
Preliminary

RATIONAL88!09!20

RIOOOCommand Interfaces

Preliminary

1. ct.r
1.1. Overview

The Command Line Interpreter (CLl) interface is the lowest level interface
activated on an RIOOO.It is available via several means:

• Initial Machine Power ON

• After a system shutdown (via BREAK or Operator. Shutdown)

• After a System Crash

1.2. Commands

This section describes the commands available from the CLI level. Generally, at the
CLI command level, commands are programs which the CLI executes using the
form:

CLl> x Command

where Command is one of the following:

Bootinfo Cedit Checkdisk
Comrnx Configure Crashdump
Diskmd Diskx Display
Expmon Findseg Gc
lnitstate lox Loadee
Log Look Memmacs
Novram Rdiag Rdm
Sam Scan Slew
Stat Tapex Trace

Crashload
Erasedisk
lnitioa
Loader
Mt
Recovery
Starter
Update_Eeprom

The following are Featuresllimitations:

• Filenames are limited to 30 characters.

• All commands can be abbreviated.

• The following special characters are recognized:

RATIONAL881Cffl20 1-1

Preliminary

Character Descrip tion

* Wildcard used in filename, match any characterts)

"P pc) f' Cc:J~ VV\.~J P.OV~C ; AA cJ .f-fA.6 ..j Vt..l ,v..L

y OV'\

w J"S
"Q x n\ l
"H
"C

"R
"U

Figure 1.1 - CLl Special Characters

1-2 88/09/20 RATIONAL

Preliminary

1.2.1. BOOTINFO

The BOOTINFO program is used to determine the software configuration used
during the last successful system boot. It displays information about the microcode,
as well as the ten subsystems which are loaded from the DFS. These subsystems
are:

ADA_BASE
MACHINE_INTERFACE
KERNEL_DEBUGGER_IO
KERNEL_DEBUGGER
KERNEL
ENVIRONMENT_DEBUGGER
ABSTRACT_TYPES
MISCELLANEOUS
OS_UTILITIES
ELABORATOR_DATABASE

The information supplied for microcode is the DEe System 20 pathname of the
MOM and DELTA as well as the date on which the control store image was bound.
The information supplied for each subsystem is simply the name of the .MLOADfile
which was used to load the subsystem into the RIOOO. By convention the name of
the .MLOADfile provides sufficient information to find the ADAsources involved.

RATIONAL88/Q9/20 1-3

Preliminary

1.2.2. CEDIT

The CEDIT program is used to edit RIOOOconfigurations. These configurations
specify a group of microcode and software subsystems which may be loaded into the
RIOOOprocessor. In addition a configuration also specifies certain attributes of the
systems hardware. Usually configurations are distributed with system software
releases and should not be edited. The CEDIT program is intended for use by
Rational Support Personnel when debugging or working around certain problems
with new releases. Changing the contents of a configuration may make it difficult
or impossible for Rational to determine which versions of software comprise the
running system.

The Rational Environment is made up of several dozen subsystems. Most of these
subsystems reside within the Environment's virtual memory system. Ten of the
subsystems are loaded from the DFS during system. boot and comprise the portions
of the Environment which are required for the virtual memory system to function
and for the remainder of the subsystems to be located and elaborated. These
subsystems are:

ADA_BASE
MACHINE_INTERFACE
KERNEL_DEBUGGER_IO
KERNEL_DEBUGGER
KERNEL
ENVIRONMENT_DEBUGGER
ABSTRACT_TYPES
MISCELLANEOUS
OS_UTILITIES
ELABORATOR_DATABASE

For each of these subsystems a configuration file contains information about where
the subsystem is within the DFS. A subsystem may be located in one of three ways:

• User is queried at load time for the subsystem. This method is only used
internally for Environment development.

• The subsystem is explicitly named within this configuration. This is the normal
method of locating subsystems.

• The subsystem is explicitly named in the STANDARD configuration and its
location should be determined from the STANDARD. This method is useful for
defining deltas from the STANDARD.

To invoke the configuration editor type:

CLI> x cedit

The program will first begin to edit the system's hardware configuration as follows:

Change hardware configuration [N] ?

If you want to modify the hardware configuration enter fly", otherwise enter the
default.

1-4 88/09/20 RATIONAL

Preliminary

Editing Hardware Configuration

If you have chosen the default, the editor will proceed to the software configuration.
If you request to modify the hardware configuration it will proceed as follows:

If the system is a Series 100 you will be asked:

Is this a multi-processor? N

This attribute is only used on Rational's internal Series 100 processors which have
been modified for multi-processing.

Does this processor have 8 ME memory boards ? Y

All Rational systems currently use eight megabyte memory modules. This question
should be answered "Y".

For each of the four possible memory modules you will be asked:

Does memory board <n> exist ? Y

All Rational systems currently use all four possible memory modules. All of these
four questions should be answered "Y".It is possible to run with only 3 memory
modules, but not less.

Editing the hardware configuration is now done.

Editing Software Configuration

Editing the software configuration is really done in two parts. First some
information about how the booting process works is needed followed by information
about each of the ten subsystems. Before that the name of the configuration you are
creating or modifying is needed. The CEDIT program will ask:

Enter name of configuration to edit [STANDARD] :

Enter the name of the configuration on which you want to base your changes. This
is not neccessarily the configuration you will be changing. You will then be asked:

Enter name of configuration to save [Configuration] :

where Configuration is the default configuration name to edit.

By default the editor will save your changes in the configuration you are basing
them on. You may specify a different name if you wish. If you specify a different
configuration the original will not be changed.

Now the editor will inquire about some booting options. These are:

Allow operator to enter eLl immediately ?

RATIONAL88/09/20 1-5

Preliminary

If this question is answered "Y"the operator will be asked if he/she wishes to enter
the CLl at the beginning of the booting process.

Allow editing of configuration?

If this question is answered "Y"the operator will be asked if he/she wishes to edit
the configuration being used to boot the processor during the booting process.

Allow operator to enter CLI prior to starting the cluster ?

If this question is answered "Y"the operator will be asked if he/she wishes to enter
the CLI between the time that microcode is loaded and macro-code is loaded.

Load kernel layer subsystems only ?

If this question is answered "Y"only the first five subsystems will be loaded before
the RIOOO processor is started. This feature is used to run certain RIOOO
diagnostics and exercisers.

Now the editor will ask some questions about the microcode and subsystems to be
used to boot the processor. These questions will be asked eleven times, once for
each of the following:

MICROCODE
ADA_BASE
MACHINE_INTERFACE
KERNEL_DEBUGGER_IO
KERNEL_DEBUGGER
KERNEL
ENVIRONMENT_DEBUGGER
ABSTRACT_TYPES
MISCELLANEOUS
OS_UTILITIES
ELABORATOR_DATABASE

The questions are:

Take <subsystem-name> from STANDARD ?

This question will not be asked if you are editing the STANDARDconfiguration. If
you answer ''Y'' to this question you will not be asked any more questions about this
subsystem.

Should this configuration query for <subsystem-name> ?

If you answer this question "Y"then at boot time the macro-state loader will query
about where the subsystem is located.

Enter name for <subsystem-name> ?

The answer to this question tells the macro-state loader where to get code for this
subsystem. It is the name of an MLOADfile. If you answered "Y"to the query
question the name you enter here will be the default answer when the operator is
queried at boot time.

1-6 88/09/20 RATIONAL

Preliminary

The configuration editor will now save the configurations modified during the
editing process. If this succeeds it will display the message:

Configuration saved!

In any case the CEDIT program will terminate.

RATIONAL88/0?/20 1-7

Preliminary

1.2.3. CHECKDISK

The CHECKDISK program performs a non-destructive, fast, read-only surface
analysis of a formatted, labeled disk. CHECKDISK will avoid previously detected
bad blocks on a labeled disk, reporting only errors which are not known.

Run the CHECKDISK program by typing:

CLI> x checkdisk

The CHECKDISK program will ask for the disk unit number to check. The disk
must have been previously formatted and labeled with the RECOVERY program.
Next the program will ask for the number of passes desired. Normally a single pass
is sufficient but for internal or testing purposes several passes may be desired. The
program will then ask if you want error information displayed for all defects or only
previously-undetected defects. Normally only previously undetected error
information is desired but at times all information is useful.

Once the program begins it will display the current cylinder number constantly and
print a pass counter at the conclusion of each pass. The time required for a pass is
dependent on the disk but may be calculated as follows:

((C*H*S)/16)/R seconds

where:
C = number of cylinders
H = number of heads
S = number of sectors
R = spindle revolutions per minute

Fujitsu 2351 (EAGLE) example:
((842*20*48)/16)/3961 = 12.75 minutes

1-8 88/09/20 RATIONAL

Preliminary

1.2.4. ct.r
The CLI is the I/O Processor's Command Line Interpreter. It is used to invoke
programs, create files, delete files, display files, list files, set the time and display
the time. The CLI makes use of the DFS macro user interface with which you
should be familiar.

The CLI accepts the followingcommands:

Command Description

COpy Copies data from one file into another file.

CREATE Creates a file.

DELETE Deletes a file.

DIRECTORY List files matching a given file specification.

LOCAL Returns operations to the local console (issued from a remote connection).

PRINTER Enables/disables hardcopy of console output.

REMOTE Transfers operations to the diagnostic modem.

RENAME Changes the name of a file.

TIME Display/change the time.

TYPE Displays the contents of a text file.

X Executes a program.

Figure l.2 - CLI Imbedded Commands

RATIONAL88/Q9/20 1-9

Preliminary

1.2.4.1. COpy

The COPY command creates a new file and copies the contents of an existing file
into the new file. Command syntax is:

CLl> copy Existing_File New_File

The new file must not already exist. If any disk errors are encountered the
command is aborted but the output file New_File is not deleted, and its contents are
indeterminant.

Switch Description

ID Delete the output file if it already exists.

Figure 1.3 - COPY Switches

Example:

CLl> copy/d Existing_File New_File

where Existing_File and New_File are valid filenames.

1-10 88109/20 RATIONAL

Preliminary

1.2.4.2. CREATE

The CREATE command creates a file. Command syntax is:

CLl> create New_File

The new file must not already exist.

Switch Description

ID If a me by the given name exists, Delete the existing me before creating the New_File.

ISIZE=N CREATE a me ofN pages. Default = l.

ICONTIGUOUS Create the me with CONTIGUOUS disk space.

II Allow the user to enter text into the file.

Figure 1.4 - CREATE Switches

Example:

CLl> create/d/size=4/contiguous/i New_File
}This data will be placed into the file New_File.
»

The final character typed is a single ")"character on a line by itself. This
terminates input and closes the file.

RATIONAL88/Q9/20 1-11

Preliminary

1.2.4.3. DELETE

The DELETE command deletes all existing files matching a given file specification.
Command syntax is:

eLI> delete filename

Switch Description

N Display the name of each file as it is deleted.

IC Confirm that each file is to be deleted by asking the user.

Figure 1.5 - DELETE Switches

1-12 88/09/20 RATIONAL

Preliminary

1.2.4.4. DIRECTORY

The DIRECTORYcommand is used to display information about all files matching
a given file specification within the diagnostic file system. Command syntax is:

eLl> directory Filename

The size and creation time of each file matching the Filename is displayed along
with a summary of the total number of files and total number of disk pages.

Switch Description

/FULL Causes information from the me's File Control Block to be displayed. This includes me attributes,
allocation, and disk address information.

Figure 1.6 - DIRECTORYSwitches

RATIONAL88/09/20 1-13

Preliminary

1.2.4.5. LOCAL

The LOCAL command is issued to a remote RIOOO when customer support wishes
to return control of that system to the on-site personnel.

eLI> local

See REMOTE.

1-14 88/09/20 RATIONAL

Preliminary

1.2.4.6. PRINTER

The PRINTER command is used to enable or disable hardcopy output of all
operations console transactions. Command syntax is:

CLI> printer on Line_NUmber
CLI> printer off

Line_number is the RIOOOport number to which a line printer is attached. The
printer should be on-line and should not use any software flow-control protocol.
Hardware flow-control is permitted.

RATIONAL88/Q9/20 1-15

Preliminary

1.2.4.7. REMOTE

The REMOTE command is used by local personnel to transfer operations of an
RIOOOto Rational's Customer Support Response Center.

See LOCAL.

1-16 88109/20 RATIONAL

Preliminary

1.2.4.8. RENAME

The RENAME command is used to change the name of an existing file. Command
syntax is:

eLl> rename Old_filename New_Filename

Old_Filename must exist, New_Filename must not.

Switch Description

ID Delete the New_Filename if it already exists

Figure 1.7 - RENAME Switches

RATIONAL88/09/20 1-17

Preliminary

1.2.4.9. 1rI~

The TIME command may be used to display or set the time. It has immediate
effects on the system's battery-backed-up clock/calendar. Command syntax is:

CLl> time -- Display Time
CLl> time hh:mm:ss dd-mon-yy -- Set the Time

where

HH Hours since midnight in military (24 hour) format
MM Minutes
55 Seconds
DD Day of the month
MON One of JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC
YY Last two digits of the year

The DFS displays the time to within only 2 second granularity. The time command
will set the time to the exact second.

1-18 88109120 RATIONAL

Preliminary

1.2.4.10. TYPE

The TYPE command may be used to display the contents of all files matching a
given file specification. Command syntax is:

eLl> type Filename

Switch Description

N Display the name of each file prior to its contents

Figure 1.8 - TYPE Switches

RATIONAL88/Q9/20 1-19

Preliminary

1.2.4.11. X

Executes a program (Command) as defined in this chapter.

eLl> x Program_Name

where Program. Name is something like BOOTINFO, etc., as documented in this
chapter.

1-20 88/09/20 RATIONAL

Preliminary

1.2.5. CO:MMX

The COMMXprogram is a DR-II communications multiplexer exerciser. It can be
used to exercise either input or output to the RIOOO'sRS-232C lines. To invoke the
program type:

eLl> x comrnx

The program will query for INPUT or OUTPUT testing. Once you have answered
it, proceed as follows:

INPUT =>

Any character coming into the DR-II will be recognized and a message such as:

Line N on unit M received ascii xx
will be sent to the console as well as out the line from which the character was
received. Typing any character on the console will terminate the test.

OUTPUT =>

A character string like:

This is line N on unit M

will be sent to all DR-II lines. Typing any character on the console will terminate
the test.

RATIONAL88/09/20 1-21

Preliminary

1.2.6. CONFIGURE

The CONFIGURE program is invoked during system boot and diagnosis to power
the R1000 processor (Series 100 only), reset the R1000 processor, and verify the
presence of all RIOOO processor boards. It may not be invoked by the user.

1-22 88/09/20 RATIONAL

Preliminary

1.2.7. CRASHDUMP

The CRASHDUMP program is used to capture all R1000 processor state on a
magnetic tape for use in debugging system software and microcode problems. After
some types of system crashes the operator will be asked if he/she wishes to take a
CRASHDUMP. In most cases the operator should. This program is fairly
self-explanatory but requires some input from the system operator. At times when
the CRASHDUMP program is not invoked automatically the operator may invoke it
as follows:

CLl> x crashdurnp

The CRASHDUMP program queries the operator as follows:

Tape unit number 0 .. 3 [0] ?
Tape density is PE(GCR), you can manually change it now.
Vol ume ru. (1..6 charac ters) ?
Please enter any comments or information that may help isolate or reproduce
this problem. To terminate the comment, enter a ")" on a line by itself.

Answer these questions in the obvious fashion. The Volume ID field is used to track
crash dump tapes. You should keep a log of the Volume ID you enter. The
comments are of great importance when debugging from a CRASHDUMP tape.
They should include processor location, your name, your phone number, and any
information about what seemed to cause the system to crash, what users were on
the system, and what kind ofjobs were they running.

