
Subsystems - Overview

• Three major functional areas:

- Views and view management; releases, specs,
etc.

- Check-in/Check-out; reservations

- Work orders

Subsystems - Definitions and Terms

• View - A version of a subsystem.
Contains the Ada units and files for a
particular version of the entire subsystem.

• Configuration - A configuration is a
handle to the values of controlled objects
in the source database. In the
Configurations directory is additional
information that allows one to recreate a
view from a configuration. co~t~{{~ o0j~ds ""(~

• Working view - A view that is under
development. Name ends in "_working".

• Release view - A view that has been
"released". It is frozen and cannot be
modified. Name does not end in
"working" .

Definitions and Terms cont' d ...

• Spec view - A view of a subsystem that
contains only specs that can be
referenced for execution or imported by
other subsystem views.

• Element - An object in a view or views.
An object with the same name in two
views is the same element.

• Controlled Object - An object that is
under source control.

- Requires check-in/check-out for editing

- 255 character line length limit

- No non-ascii characaters

- Information on all changes available

- Problems with very large files/units

Definitions and Terms cont' d...

• Joined Objects/Severed Objects - If
objects that are the same element share a
reservation token, they are said to be
joined. Otherwise, they are severed.

Subsystem - Characteristics

• Set of views

- These appear in the subsystem root directory.

• Configurations

- These appear in a configurations directory in the
subsystem root. Other files in the configurations
directory specify imports and other information
needed to build a view that corresponds to a
configuration.

• CMVC Database

- This appears in the State directory in the root of
the subsystem. It contains source information
and other information about views and controlled
objects in the subsystem.

• Compatibility World

- This world contains the information needed to
guarantee that code is compatible in the face of
incremental changes, code views, and
multi-machine development.

Subsystem - View Characteristics

• Units - Contains files and Ada units of
the subsyste view. (Jo worLds - C-",-u.s~ f~l>bk~~

• State - Contains control and management
information.

• Imports - Imports directory contains
import restriction files.

• Exports - Exports directory contains
export subset files. ::3>f'2C v,',,-vJ

• Tool_State - Subdirectory of State;
copied when view is copied. ~I 1.1 ICl7t,G~:id~"1 ~tc.

• Model- Provides base of links and
switches. ColA- cotv.""'Y' ""- GI, tI~) I-\AAr ~\.\;.-e I:-\i,'-~-tje",--

• Imports - Represents imported subsystem
spec views. Not editable.

• Switches - Initially copied from Model,
but copy lives in state directory.

• Referencers - Says which subsystem
views import this one. Doesn't archive
from machine to machine too well, as the
views named in referencers may not exist
on the other machine. CMVC
Check_Consistency will fix any problems
in Referencers.

Making New Views

• Copy

- Makes spec and working views

-Level and Naming - Use Natural'last to set name
explicitly.

• Make_Spec_View

• Release

Imports and Model

• Import

• Remove_Import

• Remove_Unu sed_Import s

• Replace_Model

Deleting

• Destroy_View

• Destroy_Subsystem
M~ h.e- ~ / ,'.f:, At:>

. (Q+te.:(' f>«-S7-YUr- Ui'c...•• hw+- (e",.J,},~ =) ~
d t~r=r (ev-..:Ai- 4."if'~ c~ ~<M.I~ v~c?w ~ ~ vH•.~\

- cf..<-t<:-fL- CC<AJ-'r obJ 'e tt ~ 0-.-"-;;)"..-.Q\"L ";"''''<1-

Re-Creating Views

• Build

CMVC Source Control
• Provides Control Over Changes

Changes can only be made between CHECK_OUT and CHECK_IN

• Change History Is Automatically Kept
CMVC keeps line differentials of changes to text/source.

• Provision For Simultaneous Development
Multiple developers can work without losing changes or getting in each
other's way.

• Provision For Multi Release/Target Development
Changes can proceed independently on two targets or releases, and be
merged later if desired.

Rational Company Confidential
August 4, 1987 at 18:54

Terminology
• Controlled Object

An object is Controlled if it is known to CMVC source management. A
controlled object must be checked out before it can be changed. Only
Ada and Text objects can be controlled. LaM"'/:- 100. "_dt-kd, ~""-41. (ra-r-<X<.:>,-c-k)

c:...- ~_l~~'~

• Element
An element is the set of all objects in a subsystem that have the same
name from the units directory down to the object. For example, the two
objects SS. Rev9 Working. Units. Faa and
SS. Rev9 _Cbh_ Working. Uni ts. Faa are in the same element.

• Reservations
A controlled object is Reserved if it is checked out.

• Reservation Token
Every controlled object has a reservation token associated with it.
Reserving an object is accomplished by getting and holding its
reservation token with the object.

Objects in the same Element can share the same reservation token. The
effect is that when anyone object in the element has the reservation
token, no other object can be checked out. Objects that share a
reservation token are said to be Joined. E'{~ G2-

/ -. \
~ ~,....""-/' \ \ \. r i , • T",-

(i"C.>\en:h').. . . . 6, ~i.... I '-• G CJ.Jei<J...:rt ~ AJ

~U\. C,~"""'/~/H ~~ p~lJ.(..."'CA- .,. V'(.N¥ ~~

K~-hr '> oJ..(~ ~ ~"e<A. / (0 "'~c...uL "k..~ ~"c lv.1f1..,.:'

Rational Company Confidential
August 4,1987 at 18:54

Terminology - Cont.
• Path

A path is a series of releases, ending in a working view.

A subsystem can contain many paths. Objects in two paths mayor may
not be joined.

• Subpath
A subpath is a (possible) set of releases, and a working view. It is related
to its path in that all of the objects in the subpath are joined with the those
in the path.

• Check_Out
CHECK_OUT searches for the reservation token associated with the
object. If the token isn't currently attached to some other object, it is
attached to the one named in the CHECK_OUT command, and the object
is made editable.

A CHECK_OUT might imply an ACCEPT_CHANGES; see below.

Rational Company Confidential
August 4.1987 at 18:54

Terminology - Cont.

• Check_In
CHECK_IN releases the reservation token. It then computes the
difference between what the object used to look like and what it looks
like now and stores these differences in the Cmvc Source Database.

• Accept_Changes
ACCEPT_CHANGES looks at all of the objects that share a reservation
token and finds the latest set of changes. These changes are copied to the
object named in the ACCEPT_CHANGES command.

Since CHECK_OUT allows an object to be changes, it must be brought up
to date before changes can be made. Thus CHECK_OUT might perform
an ACCEPT_CHANGES as part of its operation.

Rational Company Confidential
August 4.1987 at 18:54

Configurations
• Represents a Snapshot Of Controlled Objects

The configuration is a handle into the CMVC Source Database. It allows
retrieval of the text for controlled objects. Since there is a configuration
for every view, past and present, they allow reconstruction from history
of old views.

They also allow queries regarding what has changed over time, for
example between two views, between two configurations, or some
combination.

• Configurations Require Minimum Storage
They require almost no storage beyond that required anyway to keep
source history.

• Deleting A View Doesn't Delete Its Configuration
Unless specifically requested, the configuration will remain behind (in
the subsystem Configurations directory), allowing reconstruction of the
view using BUILD.

Rational Company Confidential
August 4.1987 at 18:54

Relocation
• Copies Installed And Coded Ada Units

The relocation process copies Ada units in the installed or coded state.
This saves compile time. For example, the Cmvc source consists of 140
units, 17.5 KSLOC, and requires the following time to compile/relocate
(using D_9_21_0).

Time in Minutes

Goal State Using Compilation Using Relocation
Source Copy 9 -
Installed 30 19 (Includes Copy)

Coded 43 21

• Used By COpy And Release
Relocation is used to create the new views if views are to be created.

• Used By ACCEPT_CHANGES To Assist Copies
ACCEPT_CHANGES tries to relocate units in the installed state if
possible. It isn't possible if the source isn't installed, or if the destination
hasn't been relocated from the source. This is very complicated.

Rational Company Confidential
August 4, 1987 at 18:54

Forms Of Accept Changes
• Object To View

Copies the specified object to the specified view, if needed. If the object
doesn't exist in the view, create it and make it controlled with the same
reservation token as the source.

• Object To Object
Copies the specfied source object over the destination object if needed.
Both objects must be in the same element. not- ~ •.•~ c::.~""," 0"-

• View To View
Copies all changed objects from the source view to the destination. New
objects in the source are added to the destination. This will not revert an
object; i.e. its generation number will never back up. UJ;/I -tr; -k> ~1LL- t ~

\J,'CJJS N"K~'~ ",~",;v..J..<~
~ ~<\~.c.. I<~(j- {,'"V'£.

• Latest to Object
Find the latest version of the object in any view, and copy it to the
destination.

• Latest to View
Perform Latest to Object on every object in the view. This will never
revert.

