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SUMMARY.

The report gives a complete deflining description of the international
algorithmic language ALGOL 60. This is & language suitable for expressing
a large class »f numerical processes 1n a form sufficlently concise for
direct automatic translation into the language of programmed automatic
computers.

The introduction contains an account of the preparatory work leading
up to the final conference, where the language wes defined. In addition
the notions reference language, publication language, and hardware repre-
sentations, are explained.

In the first chapter a survey of the basic constituents and features
of the language is gtven, and the formal notation, by which the syntactic
structure is defined, 1s explained.

The second chapter lists all the basic symbols, and the syntactic
units known as identifiers, numbers, and strings, are defined. Further
srme important notions such as quentity and velue are defined.

The third chapter explains the rules for forming expressions and the
meening of these expressions. Three different types of expressions exist:
arithmetic, Boolean (logical), and designational.

The fourth chapter describes the operational units of the language,
known as statements. The basic statements are: assigmment stetements
(evaluation of a formula), go to statements (explicit bresk of the se-
quence of execution of statements), dummy statements, and procedure state-
ments (call for execution of & closed process, defined by a procedure
declaration). The formation of more complex structures, having statement
character, is explained. These include: conditinnal statements, for state-
ments, compound statements, and blocks.,

In the fifth chapter the units known as declarations, serving for
defining permanent properties of the units entering into a process desecri-
bed in the language, are defined.

The report ends with two detailed examples of the use of the language
and an alphabetic index of definitions.







CONTENTS.

I N‘I‘RODIIWION 6 & 8 & s 4 & e s e & s s & T B 2 e 9 e s a & & & * 7

1, STRUCTURE OF THE LANGUAGE . + + &« « « ¢ ¢ « o o o + s o « « « » o 11
1.1. Formalism for syntactic description . . . . . . . . . . . 12

2. BASIC SYMBOLS, IDENTIFIERS, NUMBERS, AND STRINGS. BASIC CONCEPTS 13

2.1, Tetters .+ v ¢ 4 v o 6 ¢ o s 8 8 s 4 4 e e e s s e s e s s 13
2.2. Digits. Logical vAlUEB + &+ + « &« & 4 « ¢ 2 ¢ o s o o s & o« 13
2.3, Delimiters o « ¢ v 4 v 4 4 4 4 4 4 s e v e s s e e a0 e o 13
2.4, Tdentiflers . v ¢ ¢+ 4 o 0 s 4 e 0 s b s s e e e . e .. 1k
2.5, NUMDErE .+ ¢ v o o o o o s s o o o o s o o o s 2 0 0 s« o 14
2.6, SETINES « ¢ o o o o ¢ o s ¢ e o 8 s o o 6 6 8 s o e o o o 15
2.7. Quantities, kinds and scopes . + . . « « « ¢ « s o o o« .+ + 15
2.8. Values @nd tyPeB « « « « ¢ o s ¢ o + s o o s e s s o s o s 15
5. EXPRESSIONS « &+ o ¢ o o o = o 2 2 ¢ s s o s o s s o 5 o » s o » o« 16
3.1, VAriBDbLleS . . ¢ 4 4 4 s s s 6 4 6 e 6 s s e e s e e . . 16
3.2. Function designBtors « o « + o « o o ¢ o o 2 o ¢ o ¢ o« o 17
3.3. Arithmetic expressions . « « « « o « « o « + o o « o « + . 18
3.4, Bocleen expressions . . 4 4 v 4 4 4 e b e s s e e 0 ... 2
3.5. Designational expressions . . . . ¢« ¢ 4 4 4 .t 4 e s e . . 22
L, STATEMENTS . o « o« o « o o o o o s s o o s o s s s s 5 o o » e 23
L.1. Compound statements @nd Blocks + o + & « &+ 4 o + & « o o « 23
4,2, Assigmment statements . « « & ¢ ¢ &« 4 v s o s o o s . o 24
b.3. Goto statements . . v « ¢ ¢ ¢ ¢ ¢ 4 ¢ ¢ s s o 0 0 s .25
L.h, Dummy statements o ¢« v o« ¢ o o ¢ « « ¢ o ¢ o 4 « o o . . 26
L.5. Conditional statements . « « ¢ « o + ¢ o« s « s ¢ o + = « & 26
L,6. For statements . . . v ¢« « « ¢ o ¢ ¢ 8 4 ¢ ¢ o e 0 0 . .27
L.7. Procedure statements . + + « + « o « ¢ o ¢ o o o ¢ o o . 29
5. DECLARATIONS & &4 4 4 o o s o s s s s s s s o s s« ¢« s o s o s & + 32
5.1. Type declaration8 . o« « ¢« « 4« o ¢ o ¢ « o o s o o o o » & 32
5.2. Array declarations . . « + ¢ ¢ ¢ ¢ 4 4 2 0 e 2+ s e 0w o o 33
5.3. Switch declarations . o & o o « ¢ o ¢ s o« o o o o o o + o 3k
5.4. Procedure declarations . « « « ¢ + « + ¢ ¢ o s o » & o s o 35

EXAMPLES OF PROCEDURE DECLARATIONS + & &« « ¢ o o o s o o « o o » s+ « 37

ALPHABETIC INDEX OF DEFINITIONS OF CONCEPTS AND SYNTACTIC UNITS . . 40O







INTRODUCTION 7

INTRODUCTION

After the publicationl'2 of & preliminary report on the algorithmic
language ALGOL, as prepered at & conference in Ziirich in 1958, much inter-
est in the ALGOL language developed.