The CRASHDUMP program takes a fair amount of time to write the entire tape.
The tape should be at least 1200 feet long for a GCR CRASHDUMP. The program
displays the following information while running:

Saving state for board JKLMFQTVS [OK]
Saving Special Registers [OK]
Saving Trace Rams [OK]
Dumping CRASH_DUMP.COMMENTS [OK]
Dumping lOP_DUMPl [OK]
Dumping lOP_DUMP2 [OK]
Dumping CRASH_DUMP. SAVED_STATE [OK]
Dumping CRASH_DUMP.REGlSTERS [OK]
Dumping CRASH_DUMP.TAG_STORE [OK]
Dumping CRASH_DUMP.MEMORY 0123456789ABCDEF [OK]
Crash Dump is complete.

Once the CRASHDUMPis finished, remove the tape from the R1000, write-protect
it, and forward it to the Rational Customer Support Response Center. Be sure to
place a legible label on the tape with your name and phone number, and something
to prevent the tape leader from unravelling/wrinkling during shipment.

RATIONAL8810f!20 1-23

Preliminary

1.2.8. CRASHLOAD

The CRASHLOAD program loads dump tapes produced by the CRASHDUMP
program into an RIOOO for debugging purposes. This program is intended for
internal use only.

1-24 88109/20 RATIONAL

Preliminary

1.2.9. DISKMD

The DISKMD program is a DFS-based disk utility which is useful for a wide range
of disk problems. It is USER_INTERFACE based and has several commands which
act on one of two memory buffers. One buffer is the read buffer, the other is the
write buffer. Each buffer is 1024 bytes in size, the same as an R1000 disk block.

Command Description

COpy The COPY command copies the contents of the read buffer into the write buffer.

CTS The CTS command requires a single decimal argument (the block number) which is converted into
cylinder, track, and sector and then inserted into the macro evaluation buffer.

DATA The DATAcommand requires a single hex argument which is truncated to 16 bits and used to fill
the write buffer.

DBN The DBN command requires three decimal arguments (Cylinder, Track, Sector) which are
converted into a disk block number and inserted into then macro evaluation buffer.

DISPLAY The DISPLAY command displays the contents of the read buffer.

EDIT The EDIT command requires two hex arguments. The first is used as an address in the write buffer
and the second is a Ifi-bit data word which is inserted into the write buffer at the address specified.

RD The RD command requires three decimal arguments which are the cylinder, track, and sector of a
1KB disk block to be read from the current unit into the read buffer. If any errors are encountered
during the read, the buffer will only contain data from sectors successfully read. Other portions of
the read buffer will remain unchanged.

RECAL The RECAL command recalibrates the current disk unit.

SEEK The SEEK command requires a single decimal argument which is interpreted as a cylinder number.
The heads of the currently-selected drive are positioned to that cylinder but no transfer is done.

STATUS The STATUS command displays the disk status from the last error for the current unit. Ifno errors
have occurred the displayed status is indeterminate.

VERIFY The VERIFY command compares the contents of the read buffer to the contents of the write buffer.
Discrepancies are displayed on the console.

WR The WR command requires three decimal arguments: a cylinder, track, and sector number. A 1KB
transfer from the write buffer to that sector is started on the current unit. If any errors occur the
transfer is aborted.

WRENABLE The WRENABLE command is issued to write-enable the current unit. It remains in effect until the
UNIT command is issued.

UNIT The UNIT command requires a single decimal argument which is used for all disk-specific VO from
then on. The UNIT command software write protects the newly selected disk until the
WRENABLE command is issued.

Figure 1.9 - DISKMD Commands

RATIONAL88/0'mo 1-25

Preliminary

1.2.10. DISKX

The DISKX program is a DFS-based disk exerciser. It is intended to be used for
quick disk subsystem integrity testing as well as long-term reliability testing. To
invoke the program type:

eLl> x diskx

The program will size the system and query the operator about testing each disk
unit. After these questions the exerciser will begin. testing. Once testing has begun
the exerciser may be stopped by typing control-G. Any other character will cause
the program to display status information about each drive. This status
information includes the total number of bytes transfered, total hard errors, total
soft errors, and current head location.

The exerciser does transfers in the following manner:

1. Writes random data to a random block in the diagnostic region.

2. Checks the data just written.

3. Reads a random block from anywhere on the disk.

These three steps are repeated for each unit with all units running in parallel until
the test is stopped.

1-26 88/09/20 RATIONAL

Preliminary

1.2.11. ERASEDISK

The ERASEDISK program is used to complywith certain national security
guidelines when removing disks from a secure site. This program will format the
desired disk unit three times, using data supplied by the operator as a format
pattern. The program is self explanatory. To invoke the ERASEDISK program
type:

eLI> x erasedisk

The ERASEDISK program will overwrite every disk block on the disk. No
information will be retained. Once the ERASEDISK program has erased a disk you
will need a defects tape to re-instate the bad block region and re-format the disk.
When erasing disks, it is always best to erase unit 0 last since this command is
generally located on that unit.

RATIONALss/af!2o 1-27

Preliminary

1.2.12. EXPMON

EXPMON is the DFS-based experiment monitor. It is the basis of all low level
hardware, software, and microcode debugging. The experiment monitor makes use
of the macro user interface and nearly all interaction with the program is based on
a collection of nearly 1000 macros. The basic command set, however, is fairly small.
To use EXPMON you should be familiar with R1000 hardware, R1000
micro-architecture, R1000 macro-architecture, and the EXPMON macros.

Co=and Description

XEQ The XEQ commands causes an experiment to get loaded from the disk, parameterized, downloaded
to a given board, executed, and uploaded. Once the experiment has been uploaded any output
parameters are placed in the evaluation buffer.

Syntax:
XEQ board-name experiment-name [parameterl,parameter2, ... J

POLL The POLL command polls a given board and inserts the board's status into the evaluation buffer.

-....
\9'V-

Syntax:
Vall POLL Board_Name

RESET The RESET command sends a reset instruction to a given board. This causes the boards DFSM to
be reset.

Syntax:
RESET Board_Name

CONTINUE The CONTINUE command causes an experiment running on a given board to continue from the
paused state.

Syntax:
CONTINUE Board_Name

MEMn_EXlSTS Each of the MEMn_EXlSTS (where n is 0..3) commands places a boolean into the evaluation buffer
corresponding to the existence of that memory board.

QUAD_DENSITY The QUAD_DENSITYcommand places a boolean into the evaluation buffer which is false if the
machine has 2MB memory boards and is true if the machine has 8MB memory boards.

Figure 1.10 - EXPMON Commands

1-28 88/09/20 RATIONAL

Preliminary

Board_Names recognized by the experiment monitor are as follows:

lOA
SYS
laC
TYP
VAL
SEQ
FlU
MEMO
MEM1
MEM2
MEM2
ALL

I/O adaptor
Sysbus board
I/O channel
Type ALU
Value ALU
Micro-sequencer
Field isolation unit
Memory board 0 (right-most)
Memory board 1
Memory board 2
Memory board 3 (left-most)
All R1000 processor boards

(Series 100 only)
(Series 100 only)
(Series 200 only)

excluding the I/O adaptor.

RATIONAL88f(Jf/20 1-29

Preliminary

1.2.13. FINDSEG

The FINDSEG program is used internally to determine in which subsystem a given
code segment name is located. The program is invoked by typing:

eLl> x findseg <some code segment name>

If the code segment name is left off of the command line the program will prompt for
one when running.

If the given segment name was loaded by the LOADER during the last system boot
then FINDSEG will display the subsystem name in which it is located.

(,

1-30 88/09/20 RATIONAL

Preliminary

1.2.14. GC

The GC is a disk garbage collector which can delete unnecessary files within the
DFS. The garbage colletor scans all existing MLOADfiles and retains a list of all
SEG files referenced. The program then scans all SEG files in the DFS-filesystem,
deleting the ones not referenced by any MLOADfiles. The garbage collector will
recover disk space if unnecessary MLOADfiles are deleted manually.

RATIONAL88/09/20 1-31

Preliminary

1.2.15. INITIOA

The lNlTlOA program allows the operator to change two parameters which are
stored in NOVRAM on the lOA (Series 100) or the IOC (Series 200). These
parameters are the Cluster Id and the Phone Number of the Rational Customer
Support Response Center which is used for remote access.

Cluster Id
The system's Cluster Id is a unique, 6 digit, installation identifier. It is the key
used to access information about the system in the Customer Support Database.

Phone Number

The PHONE_NUMBER is used by the system to begin remote diagnosis of R1000
detected problems. It is not used to make voice contact with the Rational Response
Center.

The lNlTlOA program is intended for use during system installation by Rational
Support Personel. To invoke the INITIOA program type:

CLI> x initioa

The program will repond by asking two questions:

Enter CLUSTER ID [<current-id>l : Cluster ID

Enter phone number to be used for remote diagnostics.
Include all PBX codes required to gain outside access.
The following characters may be imbedded at any point :

W => Wait for dial tone.
D => Pause 3 seconds.
P => Subsequent digits are pulse dialed
T => Subsequent digits are tone dialed (DTMF).
- => No effect, used for clarity only.

Enter phone number [<current-phone-number>l : phone NUmber

If the -ccurrent-id» is not correct, enter the correct Cluster Id. If the -ccurrent-id> is
correct simply type <cr> to retain it.

The phone number is a character string which contains embedded characters to
inform the modem about the installation site's phone system.

The following example is used to illustrate how INlTIOA is used.

1.

2.

The actual phone number is 800-555-1212.

A PBX is in use which requires entering a "9" to gain outside access.

3. The site uses a third party phone network like "SPRINT" or "MCI" which is
accessed by dialing 800-123-4567. The site's access code to this network is

1-32 88109/20 RATIONAL

Preliminary

121212.

If a person were making this phone call he/she would do the following:

l. Wait for the PBX dial tone

2. Dial "9".

3. Wait for the local phone systems dial tone.

4. Dial 800-123-4567 to gain access to the 3rd party network.

5. Wait for a tone.

6. Enter the access code "121212"

7. Wait for a dial tone.

8. Dial 800-555-1212 to finally contact Rational.

The modem can be instructed to do nearly the same thing. The only difference
would be step 5. The modem cannot wait for a tone but instead it can be instructed
to wait until it is certain that the tone has happened (by inserting 3 second delays).
The modem's instructions might look like this:

W9W8001234567DDD121212W8005551212

To make this look more legible we can insert "_"characters. These are ignored by
the modem. A more legible set of instructions might be:

W-9-W-800-123-4567-DDD-121212-W-800-555-1212

Once both questions have been answered the INITIOA program will store the new
data and terminate.

RATIONAL88/09!20 1-33

Preliminary

1.2.16. lOX

lOX is a DFS based I/O exerciser. It is a combination of the DFS based tape
exerciser, TAPEX, and the DFS based disk exerciser, DISKX. The lOX program
may only be run on Series 200 processors due to memory constraints. To invoke the
lOX program type:

eLl> x iox

The exerciser will prompt you as follows:

Simulate packet requests [Y] ?

Answering "Y" to this question causes lOX to use the same entry points to the I/O
Processor Kernel as the RIOOOwould use during system operation. It provides for
more extensive testing of system integrity, allows more parallelism, and increases
I/O throughput.

Exercise Tapes [Y] ?

Answering "Y" to this question will cause lOX to ask if you want to exercise each
tape drive which is in the system and is "ready". A tape drive is "ready" ifit has a
tape mounted, loaded, and write- enabled. As many as twelve tape drives may be
exercised. Tape testing will destroy all data written to the tape.

Exercise Disks [Y] ?

Answering "Y" to this question will cause lOX to ask if you want to exercise each
on-line disk drive. As many as sixteen disk drives may be exercised. Disk testing
will only write to the diagnostic area of a disk. This should cause non-destructive
results. If a disk unit is in question a full system backup should be available as
certain disk malfunctions may result in writes to user data.

If you have requested that disks be exercised you will be asked:

Do all I/O to the same cylinder [N] ?

Answering "Y" to this question will cause more transfers because the disk heads
will never be moved. Answering "N" will provide for testing more comparable to
system usage because seeks will be quite frequent.

Once the exerciser has asked all its questions it will begin to test the devices
selected. It tests the tapes and disks in the same fashion as DISKX or TAPEX.
Refer to the documentation for those programs for details of testing. While lOX is
running you may type I\G (Control-G) to terminate it. Typing any other character
will cause status displays which are similar to those produced by TAPEX and
DISKX. Refer to those sections for details.

1-34 88109/20 RATIONAL

Preliminary

1.2.17. LOADEE

The LOADEE program is used to re-program the RIOOOsystem's bootstrap
Electrically-Erasable Programmable Read-Only Memories (EEPROMs). These
devices contain executable data used to bootstrap the system. The EEPROMs are
located on the lOA (Series 100) and on the lOC (Series 200). The LOADEE program
is intended to be used by Rational Support Personnel when installing new system
software releases. Documentation for the release being installed is required to
successfully run the LOADEE program.

Prior to re-programming the bootstrap EEPROMs you must have loaded the desired
program images into the system's DFS. To invoke the program type:

CLI> x loadee

The program will query as follows:

Enter I/O Processor Bootstrap file name
Enter I/O Adaptor Cluster Manager file name

Respond to these questions as instructed in the software installation instructions.
The LOADEE program will transfer the contents of the specified file into the
system's EEPROMs and then re-boot the R1000.

RATIONAL88/Q9/20 1-35

Preliminary

1.2.18. LOADER

The LOADER program is used to boot the RIOOO.Depending on the
BOOT/CRASHIMAINTENANCE options the LOADER will either prompt for a
configuration to boot or simply use the STANDARD configuration.

The LOADER will first initialize the processor by invoking various experiments.
Next, the microcode loader for the machine (SBUSULOAD for the Series 100 and
DBUSULOAD for the Series 200) is initialized. The microcode loader will reload
the control store, register file, and dispatch RAMs as needed from the microcode
image specifed by the configuration file.

The LOADER will proceed to start the RIOOOby invoking experiments. At this
stage the RlOOOwill begin executing microcode to further initialize the processor
and eventually become idle.

The LOADER will begin to load subsystems into the RlOOOby extracting the names
of MLOAD files from the configuration specified and interpreting the directions
contained in them. Once all of the subsystems have been loaded into RlOOO
memory the LOADER will calculate the transitive closure of the subsystems, build
instructions for the kernel elaborator and send those to the RlOOOas well. Finally
the LOADER will send a start message to the RlOOO. The RlOOOwill place a
constant task name on the run queue and thus begin elaborating the environment.

Once done the LOADER invokes the monitor program which performs various tasks
while the RlOOOis running.

1-36 88/09/20 RATIONAL

Preliminary

1.2.19. LOG

The LOG program allows the user to examine or initialize the DFS-based error log.
This error log contains information about device errors during DFS I/O, system
crash history, diagnostic failures, etc. The LOG program is interactive and is
invoked by typing:

eLl> x log

Once the LOG program has been invoked it will display information about the
contents of the error log. The error log is a ring buffer of 2048 entries. Newer
information overwrites older information in the error log. The LOG program allows
selective examination of log entries (displayed starting with the most recent first).
Once you have finished examining the log you will be asked:

Update log header [Y] ?

Answering "Y"to this question will cause all entries in the error log to be marked as
old. This allows subsequent examinations of the error log to filter out data already
seen. Entries marked as old can still be examined until they are overwritten within
the ring buffer.

To initialize the error log invoke the LOG program as follows:

eLl> x log initialize

The LOG program will ask if you really want to initialize the log. This will result in
all log data being discarded. The LOG should be initialized when a new DFS is
built on a system.

