

Introduction to
RC BASIC/COMAL

A Structured Programming Language

‘ First Edition
A/S REGNECENTRALEN April 1978
Information Department RCSL 42-1 0784

Author : Thorkild Maaetoft and Bgrge Christensen
Text Editor: Inga Marcussen

KEY WORDS: RC 7000, RC 3600, RC COMAL, BASIC, Introduction,
Brief language summary.

ABSTRACT: This introduction defines the extensions, regarding
the BASIC generally used, which are implemented in RC
COMAL. The special use of the floppy disc and card
reader are also described. The final chapters contain a
summary of RC COMAL.

REMARKS: Issued by A/S Regnecentralen in co-operation with the
Computer Divison of the Tynder Statsseminarium,

Users of this manual are cautioned that the specificotions
contained herein are subject to change by RC at any time
without prior notice. RC is not responsible for typographi~
cal or arithmetic errors which may appear in this manual
and shall not be responsible for any damages caused by

reliance on any of the materials presented.

Copyright © A/S Regnecentralen, 1978
Printed by A/S Regnecentralen, Copenhagen

Contents

1

WHAT IS RC OOMAL

NAMES OF VARIABLES, ASSIGNMENT OF VARIABLES
2.1 Names of variables
2.2 Assignment of variables

ADVANCED CONTROL STRUCTURES

3.1 If p THEN .. ELSE .. ENDIF

3.2 1If p THEN .. ENDIF

3.3 REPEAT .. UNTIL p

3.4 WHILE p DO .. ENDWHILE

3.5 CASE expr OF .. WHEN .. ENDCASE
3.6 Procedures

OPERATORS
4.1 Boolean expressions

TERMINAL COMMANDS

SYSTEMS WITH A CARD READER
SYSTEMS WITH FLOPPY DISCS
SUMMARY OF RC COMAL

8.1 RC OOMAL statement types
8.2 RC OOMAL standard functions

8.2.1 Functions for processing text strings

8.3 Matrix operations in RC OOMAL

8.4 Commands to logical discs

8.5 Statements for file processing

8.6 System commands in RC COMAL

8.7 Commands in connection with batch runs

Page 5

ol

10
11
12
14

5

What is RC COMAL

Since 1970 Regnecentralen has marketed the RC 7000 Minicomputer
System, primarily for teaching institutions.

Today, in 1978, there are RC 7000's installed in over 100 schools,
colleges, universities and other educational institutions, which
makes it the most used mini-computer system for educational

purposes.

Originally the RC 7000 was based on the hardware and software of

the American firm Data General. The most frequently used pro-

gramming language was BASIC, due to the many benefits contained
in this language, especially for elementary teaching.

The RC 7000 is an all-Danish computer as both hardware and soft-
ware are developed and produced in Demmark by Regnecentralen. As
early as 1974, users of the RC 7000 expressed their wish for an
extension of Data General's extended BASIC. It was found that
BASIC had some general shortcomings which made it less suitable,
for example, for procedure orientated structures.

The programming language COMAL was defined by Lecturer Benedict
Igfstedt, Arhus University, and Lecturer Bgrge Christensen,
Tgnder Statsseminarium (Teacher Training College). The language
contains extended BASIC, as the aim was that COMAL should be a
further development of BASIC.

A first version of COMAL was developed on an RC 7000 by Per
Christiansen and Knud Christensen at the computer division of the
Tgnder Statsseminarium in 1975. More than three years experience
with COMAL EDP teaching at commercial schools, teacher training
colleges and in ordinary schools has shown that COMAL is easier
to learn than BASIC, one of the reasons being that it results in
programs which have a clearer structure and are therefore easier
to read than the corresponding BASIC programs. By reading through
this introduction to RC COMAL, the reader will understand why
this is so.

RC OOMAL is the final version of the COMAL language, and has been
developed by A/S Regnecentralen in continuous co—operation with
teachers from teacher training colleges, high schools and other
schools. RC OOMAL contains significant improvements in relation
to the originally defined COMAL, and these improvements all aim

at making the language into an easy and flexible tool for
teaching in all places of education.

Incidentally, COMAL is an abbreviation of: COMmon Algorithmic
Language. In the definition of the language, emphasis has been
put on the basic algorithm structures being easy to describe and
easy to recognise,

This introduction is not meant as a textbook of RC COMAL. The
introduction has been written for readers who know the most
important language elements in BASIC, and contains therefore no
definitions or explanations of the most simple RC COMAL/BASIC
sentences.,

This book contains first a description of extensions and new
language elements in RC COMAL in relation to BASIC. The last
chapter is a total survey, in diagrammatic form, of RC COMAL.

Additional literature about RC COMAL:
"RC COMAL Programming Guide”, published by A/S Regnecentralen.

Bgrge Christensen: "RUN COMAL", published by Studentlitteratur.
Bgrge Christensen: Problems for "RUN COMAL", by the same publisher.

2.1

2.2

Names of variables, assignment of variables

Names of variables

In RC OOMAL, variables of all types are named according to the
prescription: ’

t|t2 L EX RN NN t r i; 8’

i
where t, is a letter, while tz, «voscase ti are letters or digits.
Examples

LET INTEREST = CAPITAL * INTEREST RATE * NUMDAYS/360/100

LET NAMES = "OLE OLSEN"

LET TABLE (NUMBER, YEAR) = 126

Assignment of variables

In RC COMAL, LET sentences may contain more than one assignment:
LET var, = exXpr ; var, = eXpr,; eeeeoj Var, = expr,

where var,, var,, e<e.es., Var, are names of variables, while expr, ,
eXpPr,, «...s, €Xpr, are constants, variables or formulae. A LET

sentence may contain as many assignments as the length of the
line permits.

