DataMuseum.dk

Presents historical artifacts from the history of:

CP/M

This is an automatic "excavation" of a thematic subset of
artifacts from Datamuseum.dk's BitArchive.

See our Wiki for more about CP/M

Excavated with: AutoArchaeologist - Free & Open Source Software.


top

⟦37cf4f704⟧ Bits:30003051 Dymos II - Modeller, 5¼" Floppy Disk

    Length: 1228800 (0x12c000)
    Description: Bits:30003051 Dymos II - Modeller
    Types: 5¼" Floppy Disk

Hex Dump

Dumping the first 0x20 bytes of each record
0x000000…000200 (0, 0, 1)   e9 2a 90 52 63 20 44 6f 73 20 58 00 02 01 01 00 02 e0 00 60 09 f9 07 00 0f 00 02 00 00 00 00 00   ┆ * Rc Dos X        `            ┆
0x000200…000400 (0, 0, 2)   f9 ff ff 11 f0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff 2f 02 ff ff ff ff ff   ┆                         /      ┆
0x000400…000600 (0, 0, 3)   ff ff ff ff 59 a1 15 5b c1 15 5d e1 15 5f 01 16 61 21 16 63 41 16 65 61 16 67 81 16 69 a1 16 6b   ┆    Y  Æ  Å  _  a! cA ea g  i  k┆
0x000600…000800 (0, 0, 4)   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   ┆                                ┆
          […0x4…]
0x001000…001200 (0, 0, 9)   f9 ff ff 11 f0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff 2f 02 ff ff ff ff ff   ┆                         /      ┆
0x001200…001400 (0, 0, 10)  ff ff ff ff 59 a1 15 5b c1 15 5d e1 15 5f 01 16 61 21 16 63 41 16 65 61 16 67 81 16 69 a1 16 6b   ┆    Y  Æ  Å  _  a! cA ea g  i  k┆
0x001400…001600 (0, 0, 11)  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   ┆                                ┆
          […0x4…]
0x001e00…002000 (0, 1, 1)   64 79 6d 6f 73 2e 65 6b 73 20 20 08 00 00 00 00 00 00 00 00 00 00 a1 55 00 60 00 00 00 00 00 00   ┆dymos.eks              U `      ┆
0x002000…002200 (0, 1, 2)   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   ┆                                ┆
          […0x5…]
0x002c00…002e00 (0, 1, 8)   00 ff ff 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   ┆                                ┆
0x002e00…003000 (0, 1, 9)   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   ┆                                ┆
          […0x5…]
0x003a00…003c00 (0, 1, 15)  2e 20 20 20 20 20 20 20 20 20 20 10 00 00 00 00 00 00 00 00 00 00 68 56 57 61 02 00 00 00 00 00   ┆.                     hVWa      ┆
0x003c00…003e00 (1, 0, 1)   2f 2f 20 4d 6f 64 65 6c 20 3a 20 4c 69 6e 46 6b 74 0d 0a 0d 0a 64 79 20 3a 3d 20 61 20 2a 20 64   ┆// Model : LinFkt    dy := a * d┆
0x003e00…004000 (1, 0, 2)   4b 6f 6e 73 74 20 3a 3d 20 31 2e 33 0d 0a 79 20 3a 3d 20 31 0d 0a 78 20 3a 3d 20 30 0d 0a 61 20   ┆Konst := 1.3  y := 1  x := 0  a ┆
0x004000…004200 (1, 0, 3)   01 78 b2 01 26 8a 0e 04 00 32 ed 26 80 4d 36 02 01 79 2d 06 00 33 d2 f7 f1 a3 e1 0b 26 8b 75 2a   ┆ x  &    2 & M6  y-  3      & u*┆
0x004200…004400 (1, 0, 4)   2f 2f 20 4d 6f 64 65 6c 20 3a 20 52 65 6e 74 65 72 0d 0a 0d 0a 8f 72 6c 69 67 52 65 6e 74 65 20   ┆// Model : Renter     rligRente ┆
0x004400…004600 (1, 0, 5)   52 65 6e 74 65 73 61 74 73 20 3a 3d 20 30 2e 31 32 20 20 20 20 20 2f 2f 20 31 2f 86 72 0d 0a 53   ┆Rentesats := 0.12     // 1/ r  S┆
0x004600…004800 (1, 0, 6)   01 74 53 51 56 55 8b ec 57 be 41 3a c6 44 02 03 05 42 65 6c 9b 62 b9 9a c6 04 00 b9 50 00 9a 1c   ┆ tSQVU  W A: D   Bel b      P   ┆
0x004800…004a00 (1, 0, 7)   2f 2f 20 4d 6f 64 65 6c 20 3a 20 4f 70 73 70 61 72 0d 0a 0d 0a 8f 72 6c 69 67 52 65 6e 74 65 20   ┆// Model : Opspar     rligRente ┆
0x004a00…004c00 (1, 0, 8)   52 65 6e 74 65 73 61 74 73 20 3a 3d 20 30 2e 31 32 20 20 20 20 20 2f 2f 20 31 2f 86 72 0d 0a 53   ┆Rentesats := 0.12     // 1/ r  S┆
0x004c00…004e00 (1, 0, 9)   01 74 53 51 56 55 8b ec 57 be 41 3a c6 44 02 03 05 42 65 6c 9b 62 b9 9a c6 04 00 b9 50 00 9a 1c   ┆ tSQVU  W A: D   Bel b      P   ┆
0x004e00…005000 (1, 0, 10)  2f 2f 20 4d 6f 64 65 6c 20 3a 20 4b 61 6e 69 6e 31 0d 0a 0d 0a 46 9b 64 74 65 20 3a 3d 20 41 6e   ┆// Model : Kanin1    F dte := An┆
0x005000…005200 (1, 0, 11)  46 9b 64 73 65 6c 73 66 72 65 6b 76 65 6e 73 20 3a 3d 20 30 2e 30 35 20 20 20 20 20 2f 2f 20 31   ┆F dselsfrekvens := 0.05     // 1┆
