside one another). '1be number of IF •• (ELSE) •• ENDIF branches
is also independent of any possib1y inserted 1oops. In other
werds, it is actua11y possib1e to have a total of 21 100ps + 7
branches built into one another in an RC OJMAL program. However,
the author does not remember having seen this in practica1
app1ication.

Exanp1es

INPUT "nIE 'lW) WMBERS:", A, B

LET X = Ai Y = B
REPEAT (* EUCLID*)

LET REST = X 'lOiARD Y

LET X = Yi Y = REST

UNTIL REST = O
PRIm' "Sm fOR" i Ai "AND"; Bi "IS"; X

12

INPUT "NAME" (SURNAME OIRISTIAN NAME): ", NAME$
WHILE NAME$ <> "END" 00

INPUT "ADORESS:", AOR$
INPUT "'!OiN (POSTNUMBER NAME CF 'l'tlIJN): It, 'l'tlIJN$
INPUT "NEXT NAME:", NANE$

ENMJILE

Note

The use of ooro sentences in comection with the control struc­
tures (1) - (4) may be problematic. GeneraIly 00l0s should not be
used in the program sections A ard B ard certainly not if these
ooro sentences refer to sentences which are outside the sentences
that start or finish the said program section. en the whole, the
use of GOIO should be restricted to unusual situations (for
example in the case of fault in input, etc.).

3.5 CASE expr OF .. WHEN .. ENDCASE

The structure is built up as follows:

CASE expr OF

[---"A---]

WHEN <list>,

[---A;--J

[-----] --~~--
•
•
•

'Em <list> n

expr is an arithmetical expression (a constant, a variable or a
formula), one of the Boolean constants TRUE or FALSE, or a
variable string, ard <list>, is a list of arithmetical expocessions,

I

a list of Boolean expressions, or a list of character sequences.

13

When the value of .!!EE. has been ælculated, the interpreter searches
in the lists after the various WHEN for avalue which is equal to
that of ~. If such a value is found in <list>j , the folIowing
program section A. will be carried out CiM then the program will

I
continue with the sentence after ENDCASE. If the relevant value
is mt found, the alternative section A, which is placed :imnediate­
ly after the CASE sentence wi1l be carried out, arrl then the pro­
gram will oontinue with the next sentenoe after ENDCASE.

The number of WHEN sentenoes folIowing a produced CASE sentence
is unlimited, and you may have as many CASE •• "-NDCASE inside one
another as you like.

The texts for A, Al' A
2

, ••• An are inserted in relation to the
CASE, WHEN and ENDCASE sentenoes when a program list is printed out.

Examples

INPlPr "1 = IN, 2 = LIST, 3 = SEARCH, 4 = DELETE, 5 = sroP:" ,

JOOCODE
CASE JOOCOOE CF

PRINT "THE O)OE OOES oor EXIST."

WHEN1

REM (*NEW <n>ES INPUT*)

EXEx::: EOCODER

WHEN 2

REM (*PRIN'IOOT OF (X)f)E LIST*)

EXEx::: PRINroUT

WHm 3

REM (*SEARCH A GIVEN OOOE*)

EXEC SEAlOf

WHEN 4

REM (*OELETE A GIVEN CDDE*)

EXEC DELETE <n>E

WHEN 5
REto! (*F:ID CF MY*)

S'IDP

ENDCASE

14

INPt1l' SVARS

CASE SVAR$ OF

PRINT "READ INSTRUCTICfiS PR:>PERLY"

WHEN "YES"

EXEC PANE1

WREN "NO"

EX&:: PANE2

WREN "NaomI!, "oorHIl«:;", "NOr ANY"

EXEC pANE)

ENOCASE

INPUT "'lHE <DEFFICIENTS A, B AND C", A,B,C

IF A <> O '!HEN

LET DETM = B* 8-4* A*C

CASE TRUE OF

WHEN DETM > O

LET X1 = (-B+SOR (DETM»/2/A1 X2 ,. (-B-SOR (DETM»/2/A
PRINT"X1 =": X1, "X2 _ti 1 X2

WHm OETM = O

LET X =-B/2/A

PRINT 1!lXlJBLERXJI': X =": X

WHEN DE:Jlwt <O
PRINT "00 RF..AL RXY.rS".