• View To Configuration
Make the view look like the objects specified in the source configuration.
This WILL revert objects.

Rational Company Confidential
August 4, 1987 at 18:54

CMVC Reports
• History Reports

SHOW_InSTORY and SHOW_InSTORY_BY_GENERATION are used to
look at what has changed. SHOW_HISTOR Y is used to look at changes
between views and/or configurations.
SHOW_InSTORY_BY_GENERATION is used to look at arbitrary
sequences of changes

• Show_Out_Of_Date_Objects
This report tells you what objects in the source view have been changed
in some other view, tells you how many generations out of date you are,
and where the last changes happened.

• Show
Gives the above information on an object basis.

• Show _All_Controlled
Gives the above imformation on all controlled objects in the view.

• Several Others - See the Cmvc Spec

Rational Company Confidential
August 4. 1987 at 18:54

Disk Space
• Space used by Development of Cmvc

The following summarizes the space used by the Cmvc subsystem (the
source for Cmvc). It was obtained by running
!IMPLEMENTATION.CMVC_IMPLEMENTATION_UTILITIES.ANALYZE_
SPACE The space numbers are in pages (1024 bytes). The database is 4
months old.

Cmvc Database
11:21:31 Drk

Today
3533k { O}

Space Analysis For CMVC Database
!ENVIRONMENT.CMVC.STATE.CMVC DATABASE
Space Usage

CONFIGURATIONS => 19
CONFIGURATION PAGES => 1
MEMBER LIST PAGES => 56- -ELEMENTS => 157
UNUSED ELEMENTS => 0
ELEMENT PAGES => 5
RESERVATION TOKENS => 301
UNUSED RESERVATION TOKENS => 1
RESERVATION TOKEN PAGES => 157- -GENERATIONS => 1034
GENERATION PAGES => 315
TEXT HEADERS => 1165
TEXT HEADER PAGES => 36- -TEXT PAGES => 2198
RANGE PAGES => 634
STRING PAGES => 25
FREE => 8
NAME XLAT MAPS => 15- -Unnaccounted_for_pages => 0

Rational Company Confidential
August 4. 1987 at 18:54

Topics Requiring Drawing Pictures
• Multi Target Development

Issues relate to how reservation tokens are shared.

• Multi Release Development
Issues relate to how changes are propagated.

• Merge_Changes
Main issue is how to read the reports.

Rational Company Confidential
August 4. 1987 at 18:54

Code Views

• Make Code View

- All units should be coded ec-c-e«: i~Y\l.!>t

b\-e...~d boA~~

- Main units will become loaded main units

• Non-Ada Objects

- Copied as-is

• Imports

-Named by Object Ids and string names. If object
id becomes invalid, string name will be used for
resolution from then on, slowing loading
substantailly.

y\....:> ((' •.dCS I ""--..,,'f--r.5
tN\.odct,t. ~> f'Ni"-L; 6~ UI1.~'

Compatibility and Incremental
Coding

• Purpose

- Compatibility guarantees that each declaration
that is different in a subsystem is allocated a
different offset it its package, and that each
declaration that is the "same" is allocated the
same offset.

- Declarations are the" same" if they are
syntactically identical.

Compatibility and Incremental Coding
cont'd ...

• Mechanism

- During the install and coding process, each
declaration in any library visible part is assigned
a unique declaration signature and that signature
is allocated an offset. This information is
recorded in the Compatibility Database.

- The offset assigned in independent of the order
of declarations in a unit.

- Thus, an incremental insertion will be runtime
compatible regardless of where and when it is
made.

- When a declaration is deleted, its offset is not
reused.

Garbage collecting offsets

• Fragmentation

- As many changes are made in a spec in a
subsystem, offsets will gradually become
fragmented. This will eventually slow
execution. c;fAd> PCAb.t:12~ ~ '-Y-4trv..'-triM.La~ (~ •..

;'V\C>~ f~ ~\.\\~ / /~ (-:l cc--t/ 'fy

• Cmvc_Maintenance.Destroy_Cdb

- Demotes all units in a subsystem and deleteers
compatibility database

- When promoted, new offsets will be assigned to
declarations

- Any code view will be obsolesced and should be
deleted. If they are left around, they could be
redically incompatible with spec views.

Displaying compatibility/offset
information

• Cmvc_Maintenance.Display_Cdb

- Shows some information: unit numbers and
number of declarations in each unit

- There is presently no way to display offsets

- You can write a unit that references what you are
interested in and then look at the offsets that
were generated in your code

r"*- (<cl~~~ 'Dl+'~e-t.)
..••/~

;J.v.t~r'::~l)

Primaries and Secondaries

• Primary Subsystem

- Development is done in the primary. New
declarations can be added.

• Secondary Subsystem

-This is an inactive copy. No new declarations
can be added that are not already in the
compatibility database.

-You can use Archive.Copy with option CDB to
update compatibility information in a secondary

~IM"',--A~'~te. '-'1ruJ~- est- -kfc-L... ~ f....'~""'-4tr
- When a unit is moved from a primary to a

secondary via Archive, compatibility
information is moved with it

- If you want to make an incremental insertion in a
secondary, the compatibility information for the
new declaration must be moved first

Subsystem Id

• Each subsystem has a unique id number.

- This can be displayed using the
CMVC_Maintenance.Display_Cdb command or
by looking in the State file in the Compatibility
world in the State directory in the subsystem
root.

- The State file contains the subsystem id and the
machine on which the primary was last known to
reside.

• Archive will refuse to move information
into a subsystem if the subsystem id does
not match

• Cmvc_Maintenance.Make_Primary

- This used to change a secondary into a primary.

- Parameter controls whether this is a move, or a
new subsystem.

Archive.Save/Restore of Subsystems

• Restoring makes secondary

- Option Primary - Causes restored subsystem to
be a primary.

• Trailing_Blanks option

- Default is 2 - preserves already set line breaks

- Value 0 causes all line breaks to be considered
significant. Can be used when converting from
Gamma if people care about their line breaks.

• Saving/Restoring compatibility
information

- Use the CDB option

Archive.Save/Restore cont' d...

• Don't use renaming options wk\\. lNU)\J'~~~ c.»de.

- This can change the import references so they. ~
longer connect to anything. This cannot be
recovered without reloading the view.

Obf.c+ ,\iQ~

l !

~
-~

]

Main Unit Issues

• Pragma Main Ignored in Spec Views

• Main units in code views

- They become loaded main units when the code
view is built. This means that they are no longer
affected by changing imports.

- This may be unexpected: A likely scenario is that
the code view is moved to an integration
machine to be combined with other subsystems.
The main unit will work as it was when the code
view was created on the development machine.

111

V,

WORK ORDERS
• Capture History By Task

Work Orders are intended to capture activity performed to accomplish a
task, as opposed to capturing changes over a time to some object.

• All CMVC Activity Is Noted
All CMVC operations are noted in the work order. This provides an
audit trail of activity.

• Works With Source Management
Work Orders, combined with Source Management, allow a user or
project manager to see exactly what changed, and who changed it.

Rational Company Confidential
August 5. 1987 at 12:35

Ventures
• Collections Of Work Orders

A Venture is a collection of work orders. It defmes the structure of the
work order and specifies the defaults. The venture is especially useful for
constructing reports.

• Contains Default Work Orders
The venture specifies the default work orders for the people using the
venture.

• Specifies Policies
There are various policies that can be specified using the Venture. These
vary from requiring comments during CMVC operations to requiring a
default work order.

Rational Company Confidential
August 5, 1987 at 12:35

Work Order Lists
• Arbitrary Collections Of Work Orders

A Work Order List is a collection of work orders from the same venture.
This can be used as an organizational aid.

• Work Orders Can Be On Multiple Lists

• Work Orders Can Be On No List

Rational Company Confidential
August S, 1987 at 12:3S

What Is In A Work Order
• Status

Pending, In_Progress, Closed

• Fields
User (customer) defmable information. These are provided so the user
can customize work orders to address the problem at hand.

• Users
A list of all users who have done any CMVC operations while attached to
the work order.

• Configurations
A list of configurations created/touched while the work order is in effect.

• Versions
A list of all version/elements that have been touched while the work
order is in effect.

• Comments
A list of all comments supplied to CMVC operations while the work
order is in effect. In addition, CMVC itself generates comments on
occasion, and logs them here. ~oLc.(c~"'- k c..~lI.yJ. i-o .h,"'L.C- C-o~~

• ;J i){f..,~

pe~v'~ft'-- - i~~ wkVl c~

Rational Company Confidential
August 5,1987 at 12:35

Operations
• Intended For Programmatic Use

The programmatic interface is very rich. The command line interface is
much weaker.

• Object Editors
There are object editors for Ventures, Work Orders, and Work Order
Lists. These are not fully functional; many items cannot be modified via
the object editor interface.