0x005200…005400 (1, 0, 12)  01 74 b2 01 26 8a 0e 04 00 32 ed 26 80 4d 36 02 05 41 6e 74 61 6c d2 f7 f1 a3 e1 0b 26 8b 75 2a   ┆ t  &    2 & M6  Antal      & u*┆
0x005400…005600 (1, 0, 13)  2f 2f 20 4d 6f 64 65 6c 20 3a 20 4b 61 6e 69 6e 32 0d 0a 0d 0a 41 6e 74 61 6c 20 3a 3d 20 41 6e   ┆// Model : Kanin2    Antal := An┆
0x005600…005800 (1, 0, 14)  46 9b 64 73 65 6c 73 66 72 65 6b 76 65 6e 73 20 3a 3d 20 30 2e 30 35 20 20 20 20 20 2f 2f 20 31   ┆F dselsfrekvens := 0.05     // 1┆
0x005800…005a00 (1, 0, 15)  4b 41 4e 49 4e 32 20 20 50 41 52 20 00 00 00 00 00 00 00 00 00 00 00 08 21 14 12 00 70 00 00 00   ┆KANIN2  PAR             !   p   ┆
0x005a00…005c00 (1, 1, 1)   01 74 b2 01 26 8a 0e 04 00 32 ed 26 80 4d 36 02 05 41 6e 74 61 6c d2 f7 f1 a3 e1 0b 26 8b 75 2a   ┆ t  &    2 & M6  Antal      & u*┆
0x005c00…005e00 (1, 1, 2)   2f 2f 20 4d 6f 64 65 6c 20 3a 20 4b 61 6e 69 6e 33 0d 0a 0d 0a 41 6e 74 61 6c 20 20 20 3a 3d 20   ┆// Model : Kanin3    Antal   := ┆
0x005e00…006000 (1, 1, 3)   55 6e 67 65 20 20 20 3a 3d 20 61 72 72 61 79 5b 34 30 5d 20 20 20 20 20 20 20 20 20 2f 2f 20 34   ┆Unge   := arrayÆ40Å         // 4┆
0x006000…006200 (1, 1, 4)   01 74 b2 01 26 8a 0e 04 00 32 ed 26 80 4d 36 02 05 41 6e 74 61 6c d2 f7 f1 a3 e1 0b 26 8b 75 2a   ┆ t  &    2 & M6  Antal      & u*┆
0x006200…006400 (1, 1, 5)   2f 2f 20 4d 6f 64 65 6c 20 3a 20 4b 61 6e 69 6e 34 0d 0a 0d 0a 46 9b 64 74 65 20 3a 3d 20 41 6e   ┆// Model : Kanin4    F dte := An┆
0x006400…006600 (1, 1, 6)   41 6e 74 61 6c 20 20 3a 3d 20 31 30 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2f 2f 20 6b   ┆Antal  := 10                // k┆
0x006600…006800 (1, 1, 7)   01 74 b2 01 26 8a 0e 04 00 32 ed 26 80 4d 36 02 05 41 6e 74 61 6c d2 f7 f1 a3 e1 0b 26 8b 75 2a   ┆ t  &    2 & M6  Antal      & u*┆
0x006800…006a00 (1, 1, 8)   2f 2f 20 6d 6f 64 65 6c 20 3a 20 52 6f 76 2d 42 79 74 31 0d 0a 0d 0a 64 42 20 3a 3d 20 28 6b 31   ┆// model : Rov-Byt1    dB := (k1┆
0x006a00…006c00 (1, 1, 9)   6b 31 20 3a 3d 20 30 2e 33 20 20 20 20 20 2f 2f 20 62 79 74 74 65 64 79 72 73 20 66 6f 72 6d 65   ┆k1 := 0.3     // byttedyrs forme┆
0x006c00…006e00 (1, 1, 10)  01 52 20 00 75 b2 ff 76 a8 56 57 8d 46 ae 50 e8 01 42 4c 4e fb 33 c0 a3 65 73 a3 75 7b a3 77 7b   ┆ R  u  v VW F P  BLN 3  es uæ wæ┆
0x006e00…007000 (1, 1, 11)  2f 2f 20 6d 6f 64 65 6c 20 3a 20 52 6f 76 2d 42 79 74 32 0d 0a 20 0d 0a 42 2c 52 20 3a 3d 20 69   ┆// model : Rov-Byt2     B,R := i┆
0x007000…007200 (1, 1, 12)  6b 31 20 3a 3d 20 30 2e 33 20 20 20 20 20 2f 2f 20 62 79 74 74 65 64 79 72 73 20 66 6f 72 6d 65   ┆k1 := 0.3     // byttedyrs forme┆
0x007200…007400 (1, 1, 13)  01 52 20 00 75 b2 ff 76 a8 56 57 8d 46 ae 50 e8 01 42 4c 4e fb 33 c0 a3 65 73 a3 75 7b a3 77 7b   ┆ R  u  v VW F P  BLN 3  es uæ wæ┆
0x007400…007600 (1, 1, 14)  2f 2f 20 4d 6f 64 65 6c 20 3a 20 57 72 69 74 65 0d 0a 0d 0a 74 3a 3d 74 2b 64 74 0d 0a 78 3a 3d   ┆// Model : Write    t:=t+dt  x:=┆
0x007600…007800 (1, 1, 15)  77 72 69 74 65 20 27 77 72 54 61 62 65 6c 27 3a 20 78 2c 74 0d 0a 0d 0a 64 74 20 3a 3d 20 30 2e   ┆write 'wrTabel': x,t    dt := 0.┆
0x007800…007a00 (2, 0, 1)   01 74 e8 7f 0c 58 1f 07 c3 06 1e 50 b8 72 42 8e 01 78 06 a8 01 b8 20 00 e8 97 2a e8 66 0c 58 1f   ┆ t   X     P rB  x        * f X ┆
0x007a00…007c00 (2, 0, 2)   52 45 41 44 20 20 20 20 4d 4f 44 20 00 00 00 00 00 00 00 00 00 00 00 08 21 14 23 00 19 00 00 00   ┆READ    MOD             ! #     ┆
0x007c00…007e00 (2, 0, 3)   2f 2f 20 4d 6f 64 65 6c 20 3a 20 52 65 61 64 0d 0a 0d 0a 0d 0a 0d 0a 0d 0a 1a 1a 1a 1a 1a 1a 1a   ┆// Model : Read                 ┆
0x007e00…008000 (2, 0, 4)   72 65 61 64 20 27 77 72 54 61 62 65 6c 27 3a 20 78 54 61 62 65 6c 2c 78 2c 20 74 54 61 62 65 6c   ┆read 'wrTabel': xTabel,x, tTabel┆
0x008000…008200 (2, 0, 5)   06 74 54 61 62 65 6c 07 c3 06 1e 50 b8 72 42 8e 06 78 54 61 62 65 6c 00 e8 97 2a e8 66 0c 58 1f   ┆ tTabel    P rB  xTabel   * f X ┆
0x008200…008400 (2, 0, 6)   50 6f 69 6e 74 73 20 20 20 20 31 32 39 0d 0a 56 61 72 69 61 62 6c 65 73 20 20 54 2c 58 0d 0a 1a   ┆Points    129  Variables  T,X   ┆