ENOCASE
ELSE

PRINr "I 'lHOl:GIT WE trt'ERE ro OOLVE QUAORATIC FXlUATICNS?"
ENDIF

3.6 Procedures

It is a great advantage to use procedures to make the programs
clear and logical in their oonstruction. '!his is why IC CXXt1AL
alsa has an extension in this Mea.

If a program starts with the sentence
PR::X:: <nane>

where <name> is a character sequence with the same format as the
nane af a variable (see section 2), and ems with the sentence

ENDPR::X::
this program !MY be called as a sub-program af another program by
using the sentence

EXEX:: <name >

•••

•••

•••

••• • •• • ••

••• • •• •••

15

When the sub-program has been run, the interpreter oontinues with
the sentence following ~iately after the EXEC sentence from
which the call to the sub-program was made.

We may illustrate this in the following way:

~ <narne> ---------,

END (*MAIN PR:X;RAM ENDED*)

ENDPRX

From a sub-progr am a new sub-program may be cal led , aOO so on to
a total of seven. This phenomenon provides the foliowing pieture:

pR)C <narne 2) PHJC <name I) PR)C <narne):> r
EXEC <name) EXEC <narne)I!:XEC <narne 2)

43

ENDPR)CENDPR)C ENDPRX

,------­

4

4.1

16

Operators

In addition to the usual arithmetical and logieal operators, Re
COMAL eontains the following facilities:

DIV : Whole nlJl'lt)er division, e.g. 11 DIV 4 (=2)

MOD : Modulus, e.g. 11 MOD 4 (=3)

AND : Lagie "AND", e.g. (A > 10) AND (A < 20)

aR : Lagie "aR", e.g. (A (20) aR (A > 30)

NOT Lagie negation, e.g. NOT (A (10)

While the two first, DIV and MOD are a convenient and loglcal
extension of the arithmetieal operators, the last three (AND, OR
and NOT) provide a number of special applications in oonneetion
with Boolean expressions, which will be explained in more detail.

Boolean expressions

In RC ())MAL, Boolean expressions may be formed in the usual
Boolean algebra by using the operators AND, aR and NOr.

Examples

IF ftI\.XNR = o OR lAST = 10 '!HEN

UNl'IL NAME$ = "NCNE" aR END = TRUE
WHlLE SJR (OBS) <> 25 AND æs <> o 00
UNTIL tIDE = TRUE AND H(~E) = o OR H(lmE) :: IAST

In RC CXlMM, numerical variables may be used as (pseudo) Boolean
variables, because a numerical variable in the right context will
be tmderstood as a Boolean variable with the value "false" lf the
numerical variable in question has the numerical value O and the
value "true" in all other cases. In other words, "true" corresponds
to "d ifferent from O", while "false" corresponds to "equal to O".
TO make it easier to remenDer this equivalent, we have introduced
in Re <XJMAL the constants TRIJE and FALSE, which have the numerical
values 1 and O respeetively.

17

EX!llPles

When the sentence

LET NJRKOOT :: TRUE

has been carried out, NJRKOOT has the value 1 and is therefore in
this sentence

IF K)RKOOT 'lHEN PRINT "THE DIVISICN K)RI(S Q)T1I

interpreted as a Boolean variable of the value "true".

Due to the stated equivalence between numerical values and true­
ness values, Boolean expressions may be used in arithmetical
expressions. A Boolean expression with the value "true lt is in
this oonnection interpreted as an arithmetical expression of the
value 1, while a Boolean expression which has the value "false"
is assigned the numerical value O.

Examples

In the sentence

OEF FNF (X) = (X<O)* (X+1) + (X-O) * X+(X>O) * (2*X+3)

the function FNF is given after a "division of the definition
volume" •

If CLOSED and IXGLCOSE are variables of the values 1 (TRUE) and O
(FALSE) respectively, the execution of the sentence

LET IND = CLOSED AND wr tx:GlOOSE

will result in the variable IND being assigned the value 1

(TRUE) •

5

18

Terminal commands

A I'1\JIt)er of new terminal cæmands in addition to the usual (RUN,
LIST etc.,) have been added in RC COM1\L.

The following should be mentioned:

AU'IO : 	 Used when keying in programs. 'lbe a:mnarXI
starts the autc.matic generation of line
number: 10, 20, 30, •••• etc.

RUNL 	 Starts the run of a program the same way as
RUN, but all printouts will be an the line
printer.