RATIONAL88/Q<i/20 1-37

Preliminary

1.2.20. LOOK

The LOOK program can be used to examine a file within the DFS. It is invoked by
typing:

eLI> x look Filename

The program will prompt for a file to examine if one is not specified on the command
line. Once the file has been opened the LOOK program prompts for user input with
a ">". You may now type either one or two octal arguments. The first argument is
assumed to be an offset of 8-bit bytes into the file. The second word is assumed to
be a count of 16-bit words to be displayed. If the second argument is not provided it
is assumed to be 10 (8 decimal). The LOOK program takes the address and sets the
low eight bits to zero. It then takes the count and rounds it up to the nearest
multiple of eight. LOOK then displays the portion of the file specified by the
modified address and count as 16-bit octal words. To terminate the program type
"BYE"to the prompt. LOOK is intended for internal use only.

1-38 88109/20 RATIONAL

Preliminary

1.2.21. MEMMACS

The MEMMACS program provides a performance accelerator for several
experiment monitor macros. It provides the following functions:

Logical memory read
Physical memory read
Logical memory write
Physical memory write
Tagstore display
Physical tag read
Physical tag write
Memory board state display
RDR display
TVR display
Compute ECC

This program should not be invoked except with the experiment monitor macros for
which it is intended.

RATIONAL88/09/20 1-39

Preliminary

1.2.22. MT

The MT program is a DFS-based magnetic tape utility. It is used to transfer DFS
files between a DFS disk and an "MT"format tape. The MT program utilizes the
macro user interface. It is invoked by typing:

eLI> x mt

The following are commands executed by the MT interface:

Load Dump Rewind Unload

1-40 88109/20 RATIONAL

Preliminary

1.2.22.1. LOAD

The LOAD command is used to transfer files from a tape to a DFS disk. The LOAD
command requires no arguments and will transfer all files on the tape. The LOAD
command leaves the tape positioned at End of Tape (EOT).

Switch Description

IN The IN switch causes the LOAD command to read the files from tape but not write them to disk.
This switch may be used in conjunction with the N switch to see what's on a tape or to position the
tape at EOT to enable appending files to an existing tape.

N The N switch causes the MT program to display the name of each file read from tape.

/UNLOAD The /UNLOAD switch causes the LOAD command to unload the tape rather than leaving the tape
positioned at EOT.

/UNIT= The /UNIT= switch may be used to specify a specific tape unit for the transfer. If this switch is not
present, unit zero will be used.

Figure 1.11- MT LOAD Switches

Examples:

MT> load/v/unload/unit=l

To append files to an existing tape type:

MT> load/n
MT> dump filel,file2, ...

The LOADINcommand will position the tape at EOT but not transfer any data to
the disk. The dump command will then begin to transfer the specified files to the
end of the tape.

RATIONAL88/09/20 1-41

Preliminary

1.2.22.2. DUMP

The DUMP command is used to transfer files from a DFS disk to a tape. The
DUMP command will leave the tape positioned at EOT upon transfer of the last file.
The dump command requires at least one argument. This argument is the file
specification to dump to tape. More than one file specification may be present on the
command line. They will be processed in the order they appear.

Switch Description

IGCR The IGCR switch will force the file to be written in GCR format if the tape drive supports remote
density selection. The IGCR switch may only be used if the tape is at BOT. GCR format records at
6250 bits per inch.

IPE The IPE switch will force the file to be written in PE format if the tape drive supports remote
density selection. The IPE switch may only be used if the tape is at BOT. PE format records at
1600 bits per inch.

/LONG_GAPS The /LONG_GAPS switch will force the tape to be written with long or variable inter-record gaps if
the tape drive supports remote gap selection. This will increase tape throughput.

ISHORT_GAPS The ISHORT_GAPS switch will force the tape to be written with short inter-record gaps if the tape
drive supports remote gap selection. This will increase tape capacity.

!THRESHOLD= The !THRESHOLD switch helps the MT program optimize throughput. It requires a single
argument. If a file being DUMPed is larger than the THRESHOLD that file will be dumped in
high-speed mode. If the file is smaller it will be dumped in low speed mode. The YITprogram uses
reasonable defaults but the !THRESHOLD allows the user to optimize further.

fUNIT= The fUNIT= switch may be used to specify a specific tape unit for the transfer. If the fUNIT=
switch is not present, unit zero will be used.

fUNLOAD The fUNLOAD switch causes the LOAD command to unload the tape rather than leaving the tape
positioned at EOT.

N The N switch causes the MT program to display the name of each file read from tape.

Figure 1.12 - MT DUMP Switches

Examples:

MT> dump/v/gcr/threshold=25/short_gaps filel,file2,*file3*

To append files to an existing tape type:

MT> load/n
MT> dump filel,file2

The LOADIN command will position the tape at EOT but not transfer any data to
the disk. The dump command will then begin to transfer the specified files to the
end of the tape.

1-42 88/09/20 RATIONAL

Preliminary

1.2.22.3. REWIND

The REWIND command will reposition the tape to the Beginning of Tape (BOT).

Switch Description

!UNIT= The user may select a unit with the !UNIT= switch. By default unit zero is rewound.

Figure 1.13 - MT REWIND Switches

Examples:

MT> rewind/unit=2

RATIONAL88/00/20 1-43

Preliminary

1.2.22.4. UNLOAD

The UNLOAD command will reposition the tape to BOT and then unload the tape
from the drive.

Switch Description

fUNIT= The user may select a unit with the fUNIT= switch. By default unit zero is unloaded.

Figure 1.14 - MT UNLOAD Switches

Examples:

MT> unload/unit=3

1-44 88109/20 RATIONAL

Preliminary

1.2.23. NOVRAM

The NOVRAM program is used to modify and display the NOn-Volatile RAMs
located on each R1000 processor board. The NOVRAM program is used during the
boot process to insure that the NOVRAMs contain valid information. The
NOVRAM program may also be invoked by typing:

eLl> x novram

The program will load the contents of all boards' NOVRAMs and then display a
menu. The current menu options are:

o => exit
1 => modify
2 => display

The exit option causes the program to terminate. The modify option allows the user
to modify the NOVRAi'V1of a given board. Default answers are provided to all
questions during the modification process. The default values are either the current
values if the NOVRAMs checksum is correct, or best guess values if the boards
NOVRAM does not checksum successfully. The display option provides a table of
information about each board in the R1000 processor. Included are the board part
number, serial number, artwork revision level, ECO level, and manufacturing date.

RATIONAL88/09/20 1-45

Preliminary

1.2.24. RDIAG

The RDIAG program is used to run FRU diagnostics. It is an interactive program
based upon the macro user interface. To run RDIAG, type:

CLI> x rdiag
RDIAG>

The following commands can be executed from the RDIAG interface:

TEST RUN ERRMESS
TRACE ULOAD MARGIN

ISOLATE

and are explained in more detail on the following pages.

1.2.24.1. TEST

The TEST command is used to run all diagnostics pertaining to a given FRU.

Format:

DIAG> test FRU

Switch Description

/1 Execute only PHASE I tests for this FRU.

/2 Execute only PHASE! and PHASE II tests for this FRU.

/3 Execute PHASE I, II, and III tests for this FRU.

Figure 1.15 - DIAG TEST Switches

1.2.24.2. RUN

The RUN command is used to execute a single diagnostic program.

Format:

DIAG> run [FRU] Diagnostic

The fru argument is only allowed when invoking diagnostics which test multiple
FRUs. These include P2UCODE, P3UCODE, and all memory FRUs.

1.2.24.3. ERRMESS

The ERRMESS command is used to extract an error message from an error
message file. This command is primarily intended for debugging purposes.

Format:

DIAG> errmess <error-message-file>,<error-number>, [<error-string>]

1-46 88109/20 RATIONAL

Preliminary

1.2.24.4. INIT_STATE

The INIT_STATE command is used to restore the RIOOOprocessor to a known,
benign, state.

1.2.24.5. ISOLATE

The ISOLATE command causes FRU diagnostics invoked with the TEST or RUN
commands to invoke other diagnostics to isolate a problem.

Format:

DIAG> isolate {On I Off}

1.2.24.6. TRACE

The TRACE command enables or disables the single line of output associated with
the execution of an experiment. This is most useful when debugging with a remote
connection at a low baud rate.

Format:

DIAG> trace {On I Off}

1.2.24.7. ULOAD

The ULOAD command controls the loading of control-store for certain FRU
diagnostics.

Format:

DIAG> uload {on I off}

1.2.24.8. MARGIN

The MARGIN command is used to margin the power and clocks utilized by the
RIOOOprocessor.

Format:

DIAG> margin {power I clock} {high I normal I low}

RATIONAL88/09/20 1-47

Preliminary

1.2.25. RDM

The RDM program is used to recover disk-defect information from new disks which
have not yet been formatted. Some disk manufacturers place information about
disk defects on the disk itself to allow the disk formating process to be as automatic
as possible. The RDM program uses features of the SL-121 controller to retrieve
this information. To run the RDM program either boot it from tape or invoke it by
typing:

eLl> x rdm

The RMD program will ask several questions as follows:

Enter unit number of virgin disk :

Type the disk unit number as set on the disk drive itself.

Enter HDA serial number as shown on HDA :

Enter the disk's HDA serial number. Note that this is different from the disk
drive's serial number as defects are tracked by HDA, not drive.

Enter the number of bytes-per-sector as jumpered at the disk :

This information is required to calculate the sector number in which a given defect
is located. For the disks which Rational currently uses the answer to this question
IS:

Fujitsu 2351 (EAGLE) 585
Fujitsu 2361 (XP) 620

The answer to this question is vital. Neither the program nor the controller can
determine if the information you have provided is correct. An incorrect answer will
result in incorrect mapping of disk defect locations and may result is loss of user
data and system downtime at a future point in time.

The RDM program will then extract information about the disk from the controller's
EEPROM and display it on the console and ask:

Is this information correct [Y] ?

If these values are incorrect for the disk to be used you must run the SLEW
program and change the controller's EEPROM parameters before you can recover
the disk's defect information.

The RDM program will proceed to read the defect map from the disk into memory.
If there are disk errors during the process the RDM program will display
information about the error and retry until the defect information is recovered
successfully. If the defect information is not legitimate the RDM program will
inform you of the error and terminate. If the defect information is legitimate the
RDM program will display each defective block in terms of cylinder, track, and
sector. When the entire disk has been processed the program will display the total

1-48 88109/20 RATIONAL

Preliminary

number of defects found.

Once the disk has been processed the RDM program will write the defect
information to either a DFS disk or MT format tape. The information will be placed
in a file named:

<hda-serial-nurnber>.DEFECTS

This file is required to format a disk with the RECOVERY program. Once the disk
has been formatted the defect information recovered with RDM is no longer
available. The file generated by RDM is the only source of this data and should be
retained until the disk is no longer in use. The RDM program will ask about
writing the defect information to either a file or tape. Answer the questions
appropriately. If the RDM program was invoked from a disk it will terminate. If it
was booted from tape it will restart; crash the machine to terminate it.

RATIONAL88/09/20 1-49

Preliminary

1.2.26. RECOVERY

The recovery program is used to prepare disks which are to be used with an R1000.
The process consists of several steps which are listed here in the order required. All
of these steps must be performed prior to using the disk in an R1000 system.

1. Formatting. The formatting process writes information onto the disk which is
needed by the controller to transfer data. The format of this information can be
found in Appendix A of the Spectra-Logic 121 manual. The RECOVERY
program uses the controller's format drive command to format the disk.
Formatting is optional when invoking the RECOVERY program unless the
specified disk has no labels.

2. Flagging bad blocks. An integral part of building a disk for an R1000
processor is to build a bad block map which records the location of each
defective area on the disk. The R1000 will not attempt to read or write to any
block recorded in the bad block map. In addition to building the bad block map
the RECOVERY program re-formats each bad block with the BAD SECTOR bit
set in the format data. This will cause a BAD SECTOR error if any system
software attempts to access these bad blocks. All bad blocks will be flagged
when the RECOVERY program is invoked. This insures that blocks added to
the bad block map by the system get flagged.

3. Surface Analysis. The surface analysis portion of the RECOVERY program is
optional unless the disk was just formatted. The surface analysis is intended to
insure the reliablity of the disk. From one to three passes are allowed, each
taking several minutes (45 for a Fujitsu 2351 EAGLE). Each pass consists of
writing to every block on the disk and then reading back each block and
checking the data. A pass consists of both a write and read phase. If the disk
has just been formatted the write phase of the first pass is elimina ted because
the process of formatting writes the data.

4:. Writing defect map. The defect map contains information about each
defective block on the disk. This data is stored on cylinder zero and is pointed
to by the shared label (see below). As many as 2048 defects may be recorded
with the current defect map format. The defect map is always written to the
disk.

5. Boot Label. The boot label is located on block 1 (cylinder 0, head 0, sectors 2-3)
of every disk. The boot label contains pointers to DFS files which contain the
I/O Processor's Kernel and initial programs to be executed at boot time. An
empty boot label is always written to the disk. It is modified as needed if a DFS
is actually built on the disk.

6. DFS Label. The DFS label contains information about the location of the DFS
directory and DFS free list. An empty DFS label is always written to the disk.
It is modified as needed if a DFS is actually built on the disk. The DFS label is
located on block 4 of every disk.

1-50 88/09/20 RATIONAL

Preliminary

7. Shared (Volume) Label. The shared label contains information about the
location of several disk structures. Some of the structures are maintained
solely by the RIOOOFile System (RFS) and will not be mentioned here; others
are shared by the DFS and the RIOOOfile system. These are:

• The size of the disk. (number of cylinders, heads, sectors)

• The location of the bad block map.

• The location of the retarget map.

• The location of the DFS.

• The location of the RIOOOfile system.

• The location of the read/write diagnostic portion of the disk.

• The serial number of the disk's HDA.

• A boolean used to indicate the presence of a DFS.

• A boolean used to indicate the presence of an RFS.

The shared label is always written to a disk and the portions mentioned here
are only changed by the RECOVERYprogram. The shared label is stored using
the RIOOOstable storage mechanism and is located in block 2 with a copy in
block 3.

8. Building the DFS. The DFS is only built if requested. There are several
stages reported to the terminal when building a diagnostic file system. They
are:

• Constructing free list. The DFS retains information about free disk
space as a linked list of disk extents. The free list is first constructed in
memory by discarding defective blocks from the area allocated to the DFS.

• Writing free list. The free list just constructed is written to the disk and
its head is recorded in the DFS label.

• Allocating and initializing directory. The fixed size DFS directory is
allocated from the free list and initialized to be empty. At this time no files
exist. Pointers to the directory are recorded in the DFS label.

• Allocating predefined files. All disk structures which must have fixed
disk locations or are referenced by the boot label are pre-created by the
RECOVERY program. These include:

• The disk bootstrap (located at disk block 0).

• All bootable L'O processor kernels.

• All bootable programs.

RATIONAL88/()<f!20 1-51

Preliminary

• All bootable file systems (series 200 only).

• The DFS error log.

9. Loading the DFS. After its creation the DFS may be loaded with files from an
MT format tape. This step is optional.

To run the RECOVERY program you may boot it from tape or invoke it by typing:

eLl> x recovery

The program will first ask which disk drive you wish to formatlbuild. Answer with
the appropriate disk unit number. RECOVERY will then attempt to read the disk's
labels and bad block map into memory. If this step fails the disk must be
re-formatted and defect information read in from a tape created by the RDM
program (see RDM documentation). If the labels are recovered from the disk
successfully then you will be asked if the data contained in the labels should be
used for the remainder of the formatting process. If you answer yes to this question
then disk defect map data will be read from the disk and the disk will get built with
a DFS only if it had one already.