Examples
LET INTEREST RATE = 12; CAPITAL = 15000; NAMES = "OLE OLSEN"

This sentence has the same effect as three consecutive LET
sentences, each with its own assignment.

3.1

8

Advanced control structures

In addition to the control structures in BASIC, the following are
found in RC COMAL:

(1) 1IF p THEN .., ELSE ,. ENDIF

(2) IF p THEN .. ENDIF

(3) REPEAT .. UNTIL p

(4) WHILE p DO .. ENDWHILE

{(5) CASE expr OF ,. WHEN ,. FNDCASE

If p THEN .. ELSE .. ENDIF

The structure is built up as follows:

IF p THEN
A
t £
ELSE P
------ g
B —_— pal-
ENDIF l

P is a Boolean expression (an open statement); if p has the value
"true", then the program portion A described between IF p THEN
and ELSE is carried out, and if p has the value "false", the pro-
gram portion B described between ELSE and ENDIF is carried out.
when either A or B has been carried out, the program continues
with the next sentence after ENDIF,

The portion of the program text positioned between the control
sentences is inserted when a program list has been printed out
(see FOR ., NEXT in BASIC).

3.2

Exg_ngles

IF PRICE < 100 THEN

PRINT "YOU MUST PAY (INCL., CHARGE): "; PRICE + 15;"KR."
ELSE

PRINT "YOU MJST PAY: "; PRICE; "KR."
ENDIF

INPUT "CHARACTER: ", CHARAC
LET SUM = SUM + CHARAC; NUMCAR = NUMCAR + 1
IF CHARAC < MIN THEN
LET NEXTMIN = MIN; MIN = CHARAC
ELSE
IF CHARAC < NEXTMIN THEN LET NEXTMIN = CHARAC
ENDIF

If p THEN .. ENDIF

The structure is built up as follows:

IF p THEN t

] |

ENDIF

p is a Boolean expression; if p has the value "true", then the
program section A described between IF p THEN and ENDIF is
carried out, and if p has the value "false", then A is skioped,
In either case, the program continues with the next sentence
after ENDIF. The text between IF 9 THEN and ENDIF is inserted
when program lists are printed out.

In an RC OOMAL program, up to seven IF p THEN .. (ELSE) .. ENDIF
branches inside one another are allowed,

10

Examples

READ TAL1, TAL2
IF TAL1 > TAL2 THEN
LET BUFFER = TAL1; TAL1 = TAL2 = BUFFER
ENDIF
PRINT TAL1, TAL2

IF RND (0) < 3/10 THEN
LET H1 = H1 + 1
ELSE
IF RND (0) < 3/9 THEN
LET H2 = H2 + 1
ELSE
IF RND (0) < 3/8 THEN
LET H3 = H3 + 1
ELSE
IF RND (0) < 3/7 THEN
LET H4 = H4 + 1
ELSE
LET H5 = HS + 1
ENDIF
ENDIF
ENDIF
ENDIF

REPEAT .. UNTIL p

The structure is built up as follows:

REPEAT - 3
[A] £

UNTIL P t

p is a Boolean expression; the program section A described between
REPEAT and UNTIL p is repeated until p has the value “true". when p
obtains this value, the program continues with the next sentence
after UNTIL p.

It should be noted that the program section A is carried out at least
once if the interpreter reaches the REPEAT sentence, because the
control of the loop starts from the UNTIL sentence. The text between
REPEAT and UNTIL p is inserted when a program list is printed out.

3.4

1"

WHILE p DO .. ENDWHILE
The structure is built up as follows:
WHILE p DO |‘
[57] t
A A
—————— f
ENDWHILE

p is a Boolean expression; the program section A described
between WHILE p DO and ENDWHILE is repeated as long as p has the
value "true". When p has the value "false" the program continues
with the next sentence after ENDWHILE,

It should be noted that if p has the value "false" when the
program reaches the WHILE sentence, the section A will not be
carried out at all, and the interpreter will just go straight on
to the next sentence after ENDWHILE. The text between WHILE p DO
and ENDWHILE will be inserted when a program list is printed.

In RC OOMAL it is possible to have up to seven REPEAT .. UNTIL
loops and up to seven WHILE .. ENDWHILE loops inside and
independent of one another. For example, there may be a total of
fourteen loops of the two types inside one another independent of
sequence, as long as seven of them are REPEAT loops and the rest
are WHILE loops.

The FOR .. NEXT loop inherited from BASIC has no influence on the
number of REPEAT and WHILE loops that there may be inside one
another (in RC COMAL there may be up to seven FOR .. NEXT loops
inside one another). The number of IF .. (ELSE) .. ENDIF branches
is also independent of any possibly inserted loops. In other
words, it is actually possible to have a total of 21 loops + 7
branches built into one another in an RC QOMAL program. However,
the author does not remember having seen this in practical
application.