• Command Line Interface
Has enough gumption to create work orders, etc., set defaults, and simple
enqumes.

Rational Company Confidential
August 5, 1987 at 12:35

Issues
• Copying Work Orders

Lib.Copy will copy work orders, but doing so isn't useful. They are not
registered in the Venture, and operations on them might fail. Use
Archive.Copy to copy them.

• Policies
If the policy Require_Comments is true, all CMVC operations must have
comments. This has met with some resistance. Try the
Require_Comments_At_Check_In if this is a problem.

Don't forget about the Require_Default_ Venture policy, available
through the Work_Order_Implementation package.

• Functionality
It is likely that programs will have to be written to solve real customer
problems. It isn't clear who is going to do this. For example, much has
been said about a problem reporting system. It isn't clear where this will
come from.

Rational Company Confidential
August 5, 1987 at 12:35

Venture Content
!Environment.Cmvc.Work Orders.Cmvc Venture
Notes: ""

Policy_Switches:
Require_Current_Work_Order => True
Require_Comment_At_Check_In => True
Require_Comment_Lines => False
Journal Comment Lines => True- -Allow Edit Of Work Orders => False

Fields:

Work Orders:
(!Environment.Cmvc.Work Orders ...)

·..Build In_Progress;
·..Cbh Test In_Progress;
·..Drk In_Progress;
·..Relocation Tests In_Progress;

Default Work Orders:- -(!Environment.Cmvc.Work_Orders ...)
Cbh.S 1 => ...Cbh Test

Work Order Lists:- -(!Environment.Cmvc.Work_Orders ...)
·..Mtd

Default Work Order Lists:

Rational Company Confidential
August 5. 1987 at 12:35

Work Order Content
!Environment.Cmvc.Work_Orders.Build : In_Progress;
Notes: "implementing build and accept from configuration"

Parent Venture: (!Environment.Cmvc.Work_Orders ...l
•..Cmvc Venture

Status: In_Progress
Created at 87/05/22 10:12:33 by Cbh.S 1

Fields:

Comments: 133
87/06/04 14:51:05 Mtd.S 1 for "" => "Initial:hello"
87/06/04 14:51:43 Mtd.S 1 for "State.Release_History" =>

"COPY/RELEASE: Creating Release History object in new view"
87/06/06 14:49:18 Mtd.S 1 for "Units.Cmvc.Cmvc.Oestroy_View'Body" =>

"CHECK_OUT: Bogus check out attempting to promote unit from archived to source"
87/06/06 14:50:07 Mtd.S 1 for "Units.Cmvc.Cmvc.Oestroy_View'Body" =>

"CHECK IN: Bogus check out attempting to promote unit from archived to source"

Users: 1
Mtd.S 1

Versions: 2 (!Environment.Cmvc ...)
87/06/06 14:50:07 "Units.Cmvc.Cmvc.Oestroy_View'Body".9

...Configurations.Rev9_Mtd_Working

Configurations: 0

Rational Company Confidential
August 5, 1987 at 12:35

ICOHM1NDS.CMVC'V(2) 1 ICOHHANDS.CMVC'V(2) 2

with compilation;
with System_Utilities;

packaqe Cmvc i.

-- All CHVC cOIMIands raise Profile •Error if any error is detected
-- and Profile.Propagate or Profile.Raise_Error is true

Some of the following reservation commands take the name of an object
that appears in more than one view. The naming expression

!mumble. subsystem. {vie.,l, vie.,2, vie.,31.units. object
is useful for such times.

(What Object: String :- "<CURSOR>";
Comments: String :- "";
Allow Demotion : Boolean :- False;
Allow-Implicit Accept Changes : Boolean :- True;
Expected Check-In Time: String :- "<TOMORROW>";
Work Order: String :- "<DEFAULT>";
Response: String :- "<PROFILE>");

Check out reserves one or more objects (specified by What_Object) so
that they may be mOdified in only one view. All of the
objects specified must belong to the same .,orking view.
An object must be 'controlled' to be reserved (see Make Controlled),
a .,arning is issued for objects that are not controlled:

The reservation spans all of the views that share the
same reservation token for the element.

This command implicitly accepts changes in the checked out object,
updating the value of the object to correspond to the most
recent generation of that element/reservation token pair.

The Comments field is stored .,ith the notes for the object.
If What_Object is a set, the comment is stored with all of them.

Expected Check In accepts any string that rime_utilities. Value
.,111 accept. -

procedure Check In (What_Object: String :- "<CURSOR>";
Comments: String :- "";
Work_Order: String :- "<DEFAULT>";
Response: String :- "<PROFILE>");

Release the reservation on the object. What_Object may
specify a set of objects. This command only applies to
the controlled objects in the set and will note any
objects that are not controlled.

Comments are treated as in Check Out

procedure Accept_Changes (Destination: String :- "<CURSOR>";
Source: String :- "<LATEST>";
Allow Demotion : Boolean :- False;
Comments : String :Q

Work Order: String :- "<DEFAULT>";
ResPOnse: String :- "<PROFILE>");

This operation updates the Destination to reflect changes
(objects that have been cheCked in) specified by Source.

The Destination is either a view or a set of objects (all in
one view). Specifying the view is equi valent to specifying
all the objects in the view. Uncontrolled objects in the
destination are ingored except that a note is issued.

The Source is ei ther "<LA TEST> ", a view, a configuration,
or a set of objects all in one view.

If the Source is "<LATEST>", the destination objects
will be updated to the most recently Checked in version.
If the most recent generation of a source object is currently
checked out, the previous generation is used and a warning
is issued.

If the Source is a vie., and the Destination is a view, this command
is basically "Make the Destination view look exactly like the
Source view". Every controlled object in the source is copied
to the destination and the configuration in the destination
is updated. This includes ne., objects which did not previously
exist in the destination. If the destination has a more recent
version than the source, the destination will not be updated and
• warning is issued. In particular, if objects are checked out in
the destination, they will not be changed.
If objects are checked out in the source this operation
will use the previously checked in version of the object and
a warning will be issued.

If the Source is a view and the Destination is a set of objects,
the destination objects are updated to the corresponding objects
in the source view, as above.

If the source is a configuration it is identical to having the
source be a view except that the configuration specifies the
versions to use and they may be older (less up to date) than
the ones in the destination. Thus if the source is a configuration
then destination objects may "go backwards", while this .,ill not
happen if the source is a vie",

If the source is a set of objects and the destination is a vie",
the corresponding objects in the destination view are updated
to the source objects.

A common .,ayof using Accept_Changes is to use the default parameters
during normal development to accept changes made in other subpaths.
Then periodically an integration view (in the path) is updated by
first accepting all relevant subpaths into the integration vie"
(accept changes (destination -> integration view, source ->

active subpath working vie.,)). -
Then this integration view is compiled (and tested). The subpaths are
then re-synchronized by accepting the integration view (source ->
integration_view, destination -> destination_subpath_working_view).

In addition to synchronizing the source, this protocol updates
the libr.ries in such a way the relocation operates most eEfectively,

July 31, 198, at 10:38:39 PH July 31, 1987 at 10:38:39 PH

!COHMANDS.CHVC'V(2) 3 !COHMANDS.CMVC'V(2) 4

procedure Abandon_Reservation (What Object: String :- "<SELECTION>";
Comments: String :- "";
Work_Order: String :- "<DEFAULT>";
Response: String :- "<PROFILE>");

Replace the notes for the specified object. If the I/O window
was created by Get Notes, the window (first line) contains the name
of the object to write back into, and What_Object is ignored.

Forget about a check_out of sa-e object, or set of objects.
This reverts the objects back to last checked in version.
This operation is an "undo" for Check_Out, except that it
does not undo the implict Accept_Changes that goes with
a Check_Out.

procedure Revert (What Object: String :- "<SELECTION>";
To Generation : Integer :- -1;
Make Latest Generation : Boolean :a False;
Comments: String :- "";
Work Order: String :- "<DEFAULT";
Response String:- "<PROFILE>");

procedure Append_Notes (Note: String :- "<WINDOW>";
What Object: String :- "<CURSOR>";
Response: String :- "<PROFILE>");

Append the specified text to the notes. If NOte is <IHAGE_rEXT>,
the associated window must have been created by Get NOtes or
Create_Empty_Note_Nindow; in this case Nhat_Object 1s ignored.
If note is a string, then that string is appended to the object
selected by Nhat Object. If the content of NOte is prepended with a
, " Note is interpreted as a text file name, and the content of
that file is appended to the selected object.

procedure Create_Empty_Note_Windov (What Object: String :- "<CURSOR>";
Response: String :- "<PROFILE>");

Create an empty window (with no underlying directory object)
to be used for constructing notes for the specified object.
Typically, Append Notes is used to actually add the text
to the object'S notes.

procedure Make Controlled
(What Object : String :- "<CURSOR>";
Reservation Token Name: String :- "<AUTO GENERATE>";
Join With vIew: String :- "<NONE>"; -
Comments: String :- "";
Work Order : String :- "<DEFAULT>";
Response: String :- "<PROFILE>");

Replace the contents of the specified object with the contents
of the specified generation. The operation is equivalent to an
Accept Changes from a configuration containing the specified
generation.