0x008400…008600 (2, 0, 7)   80 e7 33 a0 de 74 83 b5 f7 a9 aa 6a 80 7e a9 9f 37 3d 82 6b ef 53 55 55 81 00 00 00 00 00 83 00   ┆  3  t     j ü  7= k SUU        ┆
0x008600…008800 (2, 0, 8)   00 00 00 00 82 23 0f 44 16 72 82 c7 43 df dd 1d 83 00 00 00 00 00 82 d1 55 ba bb 3b 83 6e f8 dd   ┆     # D r  C           U  ; n  ┆
0x008800…008a00 (2, 0, 9)   90 65 82 6b ef 53 55 55 83 a6 08 70 7a 63 82 00 00 00 00 40 83 68 05 86 2c 64 82 61 dd 78 77 37   ┆ e k SUU   pzc     @ h  ,d a xw7┆
0x008a00…008c00 (2, 0, 10)  84 60 fe 0a 59 00 82 75 8b c0 58 52 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a   ┆ `  Y  u  XR                    ┆
0x008c00…008e00 (2, 0, 11)  2f 2f 20 4d 6f 64 65 6c 20 3a 20 4c 6f 67 6f 0d 0a 0d 0a 0d 0a 0d 0a 0d 0a 0d 0a 1a 1a 1a 1a 1a   ┆// Model : Logo                 ┆
0x008e00…009000 (2, 0, 12)  72 65 61 64 20 27 6c 6f 67 6f 27 3a 20 78 54 61 62 65 6c 2c 78 2c 20 74 54 61 62 65 6c 2c 74 0d   ┆read 'logo': xTabel,x, tTabel,t ┆
0x009000…009200 (2, 0, 13)  06 74 54 61 62 65 6c 07 c3 06 1e 50 b8 72 42 8e 06 78 54 61 62 65 6c 00 e8 97 2a e8 66 0c 58 1f   ┆ tTabel    P rB  xTabel   * f X ┆
0x009200…009400 (2, 0, 14)  2f 2f 20 4d 6f 64 65 6c 20 3a 20 46 69 74 0d 0a 0d 0a 74 4d 6f 64 65 6c 20 3a 3d 74 4d 6f 64 65   ┆// Model : Fit    tModel :=tMode┆
0x009400…009600 (2, 0, 15)  72 65 61 64 20 27 77 72 54 61 62 65 6c 27 3a 20 78 54 61 62 65 6c 2c 78 2c 20 74 54 61 62 65 6c   ┆read 'wrTabel': xTabel,x, tTabel┆
0x009600…009800 (2, 1, 1)   06 74 4d 6f 64 65 6c 07 c3 06 1e 50 b8 72 42 8e 06 76 65 6a 66 69 74 00 e8 97 2a e8 66 0c 58 1f   ┆ tModel    P rB  vejfit   * f X ┆
0x009800…009a00 (2, 1, 2)   2f 2f 20 4d 6f 64 65 6c 20 3a 20 43 6f 65 66 66 0d 0a 0d 0a 74 4d 6f 64 65 6c 20 3a 3d 74 4d 6f   ┆// Model : Coeff    tModel :=tMo┆
0x009a00…009c00 (2, 1, 3)   72 65 61 64 20 27 77 72 54 61 62 65 6c 27 3a 20 78 54 61 62 65 6c 2c 78 2c 20 74 54 61 62 65 6c   ┆read 'wrTabel': xTabel,x, tTabel┆
0x009c00…009e00 (2, 1, 4)   06 74 4d 6f 64 65 6c 07 c3 06 1e 50 b8 72 42 8e 06 76 65 6a 66 69 74 00 e8 97 2a e8 66 0c 58 1f   ┆ tModel    P rB  vejfit   * f X ┆
0x009e00…00a000 (2, 1, 5)   50 6f 69 6e 74 73 20 31 38 0d 0a 56 61 72 69 61 62 6c 65 73 20 58 2c 54 0d 0a 1a 1a 1a 1a 1a 1a   ┆Points 18  Variables X,T        ┆
0x00a000…00a200 (2, 1, 6)   81 fe ff ff ff 5f 80 00 00 00 00 00 81 32 33 33 33 33 81 00 00 00 00 00 81 32 33 33 33 13 81 00   ┆     _       23333       2333   ┆
0x00a200…00a400 (2, 1, 7)   56 45 4a 54 49 44 31 20 4d 4f 44 20 00 00 00 00 00 00 00 00 00 00 00 08 21 14 37 00 53 00 00 00   ┆VEJTID1 MOD             ! 7 S   ┆
0x00a400…00a600 (2, 1, 8)   2f 2f 20 4d 6f 64 65 6c 20 3a 20 56 65 6a 54 69 64 31 0d 0a 0d 0a 76 65 6a 3a 3d 66 69 74 28 74   ┆// Model : VejTid1    vej:=fit(t┆
0x00a600…00a800 (2, 1, 9)   72 65 61 64 20 27 76 65 6a 74 69 64 27 3a 74 2c 74 2c 79 2c 79 0d 0a 63 20 3a 3d 20 63 6f 65 66   ┆read 'vejtid':t,t,y,y  c := coef┆
0x00a800…00aa00 (2, 1, 10)  01 74 20 00 75 b2 ff 76 a8 56 57 8d 46 ae 50 e8 01 79 4c 4e fb 33 c0 a3 65 73 a3 75 7b a3 77 7b   ┆ t  u  v VW F P  yLN 3  es uæ wæ┆
0x00aa00…00ac00 (2, 1, 11)  2f 2f 20 4d 6f 64 65 6c 20 3a 20 56 65 6a 54 69 64 32 0d 0a 0d 0a 76 65 6a 3a 3d 66 69 74 28 74   ┆// Model : VejTid2    vej:=fit(t┆
0x00ac00…00ae00 (2, 1, 12)  72 65 61 64 20 27 76 65 6a 74 69 64 27 3a 74 2c 74 2c 79 2c 79 0d 0a 6b 6f 65 66 31 3a 3d 63 6f   ┆read 'vejtid':t,t,y,y  koef1:=co┆
0x00ae00…00b000 (2, 1, 13)  01 74 20 00 75 b2 ff 76 a8 56 57 8d 46 ae 50 e8 01 79 4c 4e fb 33 c0 a3 65 73 a3 75 7b a3 77 7b   ┆ t  u  v VW F P  yLN 3  es uæ wæ┆
0x00b000…00b200 (2, 1, 14)  50 6f 69 6e 74 73 20 34 30 0d 0a 56 61 72 69 61 62 6c 65 73 20 54 2c 59 52 0d 0a 1a 1a 1a 1a 1a   ┆Points 40  Variables T,YR       ┆
0x00b200…00b400 (2, 1, 15)  7c cc cc cc cc 4c 81 36 e6 4e d2 0a 7d cc cc cc cc 4c 81 de eb 3b 47 0c 7e 99 99 99 99 19 81 f6   ┆ø    L 6 N  å    L   ;G ü       ┆
0x00b400…00b600 (3, 0, 1)   2f 2f 20 4d 6f 64 65 6c 20 3a 20 54 69 6c 70 61 73 31 0d 0a 0d 0a 74 6c 20 20 20 20 20 3a 3d 20   ┆// Model : Tilpas1    tl     := ┆