You will be asked if you want to format the disk. Formatting the disk will destroy
all data, and allow construction of a DFS on a drive which previously didn't have
one.

You will be asked if you want to perform surface analysis. Surface analysis will
destroy all data present on the disk. A read-only surface analysis program
(CHECKDISK) can be used to check disk integrity. The RECOVERY program is
not a disk test or exerciser.

Next, the disk labels will be created. If the disk had readable labels when the
RECOVERY program was invoked and retained the information contained in them,
that data will be used to re-build the labels. If not you will be asked to enter some
information about how the disk will be used. These questions include:

Do you want to build a diagnostic file system on this unit [Y] ?

Answering yes to this question will cause space to be allocated on the disk for a
DFS.

Enter last cylinder to be used by the DFS :

This question will only be asked only if the disk is to contain a DFS. The DFS will
occupy all disk space between cylinder 1 and the cylinder used here. The correct
answer depends on the type of disk used but should be no less than 20,000 disk
blocks. It can be calculated as follows:

(20000 I ((H * S) 12) + 1)

where:
H is the number of heads on the disk
S is the number of sectors on the disk

1··52 88/09/20 RATIONAL

Preliminary

Enter first cylinder to be used for read/write diagnostics :

The read/write diagnostic portion of the disk starts at this cylinder and extends to
the last cylinder of the disk. At least two cylinders must be allocated for read/write
diagnostics. Remember that cylinder numbers start at zero, not at one; so if a disk
has 842 cylinders, numbered 0 .. 841, the largest value which should be used is 840.
This will cause cylinders 840 and 841 to be reserved for read/write diagnostics.

Once the disk labels have been generated the RECOVERYprogram is finished
building the disk. If a DFS has been built on the disk you will be asked if you want
to load files into the DFS. Files may be loaded from an MT format tape.

When the RECOVERYprogram is done, or if any unrecoverable errors occur during
disk building, it will restart. The only way to terminate the RECOVERYprogram is
by re-booting the system.

RATIONAL88!09!20 1-53

Preliminary

1.2.27. SAM ~oc..'/ tjJ\ (\ ??\ ""i Tb LV=~D
The SAMprogram is a programatic interface toJthe CDC 92185 tape drive's
Structured Analysis Method of fault isolation (used with series 100 only). The SAM
program may be invoked by typing:

eLI> x sam

The program is interactive and will intialize itself as follows:

Enter STU unit number :

Enter the unit number of the Streaming Tape Unit you which to test. From this
point on the program will run tests which you desire and display test termination
status. Some tests run forever and you will have to reset the tape drive to
terminate test execution. Each SAMinvocation will prompt:

Enter test number :

The program is referring to the SAMtests described in the CDC STU manual. The
supported tests are 1..3, 10..26, 28..34, 37..47, 52..62, and 91, 97. Some of the tests
require options. Options fall into one of four categories. They are:

Loop option
Bypass option
Pattern option
Speed option

If the test you have chosen requires options you will be prompted for them. The
SAMprogram will then execute the selected test. Several tests do not terminate.
Several other tests may not terminate if their loop option has been so set. In any
case the SAMprogram will wait for test termination, display the termination
status, and again prompt for a test to execute. To terminate the SAMprogram type
control-C to this prompt.

1-54 88109/20 RATIONAL

Preliminary

1.2.28. SCAN

The SCAN program is used to search a group of text files for a given string. It is
executed by typing:

CLl> scan

1.2.28.1. FIND

The FIND command requires at least one string argument. This argument is a
filespec to search for a key provided via the IKEY=switch.

Switch Description

/KEY= Used to specify the search key.

Figure 1.16 - SCAN FIND Switches

Examples:

CLl> scan
SCAN> find/key=xyzzy filel,file2,*file3*

This command will scan FILEl, FILE2 and all files whose names contain the string
FILE3. Each occurrence ofXYZZYin any of these files will be displayed on the
console.

RATIONALsS/09/20 1-55

Preliminary

1.2.29. R1000 Series 200 Models 10/20/40 PROM Debugger

The Series 200 laC contains a 68020-based L'O Processor which replaces the
PDP-11/24 used in the Series 100. To assist in various hardware and software
debugging, a ROM-based, machine-level, debugger is provided. The debugger is
primarily for use in manufacturing and development.

To make use of the debugger one must have fairly complete knowledge of the 68020
run-time model. The debugger's prompt is the "@" character. No type-ahead is
allowed when entering debugger commands. To invoke the debugger you must
place the R1000 in INTERACTIVE mode and press the BREAK key on the
operations console. Then select option 3 in the menu. The debugger will be invoked
immediately. Commands consist of one, two, or three characters. No carriage
return is needed or allowed. Some command allow arguments which are always
numbers or expresions. The radix for input and ouput may be changed. The initial
radix is always 16.

1-56 88109/20 RATIONAL

Preliminary

Series 200 PROM Debugger Commands

Command Description

SD State Display (dump all state)

RDn Open Data register n

RAn Open Address register n

SP Open Stack Pointer (as defined by the PSW)

USP Open the User Stack Pointer

ISP Open the Interrupt Stack Pointer

MSP Open the Monitor Stack Pointer

SR Open the Status Register (displayed by fields)

VBR Open the Vector Base Register

PC Open the Program Counter

ICCR Open the Instruction Cache Control Register

ICAR Open the Instruction Cache Address Register

XSFC Open the Source Function Code register

XDFC Open the Destination Function Code register

RB Re-Boot the lOP

RES Software reset the lOP

expr$I Set input radix to "expr''

$1 Display input radix

expr$O Set output radix to "expr"

$0 Display output radix

expr$G Set PC to "expr", and Go

$G Go using current value of PC

expr$S Single step through "expr" instructions

$S Single step through 1 instruction

expr$B Set breakpoint at address "expr"

$B Display breakpoint list

expr$D Delete breakpoint at address "expr"

$D Delete all breakpoints

expr/ Open longword at address "expr"

expr\ Open word at address "expr"

exprl Open byte at address "expr"

expr' Open ascii character at address "expr"

" Open previous storage unit

<LF> Open next storage unit

<CR> Close location

vI,V2I Display v2 longwords starting at address vl

vI,v2\ Display v2 words starting at address vI

vI,v21 Display v2 bytes starting at address v l

RATIONAL88/09/20 1-57

Preliminary

vl,v2' Display v2 ascii characters starting at address vl

= Display last value

expr= Display "expr"

Figure 1.17 - Series 200 PROM Debugger Commands

Key:

n
expr

Register number 0 .. 7
An expression is a combination of numbers and

operators. All operators are evaluated left to
right. No operator precedence exists. Allowed
operators are:

+ two's-complement 32-bit addition
two's-complement 32-bit subtraction or
two's-complement 32-bit negation

32-bit one's-complement

Where ever a number is allowed a character string
may be used. Character strings are enclosed in
quotes. In addition the "." character may be
used in place of a number to represent the value
of the address of the last location opened.

Examples

@123=00000123
@-123=FFFFFEDD
@-123=FFFFFEDC
@.=FFFFFEDC
@.-2=FFFFFEDA
@"ABC"=00414243
@-1+2-3+4=00000002

1-58 88109/20 RATIONAL

Preliminary

1.2.30. SLEW --:J 0 ~ s ~~ (~1" r~f ~\) C> -r-; ~ \)C)
The SLEW program is used to re-configure a Spectra-Logic SL-121 or SL-121+
tape/disk controller for use in an RI000. The controller uses an EEPROM to record
several dozen options and these options are updated via SLEW. To invoke the
SLEW program you may boot it from tape or type:

CLI> x slew

The program will initialize itself and then prompt:

Disk/Tape Controller Number :

Enter the controller number of the board you wish to modify. Controllers are
related to devices as follows:

Disk
0- 3
4- 7
8-11

12-15

Tape
0- 3
4- 7
8-11

Controller
o
1
2
3

For the SLEW program to correctly modify a controller's EEPROM the controller
must have at least one disk drive attached and on line; this is a controller
limitation. The SLEW program will neither read nor write to any disks or tapes.

Once SLEW knows the controller number it begins a menu mode of operation,
There are currently five menu options as follows:

1 => Write and verify EEPROM
2 => Verify EEPROM
3 => Display EEPROM location
4 => Modify EEPROM location
5 => Exit

Write and Verify EEPROM

This option allows the controller to be configured for any combination of drive types.
You will be prompted to define the drive type for all 4 possible drives (0 to 3) which
the controller board controls. A sample SLEW session is:

CLl> x slew
Disk/Tape controller number : 0

OPtions are:
1 => Write and verify EEPROM
2 => Verify EEPROM
3 => Display EEPROM location
4 => Modify EEPROM location
5 => Exit

Enter option : 1

Enter information for unit 0
Drive type are :

1 - Fujitsu 2351 (Eagle)

RATIONAL88/09/20 1-59

Preliminary

2 - Fujitsu 2361 (Eagle XP)
4 - Fujitsu 2333 8inch, 337MB
5 - Fujitsu 2344 -- 8inch, 690MB

Enter drive type : -- Select the number of the dirve from above

Enter information for unit 1

Is EEPROM write enabled (SW-4 open) [Y] ?
This switch is located on the edge of the disk/tape controller
board, in the middle, and can easily be accessed on Series 200
systems by opening the I/O cage door and reaching in. On
Series 100 systems, the IOP needs to be pulled out far enough
to expose this portion of the board.

When done, make sure to set the EEPROM write enable switch back to CLOSED,
and to then reboot using the white button reset. Failure to reset the system in this
manner will result in the controller board using the older original values.

Command Description

Write and verify This is the option used most frequently. It updates the contents of the entire EEPROM based on
questions asked of the user. The questions are asked for each of the four possible disks .attached to
the controller. Answer the questions carefully. Incorrect responses may prevent the system from
booting after running SLEW. Once all disk drive information has been entered the SLEW program
will ask:

Is EEPROM·write enabled (SW-4 open) [Y] ?

The SL-121 and SL-121+ controllers have a write-protect feature. If SW-4 on the edge of the
controller board is in the closed position the SLEW program cannot write to the EEPROM. Before
you answer this question make sure that the switch is OPEN. If you answer 'N' to this question the
SLEW program will not try to write to the EEPROM. You may use this as an escape back to the
menu. Writing the EEPROM takes several seconds. It is followed by a short verify phase. Once
the EEPROM has been updated, close SW-4 to write protect the data. When done with SLEW and
after the different drive(s) have been installed, ALWAYSreboot the machine using the white button
in order for the new SLEW values to take affect. Failure to do this will result in disk drive errors
due to a drive of different SLEW parameters being controlled using the old SLEW parameters.

Verify EEPROM The verify option allows the user to insure that the EEPROM checksum is correct. It does not check
to insure that the data contained in the EEPROM is valid.

Display EEPROM The display option allows the user to examine the contents of a single EEPROM location. It is
location most useful for internal debugging of new EEPROM values.

Modify EEPROM The modify option allows the user to change the contents of a single EEPROM byte and modify the
location EEPROM checksum. This option is for internal use only and should not be used without a through

understanding of the controller and the RI000 VO processor kernel.

Exit The exit option terminates the SLEW program.

Figure 1.18 - SLEW Commands

1-60 88109/20 RATIONAL

Preliminary

1.2.31. STARTER

The STARTER program is invoked automatically following system crashes. It is
responsible for determining the course of action following a wide variety of
problems. The STARTER will invoke one of the following programs depending on
circumstances surrounding the crash:

LOADER
RDlAG
CRASHDUMP
CLl

The STARTER should not be invoked manually.

RATIONAL88/09/20 1-61

Preliminary

1.2.32. STAT

The STAT program displays directory utilization statistics for the DFS. In addition
it checks for disk allocation errors and, optionally, may compact the disk. The
STAT program is primarily intended for internal use. To invoke the program type:

eLI> x stat

The program will display various messages about the state of the DFS disk
structures. If any error messages are displayed they should be resolved prior to
using the RIOOO.Failure to correct DFS errors may result in user data loss and
system downtime.

Interpretation of the information displayed by the STAT program requires a
thorough knowledge ofDFS disk structures.

1-62 88109/20 RATIONAL

Preliminary

1.2.33. TAPEX

The TAPEX program is a DFS-based tape exerciser. It is intended to be used for
quick tape subsystem integrity testing as well as long-term reliability testing. To
invoke the program type:

eLl> x tapex

The program will size the system and query the operator about testing each existing
tape drive which is on-line. After these questions the exerciser will begin testing.
Once testing has begun the exerciser may be stopped by typing control-G. Any
other character will cause the program to display status information about each
drive. This status information includes the time the test was started, the current
time, total number of bytes transfered, total hard errors, total soft errors, and data
errors.

The exerciser does transfers in the following manner:

1. Select a random data pattern and write a record of random length. This step is
repeated a random number of times between 16 and 63.

2. Backspace a random number of records between 1 and the number of records
just written.

3. Read and check the data of the records just backspaced over.

These three steps are repeated for each unit with all units running in parallel until
the test is stopped.

RATIONAL88/Q9/20 1-63

1.2.33+ TOMBSTONE

The TOMBSTONE program is used to aid debugging RIOOO microcode and hardware
problems. The program will allow you to display information captured to disk when an
RlOOO cycles. To invoke the tombstone program:

Cl.J> x tombstone

0 => Exit
1 => Display tombstone file 1
2 => Display tombstone file 2
3 => Display tombstone file 3
4 => Display tombstone file 4

Enter option : 1

Analysis of tombstone 1 dated 09:21:48 24-JUN-99

Options are:

0 => Return to main menu
1 => Show all
2 => Show last console output
3 => Show Crash Classification
4 => Show restart output
5 => Show trace
6 => Show Cpu State
7 => Show queues
8 => Show lOP Kernel version & cluster lD

Preliminary

1.2.34. TRACE

The TRACE program is used to aid debugging R1000 microcode and hardware
problems. It displays the contents of the R1000s trace rams which provide
microcode execution history for the last 1024 clocks on a Series 100 or 2048 clocks
on a Series 200 R1000 processor. The trace program can display data either from a
CRASHDUMP which has been re-loaded into an R1000 or from a crashed machine.
To invoke the trace program for CRASHDUMPdata type:

eLI> x trace

To invoke the trace program for a live machine you must have previously stopped
the machine using the experiment monitor. Then from EXPMON type:

EM> trace

In either case the trace program will load microcode execution history from the
appropriate place into its memory buffer and display it on the console. The program
is screen-oriented and provides interactive help if you type a"?".

1-64 88/09/20 RATIONAL

Preliminary

1.2.35. UPDATE_EEPROM

This program is a DFS-based EEPROM programmer for use on the Series 200 lOCo
The program provides the ability to

• Program a particular EEPROM

• Use the NOVRAMposition on the IOC as an EEPROM programmer

• Do a simple write/read test of a specified EEPROM

• Verify the checksum in a specified EEPROM

To invoke the program type:

eLl> x update_eeprom

The program is menu-driven and self-prompting.

There are 4 EEPROMs on the IOC at locations K21, K19, K17, and K15. Of these,
the EEPROMS in locations K21, K19, and K17 contain selftest programs, bootstrap
programs, and utility programs used to boot the DFS. The EEPROM at K15 is the
'NOVRAM' that holds the board serial number, etc., placed there with NOVRAM
and other data like the remote phone number placed there by INITIOA. The
EEPROMs are 8192 bytes long [0..8191]. The program EEPROMs all have a
common format:

[0000 .. 8185]
[8186]
[8187 ..8189]
[8190]
[8191]

program space
reserved for write/read test
date code yymmdd
coded location [17,19,21]
checksum

At startup, the selftest program performs a verify operation on the checksurns of the
program EEPROMS. If there is an error, a message is displayed on the console and
the red LED lOP ERROR is turned on. The only action here that will do anything is
the WHITE BUTTON.