If Make Latest Generation is true, then the operation is equivalent to
a Check-Out, a-copy of the specified generation into the object, and
a Check=In.

Generation of -n means n generations baCk; thus -1 -> the previous
generation.

The following commands allow the creation and interogation of
a note scratchpad for each eleMent. Descriptive infOrMation
regarding what is being changed, why, or whatever, can be put
into the scratchpad.

procedure Get_Notes (To File: String :- "<WINDON>";
What Object: String :- "<CURSOR>";
Response: String :- "<PROFILE>");

Copy the notes fra. the object. If To File is the default, then
a new I/O window is created and the notes are copied into this window.
The first line of this window is the name of the object, which is
used by Put and Append Notes to put the notes back. The notes
displayed ace those that go with the generation of the object pointed
at. See Cmvc History for ways of getting notes and other information
on a range of-generations

The next three commands require the object in question to be
checked out.

procedure Put Notes (From File: String :- "<WINDOW>";
What-Object: String :- "<CURSOR>";
Response: String := "<PROFILE>");

Make the object or objects specified by What_Object be subject to
reservation. The objects must be in a working view and not
already contrOlled. All objects must be in the same subsystem.
If Join With View is specified, the objects are joined with the
object 1n that view, using the reservation token specified by that view.
If no view is specified, the reservation token name is used if provided,
else the development path name of the view containing the object is
used as the reservation token name.

procedure Make_Uncontrolled (What Object : String :- "<CURSOR>";
Comments: String :- "";
Work_Order: String :- "<DEFAULT>";
Response: String :- "<PROFILE>");

-- Make an object or objects uncontrolled.
This means the objects are no longer subject to reservation

-~ (in the enclosing view).

procedure Sever (What Objects: String :- "<SELECTION>";
New Reservation Token Name: String :- "<AUTO GENERATE>";
Comments: String :- .~; -
Work Order: String :- "<DEFAULT>";
Response: String :- "<PROFILE>");

-- Make the object(s) in the given working view(s) have a separate
July 31, 1987 at 10:38:39 PM July 31, 1987 at 10:38:39 PM

ICOMMANDS.CMVC'V(2) 5 !COMMANDS.CMVC'V(2) 6

re6erv.tion. Thi6 com..nd 6ever6 the rel.tion6hip between view~
for objects. When done, the view6 6pecified in thi~ comm.nd will
have their own re6ervation to 6hare. All other view6 (not
specified) will 6hare a different re6ervation.

-- A ~pecific re~ervation token name can be provided, if de~ired.

procedure Join (What Object: String :- R<SELECTION>R;
To Which View: String :- R»VIEW NAME«R;
Comments-: String :_ RR;
Work Order: String :- R<DEFAULT>R;
Response: String :- R<pROFlLE>");

-- Make object in two or more working view6 ~hare a reservation. The
objects in the view6 ~ust be identical (textually) and controlled

-- for this command to 6ucceed.

procedure Merge_Changes (Destination Object: String :- R<SELECTION>";
Source View-: String :- "»VIEW NAME«";
Report-File: String :_ RR; -
Fail If Conflicts Found : Boolean :- False;
Comments: String-:- ""I
Work Order: String :- R<DEFAULT>";
Response: String :- R<pROFlLE>R);

-- Merge two version6 of the 6••e object together, leaving the result
-- in de6tination object. In order for this command to 6ucceed, the
-- Source View and the view containing the Destination Object mU6t

have been copied from 60me c~on view 60metime in the pa6t, and
the configuration for that view mU6t still exist.

De6tination Object mU6t refer to the la6t generation; all changes must
have been accepted.
The command write6 a report 6howing what it did, as well as Changing
the destination object. If the report file name is ••, the report
is written to Get_Simple_Name (Destination_Object) , "_Merging_Report".

Conflicts are defined to be regions of change in the source and
destination that directly overlap, ie the same liners) have been
changed in both objects. If Fail If Conflicts Found is true,
no updating is done, but the report file is left.

If it is desired to rejoin the two objects after the merge, then
check out the Merge source object, copy the Merge Destination Object
into the source, then Join the objects. -

function Imported_Views (Of View: String :- "<CURSOR>";
Include Iaport Closure : Boolean :- False;
Include-Importer : Boolean :- False;
Response : String :- "<WARN>") return String;

-- return a string suitable for na.e resolution th.t n.mes the union of
all of the imports specified by the view(s) Of View. These views

-- are in no particul.r order.

IHPOR%'S

CHVC supports selective importing of units when views are imported.
This is .ccomplished using Imports Restrictions .nd
Exports_Restrictions. -

Exports Restrictions are subsets of exported AIR units controlled
by the exporting view (spec view). The subset is determined by the
contents of a text file in the Exports directory of the view. This
file contains Naming expressions which, when resolved against the
Units directory, produce a list of objects that are exported by
that subset.

Imports Restrictions are further restrictions on what Ada units are
to be imported. The restriction specifies which export restriction
to use (if any), a list of Ada units (using simple names) to
exclude, and a list of units to rename. A restriction is a text
file, in the Imports directory, with the same name as the subsy6tem
containing the view being imported. Each line of the file
specifies one thing. The fo~ of the lines are:

EXPORT RESTRICTION->restriction name
Specify the name of the export restriction. No blanks are
allowed. If more than one restriction is specified, the
union of all of the restictions is used.

Object Name Link Name
Import Object Niiae but .ake a link with Link Name (a renall/e)

-Object Nall/e - -
Dont import Object Name

Object nall/e -
Import Object_Name and use Object_Name for the link nall/e

(!
Import all Objects, except those removed above

In all cases, the names provided above are s1lflplenames, ie no '.'s
in them.

SELECTING VIE"S

In the following commands, wherever a view is called for, a naming set
can be used. A text file containing the names of configurations
or views can also be used. However, you must use the leading , ,
convention supported by Naming. Also, configuration names can be
used in place of views anywhere, assuming that the view represented
by the configuration still exists.

SPEC VIEJiS--
Spec views in CHVC are by default uncontrolled. The reason for this
is to allow free changing of specs in the load views, accepting the
changes back and forth, then increaentally .aking the changes in the
spec views.

It controlling oE spec views is desired, use Make_Oontrolled after
July 31, 1987 at 10:38:39 PM July 31, 1981 at 10:38:39 PM

ICOMMANDS.CMVC'V(2)

creating the view6. But be forewarned that checking out a 6pec
where an implicit accept i6 required will probably ob601e6ce all
oE the 6pec'6 client6.

proc.dure Release (From Working View: String :- "<CURSOR>";
Release Name-: String :- "<AUTO GENERATE>";
Level :-Natural :- 0; -
Views To Import : String :- "<INHERIT IMPORTS>";
Create Configuration Only : Boolean := False;
Compile The View : Boolean :- True;
Goal: CompIlation.Unit State :- Compilation. Coded;
Comments : String :_ wW;
Work Order: String :- "<DEFAULT>";
Volume : Natural :- 0;
Response: String :- "<PROFILE>"I;

7 ICOMMANDS.CMVC'V(2) 8

New Working View: String :- "»SUB/PATB NAHE«";
View_To_ModIfy : String :- "";
View To Import : String :- "<INHERIT IMPORTS>";
Only-Change Imports : Boolean :- True;
Join-Views -: Boolean :- True;
Reservation Token Name: String :- ""I
Construct Subpath-Name : Boolean :- False;
Create Spec View -: Boolean :- False;
Level For Spec View : Natural :- 0;
Model-: String-:- "<INHERIT MODEL>";
Remake Demoted Units : Boolean :- True;
Goal :-Compilation.unit State :- Compilation. Coded;
Comments : String :- "";
Work Order: String :- "<DEFAULT>";
Volume : Natural :- 0;
Response: String :- "<PROFILE>"I;

Create a new relea6e view in the 6ub6Y6tem. IE Relea6e_Name i6
"<AUTO GENERATE>", the view will have the 6ame name preEix a6 the
working view, with n m appended as appropriate given the level.
Otherwi6e Relea6e_Name must be the simeple name oE the new relea6e.

Since the new view i6 a relea6e, it is frozen. If From ~orking View
names multiple views, each named working view i6 released a6 -
above, and the import6 are adjusted 60 that the new relea6es
reEerence each other a6 appropriate in6tead oE the working views.
View6 TO Import specifies, perhap6 by indirection through an activity,
a set-oE-views to be used as imports by the new view(s). This allows
changing imports during a release. Imports already adjusted during
the releasing oE working views will be leEt alone, otherwise
6ub6ystems currently imported will be reimported. In other words,
iE thi6 were an import cOJllllland,Only_ChAnge_Imports would be true.