0x00b600…00b800 (3, 0, 2)   78 20 3a 3d 20 61 72 72 61 79 5b 36 5d 28 30 2e 31 32 2c 30 2e 32 30 2c 30 2e 33 32 2c 30 2e 34   ┆x := arrayÆ6Å(0.12,0.20,0.32,0.4┆
0x00b800…00ba00 (3, 0, 3)   02 74 6c 62 fe ff 01 02 4e 0f 23 00 c9 1e 62 43 06 76 65 6a 69 6e 74 2c 35 30 39 2c 71 1e 62 43   ┆ tlb    N #   bC vejint,509,q bC┆
0x00ba00…00bc00 (3, 0, 4)   78 20 20 2c 20 74 0d 0a 30 2e 31 32 20 30 2e 31 35 0d 0a 30 2e 32 30 20 30 2e 32 31 0d 0a 30 2e   ┆x  , t  0.12 0.15  0.20 0.21  0.┆
0x00bc00…00be00 (3, 0, 5)   50 6f 69 6e 74 73 20 20 20 20 20 20 36 0d 0a 56 61 72 69 61 62 6c 65 73 20 58 20 20 2c 20 54 0d   ┆Points      6  Variables X  , T ┆
0x00be00…00c000 (3, 0, 6)   7d 28 5c 8f c2 75 7e 99 99 99 99 19 7e cc cc cc cc 4c 7e a3 70 3d 0a 57 7f 70 3d 0a d7 23 7f 00   ┆å(Ø  uü     ü    Lü p= W p=  #  ┆
0x00c000…00c200 (3, 0, 7)   2f 2f 20 4d 6f 64 65 6c 20 3a 20 54 69 6c 70 61 73 32 0d 0a 0d 0a 74 6c 20 20 20 20 20 3a 3d 20   ┆// Model : Tilpas2    tl     := ┆
0x00c200…00c400 (3, 0, 8)   72 65 61 64 20 27 74 69 6c 70 61 73 27 3a 20 78 2c 78 2c 20 74 2c 74 0d 0a 64 74 6c 20 3a 3d 20   ┆read 'tilpas': x,x, t,t  dtl := ┆
0x00c400…00c600 (3, 0, 9)   54 49 4c 50 41 53 32 20 50 41 52 20 00 00 00 00 00 00 00 00 00 00 00 08 21 14 48 00 70 00 00 00   ┆TILPAS2 PAR             ! H p   ┆
0x00c600…00c800 (3, 0, 10)  02 74 6c 62 fe ff 01 02 4e 0f 23 00 c9 1e 62 43 06 76 65 6a 69 6e 74 2c 35 30 39 2c 71 1e 62 43   ┆ tlb    N #   bC vejint,509,q bC┆
0x00c800…00ca00 (3, 0, 11)  2f 2f 20 4d 6f 64 65 6c 20 3a 20 42 6f 79 6c 65 66 69 74 0d 0a 0d 0a 69 6e 76 50 66 69 74 20 3a   ┆// Model : Boylefit    invPfit :┆
0x00ca00…00cc00 (3, 0, 12)  72 65 61 64 20 27 62 6f 79 6c 65 27 3a 20 6c 2c 6c 2c 20 70 2c 61 0d 0a 69 6e 76 70 3a 3d 20 61   ┆read 'boyle': l,l, p,a  invp:= a┆
0x00cc00…00ce00 (3, 0, 13)  01 6c 6d 00 00 00 00 00 00 00 00 00 00 00 00 00 04 70 46 69 74 00 00 00 00 00 00 00 00 00 00 00   ┆ lm              pFit           ┆
0x00ce00…00d000 (3, 0, 14)  20 4c 2c 20 20 20 20 20 20 41 0d 0a 20 20 20 20 20 30 2e 31 35 33 30 30 20 20 20 20 2d 30 2e 37   ┆ L,      A       0.15300    -0.7┆
0x00d000…00d200 (3, 0, 15)  50 6f 69 6e 74 73 20 20 20 20 20 31 35 0d 0a 56 61 72 69 61 62 6c 65 73 20 4c 2c 20 20 20 20 20   ┆Points     15  Variables L,     ┆
0x00d200…00d400 (3, 1, 1)   7e 26 31 08 ac 1c 80 33 33 33 33 b3 7e 06 81 95 43 0b 80 99 99 99 99 99 7d 43 8b 6c e7 7b 80 00   ┆ü&1    3333 ü   C       åC l æ  ┆
0x00d400…00d600 (3, 1, 2)   2f 2f 20 4d 6f 64 65 6c 20 3a 20 52 61 64 69 6f 66 69 74 0d 0a 0d 0a 6c 6e 66 69 74 20 3a 3d 20   ┆// Model : Radiofit    lnfit := ┆
0x00d600…00d800 (3, 1, 3)   52 65 61 64 20 27 68 65 6e 66 61 6c 64 27 3a 20 6e 2c 61 2c 20 74 2c 74 0d 0a 6c 6e 6e 20 3a 3d   ┆Read 'henfald': n,a, t,t  lnn :=┆
0x00d800…00da00 (3, 1, 4)   01 74 74 00 00 00 00 00 00 00 00 00 00 00 00 00 01 6e 6e 6e 00 00 00 00 00 00 00 00 00 00 00 00   ┆ tt              nnn            ┆
0x00da00…00dc00 (3, 1, 5)   50 6f 69 6e 74 73 20 34 35 0d 0a 56 61 72 69 61 62 6c 65 73 20 4e 2c 41 2c 54 0d 0a 1a 1a 1a 1a   ┆Points 45  Variables N,A,T      ┆
0x00dc00…00de00 (3, 1, 6)   8a 00 00 00 40 68 87 00 00 00 00 0e 7f 99 99 99 99 19 8a 00 00 00 80 51 87 00 00 00 00 36 80 99   ┆    @h                 Q     6  ┆
0x00de00…00e000 (3, 1, 7)   00 00 00 50 84 2d 33 33 33 0b 87 00 00 00 00 1e 84 00 00 00 00 00 84 f9 ff ff ff 0f 87 00 00 00   ┆   P -333                       ┆
0x00e000…00e200 (3, 1, 8)   2f 2f 20 6d 6f 64 65 6c 3a 20 6d 61 73 66 69 74 32 0d 0a 0d 0a 78 20 20 3a 3d 20 78 20 2b 20 64   ┆// model: masfit2    x  := x + d┆
0x00e200…00e400 (3, 1, 9)   0d 0a 7a 20 20 20 3a 3d 20 61 72 72 61 79 5b 37 5d 28 33 30 2c 33 31 2c 33 32 2c 33 33 2c 33 34   ┆  z   := arrayÆ7Å(30,31,32,33,34┆
0x00e400…00e600 (3, 1, 10)  01 78 00 00 00 00 00 00 00 00 00 00 00 00 00 00 02 79 31 00 00 00 00 00 00 00 00 00 00 00 00 00   ┆ x               y1             ┆
0x00e600…00e800 (3, 1, 11)  2e 20 20 20 20 20 20 20 20 20 20 10 00 00 00 00 00 00 00 00 00 00 31 57 57 61 58 00 00 00 00 00   ┆.                     1WWaX     ┆