In principal, future program changes to the programs in these EEPROMS will be
distributed on tape and this program will be used to place that new software in the
EEPROMS. There will be three files of data associated with the three program
EEPROMS

SELFTEST.HEX
BOOT.HEX
UTILITIES.HEX

in the EEPROM at K21
in the EEPROM at K19
in the EEPROM at K17

If the user specifies option 1 (Update EEPROM), the program will move the data
from the specified file into the proper EERPOM. In the event the user wants to use
the IOC as an EEPROM programmer, using option 2 will move the data from the
file to the EEPROM in location K15.

RATIONAL88/09/20 1-65

Preliminary

1-66 88109/20 RATIONAL

Preliminary

2. Kernel Commands

2.1. Overview

This is the Kernel command level. Commands preceeded by a '*' are privileged
commands, and can only be executed while in the privileged mode of kernel
operation (see ENABLE_PRIV _CMDS).

BATCH
CLEAR_PROFILES
ENABLE_PRIV_CMDS
JOB_NAME
JOBS_MTS
NOOP
QUIT

SET_TASK_FILTER
SHOW_BAD_BLOCKS

SHOW_DISK_SUMMARY
SHOW_ERROR_LOG

SHOW_MEMORY_UTIL
SHOW_MTS_PARAMS
SHOW_TASK_FILTER

SHOW_VOLUME SUMMARY

TIME
*BUILD_NEW SYSTEM
*CHANGE_GHOST_LOGGING
*CREATE_EMPTY_S PACE
*CREATE_VP
~DI3A~LE_p.RV_eMD£
*ENABLE_SUB_LOGGING
*ENTER_DEBUG_CONTEXT
*FIND_DISLOCATED_BLKS
*G:O_BA.CK_IN~1MB
*LMW
*REMEMBER_DEFECT
*ROUST
*SHOW_ALL_SPACES
*SHOW_CATALOG_STRUCT
*SHOW_CONFIGURATION
*SHOW_GC_FOOTPRINT
*SHOW_GHOST_LOG
*SHOW_SPACE_INFO
*SHOW_SUB_FIELDS
*SHOW_SUB_TRACE
*SHOW_VOLUME_STRUCT
*START_ENVIRONMENT

RATIONAL88/00/20

CHANGE_GC_THRESHOLDS
DISABLE_JOB
JOB
JOB_NAMES
LOAD
PROFILE
SET_MTS PARAM

SHOW_NEXT_SNAPSHOT
SHOW_TASK_STATES

*DEEA.ULT~
*DISABLE_SUB_LOGGING

*HOGS
*PARTIAL STARTUP

*SET_SUB_BUFFER_SIZE
*SHOW_CACHED_SPACES

*SHOW_DEFAULTS

*SHOW_HASH
*SHOW_SPACE STRUCT

*SHOW_TAGS
*SHOW_VPS
*START_NETWORK_IO

CLEAR_PROFILE
ENABLE_JOB
JOBS
JOB_MTS
MTSQ
PROFILES

*DELETE SPACE

*LMR

*SHOW_UCODE_REG
*SHUTDOWN

2-1

Preliminary

*START_VIRTUAL_MEMORY
*TAKE_SNAPSHOT
*TRAVERSE_VM_STRUCT
*ZAP_BROKEN_SPACES

*TRACE

2.2. BATCH

This command will display what jobs are currently running in the batch system
streams (queues).

Example

*Kernel: batch
Stream 1 2:00
Stream 2 58:00

225 51:03
Stream 3 50:00

231 47:00
234 46:56
222 46:38
23345:42

2.3. CHANGE GC_THRESHOLDS

Example

Kernel: change_gc_thresholds
VOLUME_NUMBER [1]:
THRESHOLD [START_COLLECTION]:
REMAINING CAPACITY (%) [10J:

Kernel: change_gc_thresholds
VOLUME_NUMBER [lJ: 4
THRESHOLD [SUSPEND_SYSTEMJ: xxx
EXPECTED VALUES ARE:

START_COLLECTION RAISE_PRIORITY
SPACE_04

THRESHOLD [SUSPEND_SYSTEMJ:
REMAINING CAPACITY (%) [8J:

STOP_JOBS

Example

Kernel: c1ear-profi1e
VPID [4]:

2-2 88/09/20 RATIONAL

Preliminary

2.5. CLEAR_PROFILES

Example

Kernel: clear-profiles

2.6. DISABLE_JOB

Example

Kernel: disable_job
VPID [4]: 222

2.7. ENABLE_JOB

Example

Kernel: enable_job
VPID [222]: 223

Example

Kernel: enable-priv_cmds
You are enabling a set of commands which must be used
with extreme care. They should be used only by
knowledgeable support personnel. These commands can
easily crash/hang the machine; some can competely trash
the state of the machine such that you must recover the
machine from backup tapes.
Proceed [FALSE]: true
Password: secret
*Kernel:

2.9. JOB

Example

Kernel: job
VPID [4]: 222

Job Pri Stat CPU% ModCt Cache Disk PgLim DskWts D/S JSegSz WsSiz WsLim

222 a a5a I,DT 4 8 11 8000 130 o 5

RATIONAL88!09!20 2-3

'::> .> j j, \!'> Preliminary

(.J {kv",-V\..\ '" ~
2.10. JOBS 'I'-- 12,

!>- ..~ , I V-..l' ()

Example iff v:-wt,., rJ

Of r)~~c-t- fJ.h..v-
Kernel: jobs SV ~ .e .rv~.,.p-

Threshold [2) : xx Cf: CDck ~J...<~
EXPECTED VALUES ARE: 0 > • 2147483647
Threshold [2) : 1

Job Pri Stat CPU% ModCt Cache Disk PgLim DskWts D/S JSegSz WsSiz WsLim
------ ------ ------

4 0 R,AT 1 4104 9195 14150 65536 604891 0 1446 10997 11000
5 0 R,AT 0 12 80 82 65536 2127 0 93 36 200

183 0 I,AT 0 24 43 57 8000 184 0 68 146 50
220 6 I,AT 0 2 1 9 l6000 427 0 3 1 0
222 0 I,DT 0 4 8 11 8000 130 0 5 6 0
223 6 I,AT 0 2 1 9 l6000 2240 0 16 0 0
224 6 R,OE 0 1 3 0 l6000 650 0 45 72 75
227 6 I,AT 0 2 2 8 l6000 843 0 32 0 0
228 0 1,SV 0 3 8 9 8000 970 0 12 25 75
229 0 I,SV 0 9 61 58 8000 7290 0 1592 72 75
231 0 I,DT 0 47 8 172 8000 223 0 3 0 50
232 6 I,CE 0 1 1 5 16000 25 0 4 0 0
233 0 I,DT 0 22 44 61 8000 288 0 10 1 50
247 6 I,CE 0 1 6 6 l6000 152 0 15 36 150
248 6 I,CE 0 42 80 300 l6000 1192 0 102 74 150
249 6 I,CE 0 1 5 6 l6000 37 0 5 18 150
250 6 I,CE 0 1 1 6 l6000 4 0 0 0 0
251 6 I,CE 0 1 0 6 l6000 4 0 0 0 0
252 6 I,CE 0 1 0 7 l6000 429 0 7 10 150
253 6 I,AT 0 2 10 1 8000 1056 0 0 1 0
254 0 I,SV 0 21 2 66 8000 72 0 73 0 0
255 6 I,CE 0 1 6 6 l6000 132 0 65 7 10

2.11. JOB_NAME

Example

Kernel: job_name
VPID [222) :

Job CPU% Root Job Seg Name
-------- --------- --------------------------

222 0 4A8DE 10FB1503 \Mail_Check

2.12. JOB_NAMES

Example

Kernel: job_names
Threshold [1):

Job CPU% Root Job Seg Name

4
5

4
o

o 14625502 System
o 14626902 Daemons

2-4 88109/20 RATIONAL

Preliminary

183 0 360B7 1499A902 SMP. DELTA. GURU % OP.INTERNAL_SYSTEM_DIAGNOSIS
186 0 0 14841902 <7>
188 0 0 0 <?>
190 2 0 162B0101 (SMP.S_1 Editor]
202 0 0 15F38901 (GZC.S_1 Command]
206 0 0 1477E102 (LAP.S 1 Command]
208 0 0 10FEE103 (GZC.S_1 Editor]
209 0 32CD1 113B2100 Archive Server
210 0 10E8D2 16057501 Queue Server
211 0 0 147F8D02 (GZC.DESIGN Command]
212 0 1A4D4 112DF900 Mail Transceiver
213 0 0 11565900 (MLV.S_1 Command]
222 0 4A8DE 10FB1503 \Mail_Check
224 0 0 14928502 (SMP.S_1 Command]
228 0 2B4E4 14652102 (Ftp Server)
229 1 3E4E5 15E69101 Mail Dispatcher
231 0 1C8E7 10F1F103 Design Facility (Rev3_ 2 release)
232 0 0 112D5DOO *Login: 247
233 0 428E9 15E63101 Mail Oe
234 0 558EA 14657102 Registration job for PDL named PDL_2167
235 0 20CEB 10F1ED03 Console Command Interpreter
241 0 0 15E4D101 *Login: 246
242 0 0 10F1A503 Print_Spooler
252 0 0 112CEDOO *Login: 16
254 0 2A8FE 1462B902 " ! COMMllliDS.INTERNAL. DEC2 0 .REV9 1 SPEC.UNITS.SER

Example

Kernel: job_mts
VPID (222]:

Job K/S/P Stat
Age

Disk
Waits

Disk
DW/S

WSet
Size

WSet
Limit

CPU
Seconds

CPU
MS/S

222 *D/I/O 130 1554 00002.624 0.0 0.0

2.14. JOBS_MTS

Example

Kernel: jobs_mts
Job K/S/P Stat

Age
Disk
DW/S

Disk
Waits

WSet
Size

WSet
Limit

CPU
Seconds

CPU
MS/S

4 A/R/O ++++ 10594.728 70.8 0.0 604941 10999 11000
5 A/R/O ++++ 05802.336 0.0 0.0 2127 36 200

183 *A/R/O 2 00007.819 10.6 0.2 187 75 100
184 T/I/6 126 00000.108 0.0 0.0 5 43 0
190 C/R/6 2 00223.696 48.4 0.0 3250 174 150
191 T/I/6 ++++ 00013.593 0.0 0.0 573 1 0
209 *S/I/O ++++ 00000.104 0.0 0.0 11 0 0
210 *S/I/O ++++ 00000.094 0.0 0.0 7 0 0
211 O/I/6 1192 00003.964 0.0 0.0 89 2 50

RATIONAL88/O<N20

Map
To

Run
Ratio

o 190 1. 00

Map
To

Run
Ratio

1. 00
1. 00

190 1. 00
1. 00
1. 00
0.99
1. 00
1. 00

218 1. 00

2-5

Preliminary

212 *SIIIO 112 00442.230 0.0 0.0 4167 75 75 l.00
213 OlI/6 100 00001.858 0.0 0.0 46 117 75 217 l.00
215 C/1/6 9001 00030.487 0.0 0.0 515 94 150 l.00
216 CII/6 0 00022.941 6l.0 0.0 1065 151 150 l. 00
217 CII/6 83 00021.728 0.0 0.0 247 150 150 0.99
218 CII/6 9000 00055.883 0.0 0.0 817 19 50 l. 00
248 CII/6 7335 00051.416 0.0 0.0 1192 74 150 l. 00
249 CII/6 ++++ 00001.438 0.0 0.0 37 18 150 l.00
250 CII/6 ++++ 00000.046 0.0 0.0 4 0 0 l.00
251 C/1/6 ++++ 00000.026 0.0 0.0 4 0 0 l.00
252 CII/6 ++++ 00005.782 0.0 0.0 429 10 150 l. 00
253 TII/6 9982 00053.682 0.0 0.0 1056 1 0 0.99
254 *SII/O ++++ 00001.430 0.0 0.0 72 0 0 l.00
255 CII/6 8968 00005.236 0.0 0.0 132 7 10 l.00

2.15. LOAD

Example
"\-)1, 'f ~ .'- ,~ ""V-V"

Kernel: load
Run Queue Load => l.16, 0.69, 0.56, 0.47
Disk Wait Load => 0.00, 0.02, 0.04, 0.09
Withheld Task Load => 0.00, 0.00, 0.00, 0.00
Available Memory => 18698 pages

2.16. MTSQ

Example

Kernel: mtsq
Foreground Q
Background Q

W'\~.ll\J,Internal Transition Q

2.17. NOOP

Example

Kernel: noop

2.18. PROFILE

Example

Kernel: profile
VPID (222]: 190

Job Made Made
Idle Run

Run
Total

Made
Wait

Wait D
Total

Wait C
Total

Wait M
Total

2-6 88/09/20 RATIONAL

Preliminary

Kernel: profiles
Job Made Made

Idle Run
Run

Total

W~\ ~-...,--. \ ~~

...\.-: v~ ~
') .J;::.

"'" ..;

.;
r: ,'?~

~;J

Made Wait D Wait C Wait M
Wait Total Total Total

2.19. PROFILES

Example

183 45 45 305 0 0 0 0
190 792 792 2374 0 0 0 0
195 6 6 7 0 0 0 0
196 11 11 20 0 0 0 0
197 2 2 4 0 0 0 0
202 5 5 5 0 0 0 0
206 6 6 7 0 0 0 0
208 2 2 4 0 0 0 0
209 0 0 0 0 0 0 0
210 0 0 0 0 0 0 0
211 5 5 5 0 0 0 0
212 17l 171 408 0 0 0 0
213 35 35 89 0 0 0 0
215 24 24 64 0 0 0 0
216 642 643 2042 0 0 0 0
217 374 387 1547 13 0 14 0
218 2 2 4 0 0 0 0

2.20. QUIT

Example

Kernel: quit
EEDB:

2.21. SET_MTS_PARAM

Example

Kernel: set_mts-param
parameter name : help
parameter value [0]: 9
no such parameter

2.22. SET_TASK_FILTER

This command allows setting of filter attributes for use by the Show_ Task_States
command. By convention, the Set_Task_Filter command is used only from EEDB;
this allows "quit", followed by EEDB "kernel" command to revert the task filter to

RATIONAL88/09/20 2-7

its default state.

Preliminary

Kernel: set_task_filter
FILTER_KIND [BY_BLaCK_CONDITION): xx
EXPECTED VALUES ARE:

BY_BLaCK_CONDITION BY_WAIT_STATE
FILTER_KIND [BY_BLaCK_CONDITION):
SELECTION_KIND [JUST_ONE): xx
EXPECTED VALUES ARE:

JUST_ONE EVERY_ONE PROMPT
SELECTION_KIND [JUST_ONE):
BLOCK_CONDITION [SPARE_21): xx
EXPECTED VALUES ARE:

UNBLOCKED
AWAITING_ACTIVATION
ACTIVATING_TASKS
AWAITING_CHILDREN
BLOCKING_aN_ENTRY
ATTEMPTING_ENTRY
ABORTING MODULE
IN_FS_RE;IDEZVOUS \-'\.,'-,,-v-r

DELAYING_IN_WAIT_SERVICE
DELETED
IN_MTS_RENDEZVOUS
SPARE_22
BLOCKING_aN_ACCEPT
DELAYING_aN_SELECT
TERMINABLE_IN_SELECT
SPARE_30

BLOCK_CONDITION [SPARE_21):
show tasks with this block condition [FALSE): xx
EXPECTED VALUES ARE:

YES TRUE NO FALSE
show tasks with this block condition [FALSE):

Example

BY_VPID

D~~ '-<' ~-\-- 0-1~
~~(+ ~.~

d
(v'<:" (~O\r\.Q.\ t" r _.('

_~t J\AQ I ~

DECLARING_MODULE
ACTIVATING_MODULE
AWAITING_TASK_ACTIVATION
TERMINABLE_AT_END
DELAYING_aN_ENTRY'
DELAYING
TERMINATED
IN_WAIT_SERVICE \
BLOCKING_IN_ABORT - we,. t '""c '"
ABORTED_WHILE_IN_MTS
SPARE_21
SPARE_23
BLOCKING_aN_SELECT
AWAITING_CHILDREN_IN_SELECT
SPARE_29
SPARE_31

2.23. SHOW_BAD_BLOCKS

This command is used to display bad block information for a specified disk drive.
Most disk drives have a certain number of defects when shipped from the factory.
These are identified by the factory and provided with the drive so that those blocks
are not used. During the drive's lifetime, more bad blocks will start to appear.