COO : 	 Starts a program fran the p:>int were it was
last stopped. 'It1e program may be stopped by

means of a S'IDP statement, pressing ESC key,
etc••

COOL : 	 As CON, but continues printout on the line
printer.

BA'lOJ: 	 Starts input of programs fran the card

19

6 Systems with a card reader

An Re 7000 system with a card reader provides facilities for
BATCH runs, i.e., automatic run of, for example, the pcograms of
a whole class.

The cards are packed in a Joo (Joo = program + control cards) ard
the var ious JOOs are packed together in a BA'OCH (BATCH = stack).

Each JOB is provided, for exanple, with the following control
cards:

1. 	SCRATCH <text>, where <text> is printed out before output
fran the program.

2. 	LIST, prints out the program.
3. 	lUN, starts the execution of the program.
4. 	EDJ, (End-Qf-Job) completes the iooividual job.

When the individual JOBs are stacked together in a BATCH, the
BATCH is placed in the card reader.

There are two terminal commands which may start running the
cards:

BATCH: 	 All printouts will appear at the terminal
fran which the oommand has been given.

BATCH "$LPT": 	 All printouts appear on the line printer.

The card run is MW fu1ly automatic. If the programs contain
faults and cannot be run within a pre-determined tllne ltmit,
e.g., 60 seconds, the next job wi11 be input automaticaIly. It
should be noted that all other terminals and peripheral equipment
are not affected by the BA'lOi run, but continue tmdisturbed.

TWo types of line marking cards may be used in RC COMAL, the
BATCH-BASIC card (HP-standard) and a newly designed 'Re CDMAL
card. 'lhe new card contains all the types of RC OJMAL statements •
80th these cards are shawn on the next page.

r ---- ­

20

7

21

Systems with floppy discs

Re a:>MAL eontains software for handling FIDPPY OISCS.

The floppy disc has three prlfi~ry fields of applieation:

1. System storage (e.g. Re a:>MAL)
2. Program storage
3. oata files.

When an RC 7000 SYSTEM is provided with a floppy dise, it would
be natural to use this for system start. 'Ibis gives an easy and
eonvenient system start, \Itlieh takes about 30 seconds. The main
application of the dise would probably be for program storage.
Programs are stored and called by means of a narRe of up to eight
eharaeters. 'lhe I'llUl'ber of programs which can be stored depends on
diskette's capaeity.

Finally, the dise may contain data files. Reading and printing of
data files may be carried out direetly from the individual
program.

A new concept in conneetion with the floppy dise is the LOGICAL
DISe.

Before a dise plate is used for the first time, it must be
formatted, i.e., divided into a nUl'lt>er of sub-seetions called
logical dises.

The n.unber of logical dises is dependent only on the size of the
individual logical dises that make up the \Itlole disc. In prae­
tical applications, the nUl'lt>er may vary from 1 to about 70
logical discs.

The formatted dise plate looks as follows:

I-----oisc plate formatted into logieal discs (LD)-------l

Main index

22

The main index describes the logical discs. 'Ibis index contains
information on names of the logical dises , pr:otection keys, the
length of the logical dise ard the nuni:ler of users.

'Ihe contents of the main index will not be readily accessible to
"lay" users, but can be written out by means of a special program.

The sub-indexes contain information on the content of the logical
dises. '1be primary information in the index is the names of the
stored files (data files ard programs) and their length. Any user
MaY be comected to a logical dise. In order to have acæss to a
logical disc the user nust know the name of the logical dise and
this gives the user the right to read. the files stored on it. If
the user wishes to write on the logical dise, then in aidition to
the name he nust give the pE'otection key, which is a nuni:ler in
the interval O to 65535. There are a number of terminal oommands
connected with the use of the flom dise.

CONNECT : 	Osed for connecting the user to a logical dise. After
CCHm:T follows the name of the logical disc ard
protection key, if any. E.g., CDNNECT "DISC 1", 637.

COPY 	 Osed for copying files fran one logical disc to another.

LOCK : 	Osed from the master terminal to bar the comection of
users to the floppy disc.

LCX)KOP : 	Prints out information fran the sub-index in the
connected logical disc. 'Ibis includes the printout of
the names of all the files.

RELEASE : Disconnects the terminal fran the logical dise.

OSER; 	 Prints out the nuni:ler of users connected to the floppy
disc.