0x00e800…00ea00 (3, 1, 12)  2f 2f 20 4d 6f 64 65 6c 20 3a 20 41 63 63 65 6c 65 72 61 0d 0a 0d 0a 64 76 20 3a 3d 20 61 20 2a   ┆// Model : Accelera    dv := a *┆
0x00ea00…00ec00 (3, 1, 13)  61 20 20 3a 3d 20 32 20 20 20 20 20 20 20 20 2f 2f 20 6d 65 74 65 72 2f 73 65 6b 5e 32 0d 0a 76   ┆a  := 2        // meter/sek^2  v┆
0x00ec00…00ee00 (3, 1, 14)  01 74 6c 6f 6b 61 6c 76 a8 56 57 8d 46 ae 50 e8 01 78 6c 6f 6b 61 6c a3 65 73 a3 75 7b a3 77 7b   ┆ tlokalv VW F P  xlokal es uæ wæ┆
0x00ee00…00f000 (3, 1, 15)  2f 2f 20 4d 6f 64 65 6c 20 3a 20 46 6a 65 64 65 72 0d 0a 0d 0a 61 3a 3d 2d 6b 2a 78 2f 6d 0d 0a   ┆// Model : Fjeder    a:=-k*x/m  ┆
0x00f000…00f200 (4, 0, 1)   6b 3a 3d 35 30 20 20 20 20 20 20 20 20 20 2f 2f 20 6e 65 77 74 6f 6e 2f 6d 65 74 65 72 0d 0a 6d   ┆k:=50         // newton/meter  m┆
0x00f200…00f400 (4, 0, 2)   01 74 21 55 e8 3c ff 8b 7e 04 36 8b 7d 04 36 8b 01 78 36 8b 7d 04 36 8b 7d 04 36 8b 7d 04 36 8a   ┆ t!U <  ü 6 å 6  x6 å 6 å 6 å 6 ┆
0x00f400…00f600 (4, 0, 3)   2f 2f 20 4d 6f 64 65 6c 20 3a 20 46 61 6c 64 0d 0a 0d 0a 64 76 20 3a 3d 20 2d 67 20 2a 20 64 74   ┆// Model : Fald    dv := -g * dt┆
0x00f600…00f800 (4, 0, 4)   6d 20 20 3a 3d 20 31 30 30 20 20 20 20 20 20 2f 2f 20 6b 69 6c 6f 67 72 61 6d 0d 0a 67 20 20 3a   ┆m  := 100      // kilogram  g  :┆
0x00f800…00fa00 (4, 0, 5)   01 74 6c 6f 6b 61 6c 76 a8 56 57 8d 46 ae 50 e8 01 78 6c 6f 6b 61 6c a3 65 73 a3 75 7b a3 77 7b   ┆ tlokalv VW F P  xlokal es uæ wæ┆
0x00fa00…00fc00 (4, 0, 6)   2f 2f 20 4d 6f 64 65 6c 20 3a 20 4b 61 73 74 31 0d 0a 0d 0a 76 20 20 20 3a 3d 20 73 71 72 28 76   ┆// Model : Kast1    v   := sqr(v┆
0x00fc00…00fe00 (4, 0, 7)   6d 20 20 3a 3d 20 32 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2f 2f 20 6b 69 6c 6f 67 72   ┆m  := 2                // kilogr┆
0x00fe00…010000 (4, 0, 8)   01 78 2e 62 fe ff 01 02 4e 0f 23 00 c9 1e 62 43 01 79 62 43 16 30 39 2c 35 30 39 2c 71 1e 62 43   ┆ x.b    N #   bC ybC 09,509,q bC┆
0x010000…010200 (4, 0, 9)   2f 2f 20 4d 6f 64 65 6c 20 3a 20 4b 61 73 74 32 0d 0a 0d 0a 46 78 20 20 3a 3d 20 30 0d 0a 46 79   ┆// Model : Kast2    Fx  := 0  Fy┆
0x010200…010400 (4, 0, 10)  6d 20 20 3a 3d 20 32 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2f 2f 20 6b 69 6c 6f 67 72   ┆m  := 2                // kilogr┆
0x010400…010600 (4, 0, 11)  4b 41 53 54 32 20 20 20 50 41 52 20 00 00 00 00 00 00 00 00 00 00 00 08 21 14 68 00 70 00 00 00   ┆KAST2   PAR             ! h p   ┆
0x010600…010800 (4, 0, 12)  01 78 2e 62 fe ff 01 02 4e 0f 23 00 c9 1e 62 43 01 79 62 43 16 30 39 2c 35 30 39 2c 71 1e 62 43   ┆ x.b    N #   bC ybC 09,509,q bC┆
0x010800…010a00 (4, 0, 13)  2f 2f 20 4d 6f 64 65 6c 20 3a 20 4b 61 73 74 33 0d 0a 0d 0a 66 75 6e 63 20 61 78 0d 0a 20 20 76   ┆// Model : Kast3    func ax    v┆
0x010a00…010c00 (4, 0, 14)  6d 20 20 3a 3d 20 32 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2f 2f 20 6b 69 6c 6f 67 72   ┆m  := 2                // kilogr┆
0x010c00…010e00 (4, 0, 15)  01 78 2e 62 fe ff 01 02 4e 0f 23 00 c9 1e 62 43 01 79 62 43 16 30 39 2c 35 30 39 2c 71 1e 62 43   ┆ x.b    N #   bC ybC 09,509,q bC┆
0x010e00…011000 (4, 1, 1)   2f 2f 20 4d 6f 64 65 6c 20 3a 20 4b 61 73 74 34 0d 0a 0d 0a 78 2c 79 2c 76 78 2c 76 79 3a 3d 20   ┆// Model : Kast4    x,y,vx,vy:= ┆
0x011000…011200 (4, 1, 2)   6d 20 20 3a 3d 20 32 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2f 2f 20 6b 69 6c 6f 67 72   ┆m  := 2                // kilogr┆
0x011200…011400 (4, 1, 3)   01 78 2e 62 fe ff 01 02 4e 0f 23 00 c9 1e 62 43 01 79 62 43 16 30 39 2c 35 30 39 2c 71 1e 62 43   ┆ x.b    N #   bC ybC 09,509,q bC┆
0x011400…011600 (4, 1, 4)   2f 2f 20 4d 6f 64 65 6c 20 3a 20 47 72 61 76 69 74 61 31 0d 0a 0d 0a 72 61 20 20 3a 3d 20 78 2a   ┆// Model : Gravita1    ra  := x*┆
0x011600…011800 (4, 1, 5)   4d 20 3a 3d 20 35 2e 39 37 65 32 34 20 20 20 20 2f 2f 20 6b 67 0d 0a 47 20 3a 3d 20 36 2e 36 37   ┆M := 5.97e24    // kg  G := 6.67┆