The Environment, when it encounters a new disk block which generates errors, will
automatically add that block to the manufacturers list maintained on the disk
drive, and Retarget that block to a known goodblock on disk. Thus, whenever a
read or write is attempted to the origional block, the retarget block information is
used and redirects the read/write to the new block.

The Manufacturers_And_System option will display all bad block information for
the drive, in sorted order. The Retarget option will display just the set of

2-8 88109/20 RATIONAL

Preliminary

"retargeted" bad blocks, in sort order. Since a retargeting event generally causes
the block to be entered in the bad block list immediately, retargeted blocks will
show up in both lists.

Example

Kernel: show_bad_blocks
VOLUME_NUMBER (1):
KIND [MANUFACTURERS_AND_SYSTEM): xx
EXPECTED VALUES ARE:

MANUFACTURERS_AND_SYSTEM RETARGET
KIND [MANUFACTURERS_AND_SYSTEM): retarget
Kernel: show_bad_blocks
VOLUME_NUMBER (1):
KIND [RETARGET): rnanu£acturers_and_system
blocks => 322 322 II sectors => 0, 13, 20 .. 0, 13, 20
blocks => 425 .. 425 II sectors => 0, 17, 34 .. 0, 17, 34
blocks => 715 .. 715 I I sectors => 1, 9, 38 .. 1, 9, 38
blocks => 1380 1380 II sectors => 2, 17, 24 .. 2, 17, 24
blocks => 1492 1492 I I sectors => 3, 2, 8 .. 3, 2, 8
blocks => 1860 1860 II sectors => 3, 17, 24 3, 17, 24
blocks => 2340 2340 I I sectors => 4, 17, 24 4, 17, 24
blocks => 2820 2820 I I sectors => 5, 17, 24 5, 17, 24
blocks => 3300 3300 I I sectors => 6, 17, 24 6, 17, 24
blocks => 3780 3780 I I sectors => 7, 17, 24 7, 17, 24

Display the Boot/Crash/Maintenance Options, and some other information about
power state of the processors.

Example

Kernel: show_con£iguration_bits
lOP 0 POWER ON
CPU 0 POWER ON
OPERATOR MODE => INTERACTIVE
KERNEL DEBUGGER AUTO BOOT => TRUE
KERNEL AUTO BOOT => TRUE
EEDB AUTO BOOT => TRUE
KERNEL DEBUGGER WAIT ON CRASH => TRUE
KERNEL DEBUGGER DIALOUT ON CRASH => TRUE
DIAGNOSTIC MODEM CAN DIALOUT => FALSE
DIAGNOSTIC MODEM CAN ANSWER => TRUE

There are 3 parts to the disk summary display.

1. A table

2. A list of in progress I'O's

RATIONAL8810{f20 2-9

Preliminary

3. and some debugging information.

The table contains the following information, described by column.

• Vol. Stands for volume number

• unto Stands for unit number. by convention unit i = volume i-i-L. But this
correspondence is actually driven by the unit numbers selected at the drive,
and can therefore be different.

• Q Len. Gives the number of blocks currently queued, but not yet issued to the
iop.

• lOP Len. Gives the number of io requests which have been issued and not yet
serviced by the iop.

• Total Reads. Gives the number of blocks read from the unit, since boot.

• Total Writes. Gives the number of blocks written to the unit, since boot.

The remaining columns displays error counts, since boot.

Errors

Seek Error, should be obvious. A "soft ecc" error is a data ecc error that was
correctable. These cause blocks to be retargeted. A "hard ecc" error is a data ecc
error that was not correctable. An "unrecoverable" error is any error which
prevents the completion of the requested io; this includes hard data ecc errors; these
generally hang the machine and require use of the manual disk error recovery
procedure.

The list of in progress ros might simply say "no disk io in progress". Otherwise, if
display one line for each block which is currently involved in disk io (includes both
queued blocks and requests waiting for response from the iop), Each line gives the
"block address"; (3, 1057) means volume 2, block 1057. Note that a translation is
required to get from the block number to the physical <cyl,trk,sector> address.
Each line gives the "page address"; (1023, data, 259, 10234) means vpid 1023,
segment kind "data", segment number 259, page number 10234. Each lines gives
an "arrow" indicating the direction of the TO.

Example

Kernel: show_disk_summary
DrSK STATUS SUMMARY

Q rop
Vol Unt Len Len

Total
Reads

Total Seek Soft Hard Un Total
Writes Errs Ecc Ecc Recov Errs

1
2
3

o
1
2

o
o
o

o
o
o

190106
393305
243519

77972
127880

83758

o
o
o

o
o
1

o
o
o

o
o
o

o
o
1

2-10 88/09/20 RATIONAL

Preliminary

4 3 o o 182910 124274 o o o o o

no disk 10 in progress

Debugging information:
Ready_Volume mask => 0
Busy_Event_Page => (1023, DATA, 259, 241)
Volume_Offline_Event_Page => (1023, DATA, 259, 242)

2.26. SHOW _ERROR_LOG

Let "current log" denote that portion of the error which is stored by the kernel and
not yet copied into a file in "!machine.error_logs". This command is used to display
portions of the current log. Asks for line numbers. these are relative to the first
line of the current log. The range of lines is displayed in chronological order when
the first line number is less than the last line number. When last is greater than
first, displays the log is reverse order.

The format of the entries is defined elsewhere in the documentation.

Example

Kernel: show_error_1og
first entry => 1; last entry
FIRST [180]:
LAST [170]:
09:49:06
09:40:10 !'!
09:40:09 !!!
09:40:08 !!!
09:40:07 !!!
09:40:06 !!!
09:40:05 !!!
09:40:04 !!!
09:40:03 !!!
09:40:02 !!!
09:40:01 !!!
09:40:03 !!!

=> 180

Ethernet Controller_Status EXOS CODE 0003
Job_Manager Bad_Job_Id Id 253, Count
Job_Manager Bad_Job_Id Id 199, Count
Job_Manager Bad_Job_Id Id 227, Count
Job_Manager Bad_Job_Id Id 188, Count
Job_Manager Bad_Job_Id Id 186, Count
Job_Manager Bad_Job_Id Id 192, Count
Job_Manager Bad_Job_Id Id 205, Count
Job_Manager Bad_Job_Id Id 198, Count
Job_Manager Bad_Job_Id Id 219, Count
Job_Manager Bad_Job_Id Id 214, Count
Job_Manager Help Me Mr. Wizard!

rxmt #1, 2 see
2 Names 2348FD
2 Names 97CC7
2 Names 24EOE3
2 Names
2 Names
2 Names
2 Names
2 Names
2 Names
1 Names

2344FD

Example

Kernel: show_gc_state
DISK daemon is not running

Example

RATIONALsslomo 2-11

Kernel: show_rnemory_util
MEMORY_SIZE => 32768

ATTRIBUTE CTL

Preliminary

TYP CODE TOTALQ DATA IMP

DIRTY 2294 1051 48 7557 931 837 12719
WRITEABLE 3789 1758 48 14239 1615 145 21595

WIRED 723 396 60 1549 293 830 3852
IN_TRANSIT 0 0 0 0 0 0 0

PERMANENT 0 0 0 7448 0 3593 11041
SNAPSHOTABLE 0 0 0 711 0 0 711

RECLAIMABLE 0 0 0 0 0 0 0
TOTAL 4013 1763 75 18844 1615 4569 30880

ATTRIBUTE MIN MAX

DIRTY 0 13
WIRED 0 7

RECLAIMABLE 0 0

Example

Kernel: show_mts-params
cpu_Scheduling Enabled
Disk_Scheduling Enabled
Memory_Scheduling Enabled

Percent_For_Background
Min_ and Max_Foreground_Budget
Withhold_Run_Load
Withhold_Multiple_Jobs

Environrnent_Wsl
Daemon_Wsl
Min_ and Max_Ce_Wsl
Min_ and Max_Oe_Wsl
Min_ and Max_Attached_Wsl
Min_ and Max_Detached_Wsl
Min_ and Max_Server_Wsl
Min_Available_Memory
Wsl_Decay_Factor
Ws l_Growth_Fac tor
Page_Withdrawal_Rate

Foreground_Time_Limit
Background_Streams
Strict_Stream_Policy
Stream_Time and _Jobs 1
Stream_Time and _Jobs 2
Stream_Time and _Jobs 3

2-12

: 20% C
:-250

1.30
: FALSE

~s" vv'('

250 milliseconds

11000 pages
200 pages
150 .. 500 pages
75 750 pages
50 4000 pages
50 4000 pages
75 1000 pages
1024 pages'
50 pages/5 seconds
50 pages/100 milliseconds
1*640 pages/second

200 ,. 250

1800 seconds
3
FALSE
2 minutes, 3 jobs
58 minutes, 1 job
50 minutes, 0 jobs

88109/20 RATIONAL

Preliminary

2.30. SHOW_NEXT_SNAPSHOT

Example

Kernel: show_next snapshot
SNAPSHOT_NUMBER => 3816

Example

Kernel: show-port_info
PORT_MANAGER: INPUT OUTPUT

BYTES... . 51808 1596718
PACKETS. . 96473 88001

PORT_ID [0): 16
OUTPUT: CLIENT => 677054; lOP IS BUSY
INPUT: CLIENT => 668862
Kernel: show-port_info
PORT_MANAGER: INPUT OUTPUT

BYTES. ... 51857 1597240
PACKETS. . 96539 88051

PORT_ID [16): 33
OUTPUT: NO CLIENT REGISTERED
INPUT: NO CLIENT REGISTERED

This command will show the filter settings used by the Show_Task_States
command. The Set_Task_Filter command is used to set these filters.

Example

Kernel: show_task_filter
FILTER_KIND [BY_BLOCK_CONDITION): xx
EXPECTED VALUES ARE:

BY_BLOCK_CONDITION BY_WAlT_STATE
FILTER_KIND [BY_BLOCK_CONDITION):

want UNBLOCKED => TRUE
want DECLARING_MODULE => FALSE
want AWAITING_ACTIVATION => FALSE
want ACTIVATING_MODULE => FALSE
want ACTIVATING_TASKS => FALSE
want AWAITING_TASK_ACTIVATION => FALSE
want AWAITING_CHILDREN => FALSE
want TERMINABLE_AT_END => FALSE
want BLOCKING_ON_ENTRY => FALSE
want DELAYING_ON_ENTRY => FALSE

RATIONAL88/09/20 2-13

Preliminary

want ATTEMPTING_ENTRY => TRUE
want DELAYING => FALSE
want ABORTING_MODULE => TRUE
want TERMINATED => FALSE
want IN_FS_RENDEZVOUS => TRUE
want IN_WAlT_SERVICE => TRUE
want DELAYING_IN_WAIT_SERVICE => TRUE
want BLOCKING_IN_ABORT => TRUE
want DELETED => TRUE
want ABORTED_WHILE_IN_MTS => TRUE
want IN_MTS_RENDEZVOUS => TRUE
want SPARE_21 => FALSE
want SPARE_22 => TRUE
want SPARE_23 => TRUE
want BLOCKING_ON_ACCEPT => FALSE
want BLOCKING_ON_SELECT => FALSE
want DELAYING_ON_SELECT => FALSE
want AWAITING_CHILDREN_IN_SELECT => FALSE
want TERMINABLE_IN_SELECT => FALSE
want SPARE_29 => TRUE
want SPARE_30 => TRUE
want SPARE_31 => TRUE

Kernel: show_task_filter
FILTER_KIND [BY_BLOCK_CONDITION]: xx
EXPECTED VALUES ARE:

BY_BLOCK_CONDITION BY WAIT_STATE BY_VPID
FILTER_KIND [BY_BLOCK_CONDITION]: by_vpid

o .. 1023 => TRUE
Kernel: show_task_filter
FILTER_KIND [BY_VPID]: by_wait_state

want PACKET_ID_"lAIT => TRUE
want PORT_WAIT => TRUE
want TAPE_WAIT => TRUE
want SYSTEM_BOOT_WAIT => TRUE
want VOLUME_LOW_ON_SPACE_WAIT => FALSE
want SNAPSHOT_WAIT => FALSE
want PORT_INPUT_WAIT => FALSE
want PORT_OUTPUT_WAIT => TRUE
want TAPE_INPUT_WAIT => TRUE
want TAPE_OUT PUT_WAIT => TRUE
want PAGE_POOL_WAIT => TRUE
want X25_WAIT => TRUE
want X25_CALL_WAIT => TRUE
want x25 INPUT_WAIT => TRUE
want X25_0UTPUT_WAIT => TRUE
want DEVICE_ERROR_LOG_WAIT => FALSE
want MEMORY_ECC_WAIT => FALSE
want PACKET_ID_LIMIT_WAIT => FALSE
want PAGE_WIRE_WAIT => TRUE
want KERNEL_DEBUGGING_WAIT => TRUE
want SHORT_TERM_LOCK_WAIT => TRUE
want TCP_IP_INPUT_WAIT => TRUE
want TCP_IP_OUTPUT_WAIT => TRUE
want U023 .. U031 => TRUE
want CORE_EDITOR_WAIT => TRUE
want COMPILATION_REQUEST_WAIT => TRUE
want ACTION_MANAGER_WAIT => TRUE
want ENVIRONMENT_DEBUGGING_WAIT => TRUE
want NATIVE_DEBUGGING_WAIT => TRUE
want WINDOW_INPUT_WAIT => FALSE
want PIPE_INPUT_WAIT => FALSE

2-14 88109/20 RATIONAL

Preliminary

want PIPE_OUTPUT_WAIT => FALSE
want U040 .. NO_STATE => TRUE

2.33. SHOW _TASK_STATES

The Show_Task_States command is used to display some attributes of "interesting"
modules. There are 2 primary module attributes which are examined to determine
if a module is interesting:

• The module's Virtual Process ID (VPID)

• The module's block condition

The VPID filter indicates which VPIDs are considered interesting. and the block
condition indicates which block conditions are considered interesting. If a module
has an interesting VPID or block condition, it will be displayed. There is a
sub-attribute, Wait State, which is examined when the module's block condition is
one of the 2 wait state block conditions. There is also a filter for this sub-attribute.
The Show_Task_Filter command can be used to diplay the current setting of the
filters. And the Set_Task_Filter can be used to modify the filters.

There are some additional module attributes which always make a module look
interesting, regardless of filter setting. For example, aborted modules are always
considered interesting.