As & result of an informal meeting held at Mainz in November 1958,
about forty interested persons from several European countries held an
ALGOL implementation conference in Copenhagen in Februaery 1959. A "hard-
ware group" was formed for working cooperatively right down to the level
of the paper tape code. This conference also led to the publication by
Regnecentralen, Copenhagen, of an ALGOL Bulletin, edited by Peter Naur,
which served as a forum for further discussion. During the June 1959 ICIP
Conference in Paris several meetings, both formal and informel ones, were
held. These meetings revealed some misunderstandings as to the intent of
the group which was primarily responsible for the formulation of the lan-
guege, but at the same time mede it clear that there exists a wide appre-
ciation of the effort involved. As a result of the discussions it was de-
cided to hold an international meeting in Jarmary 1960 for improving the
ALGOL language and preparing & final report. At & Buropean ALGOL Confe-
rence in Paris in November 1959 which was e&ttended by sbout fifty people
seven European representatives were selected to attend the Januery 1960
Conference, and they vrepresent the following organisations: Association
Frangaise de Calcul, British Computer Society, Gesellschaft fir Angewandte
Mathemstik und Mechanik, and Nederlands Rekenmechine Genootschap. The se-
ven representatives held a final preparatory meeting at Mainz in December

1959,

- - g

2. Report on the Algorithmic Language ALGOL by the ACM Committee on Pro-
gramming Languages and the GAMM Committee on Programming, edited by A.J.
Perlis and K. Semelson, Jumerische Mathematik Bd. 1, S. 41 - 60 (1959).
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Meanwhile, in the United States, anyone who wished to suggest changes
or corrections to ALGOL was requested to send his comments to the ACM
Communications where they were published. These comments then became the
basis of consideration for changes in the ALGOL language. Both the SHARE
and USE organisations established ALGOL working groups and both organisa-
tions were represented on the ACM Committee on Programming Langueges. The
ACM Committee met 1n Washington in November 1959 and considered atl com-
ments on ALGOL that had been sent to the ACM Communications. Also, seven

conference. These seven representatives held & final prepsratory meeting
in Beston in December 1959.

January 1960 Conference

The thirteen representatives., from Dermark, England, France, Germa-
ny, Holland, Switzerland, and the United States, conferred in Paris from
Jenuary 11 to 16, 1960.

Prior to this meeting a completely new draft report was worked out
from the preliminary report and the recommendations of the preparatory
meetings by Peter Naur and the conference edopted this new form as the ba-
sis for its report. The Conference then proceded tc work for agreement on
each item of the report. The present report represents the union of the
Committee's concepts and the intersection of i1ts mgreements.

April 1962 Conference Edited by M. Woodger

A meeting of aome of the authors of ALGOL 60 was held on 2nd - 3rd
April 1962 in Rome, Italy, through the facilities and courtesy of the In-
ternational Computation Centre. The following were present:

Authors Advisers Jbserver
F.L.Bauer M. Paul W.L.v.d.Poel
J. Green R. Franciotti (Chairmen, IFIP TC 2.1,
C. Katz P.Z. Ingerman Working Group ALGOL)
R. Kogon (representing
J.W. Backus)
P. Naur
K. Samelson G. Seegmuller
J.H. Wegstein R.E. Utman
A.v. Wijngaarden
M. Woodger P. Landin

The purpose of the meeting was to correct known errors in, eattempt to e-
liminate apparent embiguities in, and otherwise claerify the ALGOL 60 Re-
port. Extensions to the language were not considered at the meeting. Va-
rious proposals for correction and clarification that were submitted by
interested parties 1n response to the Questionalre in ALGQOL Bulletin No.
14 were used as a guide.

1. Williem Turanski of the American group was killed by an automobile Just
prior to the Jamuary 1960 Conference.

——
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This report constitutes & supplement to the ALGOL 60 Report which
should resolve & number of difficulties therein. Not &1l of the questions
raised concerning the original report could be resolved. Rather than risk
hastily drawn conclusions on & number of subtle points, which might
create new amblguities, +the committee decided to report only those points
which they unanimously felt could be stated in clear and unsmbiguous fa-
shion.

Questions concerned with +the following areas are left for further
consideration by Working Group 2.1 of IFIP, 1in the expectation that cur-
rent work on advanced programming langusges will lead to better resolu-
tion:

1. Side effects of functions.

2. The call by neme concept.

3. Own: static or dynamic.

4, For statement: static or dynamic.

5. Conflict between specification and declaration.
The authors of the ALGOL 60 Report present at the Rome Conference, being
aware of the formation of & Working Group on ALGOL by IFIP, accepted that
any collective responsibility which they might have with respect to the
development, specificetion and refinement of the ALGOL language will from
now on be transferred to that body.

This report has been reviewed by IFIP TC 2 on Programming lLangueges
in August 1962 and has been approved by the Council of the International
Federation for Information Processing,.

As with the pre}iminery ALGOL report, three different levels of lan-
guage are recognized, namely a Reference Language, a Publication Language
and several Hardware Representations.

Reference lLangusge.

1. It is the working language of the committee.

2. It is the defining language.

3. The characters are determined by ease of mutual understanding and not
by any computer limitations, coders notation, or pure mathematical no-
tation.

4, It is the basic reference and guide for compiler builders.

5. It is the guide for all hardware representations.

6. It is the guide for transliterating from publication language to any
locally appropriate hardwere representations.

7. The main publications of the ALGOL language 1tself will use the refe-
rence representation.

Publication Languege.

1. The publication lenguage admits variations of the reference language
according to usage of printing and hendwriting (e.g., subscripts, spa-
ces, exponents, Greek letters).

2. It is used for stating end communicating processes.

3. The characters to be used may be different in different countries, but
univocal correspondence with reference representation must be secured.
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Hardware Representations.

1. Each one of these is a condensation of the reference languege enforced
by the limited number of characters on standsrd input equipment.

5. Each one of these uses the character set of & particular computer and
is the language accepted by a translator for that computer.

3, Each one of these must be accompanied by a special set of rules for
transliterating from Publication or Reference language.

For transliteration between the reference languege and & language
suiteble for publications, emong others, the following rules &re recom-
mended.

Reference language Publication languege

Subscript bracket [ ] Lowering of the line between the
brackets and removel of the brackets.

Exponentation T Raising of the exponent

Parentheses { ) Any form of parentheses, brackets,
braces.

Rasis of ten ., Reising of the ten and of the fol-

lowing integral rumber, inserting of
the intended multiplication sign.