IE Compile The View is true, the compiler is run before the views
are Erozen~ trying to promote the units to the indicated Goal.
The views are Erozen even iE compilation Eails.

This cOJlllllandcreates a configuration object named
SUBSYSTEH.state.configurations.release name. It also creates an
import de6cription Eile in the 64Me place, named release name ,
"imports". Thi6 import description file list6 the conflguration
object6 for all view6 that are imported. It is maintained by
all command6 that modify or adjust the imports. These two objects
are used to recon6truct view6 from configuration6.

A controlled text object (state.release history) is used by thi6
command. Release enters the cOJlllllentssupplied with the command
into the notes for this object. Feel free to check out and modify
this object to further describe what i6 going on. This object is joined
acr06S all of the releases and the working view of a subpath.
Furthermore, the object is checked out and in by the release command
in order to mark the time of the release.

proc.dure Copy (From_View: String :- "<CURSOR>";

Create a new working view. Working view6 are named HUmble ~orking,
where mumble is supplied a6 New ~orking View. If Join View~ is
true, the two views share re6er~ations of the all of the controlled
objects in the two views. If false, re6ervations aren't 6hared
across the views for any objects. If From View names multiple views, a
copy is made for each of those views and, If the originals
import each other (computed u6ing the sub6ystem, not the view),
the copies will (try) to import the new views of those subsY6tems.

IE Join View6 is fa16e, new re6ervation token6 are created Eor all
of the controlled object6. The default is to u6e the name 6upplied
as the »SUBPATll NAME«.

View_To_Import supplies a 6et of views to be processed according to
the value of Only Change Import 6. If Only Change Imports i6 true,
a copied view always inherits the source vlew's imports. AEter the
copy, the imPOrt6 6pecified by View To Import are applied again6t the
new view, replacing any inherited import if needed.
If Only_Change_Import6 i6 fa16e, then either the imports are inherited
from the source, or the complete set of imPOrt6 specified by
by View_To_Import is imported into the copy.

View To MOdify specifies the set of working views that are to have
their imports changed to refer to the new COPY(6). The
View_To_MOdify views are also changed to reEer to the view6 6pecified
by View_To_Import. For thi6 import operation, Only_Change_Import6
is forced to true.

Construct_Subpath_Name cause Copy to contruct the target view name
by appending New ~orking View to the prefix of the source view name
up to the Eirst '_' (See-path6 and 6ubpath6 below).

Remake demoted unit6, if true, indicate6 that ada unit6 that were
demoted during the copy proces6 are to be recompiled. They are
compiled to the level indicated by Goal. Units are not complied
to a state higher that they were in the source.

Goal further indicates the de6ired state of all of the units after
copy. No unit will be in a 6tate higher than specified by goal, but
might be in a lower state. For ex~ple, a 60urce unit that is copied
will remain source, regardless of Goal, but a Coded unit will be
demoted if Goal is installed or le6S.

July 31, 1987 at 10:38:39 PH July 31, 1987 at 10:38:39 PH

!COMM1NDS.CMVC'V(2)

The order of the copy And aport operlltions is:

9 !COMMANDS.CMVC'V(2) 10

1. Crellte the new view.
2. If Inherit_Imports, bring IIlong the old i.ports
3. Import the new views into the new views, forcing

Only ChAnge Imports -> True
f. If not Inherit_Imports, import the specified views

into the new views.
5. Import the new views + View ro I.port into Views_To_Hodify,

forcing Only_Chllnge_I.ports-->-true

Spec views lire crellted by copying the units if the source is II10lld
view, otherwise using Reloclltion. Spec views lire crellted with all
objects uncontrolled. If level for spec view - nllturlll'lllst, the
spec view is given the n~e supplied liS new working view, otherwise
II nllme is generllted liS 'New_Working_View , Release_Numbers' "_spec"'

It is recognized thllt this is II complicllted commllnd. Using the
procedures below (which lire effectively renames) might make more

-- sense if the methodolody in use permits it (Path, Subpath, etc).

PATHS AND SUBPAmS

-- rhe following procedures support the notion of paths IInd subpllths.
-- A Path is II logically connected series of releases in which 1111
-- controlled objects are joined together. In other words, there is

no branching within IIpath. A Subpllth is IIn extension of the
-- pllth, IIllowing multiple developers to .lIke chllnges and test

without getting in each others wily. However, controlled objects
in the subpllths are joined with the pllth; people in two subpaths
cannot independently change the s~e object. In IIddition, a path
and its subpllths shllre the s •• e model, which means they share
the same Target_Key And initilll links.

In Deltll, pllths IInd subpllths lire identified by string name conventions.
The name of the pllth is the view name up to the first' '. The
subpllth extension is the nlllWefrON this '_' to the '_Working'. Thus
Rev9_Cbh_Working hilS IIpath nlllWeof Rev9 And subpath extension of
ebh.

Multiple pllths lire used when multiple tllrgets lire involved, or when
objects lire to be Changed independently. For example, aSSUNe that
II version of IIproduct has been shipped, and is in maintenance, and
that develop.ent is progessing on II new version. It is likely thllt
the old And new versions would be sepllrllte paths, since the objects
would have to be independently chllnged (these paths would not be
,joined').

In the .ultiple tllrget case, the pllths might be crellted joined.
USing the IIbove scenario, IIssuee thllt the relellse that has been shipped
works on two tllrgets, but most or 1111 of the code is tllrget
independent. Then the two pllths, one for each tllrget, would be
crellted joined together, then hllve the objects that lire not common
'Sever' ed.

procedure Make_Path (From_Path: String :- "<CURSOR>";
New_Path_NIIIWe : String :- "»PATR NAME«";

July 31, 1987 at 10:38:39 PMJuly 31. 1987 at 10:38:39 PM

View To Modify: String :- "";
View=To=Iaport : String :- "<INHERIT_IMPORTS>";
Only Change Iaports : Boolean :- True;
Hodel: StrIng :- "<INHERIT_MODEL>";
Join PathS : Boolean :- True;
Remake Demoted Units : Boolean :- True;
Goal :-Compilation.Unit State :- Compilation. Coded;
Comments : String :- "";
Work Order: String :- "<DEFAULT>";
Volume : Natural :- 0;
Response: String :- "<PROFILE>");

procedure Make_Subpath (From Path : String :- "<CURSOR>"/
New Subpath Extension: String :- "»SUBPATH«";
Vie; To Modify: String :- "";
View-To-Import : String :- "<INHERIT IMPORTS>";
Only-Change Imports: Boolean :- True;
Remake Demoted Units : Boolean :- True;
Goal :-compilation.Unit_State :- Compilation. Coded;
Comments: String :- "";
Work Order: String :- "<DEFAULT>";
Volume : Natural :- 0;
Response: String :- "<PROFILE>");

rhe Subpath Extension is IIppended to the pllth n&ae of the source
view (From Pllth). From Pllth Clln IIctually n&ae the pllth or IIny
subpath of-the pllth. The '_' between the pllth and subpath extension
is automaticllily provided.

procedure Make Spec View
(From Path: String :- "<CURSOR>";
spec=view_Prefix : String :- "»PREFIX«";
Level : Natural :- 0;
View To Modify: String :- "";
View-To-Import : String :- "<INHERIT IMPORTS>";
Only-Change Iaports : Boolean :- True;
Remake Demoted Units : Boolean :- True;
Goal :-Compilation.Unit State :- Compilation.Coded;
Comments : String :- "";
Work Order: String :- "<DEFAULT>";
Volume : Natural :- 0;
Response: String :- "<PROFILE>");

Hake II spec view for IIpllth. Spec View Prefix is the string thllt
replaces the pllth IInd subpath name~ For eXIIIWple, if creating a
spec view from a subpath n.-ed rev9_cbh_working, with
Spec_View_Prefix -> Env9, the result will be Env9_n_Spec, IIssUNlng
level -> 0 IInd two levels lire specified by the model. N is II
number automlltically generated from the current relellse number for
the path/subpath. If level - naturlll'lllst, the name supplied liS
Spec_View_Prefix is used for the name of the view, with no suffixes

procedure Import (View To Import: String :- "<REGION>"/
Into-View: String :- "<CURSOR>";
only=Change_Imports : Boolean :- False;

fCOMMANDS.CMVC'V(2)

Import Closure : Boolean :- False;
Remake-Demoted Units : Boolean :- True;
Goal :-compilation.unit State :- Compilation.Coded;
Comments : Strinq :- ""i
Work Order: Strinq :- w<DEFAULT>";
Response: Strinq :- "<PROFILE>W);

Import8 8pec or combined view8 a8 appropriate into the specified
view(s). The import specification can be a set of view names,
in which case all views are imported, unless only_change_imports is
true. In this case only subsystems that were imported sometime in
the past are reimported. All others are ignored.