Example

Kernel: show_task_states
CACHE/DISK [CACHE]:
16#820F8#; IN_WAlT_SERVICE TCP_IP_INPUT_WAIT; PRI 4
16#E2220~#; HELD_BY_MTS; PRI 3
16#2B4E4#; IN_WAlT_SERVICE TCP_IP_INPUT_WAIT; PRI 14
16#23CD4#; IN_WAlT_SERVICE TCP_IP_INPUT_WAIT; PRI 14
16#32BCD8,#; IN_WAlT_SERVICE TCP_IP_INPUT_WAIT; PRI 4
16#A60D9#; IN_WAlT_SERVICE TCP_IP_INPUT_WAIT; PRI 4
16#374B7#; UNBLOCKED; PRI 8
16#4BODE#; UNBLOCKED; PRI 14
16#E1S3C04#; DELAYING_IN_WAIT_SERVICE U031; PRI 3
16#BSDDCQ4,#; UNBLOCKED; PRI 13
16#798CB#; ABORTED; PRI 14
16#DDF6804,#; IN_WAlT_SERVICE TCP_IP_INPUT_WAIT; PRI 3
16#427EC04#; IN_WAlT_SERVICE X2S_WAIT; PRI 1
16#FSCD7#; IN_WAlT_SERVICE TCP_IP_INPUT_WAIT; PRI 4
Kernel: show_task_states
CACHE/DISK [CACHE]: disk
Must first use the ENABLE_PRIV_CMDS command

Thresholds, garbage collection, etc is documented in the sys mgrs guide. The
capacity table has a column labeled "rate blks/min". these values give the number
of blocks consumed (per minute) since the last time this command was invoked. the

RATIONAL88/09/20 2-15

Preliminary

space_04 threshold is unused - so ignore it. the "next trigger" values give the value
of unused capacity at which the next threshold will be triggered. otherwise, the
display should be self explanatory.

Example

Kernel: show_volume_summary
Volume Status Summary

Vol
urn

Total
Capacity

Unused
Capacity

Rate
Blks/Min

1
2
3
4

369120
391680
391680
401280

176712
101288
141456
142433

o
1
o
o

low space thresholds for volume 1:
START_COLLECTION threshold at 20% (waiters exist)
RAISE_PRIORITY threshold at 15% (waiters exist)
STOP_JOBS threshold at 12% (waiters exist)
SUSPEND_SYSTEM threshold at 7% (waiters exist)
SPACE_04 threshold at 0% (no waiters)
next trigger at 73824 blocks

low space thresholds for volume 2:
START_COLLECTION threshold at 20% (waiters exist)
RAISE_PRIORITY threshold at 15% (waiters exist)
STOP_JOBS threshold at 10% (waiters exist)
SUSPEND_SYSTEM threshold at 8% (waiters exist)
SPACE_04 threshold at 0% (no waiters)
next trigger at 78336 blocks

low space thresholds for volume 3:
START_COLLECTION threshold at 20% (waiters exist)
RAISE_PRIORITY threshold at 15% (waiters exist)
STOP_JOBS threshold at 10% (waiters exist)
SUSPEND_SYSTEM threshold at 8% (waiters exist)
SPACE_04 threshold at 0% (no waiters)
next trigger at 78336 blocks

low space thresholds for volume 4:
START_COLLECTION threshold at 20% (waiters exist)
RAISE_PRIORITY threshold at 15% (waiters exist)
STOP_JOBS threshold at 10% (waiters exist)
SUSPEND_SYSTEM threshold at 8% (waiters exist)
SPACE_04 threshold at 0% (no waiters)
next trigger at 80256 blocks

Debugging information:
OUT_OF_SPACE_EVENT PAGE_ADDR => (1023, DATA, 259, 504)

2.35. TIME

Example

2-16 88109/20 RATIONAL

Preliminary

3. EEDB Commands

3.1. Overview

EEDB can be run from an environment window by calling
Op.InternaLSystem_Diagnosis, or can be used via the system console (use /\Z to get
to the EEDB: prompt).

EEDB builds and maintains configurations of subsystems to be elaborated to run
system programs. A number of general principals may be of interest.

A configuration is an ordered list of subsystems in the order that they are to be
elaborated. Configurations are built from other configurations and share all
subsystems below the branch point. For example, there is usually a MUX
configuration, with OM and Dir configurations built off of it. Changing the
subsystems in MUX will cause the corresponding subsystems in OM and Dir to
change. There is also a copy facility that creates an equivalent configuration that is
a full copy.

Most commands accept a wildcard notation. Either '+' or '*' match ° or more
characters. Wildcards are only permitted at the beginning and/or end of the
argument, i.e. +.5.+ is legal, but a_+_0 won't ever match anything (or give an error
message).

Subsystem names can be abbreviated using standard short names for the
subsystems. For use with wildcards, the abbreviation must be followed by'.'; i.e.
UAT.+ matches all Abstract_Types subsystems, but UAT+ doesn't.

Commands and some operands accept prefixes. For commands or arguments that
are being specified, unique prefixes are required. For operations that display values
(e.g. Abbreviations and Help), all values matching the prefix are shown as if a +
were appended to the parameter.

Commands that accept lists of arguments terminate with an empty entry.

Commands and arguments can be typed on a single line, one line per token, or any
combination in between. New lines will cause a prompt to be printed for the next
value. Unrecognized values will produce a message; if the value is an enumeration,
possible values will be printed. In either case, the prompt will be re-issued.
Commands can be terminated by either /\G or /\C (must be "quoted" if running from
environment).

There is a page mode that keeps output from scrolling off the terminal and allows a
number of operations. See Terminal_Settings for how to set page mode, etc.
Examples of the interaction with page mode:

MORE -- (n, 0, q, r, s, ?) ?
N, ~G, ~c => stop command
0, ~o => suppress command output
S => skip output between MOREs

RATIONAL88/09/20 3-1

Preliminary

3.2. Commands

A summary ofEEDB commands are:

ABBREVIATIONS - Print subsystem abbreviation/full-name pairs
ADD_SUBSYSTEM - Add a subsystem to a configuration
BUILD_CONFIGURATION - Build a configuration
COMMON - Highest common subsystem for two configurations
COPY_CONFIGURATION - Copy a configuration
CHECK_CONSISTENCY - Check consistency of database
DEFAULT CONFIGURATION - Set the default configuration
DELETE - Delete a subsystem or configuration
DISPLAY - Short form display subsystem/configuration
ELABORATE - Elaborate a configuration
FIND_SEGMENT - Find a segment number
HELP - Print a help message
INSERT_SUBSYSTEM - No help available for INSERT_SUBSYSTEM
KERNEL - No help available for KERNEL
QUIT - Leave Command Interpreter
READ_TAPE - Read from tape
RECLAIM_SPACE - No help available for RECLAIM_SPACE
REMOVE_SUBSYSTEM - Remove a Subsystem from a Configuration
REPLACE_SUBSYSTEM - Replace a Subsystem in a Configuration
RUNNING - Print list of currently elaborated configurations.
SET_VERBOSITY - Set verbosity for configuration/subsystem
SHOW_DEFAULT - Show default configuration
SNAPSHOT - Take a snapshot
STATISTICS - No help available for STATISTICS
TAPE_DRIVE - Set Tape Drive Number
TERMINAL_SETTING - Execute terminal setting command
UNELABORATE - Unelaborate a subsystem
VDISPLAY - Long form display subsystem/configuration
VERBOSITY - Print verbosity settings

RATIONAL88/09/20 3-3

Preliminary

3.2.1. ABBREVIATIONS

Print subsystem abbreviation/full-name pairs. Used to show what the short names
are for corresponding subsystem names. The abbreviations can be used wherever a
full subsystem name can be used. Example:

EEDB: abbreviations ftp
FTP_INTERFACE
UFTP

3.2.2. ADD SUBSYSTEM

Add a subsystem to a configuration. Adds the subsystemts) at the top of the
configuration. Subsystem must exist, not depend on anything not already in the
configuration, and may not be a subsystem already present in the configuration.
Example: add initialize.6.0.0d to a mux configuration that didn't have a version of
ini tialize.

EEDB: add_subsystem
Existing Configuration: mux
Subsystem.Version: init.6.0.0d
Subsystem. Version:

3.2.3. BUILD_CONFIGURATION

Build a configuration from another configuration. All subsystems below (and
including) the parent for the new subsystem are shared between the old and new
configuration. Example: build a configuration off ofMux that doesn't include
Initialize, but does include the native_debugger (ND).

EEDB: build_configuration
New Configuration: new
Existing Configuration: mux
Parent subsystem: nd
Subsystem. Version:

3.2.4. COMMON

Highest common subsystem for two configurations. Used to determine if two
configurations are built from each other.

EEDB: conunon
Existing Configuration: mux
Existing Configuration: new
NATIVE_DEBUGGER

3.2.5. COPY_CONFIGURATION

Copy a configuration. Create a complete copy of a configuration. Example: notice
that the new_configuration is required; it will continue asking until it gets one. If

3-4 88/09/20 RATIONAL

Preliminary

the new configuration exists, but isn't elaborated, it will be replaced without
comment.

EEDB: copy_configuration
Existing Configuration: mux
New Configuration:
New Configuration: xxx

3.2.6. CHECK_CONSISTENCY

Check consistency of database. If it prints anything, it will be messages
complaining about the internal consistency of the database.

3.2.7. DEFAULT_CONFIGURATION

Set the default configuration to be booted with EEDB is elaborated. If this is set to
"Base_Configuration", EEDB will boot nothing else.

3.2.8. DELETE

Delete a subsystem or configuration. Accepts wildcards. Won't delete elaborated
configurations or subsystems that are part of a configuration. This last can be used
to collect garbage, e.g.:

EEDB: delete
Subsystem/Configuration: +.+

This would generate a large number ofmessages about subsystems that couldn't be
deleted, but will delete all subsystems not mentioned in any configuration
(assuming that configurations don't have '.'s in them).

3.2.9. DISPLAY

Short form display subsystem/configuration. For configurations, only the name is
given. For subsystems, the name and date are displayed. Configurations will all be
listed before subsystems if both are applicable.

EEDB: di ece.+

Subsystems :
CORE_EDITOR.6.0.0D
CORE_EDITOR.5.2.3D
CORE_EDITOR.5.2.0D
CORE_EDITOR.5.2.1D
CORE_EDITOR.6.1.0D

01/09/86 17:07:00
01/09/86 20:33:50
12/07/85 13:28:09
12/14/85 14:29:15
01/15/86 13:04:52

Configurations
A_5_7_1
A_5_8_0

RATIONAL88/09/20 3-5

Preliminary

EEDB: display
Subsystem/Configuration: d_9_l9 0

Configurations
D_9_l9 0

3.2.10. ELABORATE

Elaborate a configuration. Elaborates any subsystems that have not been
elaborated, but are part of the configuration. After the first configuration has been
elaborated, any further configurations must have been built from the same stem as
the first. For test configurations, such as OM, elaborate will do nothing if the test
program has completed and has NOT been unelaborated.

3.2.11. FIND_SEGMENT

Find a segment number, indicating what subsystem it comes from.

EEDB: find 10513433
CORE_EDITOR.6.0.0D

3.2.12. HELP

Print a help message for a command.

EEDB: help
Help for command:
ABBREVIATIONS Print subsystem abbreviation/full-name pairs
ADD_SUBSYSTEM - Add a subsystem to a configuration
BUILD_CONFIGURATION - Build a configuration
COMMON - Highest common subsystem for two configurations
COPY_CONFIGURATION - Copy a configuration
CHECK_CONSISTENCY - Check consistency of database
DEFAULT_CONFIGURATION - Set the default configuration
DELETE - Delete a subsystem or configuration
DISPLAY - Short form display subsystem/configuration
ELABORATE - Elaborate a configuration
FIND_SEGMENT - Find a segment number
HELP - Print a help message
INSERT_SUBSYSTEM - No help available for INSERT_SUBSYSTEM
KERNEL - No help available for KERNEL
QUIT - Leave Command Interpreter
READ_TAPE - Read from tape
RECLAIM_SPACE - No help available for RECLAIM_SPACE
REMOVE_SUBSYSTEM - Remove a Subsystem from a Configuration
REPLACE SUBSYSTEM - Replace a Subsystem in a Configuration
RUNNING - Print list of currently elaborated configurations.
SET_VERBOSITY - Set verbosity for configuration/subsystem
SHOW_DEFAULT - Show default configuration
SNAPSHOT - Take a snapshot
STATISTICS - No help available for STATISTICS
TAPE_DRIVE - Set Tape Drive Number
TERMINAL_SETTING - Execute terminal setting command
UNELABORATE - Unelaborate a subsystem

3-6 88/09/20 RATIONAL

Preliminary

VDISPLAY
VERBOSITY

- Long form display subsystem/configuration
- Print verbosity settings

3.2.13. INSERT_SUBSYSTEM

The same as ADD_SUBSYSTEM,except that it allows additions in the middle of a
configuration. Additional parameter, parent, required.

EEDB: insert
Existing Configuration: mux
Parent subsystem: init
Subsystem. Version: init.5.0.1d
subsystem INITIALIZE is already in configuration MUX

3.2.14. KERNEL

Starts the kernel command interpreter.

EEDB: kernel
Kernel:

3.2.15. QUIT

Leave Command Interpreter.

Kernel: quit
EEDB:

3.2.16. READ_TAPE

Read from tape.

3.2.17 . RECLAIM_SPACE

Actually delete code segments not associated with any subsystem version. Since
multiple version can share code segments, this involves traversing all subsystems to
determine which code segments can actually deleted. This should be run after a
new release and after something akin to delete +.+

3.2.18. REMOVE SUBSYSTEM

Remove a Subsystem from a Configuration.

EEDB: remove_subsystem
Configuration: mux
Subsystem INITIALIZE.S.O.lD to be deleted is not unelaborated

RATIONAL88/09/20 3-7

Preliminary

3.2.19. REPLACE_SUBSYSTEM

Replace a Subsystem in a Configuration. Used to install new subsystems into a
configuration. Cannot be run on an elaborated configuration.

EEDB: replace_subsystem
Existing Configuration: mux
Subsystem. Version: init.6.0.0d

3.2.20. RUNNING

Print list of currently elaborated configurations. Test configurations that have not
been elaborated are marked as (partial), which means that they are built off of the
running configuration, but are not currently elaborated.

EEDB: running
MUX
ED (partial)
DT (partial)
OM (partial)

3.2.21. SET_VERBOSITY

Set verbosity for configuration/subsystem when displayed using VDisplay.
Operation consists of setting a particular field to be displayed or not for either
subsystems or configurations (as classes, not for specific instances). Possible
information is:

EEDB: set_verbosity
Subsystem/Configuration: subsystem
Display option: ?
Possible completions for
ALL_CODE_SEGMENTS
DATE
ELAB_CODE_SEGMENT
LIBRARY
Display option: name
True or False: true
Subsystem options are now: NAME DATE USER LIBRARY SUBSYSTEM_DEPENDENCIES

ELAB_CODE_SEGMENT

Verbosity options
MODULE_KEY
NAME
SUBSYSTEM_DEPENDENCIES
USER

3.2.22. SHOW_DEFAULT

Show default configuration, i.e. the one that will be booted when EEDB is first
started. Base_Configuration is the configuration containing only EEDB, which is
always elaborated.

EEDB: show_default
Default configuration is BASE_CONFIGURATION

3-8 88109/20 RATIONAL

Preliminary

3.2.23. SNAPSHOT

Take a snapshot

3.2.24. STATISTICS

Not implemented.

3.2.25. TAPE_DRIVE

Set Tape Drive Number. If there were more than one tape drive, would allow
setting the drive to be used by the tape command.