Unofficial note:

The present edition follows the text which wes approved by the Coun-
¢il of IFIP except for the correction of a misprint in section 4.5.3.2 and
the bringing of the alphabetic index into sgreement with the rest of the
report.

It i{s not clear from the Introduction that the present version is the
original report of +the January 1960 conference modified according to the
agreements reached during the April 1962 conference., Thus the report men-
tioned in the first line of page 9 is incorporated in the present version.
The modifications touch the report in the following sections:

Changes of text: 1 with footnote; 2.1 footnote; 2.3; 2.7T; 3.3.35 3.3,
4.1.3; 4.2.3; L.2.b; k3.4 4.7.3; bo7.3.13 b.7.3.3; 4.7.5.1; L.7.
4.7.65 55 5.3.33 5.3.55 S5.4.3; S.klby 5405,

Changes of syntax: 3.4.1; L.1.1;3 L.2.1; L.5.1.

h.2;
SRLH

———— -
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DESCRTPTION. OF THE REFERENCE LANGUAGE.

Was sich Uberhaupt sagen l#isst, ld#sst

sich klar sagen; und wovon man nicht

reden kann, dariiber muss man schweigen.
Ludwig Wittgenstein.

1. STRUCTURE OF THE LANGUAGE.

As stated in the introduction, the algorithmic language has three
different kinds of representations - reference, hardware, and publication
- and the development described in the sequel is in terms of the reference
representation. This means that all objects defined within the language
are represented by a given set of symbols - and it is only in the choice
of symbols +that the other two representations may differ. Structure and
content must be the same for all representations.

The purpose of the algorithmic language is to describe computetional
processes. The basic concept used for the description of calculating rules
is the well known arithmetic expression containing as constituents nmum-
bers, variables, and functions. From such expressions are compounded, by
applying rules of arithmetic composition, self-contained units of the lan-
guage - explicit formulae - called assigrment statements.

To show the flow of computetional Processes, certain nonartthmetic
statements and statement clauses are added which may describe e.g., alter-
natives, or lterative repetitions of computing statements. Since it is ne-
cessary for the function of these statements that one statement refers to
another, statements may be provided with labels. A sequence of statements
mey be enclosed between the statement brackets begin and end to form a
compound statement.

Statements are supported by declarations which are not themselves
computing instructions, but inform the translator of the existence and
certain properties of objects appearing in statements, such as the class
of numbers taken on as values by a variable, the dimension of an array of
numbers or even the set of rules defining a function. A sequence of decla=
rations followed by a sequence of statements and enclosed between begin
and end constitutes & block. Every declaration appears in a block in this
way and is valid only for that block,

A program is a block or compound stetement which is not contained
within another statement and which makes no use of other statements not
contained within it,

In the sequel the syntax end semsntics of the language will be gi-
Vene

1. Whenever the precision of arithmetic is stated as being in general not
specified, or the outecome of a certain process 1s left undefined or said
to be undefined, this is to be interpreted in the sense that a progrem on-
ly fully defines a computationsl process 1if the accompanying informetion
specifies the precision assumed, +the kind of arithmetic assumed, and the
course of action to be taken in all such cases as may occur during the
execution of the computation.
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t.1. FORMALISM F(CR SYNTACTIC DESCRIPTION.
4 The syntax will be described with the aid of metelinguistic formu-

lae”. Their interpretation is best explained by an example:

@b ::= ( | [ | <@b>( | <avd<a>
Sequences of characters enclosed in the bracket < > represent metalingui-
stic variables whose values are sequences of symbols. The marks ::= and
(the latter with the meening of or) are metalinguistic connectives. Any
merk in a formula, which is not a variable or a connective, denotes itself
(or the class of marks which are similar to it). Juxtaposition of marks
and/or variables in a formula signifles juxtaposition of the sequences de-
noted. Thus the formula above gives & recursive rule for the formation of
values of the varisble <ab>. It indicates thet <ab)> may have the value (
or [ or that given some legitimate value of <ab>, another may be formed
by following it with the charscter ( or by following 1t with some value
of the variable <d>. If the values of <d) are the decimal digits, some va-
lues of <ab) are:

([(((1(37(

12345

(((
[86

In order to facilitate the study the symbols used for distinguishing the
metalinguistic variables (i.e. the sequences of characters sppearing with-
in the brackets < > as ab in the above example) have been chosen to be
words describing approximately +the nature of the corresponding variable.
Where words which have appeared in this marmer are used elsewhere in the
text they will refer to the corresponding syntactic definition. In addi-
tion some formulase have been given in more than one plece.

Definition:
<eppty> ::=
(i.e. the nmull string of symbols).

1. Cf. J.W.Backus, The synta; and semantics of the proposed internstional
algebraic languege of the Zurich ACM-GAMM conference. ICIP Peris, June
1959.

e
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2. BASIC SYMBOLS, IDENTIFIERS, NUMBERS, AND STRINGS.
BASIC CONCEPTS.

The reference language is built up from the following basic symbols:
<basic symbol) ::= <letter>|<dig1t>| <loglcal value>|<delimiter>

2.1. LETTERS.
Cetter) ::= alo lc Idlelflg'hlilj |k|l |m’n|o|p|qfr|s|t|u Iv |w|x lylzl

alslciplelrlclrlzlsiklnMINlolelalRIsITIUIVIWiXIY]Z

This elphabet may arbitrarily be restricted, or extended with any other
distinctive character (i.e. character not coinciding with any digit, logi-
cal value or delimiter).

Letters do not haye individual meaning. They are-used for forming i-
dentifiers and strings™ (cf. sections 2.4t. IDENTIFIERS, 2.6. STRINGS).

2.2,1. DIGITS.
diegit> ::= ol1l213lui5 16171819
Digits are used for formlng mumbers, identifiers, and strings.

2.2.2. LOGICAL VALUES.
<{logical velue) ::= g:_'_gglf_gl,;gg
The logical values have a fixed obvious meaning.

2.3, DELIMITERS.