There are a number of RC c:x:MU, statements connected with the use
of data files by programs. '!bese are as follows:

CREATE, DEIBI'E, RENAME, OPm FILE, CI.æE FILE, INPt1l' FILE, PRINT
FILE, READ FILE, WRITE FILE, FDF (EX> (F FILE), Ml-\.T INPl1l' FILE,

MAT PRINT FILE, MT READ FILE, MT WRITE FILE.

These statements are not explained in this publication, but
further information may be obtained about them fran the "Re <DMAL

PRXmAMMIliG GUIDE".

8

23

Summary of RC COMAL

This summary pcovides a bcief though total pieture of Re ~L.

Naturaily the summary cannot contain all features, and therefore,

further references should be made to the "RC (X)MAL PRCG'AAMMIN:i
GUIDE". In the summary, the following abbreviations and symbols
are used:

<var> :

(svar>

..<expr> ..
<slit> ..

4

..<val> · <Ino> :
< statements > :
<ldnames>
<filename>

<device>
<file> ..· <array> ..·
< conment >
<rnvar >
(reel>
<reeno>

{

The name of a numeric variable or the name
of a pcocedure.
The name of a text string (alphanumeric
variable).
Numeric, Boolean or alphanumeric expression.
Alphanumeric constant, e.g., "PETER" •
Numeric constant.
Line numbers.
One or l1Dre RC (X)MAL statements •
The name of a logical disc.
The name of a disc file or of a peripheral
unit.
The name of a peripheral unit •
The number of a user file •

Indicates a dimensioned variable.

Catments.

The name of a matrix.

Record length.

Record number.

Indicates that ane of the possibilities shown

may be selected•

Indicates that the contents may be anitted.

•••

8.1

24

RC COMAL statement types

Format/Description

CASE <expr> OF

[<statements-O>]

WHEN <expr > [, <expr >] •••

<statements-1>

•

•

•

WHEN <expr> [, <expr >]

<statements-n >

ENOCASE [<conment >]

The expression following CASE is evaluated am canpared
with the expressions following WHEN. If there is a match
in the ith WHm statement, statements-i is executed. If
no match is found, statements-O is executed. Control is
then transferred to the first statement following
ENDCASE.

CHAIN <filename> ['mEN 00'r0 <lineno. >]

Runs the SAV&:) program referred to by a filename when the
statement is encountered in the user' s program. Nlen used
as a camnaoo, æAIN will LOlID, but not execute, the SAVEd
program.

• ••

Provides values to be read into variables appearing in
READ or MAT READ statements.

DEF PW<a>«d» = <expr>

Used with the function FNa(d) to define a user function.

DEIAY - <expr>

Interrupts pcogram execution for a specified number of
seconds.

<svar>(<m» I [
OlM <array>«m» ,

<array>«row>,<col»

<svar.>«m.» l]
<array>(<m» •••
<array>«row>,<col»

Defines the size of string variables or numeric variable
arrays.

END [<caunent»

Terminates execution of the program.

EXEC <name>

Executes a procedure defined by PROC-ENDPROC.

FOR <control var> = <expr1> ro <expr2> [STEP <expr3>]

<statements>

NEXT <control var>

FOR begins a FOR-NEXT loop and defines the nUli'Der of times
a bloc k of statements is to be executed. 1I1EXT is the last
statement in the loop and changes the value of the control
variable.

<DSUB <Ino>

•

•

•

<statements>

RETURN [<conment>]

GOSUB transfers control to the first statement of a sub­
routine. RE'I'URN is the last statement in a subroutine am
returns control to the first statement following the GOSUB
statement that called the subroutine.

GOm <Ino>

Transfers control unconditionally to a statement not in
normal sequential order.

IP <expr> ['lUEN] <statement>

Executes a single statement depeooing on whether an
expression is true or false.

•••

26

IF <expr> [TUEN] [00]
<statements>

ENDIF [<comment>]

Executes a block of statements depending on M\ether an ­
expression is true or false.

IF <expr> [TUEN] [00]
<statements-1>

ELSE [<comment>]
< s tatements-2 >

END!F [<comment>J

Executes statements-1 tf an expression is true, other­
wise statements-2.

{
<var> t [j,<var> IJ

INPUT [<slit-O>,] <s~ar~ [,<slit-n>] l,<svar>f •••

Assigns values entered fran the user' s terminal to
numeric or string variables.