3.2.26. TERMINAL_SETTING

Execute terminal setting command. Allows setting of:

COLUMNS_PER_LINE
ECHO_MODE
LINES_PER_PAGE
PAGE_MODE
SETTINGS

how many columns to use for results
show fields as parsed; for debugging EEDB
how many lines on the terminal
should output stop when more than a page
shows the values of the settings

EEDB: term
Terminal Setting: ?
possible completions for Terminal_Command
COLUMNS_PER_LINE PAGE_MODE
ECHO_MODE SETTINGS
LINES_PER_PAGE
Terminal Setting: settings
Terminal settings: lines = 24; columns 79
EEDB: term page
Page mode: ?
possible completions for Boolean
FALSE TRUE
Page mode: false

3.2.27. UNELABORATE

Unelaborate a subsystem.

3.2.28. VDISPLAY

Long form display subsystem/configuration. The line of dashes give information
about the configuration that makes up EEDB. Subsystems with the sequence
number .XXXare not registered with EEDB.

EEDB: vd mux

Configurations
MUX

RATIONAL88/Q9/20 3-9

Preliminary

INITIALIZE.5.0.1D 12/11/85 12:19:28 Key: lAFF3C04
NATIVE_DEBUGGER.5.1.5D 12/15/85 18:14:44 Key: lAFD8004
ARCHIVE.5.0.5D 12/11/85 23:43:04 Key: lAFD2404

OM_MECHANISMS.5.0.2D 12/26/85 14:51:16 Key: lACA2804
TEST_UTILITIES.4.0.1D 09/16/85 19:06:56 Key: lAC9E004
NETWORK. 5.0. 3D 11/18/85 08:37:36 Key: lAC96004

ELABORATOR_DATABASE.5.0.0D
OS_UTILITIES.5.1.0D

11/08/85 14:27:20 Key: lAC80C04
12/06/85 13:03:07 Key: lA83CC04

MACHINE_INTERFACE.4.0.1
ADA_BASE.4.1.0
MICROCODE. 4. 92

09/03/85 15:41:02 Key: 04002C04
10/14/85 12:53:40 Key: 00010004
12/16/85 16:54:01

EEDB: vd init.5.0.1d

Subsystems :
INITIALIZE.5.0.1D 12/11/85 12:19:28 DRK

Lib: :NET:CURLY:PDD:INITIALIZE.5.0.1:LIBRARIES:INITIALIZE.LIB
With: RI000_CODE_GEN DIRECTORY

BASIC_MANAGERS KERNEL
KERNEL_DEBUGGER OS_COMMANDS
COMMANDS MACHINE_INTERFACE
INPUT_OUTPUT MISCELLANEOUS
OM_MECHANISMS CORE_EDITOR
ABSTRACT_TYPES ADA_MANAGEMENT
PARSER ELABORATOR_DATABASE
ADA_BASE TOOLS
ENVIRONMENT_DEBUGGER

Elab: 1809431
Code: 252951 231447 10763279 251927 1809431 1808407

3.2.29. VERBOSITY

Print verbosity settings.

EEDB: verbosity
Subsystem fields to be displayed when printing
Configurations: NAME DATE USER MODULE_KEY
Subsystems : NAME DATE USER LIBRARY SUBSYSTEM_DEPENDENCIES

ELAB_CODE_SEGMENT
EEDB: set_verbosity
Subsystem/Configuration: configuration
Display option: ?
possible completions for
ALL_CODE_SEGMENTS
DATE
ELAB_CODE_SEGMENT
LIBRARY
Display option: user
True or False: true
Configuration options are now: NAME DATE USER MODULE_KEY

Verbosity options
MODULE_KEY
NAME
SUBSYSTEM_DEPENDENCIES
USER

3-10 88109/20 RATIONAL

Preliminary

4. Procedures for System Hang Condition
To perform preliminary diagnosis and provide the maximum amount of information
for diagnosis of a system crashdump tape, the following procedures should be
performed prior to crashing the system and taking a crashdump. If possible,
Rational should be contacted prior to crashing a "hung" system. Whenever a
crashdump tape is taken, it is very important to include as much information about
the crashdump as possible. The following procedures describe the minimal amount
of information necessary based on the type of the system hang.

No System Console Response

The system console might be flow controlled, which will make it appear as if the
system is hung.

1. Does the console respond to the BREAK key with the "Please enter 0/1/2"
message? If not, try typing "2", followedby a <CR>. If the console now responds
to the BREAK key, then the console was flow controlled by the IOAICwaiting
for the "0/1/2" response. If the console still does not respond, then there is a
problem with the console terminal, the connection to the IOAlC, the IOAIC
itself, or another piece ofhardware. Verify that the terminal is functioning
correctly (power the terminal OFF, then ON to initiate self testing). In the
event that no response can be obtained from the RI000, a crashdump tape will
not be useful, and Rational should be called immediately to coordinate further
diagnosis of the problem.

2. Does the console switch banners in response to /\Z? If not, try typing <CR>. If
there is still no response, then type /\Q. If the console now responds to /\Zor
<CR>, then the console was flow controlled by RI000 or IOP/C software. If the
console still does not respond, then crash the system (using the BREAK key)
and generate a crashdump tape indicating in the comments that the console
would only respond to the BREAK key, and that this step had been reached.'

System Console Responds

Having reached this point, it has been determined that the system console will
respond. If the prompt on the console is "CLI>"or "Enter configuration to boot..",
then the machine has crashed, and the cause of the crash was displayed in previous
output to the console. If this output is still visible, examine it to determine the
cause of the crash and what was recommended as appropriate action. If a
crashdump tape was prompted to be taken, then take one now and enter the
displayed reason for the crash.

It is important to note that:

lA problem probably exists in Microcode or Kernel software.

RATIONAL88/09/20 4-1

Preliminary

1. Both interpreters (Kernel and EEDB) can present the "Kernel:" prompt.

2. By typing <CR> and using "z one can cycle through the prompts to determine
which interpreter is displaying the "kernel:" prompt (indicated in the banner
information).

3. To get the "Kernel:" prompt via the EEDB interface, type "kernel" at the EEDB
prompt.

4. It is always better to use the kernel prompt under the EEDB banner. If the
EEDB becomes hung, the non-faulting Kernel interpreter is still available.

Can the Kernel or EEDB command interpreters be reached? Ifnot, gather the
following information:

1. The output produced by BREAK-2.

2. The banners displayed by "Z.

3. The prompts that are displayed on the console (use "Z).

then crash the system (using the BREAKkey) and make a crashdump tape,
including this information along with the crashdump tape.

Having reached this point, it has been determined that the R1000 is still running,
and that the Kernel/EEDB interpreters respond.

1. Do "Show_Disk_Summary" at the Kernel prompt. Does it show unrecoverable
disk errors? If so, call Rational. This is most likely the reason for the hang.

Does "Show_Disk_Summary" show 10 in progress? If so, execute the command
several times. If the successive displays show no change in the total
read/writes columns, yet the display shows disk 10 in progress, there is an 10
hang. Execute a "Show_Task_States", record the information and submit it
along with a crash dump tape.

2.

3. Do "Show_Volume_Summary". If any volume shows 0 unused capacity, then
the system has reached the suspend system GC threshold. This can be verified
by noting that no waiters exist for the suspend threshold for that volume. Do
not submit a crash dump. Reboot followingthe procedures in the System
Manager's Guide for recovering when the Suspend_System threshold has been
reached.

4. Do a "Jobs" (threshold 1) command. Do executions of this command show
activity in the CPU and D/S categories? There should be either virtually no
activity, or some job(s) consuming virtually all cycles.

If the problem is too much activity, wait 5 or 10 minutes before proceeding. If
the activity is in user jobs, then disable the user job, and do not submit a
crashdump. Determine what the user job is doing and take the appropriate
action. If the activity is in job 4 or 5, record several executions of the
"Show_Task_States" (Cache) and submit this information along with a

5.

4-2 88/09/20 RATIONAL

Preliminary

crashdump tape.

Having reached this point, the R1000 is still running, the KerneVEEDB interpreter
respond, and the system appears to be idle, yet it also appears to be hung.

1. Use "Show_Error_Log" and search for anything out of the ordinary.

2. Can users login? If not, try more than one connection. Iftelnet is being used,
try a serial (DH11) port (like 16).

3. Are users logged in but getting no response? Are all users having this problem?
It is possible for a user's session to become hung, which doesn't imply that all
sessions are hung. If not all user's sessions are hung, examine the session error
logs (in !Machine.Error_Logs) for the hung sessions. Also do a
"Show_Task_States" (Cache) and see if any task is in an
"Environment.Debugging , Wait". If so, execute the Show_Tasks procedure in
the System_Maintenance subsystem, using the task ID of the task shown to be
in the "Environment_Debugging_ Wait", and call Rational with the output of
this command.

Having reached this point, the most effective means of debugging the problem is to
contact Rational and have a remote debugger connected to the system. A
crashdump tape will generally prove inconclusive.

Failure to provide the information described above along with a crashdump tape
will generally result in an undiagnosible crashdump tape. A description of simply
"system hang" is not sufficient to diagnosis a system hang.

RATIONAL88/09/20 4-3

Preliminary

Table Of Contents

1. cr.r
1.1. Overview
1.2. Commands

1.2.1. BOOTINFO
1.2.2. CEDIT
1.2.3. CHECKDISK
1.2.4. CLl

1.2.4.1. COpy
1.2.4.2. CREATE
1.2.4.3. DELETE
1.2.4.4. DIRECTORY
1.2.4.5. LOCAL
1.2.4.6. PRINTER
1.2.4.7. REMOTE
1.2.4.8. RENAiYIE
1.2.4.9. TIME
1.2.4.10. TYPE
1.2.4.11. X

1.2.5. COMMX
1.2.6. CONFIGURE
1.2.7. CRASHDillIIP
1.2.8. CRASHLOAD
1.2.9. DISKMD
1.2.10. DISKX
1.2.11. ERASEDISK
1.2.12. EXPMON
1.2.13. FINDSEG
1.2.14. GC
1.2.15. INITIOA
1.2.16. IOX
1.2.17. LOADEE
1.2.18. LOADER
1.2.19. LOG
1.2.20. LOOK
1.2.21. MEMMACS
1.2.22. MT

1.2.22.1. LOAD
1.2.22.2. DUMP
1.2.22.3. REWIND
1.2.22.4. UNLOAD

1.2.23. NOVRAM
1.2.24. RDIAG

1.2.24.1. TEST
1.2.24.2. RUN
1.2.24.3. ERRMESS
1.2.24.4. INIT_STATE
1.2.24.5. ISOLATE
1.2.24.6. TRACE
1.2.24.7. ULOAD
1.2.24.8. MARGIN

1.2.25. RDM
1.2.26. RECOVERY
1.2.27. SAM

RATIONAL88/00/20

1-1
1-1
1-1
1-3
1-4
1-8
1-9

1-10
1-11
1-12
1-13
1-14
1-15
1-16
1-17
1-18
1-19
1-20
1-21
1-22
1-23
1-24
1-25
1-26
1-27
1-28
1-30
1-31
1-32
1-34
1-35
1-36
1-37
1-38
1-39
1-40
1-41
1-42
1-43
1-44
1-45
1-46
1-46
1-46
1-46
1-47
1-47
1-47
1-47
1-47
1-48
1-50
1-54

Preliminary

1.2.28. SCAl'\[
1.2.28.1. FIND

1.2.29. R1000 Series 200 Models 10/20/40 PROM Debugger
1.2.30. SLEW
1.2.31. STARTER
1.2.32. STAT
1.2.33. TAPEX
1.2.34. TRACE
1.2.35. UPDATE_EEPROM

2. Kernel Commands
2.1. Overview
2.2. BATCH
2.3. CHANGE_GC_THRESHOLDS
2.4. CLEAR_PROFILE
2.5. CLEAR_PROFILES
2.6. DISABLE_JOB
2.7. ENABLE_JOB
2.8. ENABLE_PRIV .cxns
2.9. JOB
2.10. JOBS
2.11. JOB_NAlYIE
2.12. JOB_NANIES
2.13. JOB_MTS
2.14. JOBS_MTS
2.15. LOAD
2.16. MTSQ
2.17. NOOP
2.18. PROFILE
2.19. PROFILES
2.20. QUIT
2.21. SET_l\,'ITS_PARA.;,vI
2,22. SET_TASK_FILTER
2.23. SHOW_BAD_BLOCKS
2.24. SHOW _CONFIGURATION_BITS
2.25. SHOW _DISK_Su"M1'IARY
2.26. SHOW _ERROR_LOG
2.27. SHOW_GC_STATE
2.28. SHOW _MEMORY_UTIL
2.29. SHOW_MTS_PARAlYIS
2.30. SHOW _NEXT_SNAPSHOT
2.31. SHOW_PORT_INFO
2.32. SHOW _TASK_FILTER
2.33. SHOW_TASK_STATES
2.34. SHOW _VOLUME_SUMMARY
2.35. TIME

1-55
1-55
1-56
1-59
1-61
1-62
1-63
1-64
1-65
2-1
2-1
2-2
2-2
2-2
2-3
2-3
2-3
2-3
2-3
2-4
2-4
2-4
2-5
2-5
2-6
2-6
2-6
2-6
2-7
2-7
2-7
2-7
2-8
2-9
2-9

2-11
2-11
2-11
2-12
2-13
2-13
2-13
2-15
2-15
2-16

11 88109/20 RATIONAL

Preliminary

3. EEDB Commands
3.1. Overview
3.2. Commands

3.2.1. ABBREVIATIONS
3.2.2. ADD_SUBSYSTEM
3.2.3. BUILD_CONFIGURA.TION
3.2.4. C01-DiION
3.2.5. COPY_CONFIGURATION
3.2.6. CHECK_CONSISTENCY
3.2.7. DEFAULT_CONFIG1JR-\TION
3.2.8. DELETE
3.2.9. DISPLAY
3.2.10. ELABORATE
3.2.11. FIND_SEGMENT
3.2.12. HELP
3.2.13. INSERT_SlJ13SYSTElVI

3-1
3-1
3-3
3-4
3-4
3-4
3-4
3-4
3-5
3-5
3-5
3-5
3-6
3-6
3-6
3-7

3.2.14. KERNEL
3.2.15. ourr
3.2.16. READ_TAPE
3.2.17. RECLUlVCSP.';'CE
3.2.18. RKvIOVE_SL13SYSTE:YI
3.2.19. REPLACE_SL13SYSTE:YI
3.2.20. RUN0rING
3.2.2l. SET_VERBOSITY
3.2.22. SHOW _DEF.-\lJ"LT
3.2.23. SNAPSHOT
3.2.24. STATISTICS
3.2.25. TAPE_DRIVE
3.2.26. TERMINAL_SETTING
3.2.27. UNELABOR-\TE
3.2.28. VDISPLAY
3.2.29. VERBOSITY

4. Procedures for System Hang Condition

3-7
3-7
3-7
3-7
3-7
3-8
3-8
3-8
3-8
3-9
3-9
3-9
3-9
3-9
3-9

3-10
4-1

RATIONALss/omo 111

Preliminary

Table Of Figures

1.1 - CLI Special Characters
1.2 - CLI Imbedded Commands
1.3 - COpy Switches
1.4 - CREATE Switches
1.5 - DELETE Switches
1.6 - DIRECTORY Switches
1.7 - RENAME Switches
1.8 - TYPE Switches
1.9 - DISK1VIDCommands
1.10 - EXPMON Commands
1.11- MT LOAD Switches
1.12 - MT DUMP Switches
1.13 - MT REWIND Switches
1.14 - MT UNLOAD Switches
1.15 - DIAG TEST Switches
1.16 - SCAl'l"FIND Switches
1.17 - Series 200 PROM Debugger Commands
1.18 - SLEW Commands

lV

1-2
1-9

1-10
1-11
1-12
1-13
1-17
1-19
1-25
1-28
1-41
1-42
1-43
1-44
1-46
1-55
1-57
1-60

S8/09/~O RATIONAL