<delimiter> ::= <operator>|<separator>|<bracket>|<declarator>|
<{specificator)

{operator) ::= <arithmetic operator)l(relational operator)l
dogical operator)l(sequentia.l operator>

<arithmetic operator) ::= + | - /14

<relational operator> :i= < | < | = | 2 > 14

{dogical operator)> ::= = [3 Iv | Al

x

q
<sequential operator> ::= go to|if tl_x.ggle:l;gg i_‘_g:;lgoz
<separator> ::= | | T 2015 Tie T " Istep T untiy hibtle | comment
<racket> ::= ([ ) I [1 11711 pegin

i nd
<declerator> ::= own | Boolean | integer 'ersreal ?g:_’:_‘g.x | switch lggg_cedu:;_g

- - - it

<specificator> ::= string | label | vaiue

1, It should be particularly noted that throughout the reference language
underlining is used for defining independent basic symbols (see sections
2.2.2 and 2.3). These are understood to have no relation to the individual
letters of which they are composed. Within the present report underlining
will be used for no other purpose. The reference langusge sjmbol for a
space 18 _,. For typographical reascns the symbol , is used here insteed.

2. do is used in for statements. It has no relation whatsoever to the do
of the preliminary report, which is not included in ALGOL 60.
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Delimiters have a fixed meening which for the most part is obvious,
or else will be given at the appropriate place in the sequel.

Typographical features such as blank space or change to a-new line
have no significance in the reference language. They may, however, be used
freely for facilitating reading.

For the purpose of including text among the symbols of & program the
following "comment" conventions hold:

The sequence of basic symbols: is equivalent with
; comment <any sequence not containing ;>; 3
begin comment <any sequence not containing ;>; begin

end <any sequence not containing end or ; or else> end

By equivalence is lLere meant that any of the three structures shown in the
left hand column may, in any occurrence ocutside of strings, be replaced by
the symbol shown on the same line in the right hand column without any ef-
fect on the action of the program. It is further understoocd that the com-
ment structure encountered first in the text when reading from left to
right has precedence 1in being replaced over later structures contained in
the sequence.

2.4, IDENTIFIERS.

2.h,1. Syntax.
ddentifier> ::= {letter)|ddentifier>Qetter>|<identifier Xaigit>
2.4,2. Exsmples. qQ
Soup
ViTe
a3l kIMNs
MARTLYN

2.4.3, Semantics.

ldentifiers have no inherent meening, but serve for the identifica-
tion of simple variables, arreys, labels, switches, and procedures. They
may be chosen freely (cf. however section 3.2.4. STANDARD FUNCTIQNS).

The same identifier cannot be used to denote two different quantities
except when these quantities have disjoint scopes as defined by the decla-
rations of the progrem (cf. section 2.7. QUANTITIES, KINDS AND SCOPES and
section 5. DECLARATIONS).

2.5. NUMBERS.
2.5.1. Syntex.
<unsigned integer) ::= <digit>|<unsigned integer><digit>
<integer)> ::= <unsigned 1nteger>'+<unsigned integer>| -<unsigned integer)
<{decimal fraction)> ::= .<unsigned integer>
<exponent part)> ::= ,integer>
{decimal mmber> ::= <unsigned in‘beger)l(dec:lmal fraction)|
<unsigned integer<decimmel fraction>
<unsigned mmber> ::= <decimal number>|<exponent pert)l
<{decimal mmber ><exponent paxrt>
<mumbetr > ::= <unsigned mmber >} +<unsigned mmber | ~-<ansigned mmber)>
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2.5.2. Examples. 0 -200.084 -.083,,-02
177 +07. h5 8 - 7

5384 9. 3u,0+1o _u

+0. 7300 2m—h +m+5

2.5.3, Semantics.
, Decimal numbers have thelr conventionel meening. The exponent part is
a scale factor expressed as sn integral power of 10.

2.5.4, Types.

section 5.1. TYPE DECLARATIONS).

2.6. STRINGS.
2.6.1. Syntax.
<proper string> ::= <any sequence of basic symbols not conteining 7 or® >
<{empty>
<{open string> ::= <proper string)l’(open string) |
<open string)(open string>
<string> ::= “<open string)>)

2.6.2., Examples.
W
,Bkll- [E[, /. Tt

’.. This, is,a, /string"
2.6.3. Semantics.

In order to ensble the language to handle arbitrary sequences of ba-
sic symbols the string quotes 7 and » are introduced. The symbol L de-
notes a space. It has no significance outside strings.

Strings are used &s actual parsmeters of procedures {cf, sections
3.2. FUNCTION DESIGNATORS and 4,7. PROCEDURE STATEMENTS).

2.7. QUANTITIES, KINDS AND SCOPES.

The following kinds of quantities are distinguished: simple variab-
les, arrays, lebels, switches, and procedures.

The scope of & quantlity is the set of stetements and expressions in
which the declaration of the identifier associated with that quantity is
valld. For labels see section 4.1.3,

2.8. VALUES AND TYPES.

A value 1s an ordered set of numbers (special case: a single number),
an ordered set of logical values (special case: e single logical value),
or & label.

Certain of the syntactic units are said to possess values. These va-
lues will in general change during the execution of the program. The va-
lues of expressions and their constituents are defined in section 3. The
value of an arraey identifier is the ordered set of values of the corre-
sponding array of subscripted variables (cf. section 3.1.4.1).

The various types (;gggggg, real, Boolean) basically denote proper-
ties of values. The types assoclated with syntactic units refer to the va-
lues of these units.
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3. EXPRESSIONS.

In the language the primery constituents of the progrems describing
algorithmic processes are arithmetic, Boolean, and designetional, expres-
sions. Constituents of these expressions, except for certain delimiters,
are loglical values, numbers, variebles, function designators, and elemen-
tary arithmetic, relational, logical, and sequential, operators. Since the
syntactic definition of both variables and function designators ccntains
expressions, the definition of expressions, and their constituents, is ne-
cessarily recursive.