{<var> l [{<var;) } J
[LET] <svar> = <expr> : <svar> =<expr> •••

Assigns the value of an expression to a variable.

ON ERR TUEN <statement>

Enables the programmer to take special action, if an error
occurs during program execution.

ON ESC TREN <statement>

Enables the progranmer to take special action, if the
ESCape key is pressed during program execution.

ON <expr> [TUEN] {:al <lineno.> [,<Ino>]

Transfers control to one of several lines in a program
depending on the computed value of an expression M\en the
statement is exeeuted.

•••

27

[j<expr>\ ~ l<expr>~<slit> '} <slit>

<svar> ~ <svar>

Prints specified items an the user's terminal.

<expr » ~ <expr >\]
PRINT USING <format>, <slit) t'} <slit> ·.. [{ ;}]<svar> ; <svar>

OUtputs the valueR of items in the argument list using a
specified format.

PIVC <name>
<statements>

ENDPIVC [<coornent>]

Defines a procedure. \\hen the procedure is called by EXEC,
control is transferred to the first statement following
PFO:. ENDPRCX.': is the last statement in a procedure and
returns control to the first statement following the EXEC
statement that called the procedure.

Causes the random number generator to start at a different
point in the sequence of rarrlorn mll'ltlers generated by the
function RND(X).

J<var> } [I,<var> tJ
l<svar > 1,<svar> •••

Reads in values from DATA statements arrl assigns the
values to the variables listed in the statement.

Rf.)t [<conment ')]
Inserts explanatory comments within a program.

REP~T [<comnent>]
< statements >

UNTIL <expr '>

Executes a block of statements repetitively until an
expression is true. The block of statements is always
executed at least once.

28

RES'IDRE [<Ino>]

Resets the data element pointer to the beginning of the
data list or to a particular DATA statement.

S'IDP [<COImIent>]

Terminates execution of the current program.

TAB(<expr >)

Used in PRINT statements to tabulate the printing posi­
tion to the column nunt>er evaluated fran an expression.

WHlLE <expr> ['mEN] 00

<statements >

ENIMHILE [<conment>]

Executes a block of statements repetitively while an ex­
pression is true. If the expression is false the first
time WHILE is encountered, the block of statements is not
executed even once.

8.2 RC COMAL standard functions

ABS(<expr »

Returns the absolute (positive) value of an expression.

A'lN(<expr »

Calculates the angle, in radians , whose tangent is an
e xpr ession.

COS(<expr >)

Calculates the cosine of an angle which is expressed in
radians.

EXP(<expr >)

Calculates the value of e (2.71828) to the power of an
expression.

29

FN<a>(<d»

A user function which is defined by DEF aRl returns a
n\J1leric value.

INT(<expr >)

Returns the value of the nearest integer not greater than
an expression.

LOO(<expr »

calculates the natural logarithm of an expression.

RND(<expr >)

Produces a pseudo rarxlom number between O arxl 1.

SGN(<expr>}

Returns the algebraic sign of an expression.

SIN(<expr »

caIculates the sine of an angle Which is expressed in
radians.

SQR(<expr»

Computes the square root of an expression.

SYS{ <expr»

Returns system information, based on an expression which
is evaluated to an integer, as follows:

O Time of day.
1 Day.
2 fibnth.
3 Year.
4 Terminal port nwnber.
5 Time used since terminal was logged ona
6 Number of file I/O statements exeeuted.
7 Error code of last run-time error.
8 File nwnber of last file referenced.

r·············_­

30

9 Page size.
10 Tab size.
11 Ibur.
12 Minutes pest last hour.
13 Seconds past last minute.
14 Constant ". (3.14159)
15 Oonstant e (2.71828).

TAN(<expr >)

Calculates the tangent of an angle which
is expressed in radians.

8.2.1 	 Functions for processing text strings

CHR(<expr >)

Returns the character corresponding to the IlllIIDer found
as an expression modulo 128.

<svar> }

{LEN(<slit>)

Returns the current number of characters in a string.

<svar> }
{ORD(<slit>)

Returns the decimal nunt>er of the first character of a
string.

8.3 	 Matrix operations in RC COMAL

MAT <mvar1> =<mvar2>

Copies the elements of ane matrix to another matrix.

MAæ <mvar1> =<mvar2>{~}<mvar 3>

Performs the scalar additLon or subtraction of two matrices.