Examples

INPUT "THE TWO NUMBERS:", A, B
LETX=A; Y=B
REPEAT (* EUCLID*)
LET REST = X TOWARD Y
LET X = ¥; Y = REST
UNTIL REST = 0
PRINT "SFD FOR"; A; "AND"; B; "IS"; X

3.5

12

INPUT "NAME" (SURNAME CHRISTIAN NAME): ™, NAMES
WHILE NAMES <> "END" DO
INPUT "ADDRESS:", ADRS
INPUT “TOWN (POSTNUMBER NAME OF TOWN): ", TOWNS
INPUT "NEXT NAME:", NAMES
ENDWHILE

Note

The use of GOTO sentences in connection with the control struc-
tures (1) - (4) may be problematic. Generally GOTOs should not be
used in the program sections A and B and certainly not if these
GOTO sentences refer to sentences which are outside the sentences
that start or finish the said program section. On the whole, the
use of GOTO should be restricted to unusual situations (for
example in the case of fault in input, etc.).

CASE expr OF .. WHEN .. ENDCASE

The structure is built up as follows:

CASE expr OF
[~]

WHEN <list>1
[~]

WHEN <1ist>2

ENDCASE

expr is an arithmetical expression (a constant, a variable or a
formula), one of the Boolean constants TRUE or FALSE, or a
variable string, and <list> is a list of arithmetical expressions,

a list of Boolean expressions, or a list of character sequences.

13

When the value of expr has been calculated, the interpreter searches
in the lists after the various WHEN for a value which is egual to
that of expr. If such a value is found in <1ist>i , the following
program section Ai will be carried out and then the program will
continue with the sentence after ENDCASE, If the relevant value

is not found, the alternative section A, which is placed immediate-
ly after the CASE sentence will be carried out, and then the pro-
gram will continue with the next sentence after ENDCASE.

The number of WHEN sentences following a produced CASE sentence
is unlimited, and you may have as many CASE .. FNDCASE inside one
another as you like,

The texts for A, A, A,, ... A are inserted in relation to the
CASE, WHEN and ENDCASE sentences when a program list is printed out.

Examples

INPUT "1 = IN, 2 = LIST, 3 = SEARCH, 4 = DELETE, 5 = STOP:",
JOBCODE
CASE JOBCODE OF
PRINT "THE CODE DOES NOT EXIST,."
WHEN 1
REM (*NEW CODES INPUT*)
EXEC ENCODER
WHEN 2
REM (*PRINTOUT OF CODE LIST*)
EXEC PRINTOUT
WHEN 3
REM (*SEARCH A GIVEN CODEY*)
EXEC SEARCH
WHEN 4
REM (*DELETE A GIVEN CODEY*)
EXEC DELETE CODE
WHEN 5
REM (*END OF DAY*)
STOP
ENDCASE

3.6

14

INPUT SVARS
CASE SVARS OF
PRINT "READ INSTRUCTIONS PROPERLY"
WHEN "YES™
EXEC PANE?1
WHEN "NO"
EXEC PANE2
WHEN "NONE", "NOTHING", "NOT ANY"
EXEC PANE3
ENDCASE

INPUT "THE (QOEFFICIENTS A, B aND C", A,B,C
IF A <> 0 THEN
LET DETM = B* B-4* A*C
CASE TRUE OF
WHEN DETM > 0
LET X1 = (-B+SQR (DETM))/2/A; X2 = {-B-SQR (DETM))/2/A
PRINT"X1 ="; X1, "X2 =": X2
WHEN DEM = 0
LET X =-B/2/A
PRINT “DOUBLEROOT: X ="; X
WHEN DETM <0
PRINT "NO REAL ROOTS".
ENDCASE
ELSE
PRINT "I THOUGHT WE WERE TO SOLVE QUADRATIC EQUATIONS?"
ENDIF

Procedures

It is a great advantage to use procedures to make the programs
clear and logical in their construction. This is why RC COMAL
also has an extension in this area.

If a program starts with the sentence
PROC <name>
where <name> is a character sequence with the same format as the
name of a variable (see section 2), and ends with the sentence
ENDPROC
this program may be called as a sub-program of another program by
using the sentence
EXEC <name>

When the sub-program has been run, the interpreter continues with
the sentence following immediately after the EXEC sentence from

15

which the call to the sub-program was made.

We may illustrate this in the following way:

FXEC <name>

—
eee

From a sub-program a new sub-program may be called, and so on to
a total of seven. This phenomenon provides the following picture:

PROC <name‘>

[N X]
EXEC <name2>

P

ENDPROC

END (*MAIN PROGRAM ENDED*)

PROC <name2>

PROC <namea >

EXEC <name3>

|

—— ENDPROC

EXEC <name‘> "

ENDPROC

4.1

16
Operators

In addition to the usual arithmetical and logical operators, RC
COMAL contains the following facilities:

DIV : Whole number division, e.g. 11 DIV 4 (=2)
MOD : Modulus, e.g. 11 MOD 4 (=3)

AND : Logic “"AND", e.g. (A > 10) AND (A < 20)
OR : Logic "OR", e.g. (A <20) OR (A > 30)

NOT : Logic negation, e.g. NOT (A <10)

While the two first, DIV and MOD are a convenient and logical
extension of the arithmetical operators, the last three (AND, OR
and NOT) provide a number of special applications in connection
with Boolean expressions, which will be explained in more detail.