0x011800…011a00 (4, 1, 6)   01 78 20 00 75 b2 ff 76 a8 56 57 8d 46 ae 50 e8 01 79 61 6e fb 33 c0 a3 65 73 a3 75 7b a3 77 7b   ┆ x  u  v VW F P  yan 3  es uæ wæ┆
0x011a00…011c00 (4, 1, 7)   2f 2f 20 4d 6f 64 65 6c 20 3a 20 47 72 61 76 69 74 61 32 0d 0a 0d 0a 66 75 6e 63 20 61 28 78 2c   ┆// Model : Gravita2    func a(x,┆
0x011c00…011e00 (4, 1, 8)   4d 20 3a 3d 20 35 2e 39 37 65 32 34 20 20 20 20 2f 2f 20 6b 67 0d 0a 47 20 3a 3d 20 36 2e 36 37   ┆M := 5.97e24    // kg  G := 6.67┆
0x011e00…012000 (4, 1, 9)   01 78 20 00 75 b2 ff 76 a8 56 57 8d 46 ae 50 e8 01 79 61 6e fb 33 c0 a3 65 73 a3 75 7b a3 77 7b   ┆ x  u  v VW F P  yan 3  es uæ wæ┆
0x012000…012200 (4, 1, 10)  2f 2f 20 4d 6f 64 65 6c 20 3a 20 43 6f 75 6c 6f 6d 62 31 0d 0a 0d 0a 72 20 20 3a 3d 20 73 71 72   ┆// Model : Coulomb1    r  := sqr┆
0x012200…012400 (4, 1, 11)  6d 20 3a 3d 20 36 2e 36 34 45 2d 32 37 20 20 20 20 20 20 20 20 20 20 2f 2f 20 6b 67 0d 0a 71 31   ┆m := 6.64E-27          // kg  q1┆
0x012400…012600 (4, 1, 12)  01 78 20 00 75 b2 ff 76 a8 56 57 8d 46 ae 50 e8 01 79 61 6e fb 33 c0 a3 65 73 a3 75 7b a3 77 7b   ┆ x  u  v VW F P  yan 3  es uæ wæ┆
0x012600…012800 (4, 1, 13)  43 4f 55 4c 4f 4d 42 32 4d 4f 44 20 00 00 00 00 00 00 00 00 00 00 00 08 21 14 79 00 b3 00 00 00   ┆COULOMB2MOD             ! y     ┆
0x012800…012a00 (4, 1, 14)  2f 2f 20 4d 6f 64 65 6c 20 3a 20 43 6f 75 6c 6f 6d 62 32 0d 0a 0d 0a 66 75 6e 63 20 61 28 78 2c   ┆// Model : Coulomb2    func a(x,┆
0x012a00…012c00 (4, 1, 15)  6d 20 3a 3d 20 36 2e 36 34 45 2d 32 37 20 20 20 20 20 20 20 20 20 20 2f 2f 20 6b 69 6c 6f 67 72   ┆m := 6.64E-27          // kilogr┆
0x012c00…012e00 (5, 0, 1)   01 78 20 00 75 b2 ff 76 a8 56 57 8d 46 ae 50 e8 01 79 61 6e fb 33 c0 a3 65 73 a3 75 7b a3 77 7b   ┆ x  u  v VW F P  yan 3  es uæ wæ┆
0x012e00…013000 (5, 0, 2)   2f 2f 20 4d 6f 64 65 6c 20 3a 20 42 6f 6c 64 31 0d 0a 0d 0a 78 2c 79 2c 76 79 20 3a 3d 20 69 6e   ┆// Model : Bold1    x,y,vy := in┆
0x013000…013200 (5, 0, 3)   67 3a 3d 20 39 2e 38 32 20 20 20 20 20 20 20 20 2f 2f 20 6d 65 74 65 72 2f 73 65 6b 5e 32 0d 0a   ┆g:= 9.82        // meter/sek^2  ┆
0x013200…013400 (5, 0, 4)   0a 68 31 3a 69 6e 74 65 67 72 61 74 65 20 3a 3d 20 65 75 6c 65 72 0d 0a 68 32 3a 69 6e 74 65 67   ┆ h1:integrate := euler  h2:integ┆
0x013400…013600 (5, 0, 5)   01 78 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 79 00 00 00 00 00 00 00 00 00 00 00 00 00 00   ┆ x               y              ┆
0x013600…013800 (5, 0, 6)   2f 2f 20 4d 6f 64 65 6c 20 3a 20 42 6f 6c 64 32 0d 0a 0d 0a 79 20 3a 3d 20 79 30 2b 56 30 79 2a   ┆// Model : Bold2    y := y0+V0y*┆
0x013800…013a00 (5, 0, 7)   01 78 78 00 00 00 00 00 00 00 00 00 00 00 00 00 01 79 00 00 00 00 00 00 00 00 00 00 00 00 00 00   ┆ xx              y              ┆
0x013a00…013c00 (5, 0, 8)   67 20 3a 3d 20 31 30 20 20 20 20 20 20 20 20 20 20 2f 2f 20 6d 65 74 65 72 2f 73 65 6b 5e 32 0d   ┆g := 10          // meter/sek^2 ┆
0x013c00…013e00 (5, 0, 9)   0d 0a 0d 0a 0d 0a 0d 0a 0d 0a 0d 0a 0d 0a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a   ┆                                ┆
0x013e00…014000 (5, 0, 10)  2f 2f 20 4d 6f 64 65 6c 20 3a 20 42 6f 6c 64 33 0d 0a 0d 0a 79 20 3a 3d 20 79 30 2b 56 30 79 2a   ┆// Model : Bold3    y := y0+V0y*┆
0x014000…014200 (5, 0, 11)  67 20 3a 3d 20 31 30 20 20 20 20 20 20 20 20 2f 2f 20 6d 65 74 65 72 2f 73 65 6b 5e 32 0d 0a 0d   ┆g := 10        // meter/sek^2   ┆
0x014200…014400 (5, 0, 12)  30 78 3a 3d 20 28 56 78 2a 28 31 2d 61 2a 61 29 2b 32 2a 61 2a 56 79 29 2f 28 31 2b 61 2a 61 29   ┆0x:= (Vx*(1-a*a)+2*a*Vy)/(1+a*a)┆
0x014400…014600 (5, 0, 13)  01 78 78 00 00 00 00 00 00 00 00 00 00 00 00 00 01 79 00 00 00 00 00 00 00 00 00 00 00 00 00 00   ┆ xx              y              ┆
0x014600…014800 (5, 0, 14)  2f 2f 20 4d 6f 64 65 6c 20 3a 20 48 65 6e 66 61 6c 64 30 0d 0a 0d 0a 41 20 20 3a 3d 20 4e 20 2a   ┆// Model : Henfald0    A  := N *┆
0x014800…014a00 (5, 0, 15)  4e 20 20 3a 3d 20 30 2e 33 32 20 20 20 20 20 20 20 20 2f 2f 20 6d 6f 6c 20 47 61 2d 37 36 0d 0a   ┆N  := 0.32        // mol Ga-76  ┆