31

<mvar2> }MAT <mvar1> = {«expr» * <mvar3>

Perforrns the multiplication of one matrix by another
matr ix or by a scalar.

<var> =DET«expr»

Returns the determinant of the last matrix inverted by a
MAT !NV statement.

MAT <mvar> =CON

Initializes a matrix such that all elements are set to
one.

MAT <mvar> = ION

Initializes a matrix such that all elements (i,i) are set
to one and the remaining elements are set to zero.

MAT INPUT <mvar1> [,<mvar2>, ••• ,<mvar-n>]

Assigns numeric values entered from the user's terminal to
the elements of one or more matrices.

MAT <mvar1 > = INV«mvar2»

Inverts a matrix and assigns the resultant element values
to another matrix.

MAT PRINT <mvar> [{:} mvar >] ••• r:]

Outputs the values of the elements of one or more matrices
on the user's terminal.

MAT READ <mvar> r,<mvar>] •••

Reads in numeric values from DATA statements and assigns
the values to the elements of one or more matrices.

32

MAT <mvar1> = TRN{ <mvar2»

Tr ansp:>ses a matr ix ard ass igns the resultant element
values to another matrix.

MAT <mvar> = ZER

Initiallzes a matrix such that all elements are set to
zero.

8.4 Com mands to logical discs

CONNEX:::T <ldname> (,<expr>]

Connects the user's terminal to a logical disc for reading
or, if the pcotection key is correctly specified, ~r both
reading and writing.

COPY H<ldname>:<filename1 >","<filename2>"

Copies a file «filenarne1 » from any logical disc
«ldname» to a file {<filename2>} in the logical disc to
which the terminal is connected.

INIT <device>

Initializes the main catalog in a device containing
logical discs.

tOCK <device>

Lecks a device, when changing discs or closing down the
system, so that no user can connect his terminal to a
logical disc in that device.

I..CXlruP ["$LPl'"]

Returns a listing of the files in the logical disc to
which the terminal· is connected.

RELEASE

Disconnects the user' s terminal fran the logical disc to
which it is connected.

33

USERS <device>

Returns the number of users whose terminals are connected
to any logical disc in a device.

8.5 Statements for file processing

CLOSE [rILE«file»]

Oissociates a filename and a user file number (see OPEN
FILE) so that the file no longer can be referenced. 'lbe
CtOSE form of the statement closes allopen files.

CREATE < filename>, <size> [, <reel>]

Creates a file in the logical disc to which the user's
terminal is connected.

DELETE < filename >

Deletes a file in the logical disc to which the user I s
terminal is comected.

EOF(<file»

Returns avalue of +1, if an end of file condition was
detected in the last INPrJl' FILE or READ FILE statement;
otherwise, avalue of O is returned.

<var> } [J<var> IJ
{INPrJl' FlLE(<file» [,] <svar> , 1< svar > •••

Rea:':ls data in ASCII format from a sequential access file
for the variables in the argument list.

MAT INPrJl' FlLE(< f ile» [,] <tI'IY'ar> [, <tI'IY'ar >] •••

Rea:':ls data in ASCII forma~ from a sequential access file
for the matrix variables in the argument list.

MAT PRINT FILE(<file» [,] <tI'IY'ar> [,<tI'IY'ar >] •••

Writes matrix data in ASCII format to a sequential access
file.

34

MAT READ FILE«file>[,<reeno>]) r,] <mvar> [,<mvar>] •••

Reads data in binary format from a sequential access file
or record of a random access file nor the matrix variables
in the argument list.

MAT WlUTE FIL.E«file> [,<recno>]) r,] <mvar> [,<mvar>] •••

writes matrix data in binary format to a sequential access
file or record of a random access file.

OPEN FlLE«file>,<mode» r,] <filename>

Associates a filename, i.e. a dise file or a device, with
a user file number so that the file can be referenced in
other file I/O statements: also specifies how the file is
to be used.

<expr<slit>>\ rI',l <expr >1] ••• [1' l]PRINT FILE(<file» [,] <slit> :f
<svar> <svar>\

Writes data in ASCII format to a sequential access file.

j<expr >![j<expr >1]
PRINT FlLE«file» [,] USIN:; <format>, <slit> {'l <slit> ••• [{'t]

<svar> ;r<svar> ;f

writes data in ASCII format to a sequential access file,
using a speeified output format.