Boolean expressions

In RC COMAL, Boolean expressions may be formed in the usual
Boolean algebra by using the operators AND, OR and NOT.

Examples

IF MAXNR = 0 OR LAST = 10 THEN

UNTIL NAMES = "NONE" OR END = TRUE

WHILE SQR (OBS) <> 25 AND OBS <> 0 DO

UNTIL NODE = TRUE AND H(NODE) = 0 OR H(NODE) = LAST

In RC COMAL numerical variables may be used as (pseudo) Boolean
variables, because a numerical variable in the right context will
be understood as a Boolean variable with the value "false" if the
numerical variable in question has the numerical value 0 and the
value "true® in all other cases. In other words, “true" corresponds
to "different from 0", while "false" corresponds to "equal to 0".
To make it easier to remember this equivalent, we have introduced
in RC COMAL the constants TRUE and FALSE, which have the numerical
values 1 and 0 respectively.

17
Examples
When the sentence
LET WORKOUT = TRUJE

has been carried out, WORKOUT has the value 1 and is therefore in
this sentence

IF WORKOUT THEN PRINT "THE DIVISION WORKS QUT"
interpreted as a Boolean variable of the value "true",

Due to the stated equivalence between numerical values and true-
ness values, Boolean expressions may be used in arithmetical
expressions, A Boolean expression with the value "true" is in
this connection interpreted as an arithmetical expression of the
value 1, while a Boolean expression which has the value "false"
is assigned the numerical value 0.

Examples
In the sentence
DEF FNF (X) = {(X<0)* (X+1) + (X=0) * X+(X>0) * (2*X+3)

the function FNF is given after a "division of the definition
volume",

If CLOSED and DOGLOOSE are variables of the values 1 (TRUE) and 0
{ FALSE) respectively, the execution of the sentence

LET IND = CLOSED AND NOT DOGLOOSE

will result in the variable IND being assigned the value 1
{TRUE) .

18

Terminal commands

A number of new terminal commands in addition to the usual (RUN,
LIST etc.,) have been added in RC COMAL.

The following should be mentioned:

AUTO :

CON

CONL

a0

BATCH:

Used when keying in programs. The command
starts the automatic generation of line
nutber: 10, 20, 30, etc.

Starts the run of a program the same way as
RUN, but all printouts will be on the line
printer.

Starts a program fram the point where it was

last stopped. The program may be stopped by
means of a STOP statement, pressing ESC key,

etc,.

As CON, but continues printout on the line
printer.

Starts input of programs from the card

19
Systems with a card reader

An RC 7000 system with a card reader provides facilities for
BATCH runs, i.e., automatic run of, for example, the programs of
a whole class.

The cards are packed in a JOB (JOB = program + control cards) and
the various JOBs are packed together in a BATCH (BATCH = stack).

Each JOB is provided, for example, with the following control
cards:

1. SCRATCH <text>, where <text> is printed out before output
from the program.

2., LIST, prints out the program,

3. RUN, starts the execution of the program.

4, BQJ, (End-Of-Job) completes the individual job.

When the individual JOBs are stacked together in a BATCH, the
BATCH is placed in the card reader.

There are two terminal commands which may start running the
cards:

BATCH : All printouts will appear at the terminal
from which the command has been given.

BATCH "SLPT": All printouts appear on the line printer.

The card run is now fully automatic. If the programs contain
faults and cannot be run within a pre-determined time limit,
e.d., 60 seconds, the next job will be input automatically. It
should be noted that all other terminals and peripheral equipment
are not affected by the BATCH run, but continue undisturbed.

Two types of line marking cards may be used in RC COMAL, the
BATCH-BASIC card (HP-standard) and a newly designed RC COMAL
card. The new card contains all the types of RC COMAL statements.
Both these cards are shown on the next page.