0x014a00…014c00 (5, 1, 1)   01 74 20 00 75 b2 ff 76 a8 56 57 8d 46 ae 50 e8 01 4e 31 4e fb 33 c0 a3 65 73 a3 75 7b a3 77 7b   ┆ t  u  v VW F P  N1N 3  es uæ wæ┆
0x014c00…014e00 (5, 1, 2)   2f 2f 20 4d 6f 64 65 6c 20 3a 20 48 65 6e 66 61 6c 64 31 0d 0a 0d 0a 4e 31 20 3a 3d 20 4e 31 20   ┆// Model : Henfald1    N1 := N1 ┆
0x014e00…015000 (5, 1, 3)   48 45 4e 46 41 4c 44 31 56 52 44 20 00 00 00 00 00 00 00 00 00 00 00 08 21 14 8d 00 7c 00 00 00   ┆HENFALD1VRD             !   ø   ┆
0x015000…015200 (5, 1, 4)   6b 31 20 3a 3d 20 30 2e 31 32 32 20 20 20 20 20 20 20 20 20 2f 2f 20 31 2f 73 65 6b 0d 0a 6b 32   ┆k1 := 0.122         // 1/sek  k2┆
0x015200…015400 (5, 1, 5)   01 74 20 00 75 b2 ff 76 a8 56 57 8d 46 ae 50 e8 02 4e 31 4e fb 33 c0 a3 65 73 a3 75 7b a3 77 7b   ┆ t  u  v VW F P  N1N 3  es uæ wæ┆
0x015400…015600 (5, 1, 6)   2f 2f 20 4d 6f 64 65 6c 20 3a 20 48 65 6e 66 61 6c 64 32 0d 0a 0d 0a 4e 31 2c 4e 32 2c 4e 33 3a   ┆// Model : Henfald2    N1,N2,N3:┆
0x015600…015800 (5, 1, 7)   6b 31 20 3a 3d 20 30 2e 31 32 32 20 20 20 20 20 20 20 2f 2f 20 31 2f 73 65 6b 0d 0a 6b 32 20 3a   ┆k1 := 0.122       // 1/sek  k2 :┆
0x015800…015a00 (5, 1, 8)   01 74 20 00 75 b2 ff 76 a8 56 57 8d 46 ae 50 e8 02 4e 31 4e fb 33 c0 a3 65 73 a3 75 7b a3 77 7b   ┆ t  u  v VW F P  N1N 3  es uæ wæ┆
0x015a00…015c00 (5, 1, 9)   2f 2f 20 4d 6f 64 65 6c 20 3a 20 48 65 6e 66 61 6c 64 33 0d 0a 0d 0a 41 20 3a 3d 20 30 0d 0a 46   ┆// Model : Henfald3    A := 0  F┆
0x015c00…015e00 (5, 1, 10)  4b 65 72 6e 65 20 3a 3d 20 61 72 72 61 79 5b 31 30 30 30 5d 20 20 20 20 2f 2f 20 73 74 6b 0d 0a   ┆Kerne := arrayÆ1000Å    // stk  ┆
0x015e00…016000 (5, 1, 11)  01 74 74 00 00 00 00 00 00 00 00 00 00 00 00 00 01 41 00 00 00 00 00 00 00 00 00 00 00 00 00 00   ┆ tt              A              ┆
0x016000…016200 (5, 1, 12)  2f 2f 20 4d 6f 64 65 6c 20 3a 20 48 65 6e 66 61 6c 64 34 0d 0a 0d 0a 41 20 3a 3d 20 30 0d 0a 46   ┆// Model : Henfald4    A := 0  F┆
0x016200…016400 (5, 1, 13)  4b 65 72 6e 65 20 3a 3d 20 61 72 72 61 79 5b 31 30 30 30 5d 20 20 20 20 20 2f 2f 20 73 74 6b 0d   ┆Kerne := arrayÆ1000Å     // stk ┆
0x016400…016600 (5, 1, 14)  01 74 74 00 00 00 00 00 00 00 00 00 00 00 00 00 01 41 00 00 00 00 00 00 00 00 00 00 00 00 00 00   ┆ tt              A              ┆
0x016600…016800 (5, 1, 15)  2f 2f 20 4d 6f 64 65 6c 20 3a 20 53 70 2d 4b 69 6c 64 65 0d 0a 0d 0a 74 20 20 3a 3d 20 74 20 2b   ┆// Model : Sp-Kilde    t  := t +┆
0x016800…016a00 (6, 0, 1)   64 74 20 3a 3d 20 30 2e 30 30 31 20 20 20 20 20 20 20 20 20 20 2f 2f 20 73 65 6b 0d 0a 55 30 20   ┆dt := 0.001          // sek  U0 ┆
0x016a00…016c00 (6, 0, 2)   75 64 74 0d 0a 65 6e 64 66 75 6e 63 0d 0a 0d 0a 68 31 3a 20 6d 20 20 3a 3d 20 6d 20 2b 20 31 3b   ┆udt  endfunc    h1: m  := m + 1;┆
0x016c00…016e00 (6, 0, 3)   01 74 52 00 00 00 00 00 00 00 00 00 00 00 00 00 02 55 79 00 00 00 00 00 00 00 00 00 00 00 00 00   ┆ tR              Uy             ┆
0x016e00…017000 (6, 0, 4)   2f 2f 20 4d 6f 64 65 6c 20 3a 20 52 4c 2d 4b 72 65 64 73 0d 0a 0d 0a 55 52 20 3a 3d 20 52 20 2a   ┆// Model : RL-Kreds    UR := R *┆
0x017000…017200 (6, 0, 5)   52 20 20 3a 3d 20 33 30 20 20 20 20 20 20 20 20 20 20 20 20 2f 2f 20 6f 68 6d 0d 0a 4c 20 20 3a   ┆R  := 30            // ohm  L  :┆
0x017200…017400 (6, 0, 6)   52 4c 2d 4b 52 45 44 53 50 41 52 20 00 00 00 00 00 00 00 00 00 00 00 08 21 14 9f 00 70 00 00 00   ┆RL-KREDSPAR             !   p   ┆
0x017400…017600 (6, 0, 7)   01 74 52 00 00 00 00 00 00 00 00 00 00 00 00 00 01 49 52 00 00 00 00 00 00 00 00 00 00 00 00 00   ┆ tR              IR             ┆
0x017600…017800 (6, 0, 8)   2f 2f 20 4d 6f 64 65 6c 20 52 43 2d 4b 72 31 0d 0a 0d 0a 55 43 20 3a 3d 20 51 20 2f 20 43 0d 0a   ┆// Model RC-Kr1    UC := Q / C  ┆
0x017800…017a00 (6, 0, 9)   52 20 20 3a 3d 20 33 30 20 20 20 20 20 20 20 20 20 20 20 20 2f 2f 20 6f 68 6d 0d 0a 43 20 20 3a   ┆R  := 30            // ohm  C  :┆
0x017a00…017c00 (6, 0, 10)  01 74 52 00 00 00 00 00 00 00 00 00 00 00 00 00 02 55 43 00 00 00 00 00 00 00 00 00 00 00 00 00   ┆ tR              UC             ┆