J<var> l. [{<var> }J
READ FlLE«file>[,<recno>]) r,] l<svar > , <svar> •••

Reads data in binary normat from a sequential access file
or record of a random access file for the variables in the
argument list.

~ <filename1>,<filename2>

Renames a file in the logical dise to whieh the user's
terminal is conneeted.

35

WRITE FILE«file>[,<recno>]) •••l,] 1::~~:f[,I::~i~:I]
<svar> 	 <svar>

Writes data in binary format to a sequential access file
or record of a random access file:

8.6 	 System commands in RC COMAL

<Ino n1 > ,<Ino 02> l

<Ino n1>

{<Ino n1 >,

,<Ino 02>

Deletes ane or more statements in a program.

<Ino n1>

AU'IO {~}<lno n2>

<Ino n1> {~}<lno n2>

Provides automatic line numbers in a program, thereby
making it 	easier to enter pcograms from a terminal.

BATCH ["$LPT"]

Places the terminal in batch mode and causes the system to
start reading cards from the mark-sense card reader. Job
output will appear on the tecminal or, if the BATCH "$LPT"
form of the oorrmand is used, on the line pr inter •

BYE

Logs the terminal off the system.

{~}

Continues execution of the current pcogram after the
execution of a S'roP statement in the program, after the
ESCape key has been pressed, or after an error has
occurred. <A1tput from PRINT statements will appear on
the terminal or, if the CONL form of the command is used,
on the line printer.

,--- ­

---- - -- -----------

36

ENTER <filename >

Merges the statement lines from the disc file or the
device specified by a filename into the current program

LIST

storage area.

<Ino n1 >

{~}<lno n2>

<Ino n1 > l~}<lno n2>

[<filename>]

Outputs part or all of the currently loaded pcogram in
ASCII format to the disc file or the device specified by a
filename or, if no filename is specified, to the terminal.

La.a.D < filename >

I..oads a previously SAVFd program in binary format from the
disc file or the device specified by a filename into the
user's program storage area.

NEW

Clears all currently stored program statements and
variables from oore memory and closes any open files.

PAGE=<expr>

PUOCH

Sets the right-hand margin of the terminal.

<lnon1>

l~}<lno n2>

<Ino n1> {~}<lno n2>

Outputs part or all of the currently loaded program in
ASCII format to the terminal punch (when ~esent).

37

<Ino n1>

RENUMBER 1~}<lno n2>

Renumbers the stabements in the current program.

Executes the current program, either fran the lowest
numbered statement or fran a specified line number, or
loads and executes a previously SAVEd program as the
current 	program. ()Jtput fran PRINT statements will appear
on the terminal or, if the RUNL form of the 0CIIIna.I'd is
used, on the line printer.

SAVE <filename >

wtites the currently loaded program, including the current
values of all variables and parameters, in binary format
to the disc file or the device specified by a filename.

SIZE

Returns the number of bytes used by the current program
and the numbers of bytes left.

TAB=<expr>

Sets the zone spacing between the pr int elements output by
PRINT statements •

8.7 Commands in connection with batch runs

Terminates a job.

SCRMOi 	[<text>]

Initiates a job.

TIME-<va1>
5pecifies :tøf may secorils a jOb may [lUl. If nothing is
speci f ied , TIME = 60 secords.

r ------ ­

37

<Ino n1>

I~}<lno n2>RENUMBER

RenlJllt)ers the statements in the current program.

Executes the current program, either fran the lowest
numbered statement or from a specified line number, or
loads and executes a previously SAV8j program as the
current 	program. CAltput fran PRINT statements will appear
on the terminal or, if the RUNL form of the CXIIIna.td is
used, on the line printer.

SAVE <filename >

wtites the currently loaded program, including the current
values of all variables and parameters, in binary format
to the dlsc file or the device specified by a filename.

SIZE

Returns the n.urrber of bytes used by the current program
and the n.urrbers of bytes left.

TAB==<expr>

Sets the zone spacing between the pr int elements output by
PRINT statements•

8.7 Commands in connection with batch runs

EQ1

Terminates a job.

SCRN.OCH 	 [< text>]

Initiates a jOb.

TIME-<val>
Specifies 00w may secooos a jOb may run. If nothing is
specified, TIME = 60 secoms.

http:CXIIIna.td