20

€960
TN .
R PN | I | \mmmmm T a o /e
= s ki fEoE
e e ﬁ% % 30 T L 88350, L31HO% Yd 3NN NSIA
i AT = BRH=EF INVAIE 0218 Q3N $307TAION
e e S e e e
et oo & o Rk -l T -
e e e S S\ S 2 2 R d¥R A 5
== :
.(,).ﬂhvl.wwcoﬂﬂ.nmﬂ.we ..._I.bl, k%lnl I%mwmfu..ﬂwum%.w =
: e e e e | e | oo | TEh lfﬂ@%%% ﬂ’m
TR R = T ™0) = A Fey Y o =
R A o= == Slp s cRIERIga R e e £
== bﬂ]ﬁmwﬂn.:, = n”ﬁ”@mmv%ﬂumﬁ%% =
L I oY — ™ ot
=l 2 ..Mn.umﬂﬁ. ©x3| 3, £l =g 50 e | ==
?.@@HW&%W&K? (WN@%MW@%%%W
A R A B B A s .
e e e L |l Sl o2 5 575 a9 53
P e -
e N e e e e e
i e nlhnﬁdW‘u;%wm_ml.J % Eﬂuﬂugmmﬂ“‘mmﬂw _mwwm.’
RECIS T 0 0 - . W . x ek ES =
el sl R == S 2RISRl R S
== ST ENENE EE A Y A
RETVUNN RN R . 36 — |~ x £
el o [B = S| Sl vRe SR s 5
St o e e aasliad =8 = = Sl SRR SR S SR
i jmqﬂﬂ% [ugﬂugtf%%mﬂm%wfmﬂm
P....H.u.rl.l.wu.\m.ucudkb»‘nﬁwu.s | = e | T T Be e = 2 |3)
s T e e g e 2 == Slaleairi resia s
RS | i N - = =) i \
QEW,WMU,WWPMSH B2 S Sme R G
== ...M_Wmmﬂ%ﬁ s === b o5 e 5 2 o
e e e i SRR RS s
Rlnm‘WA.Mlc,DIFGn! Ln.:mwv. %oz 11;“ m..ﬁwwm“d.mm.%«ﬂi ,..M“N%mWh,*l_
- - e %mu :!,ﬂlmhnm: W = HUB.“QW:&MN.%“ _%%n“u :
FRCTINY RSN - . VO O 20 = S : I I T oE F=3 San B
e e el = SIS R PRI SR e 55
= Rt e SE S R Sl Sl [[st i
.HHHUHW L YO) b ~— | P e LA =
P e — e === .ﬂnm.%_ﬂnmluw
kmm allk..hlanFHE 1o ey 0 llﬂ'ﬂm o /2J(|>“.1E1 - 3
— il Sm».mwd N -~ N Fe 31%” .
L0 MM o 10 R O M) i o Tk {)HMJ% =
Bl | o Bl e b s o S R ity ¥
- - & A - B"’U
AT FR SCEE
ﬂ.ﬂ.ﬁ"ﬂunw.ﬂ n&”%ﬂtuqmuﬂm.urW? me_nwmﬂnw.%mmun = -
s & z - . ..”nuil....:... 2R
s 1 i i 1§88 ==Slme e dmg s s
& = e e B o 2 R 2| 18 ,rmwm mﬂﬂ....u. =i :
: | g g 5 2 Tlel” \ EldEle ,x z s 3 !
e -3 = 3 = M : e = H H Cw
et IR |
Ol—TN[B = . 3 o A Mg
o €| L, 40, 0| 1~ 0, | DS §.o SNBSS0 &
W.1..2:3:4.5.%%&&M; 3 MRS
o] Fmppeecin] [yiggin] f e e =i
W@%W&%%%%ﬂ W@MM%%E&W%%“
— " [] Pt o4
o= _ / QIsva-HO1vg
. J/

21

Systems with floppy discs

RC OOMAL contains software for handling FLOPPY DISCS.
The floppy disc has three primary fields of application:

1. System storage (e.g. RC COMAL)
2, Program storage
3. Data files.

When an RC 7000 SYSTEM is provided with a floppy disc, it would
be natural to use this for system start. This gives an easy and
convenient system start, which takes about 30 seconds. The main
application of the disc would probably be for program storage.
Programs are stored and called by means of a name of up to eight
characters. The number of programs which can be stored depends on
diskette's capacity.

Finally, the disc may contain data files. Reading and printing of
data files may be carried out directly from the individual

program,

A new concept in connection with the floppy disc is the LOGICAL
DISC.

Before a disc plate is used for the first time, it must be
formatted, i.e., divided into a number of sub-sections called
logical discs.

The number of logical discs is dependent only on the size of the
individual logical discs that make up the whole disc. In prac-
tical applications, the number may vary from 1 to about 70
logical discs.

The formatted disc plate looks as follows:

———Disc plate formatted into logical discs (LD)———

ZA N
I

\ \

Logical disc \)/ LD LD
Main index

Sub-indexes

22

The main index describes the logical discs. This index contains
information on names of the logical discs, protection keys, the
length of the logical disc and the number of users.

The contents of the main index will not be readily accessible to
"lay" users, but can be written out by means of a special program.

The sub~indexes contain information on the content of the logical
discs. The primary information in the index is the names of the
stored files (data files and programs) and their length. Any user
may be comnected to a logical disc. In order to have access to a
logical disc the user must know the name of the logical disc and
this gives the user the right to read the files stored on it. If
the user wishes to write on the logical disc, then in addition to
the name he must give the protection key, which is a number in
the interval 0 to 65535. There are a number of terminal commands
connected with the use of the floppy disc.

CONNECT : Used for connecting the user to a logical disc. After
CONNECT follows the name of the logical disc and
protection key, if any. E.g., CONNECT "DISC 1", 637.

copY : Used for copying files from one logical disc to another.

LOCK t Used from the master terminal to barv the connection of
users to the floppy disc.

LOOKUP : Prints out information from the sub-index in the
connected logical disc. This includes the printout of
the names of all the files.

RELEASE : Disconnects the terminal from the logical disc.

USERS : Prints out the number of users connected to the floppy
disc.

There are a number of RC (OMAL statements connected with the use
of data files by programs. These are as follows:

CREATE, DELETE, RENAME, OPEN FILE, CLOSE FILE, INPUT FILE, PRINT
FILE, READ FILE, WRITE FILE, EOF (END OF FILE), MAT INPUT FILE,
MAT PRINT FILE, MAT READ FILE, MAT WRITE FILE.

These statements are not explained in this publication, but

further information may be obtained about them from the "RC COMAL
PROGRAMMING GUIDE".