The import description file mentioned in the release command is
brought up to date by this command.

If View_To_Import is ""» then the imports of Into_View are refreshed.
This means the various imported views are examined, and any new
Ada specs are imported in to the current view.

It i8 u8efu1 to invoke Import with View8 Tb Import - Into View and
Only Change Import8 is true. This will cause a 8et of view8 to be
changed to import each other.

procedure Remove Import (View: String :_ W»VIEW NAME«w;
- From View: String :- "<CURSOR>";

Comments: String :- ""I
Work Order : String :- "<DEFAULT>";
Response: String :- "<PROFILE>");

-- remove references to a previously imported view.

procedure Remove_Unused_Imports (From_view: String :- "<CURSOR>";
Comments: String :- ""I
Work_Order: String :- "<DEFAULT>";
Response: String :- "<PROFILE>");

11 fCOMMANDS.CMVC'V(2) 12

Search through all of the Ada unit8 in the view and examine the
withs. If no unit8 in some imported view are referenced, remove
that import.

Thi8 command generate8 warnings if unit8 in 8pec or combined
view8 are referenced, but the view i8n't imported. Error8 are
generated if units in load views are reLerenced.

procedure Replace_Model (New Model: String :- "»NEW MODEL NAME«";
In View: String :- "<CURSOR>";
Comments: String :- ""I
Work Order: String :- "<DEFAULT>";
Response: String :- "<PROFILE>");

procedure Initial (Subsystea : String :- "»SUBSYSTEH NAME«"1
Working View Base Name: String :- "Revl"1
Subsystem Tyjie : Subsystem Type EnUlll:- OIIvc.Spec Load;
View To Import: String :.-""; - -
Model :-String :- "RlOOO";
Comments : String :- "";
Work Order: String :- "<DEFAULT>";
Volume : Natural :- 0;
Response: String :- "<PROFILE>");

Build a new 8ubsY8tem of the 8pecified type. Also create a working
view and import as 8pecified. Thi8 command can be u8ed to create
an empty view in an exi8ting 8ub8Y8tem.

procedure Information (For View: String :- "<CURSOR>";
ShOW Model : Boolean :. True;
Show-Whether Frozen: Boolean :- True;
ShOW-View Xind : Boolean :- True;
ShOW-Creation Time: Boolean :- True;
Show-Imports -: Boolean :- True;
Show-Referencers : Boolean :- True;
Show-Unit Summary : Boolean :- True;
Show-Controlled Objects: Boolean :- False;
Show-Last Release Numbers: Boolean :- False;
Show-Path-Name : Boolean :- False;
Show-Subpith Name : Boolean :- False;
Show-Switches: Boolean :- False;
Show-Exported units : Boolean :- False;
Response: String :- "<PROFILE>");

Replace the model with the new one. All units must be source.
This command gets the switch file from the new model (if one
was provided), readjusts the maximum levels (which affects future
releases), and rebuilds the links.

type Subsystem_Type_Enum 1. (Spec_Load, Combined);

Show various things about a view. Plea8e 8ee Clnvc Hi8tory Lor
ways of extracting other information about the controlled objects
in the view.

procedure Destroy_View (What_View: String :- "<SELECTION>";
Demote Clients : Boolean :- False;
Destroy Configuration Also : Boolean :- False;
Comments: String :- ""I
Work Order: String :- "<DEFAULT>";
Response: String :- "<PROFILE>");

Destroy a view. IL Demote Clients i8 La18e, the view can have no
referencing views (client8); if it does, the destroy Lail8. If
Demote Clients is true, the view is "remove import"ed Lrom those
clients (which might cause lots oL obsolescence), then the view i8
destroyed. The conLiguration object Lor the view is left behind
in its normal place (see Release, above) so the view can be
reconstructed using "Build"

procedure Destroy Subsystem (What Subsystem: String :- "<SELECTION>";
- Comments : String :- "";

Work Order: String :- "<DEFAULT>";
Response: String :- "<PROFILE>");

July 31, 1981 at 10:38:39 PH July 31, 1981 at 10:38:39 PH

!COMMANDS.CMVC'V(2) 13 !COMMANDS.CMVC'V(2)

-- Destroy a subsystem. There must be no views in the subsystem

procedure Build (Configuration: String :- "»CONFIGURATION NAHE«";
View To Import: String :- "";
Model :-String :- "R1000";
Goal: Compilation. Unit State :- Compilation. Installed;
Limit: String :- "<WORLDS>";
Comments: String :- "";
Work Order: String :- "<DEFAULT>";
Volume : Natural :- 0;
Response: String :- "<PROFILE>");

Rebuild a view frON history. If Configuration_Object_Name refers to
a text file, that file is assumed to contain a list of configuration
object names to be built.

If View To Import - "", and if a text file exists with the name "same
as configuration object" , • imports", that text file is opened
after the views are built and imports are constructed from the views
or configuration objects named in that file. Please note that copy,
initial, import, and remove import will create and maintain such a
text file, so it is probably there.

HISTORY COMMANDS

The following co.-ands display history information, in various
formats, of CMvc controlled objects

(For Objects: String :- "<CURSOR>";
Display Change Regions : Boolean :- True;
Starting Generation: String :- "<CURSOR>";
Ending Generation: String :- "";
Response: String :- "<PROFILE>");

Display the history for the specified objects. If a view is
specified, all of the controlled objects in that view are displayed.
This history includes notes, Checked out and_in information, and
optionally the actual changes -

If display change regions is true, the differences between a
generation-and the previous one (n-l, n) are displayed. The display
is in the form of regions where changes occurred similar to that

-- produced by File_Vtilities.Difference(Compressed_Output->True)

The first generation to display is determined by looking up
the object in the view(s) specified by Starting Generation. If
Starting_Generation - "", the display starts at-generation 1.

The last generation to display is determined by Ending Generation.
If E .. G .. is ••, the last displayed is the latest one~ If E .. G ..
is the-name of a view, the generation specified by that view is-
used as the last.

procedure Show History By Generation
(For Objects-: String :- "<CURSOR>";
DisplaY_Change_Regions : Boolean := True;

Starting Generation : Natural :- 1;
Ending Generation: Natural :- Natural'Last;
Response: String :- "<PROFILE>");

In this case, All Units means all of the units in the current
view. Naming a view means all units in that view.

procedure Show All_Uncontrolled (Object_Or View: String :- "<CURSOR>";
Response: String :- "<PROFILE>");

List objects that are not controlled. Produces output only if an
object listed (or one in the units directory if a view is supplied)
is not under CHVC control

procedure Show_Image_Of_Generation (Object: String :- "<CURSOR>";
Generation : Integer :- -1;
Output Goes To : String :- "<WINDOW>";
Response: String :- "<PROFILE>");

Reconstruct an image of some generation of the specified object.
The default (-1) indicates back up one generation fraa that of
Object. Negative numbers are relative to the generation of Object,
positive numbers are actual generation numbers.
The result is written to current output unless a file name is
supplied in Output_Goes_To.

The following commands produce a report showing objects that
meet some criteria. This report shows the following information
about each object.

Object Name Generation Where Chkd Out By Nbo Expected Check In

UNITS.FOO 5 of 8 HTD Apr 7, 1987VIE" Yes

Object name is the element name (the name from the view down)

Generation is a pair. The first number is the generation of
the object used to lookup the element. The second number is
the highest generation produced.

Nbere is either the view containing a copy of the last generation
if the object is not checked out, or the view in which the object
is checked out. In the case where the object is not checked out,
It is possible that there is no representative object, in which
case this field is blank.

Chkd Out is 'Checked Out'. If this is yes, 'By Nbo' and
'Expected Check In' provide more information.

procedure Show (Objects: String :- "<CURSOR>";
Response: String :- "<PROFILE>");

Produce the information desribed above for the listed objects.
Also produces a report for each object showing which views
contain elements sharing a reservation token with the object.