<{expression) ::= <arithmetic expression)l(Boolean expression)'
<{designational expressiocn)

3.1. VARIABLES,
5.1.1. Syntex.
<variable identifier> ::= <identifier)
<{simple variable) ::= <varisble identifier)
<{subscript expression) ::= <arithmetic expression>
<{subscript list) ::= <subscript expression)l

<{subscript list), <subscript expression)

<array identifier> ::= <identifier)
<subscripted variable) ::= <array identifier>[<subscript list)]
<varlable) ::= <{simple variable>|<subscripted variable)>

3.1.2, Examples. epsilon
detA

alTl
QF. 2]
x[sin(nxpi/2), Q[3, n, 4]]

3.1.3. Semantics.

A varisble 1s s designatlon given to a single value. This value may
be used in expressions for forming other values and may be changed at will
by means of assigrment statements (section 4.2). The type of the value of
e particular variable is defined in the declarastion for the veriable it-
self (ef. section 5.1. TYPE DECLARATIONS) or for the corresponding array
identifier (cf. section 5.2. ARRAY DECLARATIONS).

3.1.k. Subscripts.

3.1.k.1. Subscripted variables designate values which are components of
multidimensional arrays (cf. section 5.2. ARRAY DECLARATIONS). Each arith-
metic expression of the subscript list occuples one subscript position of
the subscripted variasble, and is called a subscript. The complete list of
subscripts is enclosed in the subseript brackets [ ]. The array component
referred to by a subscripted varisble is specified by the actual mmerical
value of its subscripts (ef. section 3.3. ARITEMETIC EXPRESSIONS).
3.1.k.2. Each subscript position acts like a variable of type integer and
the evaluation of +the subscript is understood to be equivalent to an as-
slgment to this fictitious variable (ecf. section 4.2.4). The value of the
subscripted variable 1s defined only if the value of the subscript expres-
sion 1s within the subscript bounds of the array {ef. section 5.2. ARRAY
DECLARATIONS).

-

— —
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3.2. FUNCTION DESIGNATORS.
3.2.1, Syntax.
<{procedure ldentifler> ::= {{dentifier)>
<actual parsmeter) ::= <string>l<expression>|<array identifier>!
<switch identifier)|<procedure identifier)
{letter string> ::= <{letter>|{etter string>letter)
<parameter delimiter) ::= , Y<letter string) :(
<{actual parameter list) ::= <actual parameter)'
<actuel parameter list><parameter delimiter)<actual parameter)
<actual paremeter pert> ::= <empty>|(<actual parameter 1ist))
{function designator) ::= {procedure identifier><actual parameter part)

3.2.2. Examples.

sin (a = b)
J(v + s, n)
R

S(s - 5)Temperature:(T)Pressure:{P)
Compile(”:=" )Stack:(Q)

3.2.35., Semantics.

Function designators define single mmerical or logical values, which
result through the application of given sets of rules defined by a proce-
dure declaration (ecf. section 5.4. PROCEDURE DECLARATIONS) to fixed sets
of actual parameters. The rules governing specification of actual parame-
ters are given 1in section 4.7. PROCEDURE STATEMENTS. Not every procedure
declaration defines the velue of a function designator.

3.2.4. Standard functions.

Certain identifiers should be reserved for the standsrd functions of
anglysis, which will ©be expressed as procedures. It is recommended that
thls reserved list should contain:

abs(E) for the modulus (absolute value) of the value of the ex-
pression E

sign(E) for the sign of the value of E (+1 for EX, 0 for E=0,
-1 for EXO)

sqrt(E) for the square root of the vslue of E

sin(E) for the sine of the value of E

cos(E) for the cosine of the value of E

arctan(E) for the principel value of the arctangent of the value of
E

1n(E) for the natural logarithm of the value of E B

exp(E) for the exponential function of the value of E (e ).

These functlons are all understood to operste indifferently on arguments
both of type real and integer. They will all yield values of type real,
except for sign(Ef which will have values of type integer. In a particular
representatlion these functions mey be aveilable without explicit declara-
tions (ef. section 5. DECLARATIONS).

3.2.5. Transfer functions.

It 1s understood that transfer functions between any pair of quanti-
ties and expressions may be defined. Among the standard functions it is
recommended thet there be one, namely

entier(E)
which +trensfers an expression of real type to one of integer type, and
assigns to it the velue which is the largest integer not greater than the

value of E.
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3.3. ARITHMETIC EXPRESSIONS.
3.3.1. Syntax.
<adding operator) ::= + l -
Gmuiltiplying operatord ::= x | / | 5
<primary> ::= <unsigned rumber >] <variable > <Function designator)l
(<arithimetic expression))
{factor) ::= <prim= >|<factor>¢<primry>
<term) ::i= <{factori<term>dmltiplying operator<factor)
<{simple arithmetic expression> ::= <term> | <adding operator><tenn>'
<simple arithmetic expression)<edding operator><term>
if cleuse) ::= if <Boolean expression) then
<arithmetic expression) ::= <simple aritimetic expreasion>|
4f clause )X<simple arithmetic expressionlelse<arithmetic expression

3.5.2. Examples.

Primaries:
7. .’>9L¥,°-8
sum
w[i+2,8]
cos(y+zx3
(a-3/y+vu'l8)
Factors:
ome,

sum’Tcos (y+zx3)

7.394 -8 [1+2, 81N a-3/y+wul8)

Terms:
U
omegaxsumTeos(y+zx3)/7. 3911-10-8Tw [1+2,8]Ne-3/y+vul8)

Simple arithmetic expression:
U-Yu+omegaxsumPeos (y+2x3) /7. 394 8N [142, 81Ne-3/y+vul8)

Arithmetic expressions:
wxu - Q(S+Cu)
if 930 then S5+3xQ/A else 2xS+3xQ
IT a<0 then U+V else if exb>17 then U/V else if kdy then V/U else O
a x sin (omega x(t ) ]
0.57,,12 x a[N x {N - 1)/2, O
(A x”irctan{y) + 2)N7 4 Q)

if q then n-1 else n
if a<0 then A/B else 1f b=0 then B/A else z

.
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3.3.5. Semantics.