23

Summary of RC COMAL

This summary provides a brief though total picture of RC ODMAL.
Naturally the summary cannot contain all features, and therefore,
further references should be made to the "RC COMAL PROGRAMMING
GUIDE". In the summary, the following abbreviations and symbols

are used:

<var>

<svar>

<expr>
<slit>

<val>

<lno>
<statements>
<ldnames>
<filename>

<device>»
<file>
<array>
<comment >
<mvar >
<recl>
<recno>

(1]

"

- & " e e »e L]

*e £l *» e e *8 .4

The name of a numeric variable or the name
of a procedure.

The name of a text string (alphanumeric
variable).

Numeric, Boolean or alphanumeric expression.
Alphanumeric constant, e.g., "PETER".
Numeric constant,

Line numbers.

One or more RC COMAL statements.

The name of a logical disc.

The name of a disc file or of a peripheral
unit.,

The name of a peripheral unit.

The number of a user file.

Indicates a dimensioned variable,

Comments.

The name of a matrix,

Record length.

Record number.,

Indicates that one of the possibilities shown
may be selected,

Indicates that the contents may be amitted,

8.1

24
RC COMAL statement types

Format/Descr iption

CASE <expr> OF
[<statements-0>]
WHEN <expr> [,<expr>] ...
<statements-1>
- . .

WHEN <expr> [,<expr>] ...
<statements-n>
ENDCASE [<comment>]

The expression following CASE is evaluated and compared
with the expressions following WHEN. If there is a match
in the ith WHEN statement, statements-i is executed. If
no match is found, statements-0 is executed. Control is
then transferred to the first statement following
ENDCASE.

CHAIN <filename> [THEN GOTO <lineno.>]

Runs the SAVEd program referred to by a filename when the
statement is encountered in the user's program. When used
as a command, CHAIN will LOAD, but not execute, the SAVEd

program,

i<val> lﬂ,wab]
DATA lI<slit> '<Slit>, cee

Provides values to be read into variables appearing in
READ or MAT READ statements.

DEF FN<a>{<«d>) = <expr>

Used with the function FNa(d) to define a user function.

DELAY = <expr>

Interrupts program execution for a specified number of
seconds,

<svar>(<m>) <svar »{<m,)
DIM {<array>(<m>) s 1<array>(<m>) eoe
<array>(<row>,<col>) <array>{<row>,<col>)

Defines the size of string variables or numeric variable
arrays.

END [<comment>]
Terminates execution of the program,
EXEC <name>
Executes a procedure defined by PROC-ENDPROC,

FOR <control var> = <expr1> TO <expr2> [STEP <expr3>]
<statements>
NEXT <control var>

FOR begins a FOR-NEXT loop and defines the number of times
a block of statements is to be executed., NEXT is the last
statement in the loop and changes the value of the control
variable,

GOSUB <1lno»

L
L4

<{statements>
RETURN [<comment>]

GOSUB transfers control to the first statement of a sub-
routine, RETURN is the last statement in a subroutine amd

returns control to the first statement following the GOSUB
statement that called the subroutine.

GOTO <lno»

Transfers control unconditionally to a statement not in
normal sequential order.

IF <expr> [THEN] <statement>

Executes a single statement depending on whether an
expression is true or false.

26

IF <expr> [THEN] [DO]
<gtatements>
ENDIF [<comment>]

Executes a block of statements depending on whether an -
expression is true or false,

IF <expr> [THEN] [DO]
<statements-1>

ELSE [<comment>]
<statements-2>

ENDIF [<comment>]

Executes statements-? if an expression is true, other-
wise statements-2,

{(var> }[{,(vao n
INPUT [<slit-0>,] iksvar>f |L[,<slit-n>] |[,<svar>|| ...

Assigns values entered from the user's terminal to
numeric or string variables.
{(var> } {(var;]
[LET] |[Ksvar>} = <expr> |;lKsvar>] = <expr>| «..
Assigns the value of an expression to a variable.
ON ERR THEN <statement>

Enables the programmer to take special action, if an error
occurs during program execution,

ON ESC THEN <statement>

Enables the programmer to take special action, if the
ESCape key is pressed during program execution.

loosue
ON <expr> [THEN] [GOSUB| <lineno.> [,<1no>] ...

Transfers control to one of several lines in a program
depending on the computed value of an expression when the
statement is executed.

27

{expr> <expr>
}; } <slit>tlin 1€slit> '
PRINT <{svar> ,} <SVAL>{} ees :}

Prints specified items on the user's terminal.

<expr> <expr >
PRINT USING <f0mat>, <slit» ’ <slit. see ’
Lsvar > L‘ {svar., H:’

Outputs the values of items in the argument list using a
specified format.

PROC <name>
{statements>
ENDPROC {<comment>]

Defines a procedure. When the procedure is called by EXEC,
control is transferred to the first statement following
PROC, ENDPROC is the last statement in a procedure and
returns control to the first statement following the EXEC
statement that called the procedure.

RANDOMI ZE

Causes the random number generator to start at a different
point in the sequence of random numbers generated by the
function RND(X).

{<var>} [%<var>,}
READ [Ksvar> <svar> cvs

Reads in values from DATA statements and assigns the
values to the variables listed in the statement.

REM [<comment)
Inserts explanatory comments within a program,

REPEAT [<comment>]
<statements>
UNTIL <expr>

Executes a block of statements repetitively until an
expression is true. The block of statements is always
executed at least once.

8.2

28
RESTORE [<1no>]

Resets the data element pointer to the beginning of the
data list or to a particular DATA statement.