0x017c00…017e00 (6, 0, 11)  2f 2f 20 4d 6f 64 65 6c 20 52 43 2d 4b 72 32 0d 0a 0d 0a 66 75 6e 63 20 49 28 51 29 0d 0a 20 20   ┆// Model RC-Kr2    func I(Q)    ┆
0x017e00…018000 (6, 0, 12)  52 20 20 3a 3d 20 33 30 20 20 20 20 20 20 20 20 20 20 20 20 2f 2f 20 6f 68 6d 0d 0a 43 20 20 3a   ┆R  := 30            // ohm  C  :┆
0x018000…018200 (6, 0, 13)  01 74 52 00 00 00 00 00 00 00 00 00 00 00 00 00 02 55 43 00 00 00 00 00 00 00 00 00 00 00 00 00   ┆ tR              UC             ┆
0x018200…018400 (6, 0, 14)  2f 2f 20 4d 6f 64 65 6c 20 3a 20 52 4c 43 2d 4b 72 31 0d 0a 0d 0a 55 43 20 3a 3d 20 51 20 2f 20   ┆// Model : RLC-Kr1    UC := Q / ┆
0x018400…018600 (6, 0, 15)  52 20 20 3a 3d 20 33 30 20 20 20 20 20 20 20 20 20 20 20 20 2f 2f 20 6f 68 6d 0d 0a 43 20 20 3a   ┆R  := 30            // ohm  C  :┆
0x018600…018800 (6, 1, 1)   01 74 52 00 00 00 00 00 00 00 00 00 00 00 00 00 01 49 52 00 00 00 00 00 00 00 00 00 00 00 00 00   ┆ tR              IR             ┆
0x018800…018a00 (6, 1, 2)   2f 2f 20 4d 6f 64 65 6c 20 3a 20 52 4c 43 2d 4b 72 32 0d 0a 0d 0a 66 75 6e 63 20 55 4c 28 51 2c   ┆// Model : RLC-Kr2    func UL(Q,┆
0x018a00…018c00 (6, 1, 3)   52 20 20 3a 3d 20 33 30 20 20 20 20 20 20 20 20 20 20 20 20 2f 2f 20 6f 68 6d 0d 0a 43 20 20 3a   ┆R  := 30            // ohm  C  :┆
0x018c00…018e00 (6, 1, 4)   01 74 52 00 00 00 00 00 00 00 00 00 00 00 00 00 01 49 52 00 00 00 00 00 00 00 00 00 00 00 00 00   ┆ tR              IR             ┆
0x018e00…019000 (6, 1, 5)   2f 2f 20 4d 6f 64 65 6c 20 3a 20 49 6e 64 73 76 69 6e 67 0d 0a 0d 0a 66 75 6e 63 20 55 4c 0d 0a   ┆// Model : Indsving    func UL  ┆
0x019000…019200 (6, 1, 6)   52 20 20 3a 3d 20 32 30 20 20 20 20 20 20 20 20 20 20 20 20 2f 2f 20 6f 68 6d 0d 0a 43 20 20 3a   ┆R  := 20            // ohm  C  :┆
0x019200…019400 (6, 1, 7)   01 74 52 00 00 00 00 00 00 00 00 00 00 00 00 00 01 49 52 00 00 00 00 00 00 00 00 00 00 00 00 00   ┆ tR              IR             ┆
0x019400…019600 (6, 1, 8)   2e 20 20 20 20 20 20 20 20 20 20 10 00 00 00 00 00 00 00 00 00 00 3b 58 57 61 af 00 00 00 00 00   ┆.                     ;XWa      ┆
0x019600…019800 (6, 1, 9)   2f 2f 20 4d 6f 64 65 6c 20 3a 20 42 6f 65 6c 67 65 31 0d 0a 0d 0a 78 20 20 3a 3d 20 78 20 2b 20   ┆// Model : Boelge1    x  := x + ┆
0x019800…019a00 (6, 1, 10)  64 78 20 3a 3d 20 30 2e 30 35 0d 0a 41 20 20 3a 3d 20 32 2e 35 0d 0a 46 6f 72 20 4c 20 3a 3d 20   ┆dx := 0.05  A  := 2.5  For L := ┆
0x019a00…019c00 (6, 1, 11)  01 78 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 79 00 00 00 00 00 00 00 00 00 00 00 00 00 00   ┆ x               y              ┆
0x019c00…019e00 (6, 1, 12)  2f 2f 20 4d 6f 64 65 6c 20 3a 20 42 6f 65 6c 67 65 32 0d 0a 0d 0a 78 20 3a 3d 20 78 20 2b 20 64   ┆// Model : Boelge2    x := x + d┆
0x019e00…01a000 (6, 1, 13)  64 78 20 3a 3d 20 30 2e 30 35 0d 0a 41 20 20 3a 3d 20 32 0d 0a 4c 20 20 3a 3d 20 33 0d 0a 54 30   ┆dx := 0.05  A  := 2  L  := 3  T0┆
0x01a000…01a200 (6, 1, 14)  01 78 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 79 00 00 00 00 00 00 00 00 00 00 00 00 00 00   ┆ x               y              ┆
0x01a200…01a400 (6, 1, 15)  2f 2f 20 4d 6f 64 65 6c 20 3a 20 53 74 61 61 65 6e 64 65 0d 0a 0d 0a 78 20 20 3a 3d 20 78 20 2b   ┆// Model : Staaende    x  := x +┆
0x01a400…01a600 (7, 0, 1)   64 78 20 3a 3d 20 30 2e 30 35 20 20 20 20 20 20 20 2f 2f 20 6d 65 74 65 72 0d 0a 64 74 20 3a 3d   ┆dx := 0.05       // meter  dt :=┆
0x01a600…01a800 (7, 0, 2)   01 78 00 00 00 00 00 00 00 00 00 00 00 00 00 00 02 79 31 00 00 00 00 00 00 00 00 00 00 00 00 00   ┆ x               y1             ┆
0x01a800…01aa00 (7, 0, 3)   2f 2f 20 4d 6f 64 65 6c 20 3a 20 53 76 61 65 76 6e 69 6e 0d 0a 0d 0a 79 31 20 3a 3d 20 31 2e 35   ┆// Model : Svaevnin    y1 := 1.5┆
0x01aa00…01ac00 (7, 0, 4)   64 74 20 3a 3d 20 30 2e 30 32 20 20 20 20 20 20 20 2f 2f 20 73 65 6b 0d 0a 41 20 20 3a 3d 20 31   ┆dt := 0.02       // sek  A  := 1┆
0x01ac00…01ae00 (7, 0, 5)   01 74 00 00 00 00 00 00 00 00 00 00 00 00 00 00 02 79 31 00 00 00 00 00 00 00 00 00 00 00 00 00   ┆ t               y1             ┆
[…truncated at 200 lines…]