July 31, 1987 at 10:38:39 PM July 31, 1987 at 10:38:39 PM

'C~S.CMVC'V(2) 15

procedure Show_All_Checked_Out (In View: String :- "<CURSOR>";
Response: String :- "<PROFILE>");

-- Look through all of the controlled objects in the supplied view, and
-- display information about theM if they are checked out anywhere

procedure Show_Cheeked_Out In View (In View: String :- "<CURSOR>";
Response: String :- "<PROFILE>");

-- Display information about all of the objects checked out in the
-- view pointed at (or in)

procedure Show Checked Out By User
<"InView :- String :- "<CURSOR>";
Who : String :- System Utilities.User Name;
Response: String :- "<PROFILE>"); -

Display information
be the user given.
checked out in same
view referred to.

about any object in the view that is checked out
This cOl1lllland will find the object even if it is
other view, as long as it is controlled in the

procedure Show Out Of Date Objects (In View: String :- "<CURSOR>";
- - - - Response: String :- "<PROFILE>");

-- Display information about all objects in the view that are not
-- at the latest revision.

procedure Show_AIl_Controlled (In View: String :- "<CURSOR>";
Response: String :- "<PROFILE>");

-- Display information about all controlled objects in this view

ARCHIVE CO~S

(From View: String :- "<CURSOR>";
To vIew: String :- "";
Comments: String :- ""I
Work Order: String :- "<DEFAULT>";
Volume : Natural :- 0;
Response: String :- "<PROFILE>");

-- Make a code view with the given name. From_View must only
-- name load and/or combined views. If a load view is provided, no

specs are copied; all specs are copied for combined views.
This operation fails if any unit isn't coded, or any spec exists
for which a body is required and one doesn't exist.

pragaa Subsystem (Cmve);
praqma Module_Name (4, 3704);

end Cmvci

July 31, 1987 at 10:38:39 PM

ICOMMANDS.CMVC MArNTENANCE'V(l) 1 !COMMANDS. CMVC MAINTENANCE' V (1) 2

July 31. 1987 at 10:38:38 PM July 31, 1987 at 10:38:38 PM

package Cmvc Maintenance i.
procedur. Expunge_Database (In_Subsystem: String :- "<CURSOR>";

Response: String :- "<PROFILE>");

Free up space in the Database by first finding all configurations
in the database that no longer have objects and destroying them,
then destroying all elements and join sets (with all of their
generations) that are no longer referenced.

procedure Delete Unreferenced Leading Generations
(In=Subsystem : String :~ "<CURSOR>";
Response: String :- "<PROFILE>");

-- Not yet implemented

procedure Convert_Old_Subsystem (Which: String :- "<SELECTION>";
Response: String :m "<PROFILE>");

Convert all of the views in a subsystem to CHVC subsystems. This
c~and can convert more than one subsystem per call.

procedure Check_Consistency (Views: String :- "<CURSOR>";
Response: String :- "<PROFILE>");

Verify that all of the views are consistent with the CHVC invariants.
Checks that:

The configurations all exist and are correct.
There are no dangling controlled objects.
The imports are ok, and that all of the imported subsystems

record the reference.
Various other things.

--
-- User level commands for manipulating the compatibility database (COB)
-- aSSOCiated with subsystems.--
procedure Display_Cdb (Subsystem: String :- "<CURSOR>";

Show Units : Boolean :- False;
Response: String :- "<PROFILE>");

Displays a summary of the information in the COB. If "show units"
is true, then a summary of information for the units currently
known in the subsystem is also displayed.

procedure Make_Primary (Subsystem: String :- "<SELECTION>";
Moving Primary : Boolean :- False;
Response: String :- "<PROFILE>");

-- Hakes the subsystem into a primary subsystem with its own read/write
COB. If the subsystem was a primary this operation is a no-op. If
the subsystem is a secondary then a new subsystem id is assigned.
If "moving-primary" is set to true, then the location of the
primary for this Subsystem is being moved and the current subsystem id
will be used. When moving a primary the user must make sure -
that the original primary is either destroyed or converted into
a secondary to prevent corruption of the COB.

procedure Make_Secondary (Subsystem: String :- "<SELECTION>";
Response: String :- "<PROFILE>");

-- Hakes the subsystem into a secondary with the same subsystem_id.

(Subsystem: String :- "<SELECTION>";
Limit: String :- "<WORLDS>";
Effort Only : Boolean :- True;
Response: String :- "<PROFILE>");

Destroys the COB and all remnants of it in compiled units.
This includes demoting ALL units in the subsystem to source
and deleting all code-only views. If "effort-only" is set
to true, then the effects of the operation are computed
and displayed.

procedure Update_Cdb (From Subsystem: String :- "<ASSOCIATED PRIMARY>";
To SUbsystem: String :- "<SELECTION>";-
Response: String :- "<PROFILE>");

Hoves the CDB from one subsystem to another using the network
if necessary. Both subsystems must have the same subsystem_id.

procedure Repair_Cdb (Subsystem: String :- "<SELECTION>";
Verify Only : Boolean :- True;
Delete-Current : Boolean :- False;
Response: String :- "<PROFILE>");

Will rebuild the COB to be consistent with the currently compiled
units in the subsystem. If ·verify only· is true then the COB
will not be changed, but will be checked for consistency with
the currently compiled units. If ·verify only· is false and
"delete current" is true then the current-COB will be deleted
and then rebuilt. If the "verify only" is false and
"delete current" is false then existing entries in the CDB
will be-verified and missing entries will be added.

pragma Subsystem (Cmvcl;
praqma Module Name (4, 3707);

end Cmvc Maintenance;

ICOMMANDS.ARCHIVE'V(13) 1 'COMMANDS.ARCHIVE'V(13) 2

w1th Machine;
package Archive 1.

procedure Save (Objects: String :- "<IMAGE>";
Options: String :- "RlOOO";
Device: String :- "MACHlNE.DEVICES.TAPE 0";
Response: String :- "<PROFILE>"); -

Save a set of objects (files, Ada units, etc.) to a tape or directory
such that they may be restored to their original form at a later time
or on another system.

The Objects parameter specifies the primary objects to be saved. It
can be any naming expression. Sy default, the current image is saved
unless there is a selection on that image, in whiCh case the selected
object is saved. Normally, the specified object(s) and all contained
objects are archived; this feature can be disabled.

The Options parameter specifies the type of tape to be written and
options to control what is saved. The Options parameter for each of
the Archive operations is written as a sequence of option
names separated by spaces or commas. Options with arguments are
given as an option name followed by an equal sign followed by a
value.

The save options are:

FORHAT - RlOOO I RlOOO_LONG I ANSI
RIOOO

~rites an ANSI tape with the data file followed by the index
file. The images of the objects being saved are written
directly to the tape. This is the default.

RlOOO LONG
like RIOOO format but the data file is written to one ANSI tape
and the index file to a second ANSI tape.

ANSI
~rites the data to a temporary file and then writes both index
and data file to a tape using ANSI tape facilities.

LABELa«any balanced string»
An identifying string written at the head of the archived data.
The label parameter allows the user to specify a string that
will be put at the front of the index file. When a restore is
done the label specified to the restore procedure will be
checked against the one on the save tape.

NONRECURSIVE
Save only the objects resolved to by the Objects parameter. Do
not recursively save objects that are inside of other objects.
The default is to save the objects mentioned in the Objects
parameter and all objects contained in them.

To save a world and a subset of its contents one can say:

Save (Objects -> "I !HJL7, -IHJL.ABC7, -!HJL.DEF7 J ",
Options a> "RIOOO NONRECURSIVE");

AFTER=<time_expression>

August 5, 1987 at 8:44:53 AMAugust 5, 1987 at 8:44:53 AM

Only objects changed after the time represented by
<time expression> will be archived. The <time expression>
should be acceptable to the time_utilities.val~e function.

COMPATIBILITY DATABASE (CDS) {-<Subsystems>]
Causes the-full compatibility database for each subsystem
specified to be archived. If no subsystems are specified with
the option, the Objects parameter specification is used instead.
The NONRECURSIVE option does not affect the interpretation of the
CDB specificaton even when it is obtained from the Objects
parameter.

When Ada units in a subsystem are archived, the relevant
portions of the subsystem compatibility Database is
automatically archived with them. Therefore, this option is
required only in special situations, primarily when one needs to
"sync up" a primary and a secondary subsystem.

To archive just Compatibility Databases, use

Save ("Subsystems", "CDS");

To archive compatibility databases with other objects, use

Save ("Other Stuff", "CDS-Subsystems");

The "Subsystems" and "Other Stuff" specifications will usually
describe disjoint sets of objects.

PREFIX=<naming pattern>
A naming pattern that is saved with the archived objects, which
can be recalled as the For Prefix when the data is Restored.
When set to an appropriate-value, the restorer need not know
exactly the names of the archived objects to be able to restore
them to a new place. If this option is not given, the value
used is derived from the Objects parameter and CDS
option (if present) by expanding context-sensitive characters
(such as A and $), expanding indirect file references, and

removing all attributes.

For downward compatibility the following options are provided.

GAlflAO
write a tape which can be read on a GammaO system.

GAH«1
write a tape which can be read on a Gammal system.

VERSION=<archive version number>
write a tape that can-be read by a version of source
earlier than the current one. The argument is a three digit
integer. For example, version-210.

The Device parameter can be set to the name of a directory.
case the index and data files are written to that directory.
tape format option is irrelevant in this case.