STOP [<comment>]

Terminates execution of the current program,

TAB(<expr>)

Used in PRINT statements to tabulate the printing posi-
tion to the column number evaluated from an expression.

WHILE <expr> [THEN] DO
<{statements>
ENDWHILE [<comment>]
Executes a block of statements repetitively while an ex-
pression is true. If the expression is false the first

time WHILE is encountered, the block of statements is not
executed even once,

RC COMAL standard functions
ABS(<expr>)

Returns the absolute (positive) value of an expression.
ATN(<expr>)

Calculates the angle, in radians, whose tangent is an
expression,

COS(<expr >)

Calculates the cosine of an angle which is expressed in
radians.

EXP(<expr>)

Calculates the value of e (2,71828) to the power of an
expression.

29
FN<a»(<d»>)

A user function which is defined by DEF and returns a
numeric value.

INT(<expr>)

Returns the value of the nearest integer not greater than
an expression.,

LOG(<expr >)

Calculétes the natural logarithm of an expression,
RND(<expr »)

Produces a pseudo random number between 0 and 1,
SGN(<expr>)

Returns the algebraic sign of an expression.
SIN(<expr>)

Calculates the sine of an angle which is expressed in
radians.,

SQR({<expr>)
Computes the square root of an expression.
SYS({<expr>)

Returns system information, based on an expression which
is evaluated to an integer, as follows:

Time of day.

Day.

Month.

Year.

Terminal port number,

Time used since terminal was logged on.
Number of file I/O statements executed.
Error code of last run-time error.

File mmber of last file referenced.

Q=N U W =0

8.2.1

8.3

30

9 Page size,

10 Tab size,

11 Hour,

12 Minutes past last hour.
13 Seconds past last minute,
14 Constant » (3.14159)

15 Constant e (2.71828).

TAN(<expr >)

Calculates the tangent of an angle which
is expressed in radians.

Functions for processing text strings

CHR(<expr >)

Returns the character corresponding to the number found
as an expression modulo 128,

l<svar>#
LEN(I<slit>|)

Returns the current number of characters in a string.

l<svar>l
ORD(I<slit>)

Returns the decimal number of the first character of a
string.

Matrix operations in RC COMAL
MAT <mvar1> = <mvar2>
Copies the elements of one matrix to another matrix.

MAT <mvari> = <1war2>l:'|<mvar 3>

Performs the scalar addition or subtraction of two matrices.

3

MAT <mvari> = {?’:‘::;3;)} * ¢mvar3>

Performs the multiplication of one matrix by another
matrix or by a scalar.
{var> = DET(<expr>)

Returns the determinant of the last matrix inverted by a
MAT INV statement,

MAT <mwar> = CON

Initializes a matrix such that all elements are set to
one,

MAT <mvar> = IDN

Initializes a matrix such that all elements (i,i) are set
to one and the remaining elements are set to zero.

MAT INPUT <mvarfi> [,<mvar2>, ses ,<mvar-n>]

Assigns numeric values entered from the user's terminal to
the elements of one or more matrices.

MAT <mvar1> = INV(<mvar2>)

Inverts a matrix and assigns the resultant element values
to another matrix.

*
’

MAT PRINT <mvar> [{,}mvan] eee [1]

Outputs the values of the elements of one or more matrices
on the user's terminal.

MAT READ <mvar> [,<mvar>] <ee

Reads in numeric values from DATA statements and assigns
the values to the elements of one or more matrices.

84

32

MAT <mwar1> = TRN{<mvar2>)

Transposes a matrix and assigns the resultant element
values to another matrix.

MAT <mvar> = ZER

Initializes a matrix such that all elements are set to

zero,

Commands to logical discs
CONNECT <ldname> [,<expr>]

Connects the user's terminal to a logical disc for reading
or, if the protection key is correctly specified, for both

reading and writing.
COPY "<ldname>:<filename1>","*<filename2>"

Copies a file (<filename1,) from any logical disc
{<ldname>) to a file (<filename2>) in the logical disc to

which the terminal is connected,

INIT <device>

Initializes the main catalog in a device containing
logical discs.

LOCK <device>

Locks a device, when changing discs or closing down the
system, so that no user can connect his terminal to a

logical disc in that device.

LOORUP ["SLPT"]
Returns a listing of the files in the logical disc to
which the terminal -is connected,

RELEASE

Disconnects the user's terminal from the logical disc to
which it is connected.

8.5

33
USERS <device»

Returns the number of users whose terminals are connected
to any logical disc in a device.

Statements for file processing

CLOSE [FILE{<file>)]
Dissociates a filename and a user file number (see OPEN
FILE) so that the file no longer can be referenced. The
CLOSE form of the statement closes all open files.

CREATE <filename>,<size>{,<recl>]

Creates a file in the logical disc to which the user's
terminal is connected.

DELETE <filename>

Deletes a file in the logical disc to which the user's
terminal is connected.

EOF(<file>)
Returns a value of +1, if an end of file condition was
detected in the last INPUT FILE or READ FILE statement;
otherwise, a value of 0 is returned.

rvar) l[{<var> }]
INPOT FILE{<file>) [,] Wsvar>l |, [Ksvar> voe

Reads data in ASCII format from a seguential access file
for the variables in the argument list,

MAT INPUT FILE{(<file>) [,] <mvar> [,<mvar>] ...