An arithmetic expression is a rule for computing & mmerical value.
In case of simple arithmetic expressions this value is obteined by execu-
ting the indicated arithmetic operations on the actusl numerical values of
the primaries of the expression, as explained in detail in section 3.3.4
below. The actual mmerical value of a primary is obvious in the cese of
numbers. For variables it is the current velue (assigned last in the dyna-
mic sense), and for function designators it 1s the value arising from the
computing rules defining the procedure (cf. section 5.4.4. VALUES OF FUNC-
TION DESIGNATCRS) when applied to the current velues of the procedure pa-
rameters given in the expression. Finally, for arithmetic expressions en-
closed in parentheses the wvalue must through & recursive analysis be ex-
pressed in terms of the velues of primaries of the other three kinds.

In the more general arithmetic expressions, which include if clauses,
one out of several simple arithmetic expressions is selected on the basis
of the actuel velues of the Boolean expressions (cf. section 3.4. BOOLEAN
EXPRESSIONS). This selection is mede as follows: The Booleen expressions
of the if clauses are evaluated one by one in sequence from left to right
untll one having the value true is found. The velue of the arithmetic ex-
pression is then the value of the first arithmetic expression following
this Boolean (the largest arithmetic expression found in this position is
understood). The construction:

else <simple arithmetic expression)
is equivalent to the construction:

3.3.4. Operators and types.

Apart from the Boolean expressions of if clauses, the constituents of
simple arithmetic expressions must be of types real or integer (cf. sec-
tion 5.1. TYPE DECLARATIONS). The meaning of the basic operators and the
types of the expressions to which they lesd are given by the following
rules:

3.3.4.1, The operators +, -, 8nd x have the conventional meaning (addi-
tion, subtraction, end multiplication). The type of the expression will be
integer if both of the operands are of integer type, otherwise reel.

3.3.k.2. The operations <term)/<factor> and <termds:<factor) both denote
division, to be understood as a multiplication of the term by the reci-
procal of the factor with due .regard to the rules of precedence (cf. sec-
tion 3.3.5). Thus for exsmple

a/b = 7/(p - q) x v/s

(& x (™)) x 7) » (0 - 7)) xv) x (s7)
The operator / is defined for all four combinations of types real and in-
teger and will yield results of real type in any case. The operator + is
defined only for two operands both of type integer and will yileld a re-
sult of type integer mathematically defined as follows:

a+b =signla/b) x entier(abs(e/b))
(cf. sections 3.2.4 and 3.2.5).

means
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3.3.t.3. The operation <factor<primery> denotes exponentiation, where
the factor is the base and the primary 1s the exponent. Thus for example

24tntx means (Zn)k
while m
2Mn 4 m) means 2(n )
Writing 1 for a mumber of integer type, r for a number of real type, and
a for a mumber of elther integer or real type, the result is glven by the
following rules:
a™M  If 10, axéx. . . xa (1 times), of the seme type as &.
If 1=0, 1if 340. 1, of the same type as a.
if a=0, undefined.
If 1<0, if a0, 1/(axéx. . . »&) (the denominator has
-1 factors), of type real.
if a=0, undefined.
a'r If aXC, exp(r = 1n(e)), of type real.
If a=0, if r20, 0.0, of type real.
if r<0, undefined.
If a<0, always undefined.

3.3.5. Precedence of operators.

The sequence of operations within one expression 1s generally from
left to right, with the following additional rules:
3.3.5.1. According to the syntax given in section 3.3.1 the following
rules of precedence hold:

first:

second: x / s

third: + -
3.3.5.2. The expression between a left parenthesis and the matching right
parenthesis is evaluated by 1itself and this value is used in subsequent
calculations. Consequently the desired order of execution of operations
within an expression can always be sarranged by appropriate positioning of
parentheses.

3.3.6. Arithmetics of real quantities.

Numbers and variables of type real must be Iinterpreted in the sense
of rmmericel analysis, i.,e. as entities defined inherently with only & fi-
nite accuracy. Simllerly, the possibility of the occurrence of a finite
deviation from the mathematically defined result in any arithmetic expres-
slon is explicitly understood. No exact arithmetic will be specified, how-
ever, apd it is Indeed understood that different hardware representations
may evaluate arithmetic expressions differently. The control of the pos-
sible consequences of such differences mist be carried out by the methods
of numericel analysis. This control must be considered a pert of the pro-
cess to be described, and will therefore be expressed in terms of the lan-
guage itself.

'
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3.4. BOOLEAN EXPRESSIONS.
3.4.1. Syntex.
<relational operator) ::= < | < | = 1| 21 >14
<relation) ::= <simple arithmetic expression)
<relational operator><simple arithmetic expression)
<Boolean primary)> ::= <logical value)f(variable)'(ﬁ;lnction designator)l
<relation>| (<Boolean expression))
{Boolean secondary) ::= <Boolean primaryf' — <Boolean primary)
<{Boolean factor) ::= <Boolean secondary >
<Boolean factor >a<Boolean secondary)
Boolean term) ::= <Boolean factor>|<Boolean term><Boolean factor>
mplicatlion> ::= <Boolean tem)l(implication)b <Boolean term)
<{simple Boolean) ::= (implication>|<simple Boolean> = <implication)>
<Boolean expression) ::= <simple Boolean)|
df clause><simple Boolean) else <Boolean expression)>

3.4.2. Examples. x = -2
YW vz{g
a+b > -5 A z-d > q'T‘z
P VX
g = masbA~cvdves f
1f k<! then sw else hge
if if if a then b else ¢ then d else f then g else h<k

3.4.3. Semantics.

A Boolean expression is a rule for computing & logical value. The
principles of evaluation eare entirely analogous to those given for arith-
metic expressions in section 3.3.3. i

|

3.b.4, Types.

Variables and function designators entered as Boolean primaries must
be declared Boolean (cf. section 5.1. TYPE DECLARATIONS and section 5.4.L.

VALUES OF FUNCTION DESIGNATORS).

3.4.5. The operators.

Relations teke on the value true whenever the corresponding relation
is satisfied for the expressions imvolved, otherwise false.