In this
The

!COMMANDS.ARCHIVE'V(13) 3 !COMMANDS.ARCHIVE'V(13) 4

procedure Restore (Objects: String :- -7";
Use Prefix: String :- -.-;
For-Prefix: String :- -.-;
OptIons: String :- "R1000";
Device: String :- "MACHINE.DEVICES.TAPE 0";
Response: String :- "<PROFILE>"); -

Restore ~n object or ~ set of objects from an Archive T~pe.

If the archive is on ~ tape then the t~pe format option given to
Restore should be the same as that given during the save. If the
archive is in a directory then the device parameter on the restore
should be set to that directory.

The Objects parameter may be any wildcard pattern specifying the
objects to be restored.

For example:
!USERS.HJL.CLI.TEST
{!USERS.HJL.TESTS.@, !USERS. HJL. LOGS. ABC]

The pattern in the Objects parameter is compared ~gainst the full
names of the saved objects. The objects whose names match the Objects

-- parameter specification are restored. If the name denotes an Ada
unit all ol its parts are restored fr~ the tape. If the name denotes
a world or directory ~ll of its subcomponents are restored.

The Use Prelix ~nd For Prefix p~r~meters provide ~ simple means for
Changing the names of the archived objects when they are restored.

If the Use Prefix 1s the special default value, "••, the For Prefix
is ignored-and the objects are restored using the names they-had when
they were saved.

If the Use Prefix is not •••, it must specify the n~.e of an object
into which-the archived objects can be restored. The name for ~
restored object is derived from the name of the archived object by
replacing the shortest portion of the name matched by the For Prefix
with the value of the Use Prefix. If the For Prefix is •• " the
archived objects are restored using the Default Prefix stored with
the archived data. -

For example:

Restore (Objects -> "!A.B.C.D.E",
Use Prefix -> "!X.Y",
For-Prefix -> "!A.B.C");

will restore to !X.Y.D.E.

If the name of the archived object does not have the For_Prelix as a
prefix, it is restored under its original name.

The For Prefix may cont~1n wildcard characters (I, @, ?) and the
Use Prefix parameter may contain substitution characters (@ or ,
oniY). (Not implemented 1n DO)

For example:

Restore (Objects ~> "[IA.B.TEST1, !D.E.F.TEST2]"

August 5, 1987 at 8:44:53 AMAugust 5, 1987 at 8:44:53 AM

For Prelix -> "?~"
Use-Prefix -> "IC.D.@");

will restore to !C.D.TEST1 ~nd !C.D.TEST2

If the object named by the prefix of the target name of an object
being restored doesn't exist, that object will be cre~ted as ~ set of
nested worlds. So, for example, if the For_Prefix is IA.B ~nd the unit
being restored is then IA.B.X.Y.Z ~nd ...X.Y h~sn't been saved on
the tape then lA, IA.B, IA.B.X, IA.B.X.Y will be created as worlds.

The following options are ~llowed 1n the Options parameter:

FO~T and LABEL: options as in the save option.

COMPATIBILITY DATABASE, (CDB) {-<Subsystems>]
Specifies that the Compatibility Databases for just the named
subsystems are to be restored.

NONRECURSIVE
prevents subcomponents of libr~ries and Ada units from being
implicitly restored. for example:

Restore
(Objects -> "(IUSERS.HJL, IUSERS.HJL.CLI, IUSERS.HJL.CLI.@]",
Options -> "R1000 NONRECURSIVE");

will restore only the named objects and not their substructure.

OVERWRITE - ALL OBJECTS m:,,_ OBJECTS UPDA TED_OBJECTS CHANGED _ OBJEC\
TS

ALL OBJECTS
All specified objects are restored. This is the default.

NEff OBJECTS
Only specified objects that don't already exist on the target
machine are restored.

UPDA TED OBJECTS
Only-specified objects that already exists on the target ~re
restored, but only if the update time of the ~rchived object
is greater than the update time on the target object.

CHANGED OBJECTS
RestOre both new and updated Objects.

PROMOTE
Alter they are restored, any Ada units will be promoted to the
state they were in when they were archived.

REPLACE
Given an object that is being restored that already exists
on the target, this option will cause the restore operation

(1) to unfreeze the target object if it is frozen.

(2) Il the target object is an installed or coded Ada unit
with clients, it is demoted to source using compilation.
Demote with the "<ALL_WORLDS>" parameter.

!COMMANDS.ARCHIVE'V(13) 5 !COMMANDS.ARCHlVE'V(13) 6

(3) if the parent library into IIhich an object is being
restored is frozen, the parent lIill be unfrozen to restore
the object then refrozen.

OBJECT ACL-<acl value>
~ORLD ACL-<acl ~alue>
DEFAULT ACL~<acl value>

Specifies the-Access Control List for restored objects
(OBJECT ACL) and lIorlds (WORLD ACL) and the default ACL for

restored lIorld8 (DEFAULT ACL).- The value is either an ACL
specification or the special values INHERIT or ARCHIVED.
ARCHIVED means to use the ACL archived lIith the object and is
the default for all three ACL options. INHERIT means to use the
standard inheritence rules for new versions of objects.

BECOME OWNER
Modify the ACL of all restored objects such that the restorer
becomes the ollner of the restored object.

procedure List (Objects: String :- "7";
Options: String :- "RIOOO";
Device: String :- "MACHINE.DEVICES.TAPE 0";
Response: String :- "<PROFILE>"); -

Produce a listing of the names of the objects on an Archive tape.

The Objects parameter specifies the objects to be listed. Wi 1dcards
are permitted, so if Objects - "?", the default, then all Objects are
listed.

The Options parameters are:

FORMA T and LABEL
as in the Save options.

procedure Copy (Objects : String :-
Use_Prefix : String
For_Prefix : String
Options : String :-
Response : String :-

"<IMAGE>";
:- ".";
:_ ft.";
"" ..

"<PROFILE>") ;

Copy objects from one location to another, including betlleen
machines on the same netllork.

The Objects parameter specifies IIhere the objects are to be gotten
from as in an Archive.Save. The U8e Prefix/For Prefix parameters
specify IIhere the objects are to go-as in Archive.Restore.

Each name consists of an (optional) machine name follolled directly
by a Objects parameter. A machine name has the form !!name.
the Objects part of the source name is like that given to the save
operation.

The Use Prefix and the For_Prefix function as in the Restore command.

If the Use_Prefix parameter is "." or just a machine name, then the

August 5, 1987 at 8:44:53 AMAugust 5, 1987 at 8:44:53 AM

source Objects are moved to the same place on the destination machine
as specified by the source. The For_Prefix parameter is ignored.

If neither Objects nor Use Prefix have a machine name then the
objects are copied from the source to the Use_Prefix on the
current machine.

The Options parameter has the follolling options.

AFTER=<time expression>
as in the save operation.

COMPATIBILITY DATABASE, CDB
NONRECURSlVE -

as in the save operation.

PROMOTE, REPLACE,
BECOME OWNER,
OBJECT-ACL, IiORLD ACL, DEFAULT ACL

as in the restore operation~

Examples of calls:

Copy (Objects ~> "!USERS.HJL.CLI",
Use Prefix => "! !M2");

lIill copy the CLI directory in !u,sERS.HJL on the
current machine to machine M1 !USERS.HJL.CLI.

Copy (Objects -> "!!M2!USERS.JHK.CLI");

lIill copy IUSERS.JHK.CLI on M2 to IUSERS.JHK.CLI on the
current machine.

Copy (Objects => "!!H3!USERS.HJL.CLI.CMD",
Use Prefix => "!USERS.JHK",
For-Prefix => "!USERS.HJL.CLI");

lIill copy the file !USERS.HJL.CLI.CMD on M3 to
!USERS.JMK.CMD on the current machine.
note IIhen repositioning Objects it is necessary to give a
for_prefix IIhich is a prefix of the Objects part of the
source parameter.

Copy (Objects -> "!!H1!USERS.HJL.ILFORD",
Use Prefix -> "!!H2!AGFA",
For-Prefix => "!USERS.HJL");

lIill copy !USERS.HJL.ILFORD from machine Ml to
machine M2 !AGFA!ILFORD

Copy (Objects => "!USERS.HJL.CLI",
Use Prefix => "! !H2",
Options => "REPLACE AFTER=12/25/85");

lIill copy those files IIhich have changed since 12/25/85 in
!USERS.HJL.CLI on the current machine to machine HI !USERS.HJL.CLI
Any existing files with the same names will be overllritten.

!COMMANDS.ARCHlVE'V(13)

procedure Server;
-- start the archive server;

procedure Status (For_Job: Machine.Job_Id);
-- Prints information about the status of the Archive job specified.
-- Can be the job number of an Archive Server Or of a job running
-- Archive. Copy, Archive. Restore, or Archive.Save.

praqaa Subsystem (Archive);
praqaa Module Name (4, 3546);

end Archive; -

August 5, 1987 at 8:44:53 AM

7