Reads data in ASCII format from a sequential access file
for the matrix variables in the argument list.

MAT PRINT FILE(<file>) [,] <mvar> [,<mvar>] ...

Writes matrix data in ASCII format to a sequential access
filea

34
MAT READ FILE(<file>[,<recno>l) [,] <mvar»> [,<mwar>] ...

Reads data in binary format from a sequential access file
or record of a random access file for the matrix variables
in the argument list.

MAT WRITE FILE(<file>[,<recro»]} [,] <mwar> [,<mvar>] ...

Writes matrix data in binary format to a sequential access
file or record of a random access file.

OPEN PILE(<file>,<mode>} {,] <filename>

Associates a filename, i.e. a disc file or a device, with
a user file number so that the file can be referenced in
other file I/0 statements; also specifies how the file is
to be used.

<expr> v] [<expr> .
PRINT FILE(<file>) [,] i<slit> U <SLit >t | ses {,}

<{svar> <{svar>
Writes data in ASCII format to a sequential access file.

{expr > <expr>
PRINT FILE(<file>) [,] USING <format>, <slit> {,|<slit> ...[H:I

.
14

<svar » {svar>

Writes data in ASCII format to a sequential access file,
using a specified output format.
[<var> l[{(var> }-]
READ FILE(<file>[,<recno>]) [,] l<svar>l|, ksvar>!] ...
Reads data in binary format from a sequential access file
or record of a random access file for the variables in the
argument list.

RENAME <filename1>,<filename2>

Renames a file in the logical disc to which the user's
terminal is connected,

35

<expr > <expr >
WRITE FILE(<file>[,<recno>]) [,] i<slit>{|, i<slit>f | eee
<svar > <svar

Writes data in binary format to a sequential access file
or record of a random access file.

System commands in RC COMAL

<lno n1,<1lno n2»
<lno ni>
<lno n1>,
+<1lno n2>

Deletes one or more statements in a program,

" (<1no n1»
=
aAUTO ’ <1lno n2>»

o

| K1no n1> <1no n2>
Provides automatic line numbers in a program, thereby
making it easier to enter programs from a terminal.

BATCH [“SLPT"]

Places the terminal in batch mode and causes the system to
start reading cards from the mark-sense card reader. Job
output will appear on the terminal or, if the BATCH "SLPT"
form of the command is used, on the line printer.

BYE

Logs the terminal off the system.

I CON
CONL

Continues execution of the current program after the
execution of a STOP statement in the program, after the
ESCape key has been pressed, or after an error has
occurred, Output from PRINT statements will appear on
the terminal or, if the CONL form of the command is used,
on the line printer.

36
ENTER <filename>

Merges the statement lines from the disc file or the
device specified by a filename into the current program
storage area.

<lno ni1>

TO
LIST {, I<1no n2> [<filename>]

)
| <1no n*> |, I!<lno n2>

Outputs part or all of the currently loaded program in
ASCII format to the disc file or the device specified by a
filename or, if no filename is specified, to the terminal.

LOAD <filename>

Loads a previously SAVEd program in binary format from the
disc file or the device specified by a filename into the
user's program storage area.

NEW
Clears all currently stored program statements and
variables from core memory and closes any open files.
PAGE=<expr >

Sets the right-hand margin of the terminal.

[(<1no n1>

'
’

<1no n2»> J_|

| (<1no n1> [

Outputs part or all of the currently loaded program in
ASCITI format to the terminal punch (when present).

8.7

37

¢ <lno n1>
£l
RENUMBER . <1lno n2>

L]
| <1no n1> |, <lno n2>

Renumbers the statements in the current program.

el [€eienes]

Executes the current program, either from the lowest
numbered statement or from a specified line number, or
loads and executes a previously SAVEd program as the
current program. Output from PRINT statements will appear
on the terminal or, if the RUNL form of the command is
used, on the line printer.

SAVE <filename>
Writes the currently loaded program, including the current

values of all variables and parameters, in binary format
to the disc file or the device specified by a filename.

SIZE
Returns the number of bytes used by the current program
and the numbers of bytes left,

TAB=<expr >

Sets the zone spacing between the print elements output by
PRINT statements.

Commands in connection with batch runs

EQY
Terminates a job.

SCRATCH [<text>]
Initiates a job,

TIME=<val>
) Specifies how may seconds a job may run. If nothing is
specified, TIME = 60 seconds.

37

[+ <1no n1>

i
RENUMBER ’ <lno n2>
Lol

|~ <Ino n1> |, <1no n2>

Renumbers the statements in the current program.

S s

Executes the current program, either from the lowest
numbered statement or from a specified line number, or
loads and executes a previously SAVEd program as the
current program. Qutput from PRINT statements will appear
on the terminal or, if the RUNL form of the command is
used, on the line printer.

SAVE <filename>
Writes the currently loaded program, including the current

values of all variables and parameters, in binary format
to the disc file or the device gpecified by a filename.

SIZE
Returns the number of bytes used by the current program
and the numbers of bytes left.

TAB=<expr >
Sets the zone spacing between the print elements output by
PRINT statements.

8.7 Commands in connection with batch runs
EQT

Terminates a job.

SCRATCH [<text>]
Initiates a job.

TIME=<val>
’ Specifies how may seconds a job may run. If nothing is
specified, TIME = 60 seconds.

http:CXIIIna.td