The meaning of the logical operators — (not), A (and), v (or), o
(implies), and = (equivalent), is given by the following function table.

bl false false true true d
b2 false true false true '
— b1 true true false false

bl A b2 false false false +true

bl v b2 false true true true

bl 23 b2 true true false true
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3.4.6. Precedence of operators.
The sequence of operations within one expression 1s generally from
left to right, with the following additionzl rules:
3.4.6.1. According to the syntax given in section 3.4.1 the following
rules of precedence hold:
first: arithmetic expressions according to section 3.3.5.
second: < ¢ 2 2
third:
fourth:
fifth:
sixth:
seventh:
3.4.6.2. The use of parentheses will be interpreted in the sense given in
section 3.3.5.2.

WU o

3.5. DESIGNATIONAL EXPRESSIONS.
5.5.1. Syntax.
Cabeld ::= ddentifierﬂﬁmsigned integer)
<switch identifier} ::= {identifier)
<switch designator) ::= <switch identifier >[<subscript expressionf]
<simple designational expression) ::= abel >| <switch designator)
(<desigmational expression))
<designationel expression) ::= <simple designational expression)l
<{1f clause<simple designational expression>
else <designational expression)

3.5.2. Exemples. 17

9

Choose[n - 1]

Town[if y<O then N else N+i]

if Ab<c then'I7 else q[if w<0 then 2 else n]

3.5.3. Semantics.

A designational expression 1s & rule for obtaining a label of a
statement (cf. section L. STATEMENTS). Again the principle of the evalua-
tion 18 entirely analogous to that of arithmetic expressions (section
3.3.3). In the genersl case the Booleen expressions of the if clauses will
gelect a simple designational expression If this is a label the desired
result is already found. A switch designator refers to the corresponding
switch declaration (cf. section 5.3. SWITCH DECLARATIONS) and by the ac-
tual mmerical value of its subscript expression selects one of the desig-
national expressions listed In the switch declaration by counting these
from left to right. Since the designational expression thus selected may
again be a switch designator this evaluation is obviously a recursive pro-
cess,

3.5.4. The subscript expression.

The evaluation of the subscript expression is analogous to that of
subscripted variebles (cf. section 3.1.4.2). The value of a switch desig-
nator is defined only if the subscript expression assumes one of the posi-
tive values 1, 2, 3, ... , n, where n is the mmber of entries in the
switch list.

5.5.5. Unsigned integers as laedvels.

Unsigned integers used as labels have the property that leading ze-
roes do not affect +their meaning, e.g. 00217 denotes the same label as
217.
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4. STATEMENTS.

The units of operation within the language &re called statements.
They will normally be executed consecutively as written. However, this se~
quence cof operations may be broken by go to statements, which define their
successor explicitly, and shortened by conditional statements, which may
cause certain statements to be skipped.

In order to make it possible to define a specific dynemic Buccession,
statements mey be provided with labels.

Since sequences of statements may be grouped together into compound
statements and blocks the definition of statement must necessarily be re-
cursive. Also since declarations, described in section 5, enter fundamen-
tally into the syntactic structure, the syntactic definition of statements
must suppose declarations to be already defined.

k.1. COMPOUND STATEMENTS AND BLOCKS.

h.,1.1. Syntax.
dunlebelled basic statement) ::= <assigmment atatanent)kgo to statement)|
<dummy statement>'(procedure statement)
<basic statement) ::= <unlabelled besic statement>|
<{label >:<basic statement)
<anconditional statement) ::= <basic statement)|
<compound statement>| ®lock)
<statement> ::= <unconditionel statement>|<conditional statement>|
<for statement)
<compound t811> ::= <statement) end |<statement) ; <compound tail>
<block head) ::= begin<declaration>|<block head> ; <declaration>
<unlabelled compound) ::= begin <compound tail)
<unlebelled block> ::= <block head) ; <compound tail)
<compound statement) ::= <unlabelled compound>|
<label >: {compound statement)

<block) ::= <unlabelled block>!<labeld : <block>
<program> ::= <block>l<ccmpound statement)
This syntax may be illustrated as follows: Denoting arbiirary statements,
declarations, and labels, by the letters S, D, and L, respectively, the
basic syntactic units take the forms:
Compound statement:

L: L: . . . begln S ;83 ...85; Send
Block:

L: L: . . . beginD; D; . .D; 5; 5; . . . 8; Send
It should be kept in mind thet each of the statements S may again be a
complete compound statement or block.




24 4.1, COMPOUND STATEMENTS AND BLOCKS.

4L.1.2. Examples.
Basic statements:

8 :=p+q

go_to Naples

START: CONTINUE: W := 7.993

Compound statement:

begin x:=0 ; for y:= 1 step 1 until n do x:= x + A[y] ;

Aw: St: W :=x + bob end
Block:

Q: begin integer-i .k ;
for 1:=1 stgg 1 until m do
for k:= i+1 ste 1 until m do
begin wi= A[1k

Afi,k 1= A[k,i] ;
Alk,1

=wend for 1 and k
4.,1.3, Semantics.

Every block autometically introduces a new level of nomenclature.
This is realized as follows: Any identifier occurring within the block may
through a suitable declaration (cf. section 5. DECLARATIONS) be specified
to be local to the block in question. This means (a) that the entity re-
presented by this identifier inside +the block hes no existence outside it
and (b) that any entity represented by this ldentifier outside the block
is completely inaccessible inside the block.

Identifiers (except those representing labels) occurring within a
block and not being declared to this block will be non-local to it, 1.e.
will represent the same entity inside the block and in the level immedia-
tely outside it. A label separated by & colon from a statement, 1i.e. la-
belling that statement, behaves as though declared in the head of the
smallest embracing block, i.e. the smallest block whose brackets begin and
end enclose that statement. In this context a procedure body mist be con-
sidered a&s If it were enclosed by begin and end and treated as a block.

Since a statement of a block mey egain 1tself be a block the concepts
local and non-local to & block must be understood recursively. Thus an i-
dentifier, which is non-local to & block A, mey or may not be non-local
to the block B in which A is one statement.

end block Q

4.2, ASSIGNMENT STATEMENTS.

4.2.1. Syntax.

{left part> ::= <{varlable):= |<procedure identifier) :=

<left part listd ::= <left part>!<1eft part list><left part)

<assigrment statement)> ::= {left part list)<arithmetic expression)l
Qeft part 1ist><Boolean expression)

b,2.2. Examples.
s :=p[0] :=n:=n+1+s8
n:=n+1
A:=B/C—v-q_xS
S[v, k+2] := 3 - arctan(s x zeta)
v =Q>YAZ
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L.2.3, Semantics.

Assigmment statements serve for assigning the value of an expression
to one or several variables or procedure identifiers. Assigmment to & pro-
cedure ldentifier may only occur within the body of & procedure defining
the value of a function designator (cf. section 5.4.4.). The process will
in the general case be understood to take place in three steps as follows:
4.2.3.1. Any subscript expressions occurring in the left part vaeriables
are evaluated in sequence from left to right.

L.2.3.2. The expression of the statement 1s evaluated.

4.2.3.3. The value of the expression is agsigned to all the left part va-

iiables, with any subscript expressions having values as evaluated in step
+2.3.1.

L,2.4. Types.

The type associated with all varisbles and procedure identifiers of a
left part list must be the same. If this type is Boolean, the expression
must likewise be Boolean. If the type 1s real or integer, the expression
must be arithmetic. If the type of the arithmetic expression differs from
that associated with the variables and procedure identifiers, appropriate
transfer functions are understood to be automatically invoked. For trans-
fer from real to integer type the transfer function is understood to yleld
a result equivalent to

entier(E + 0.5)
where E is the value of the expression.

The type associated with & procedure identifier 1s given by the de-
clarator vwhich appears as the first symbol of the corresponding procedure
declaration (cf. section S.4.4.).

L.3. GO TO STATEMENTS.

L.%.1. Syntax.
<go to statement> ::= go_to <designational expression)

b.3,2. Examples.
go.to 8
go_to exitEn + 1]

go_to Town[if y<0 then N else N+1]

gofo 1f Ab<e then'17 else q[if w<O then 2 else n]
L.3.3, Semantics.

A go to statement Interrupts the nommal sequence of operations, de-
fined by the write-up of statements, by defining its successor explicitly
by the value of a designational expression. Thus the next statement to be
executed will be the one having this value as its label.

L.3.4. Restriction.

Since labels are inherently locel, no go to statement can lead from
outside into a block. A go to statement may, however, lead from ocutside
into a compound statement.

4.3.5. Go to an undefined switch designator.
A go to statement 1is equivalent to a dummy statement if the designa-
tional expression is & switch designator whose velue is undefined.
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4, L, DUMMY STATEMENTS.

L.h.1. Syntax.
<dumy statement)> ::= <empty>

L.4.2, Examples.
L:
begin . . . . ; John: end

L.4.3, Semantics.
A dummy statement executes no operation. It may serve to place a la-
bel.

4.5. CONDITIONAL STATEMENTS.

4.5.1. Syntax.
<if clause> ::= if <Boolean expression then
Qunconditional statement)d ::= <basic statement)
<compound statement >|<lock>
4T statement) ::= <if clause>unconditional statement)
<conditional statement) ::= <if statement)l
<4f statement) else <statement)|
<if clauseXXfor statement)'
{sabel >:<conditional statement)

4.5.2. Examples.
if x>0 then n := n+1
if vau then V: g:=nm else go to R
if s<OvP<Q then AA begin if q<v then a: ~v/s else y:=2xe end

4.5.3. Semantics.
Conditional statements cause certaln statements +to be executed or
skipped depending on the running values of specified Boolean expressions.

4.5.3.1. If statement.

The unconditiocnal statement of an if statement will be executed 1if the
Boolean expression of the if clause is true. Otherwise it will be skipped
and the operation will be contimied with the next statement.

4.5.3.2. Conditional statement.
According to the syntax two different forms of conditional statements are
possible. These may be illustrated as follows:

if Bl then Si else if B2 then S2 else S3 ; Sk

and

if Bl then S1 else if B2 then S2 else if B3 then S35 ; Sk
Here Bl to B3 are Boolean expressions, “while S1 %o S3 sre unconditional
statements. SU is the statement following the complete conditional state-
ment.
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The execution of & conditional statement mey be described as follows:
The Boolean expressions of the if clauses are evaluated one after the o-
ther in sequence from left to right until one yielding the velue true is
found. Then the unconditionel statement following <this Boolean is execu-
ted. Unless this statement defines its successor explicitly the next
statement to be executed will be S, the statement following the complete
conditional statement. Thus the effect of the delimiter elge may be de-
scribed by saying that it defines the successor of the statement it fol-
lows to be the statement following the complete conditional statement.

The construction

else <unconditional statement)

is equivalent “to

If none of the Boolean expressions of the if clauses is true, the ef-
fect of the whole conditional statement will be equivalent to that of a
durmy statement.

For further explenation the following pilcture may be useful:

) ) S
if Bl then 51 else if B2 then S2 else 83 ; &4
N ¢ A

- e et e e - - ek e e m e -

Bl false B2 false

L.5.4h. Go to into a conditional statement.
The effect of a go to statement leading intoc & conditional statement
follows directly from the above explanation of the effect of else.

L.6. FOR STATEMENTS.

4,6.1. Syntax.
{for list element) ::= <arithmetic expression>’

<arithmetic expression)
<arithmetic expression) while <Boolean expression)

<for list> ::= <{for list element)T(for 1list)> , <for 1list element)
<for clause) te= for <variable) := <for list) do
for statementd ::= <for clause ><statement>|

{label) : <for statement )

L.6.2. Examples.
for q := 1 step s until n go A[q] := B[q]
fork =1, V1 x2whileV1 (Ndo
for J =TI +G, L, 1 step 1 until N, C + D do A[k,J] := B[k,J]




















































