DataMuseum.dk

Presents historical artifacts from the history of:

CR80 Wang WCS documentation floppies

This is an automatic "excavation" of a thematic subset of
artifacts from Datamuseum.dk's BitArchive.

See our Wiki for more about CR80 Wang WCS documentation floppies

Excavated with: AutoArchaeologist - Free & Open Source Software.


top - download

⟦154d2b7c6⟧ Wang Wps File

    Length: 16950 (0x4236)
    Types: Wang Wps File
    Notes: Air Canada Proposal       
    Names: »2043A «

Derivation

└─⟦729cc255f⟧ Bits:30006258 8" Wang WCS floppy, CR 0158A
    └─ ⟦this⟧ »2043A « 

WangText

…09……00……00……00……00……0b……02……00……00……0b… …0a……09……0a……86…1         …02…   …02…   …02…   …02…                                           
                                                           
                                                  APPENDIX B
                               Page #
                                                  Apr. 29, 1982




         M̲a̲j̲o̲r̲ ̲C̲o̲n̲t̲r̲a̲c̲t̲ ̲A̲w̲a̲r̲d̲s̲


         Four major contracts, NICS-TARE, FIKS, CAMPS, and LME-NET,
         are described below in some detail.  Each of these
         major computer system contracts are based on the Christian
         Rovsing CR80 computer.  Air Canada is invited to contact
         the respective company or organisation.


         o   Project:     NICS-TARE

                          Communications Front-end Processors
                     for
                          Message Switching Network

             Customer:    NATO Integrated Communications System
                          Management Agency, Brussels,Belgium

             Prime Con-   Litton Data Systems Inc.
             tractor:     Van Nuys,California.


             CRA Sub
             -contract
             value:       Approx. $6 Mio

             Programme
             Duration:    36 months (1976-1979)                  

         o   Project:     FIKS
                          Defence Integrated Communications
                     System

             Customer:    Danish Ministry of Defense

             Prime Con
             -tractror:   Christian Rovsing

             Contract
             Value:       Approx. $ 7 Mio.

             Programme
             Duration:    48 months (1978-81)


         o   Project:     CAMPS
                          Computer-aided Message Processing
                     System

             Customer:    NATO-SHAPE,Brussels,Belgium.…86…1    
                 …02…   …02…   …02…   …02…    …02…                             
                     
             Prime Con-
             tractor:                                            Christian
                                                                 Rovsing

             Contract
             Value:                                              Approx.
                                                                 $30
                                                                 Mio.

             Programme
             Duration:                                           46
                                                                 months
                                                                 (1980-1983)


         o   Project:                                            LME-NET

             Customer:                                           L.M.Ericsson,Stockholm,Sweden.

             Prime Con
             -tractor:                                           Christian
                                                                 Rovsing

             Contract
             Value:                                              Approx.
                                                                 $
                                                                 4.5
                                                                 Mio.

             Programme
             Duration:                                           48
                                                                 months
                                                                 (1979-1983)…86…1
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 …02…
                                                                 
                                                                 
                                                                 …02…
                                                                 
                                                                 
                                                                 …02…
                                                                 
                                                                 
                                                                 …02…
                                                                 
                                                                 
                                                                 
                                                                 …02…
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
         o   N̲I̲C̲S̲-̲T̲A̲R̲E̲ ̲N̲A̲T̲O̲ ̲T̲e̲l̲e̲g̲r̲a̲p̲h̲ ̲A̲u̲t̲o̲m̲a̲t̲e̲d̲ ̲R̲e̲l̲a̲y̲ ̲E̲q̲u̲i̲p̲m̲e̲n̲t̲

             A rigorous and competitive evaluation of various
             front-end communication processors was conducted
             by Litton's Data Systems Division to satisfy NICSMA's
             stringent operational and realiability requirements
             for TARE.  A CR80-based configuration was chosen
             based on the criteria of traffic handling, expandability,
             reliability and cost.

             The dualised configuration consists of dual "CR
             COMPROCESSORS", two groups of line termination
             units, and dual data-channel interfaces to the
             TARE Message Processors.  The modularity and distributed
             processing aspects are apparent in the use of repetitive
             functional units around a multi-level data transfer
             bus structure. (see figure I B-1).

             Christian Rovsing has developed a customised configuration
             to NICSMA specifications and is currently in production
             for 20 dual-processors and associated line termination
             sub-systems each of them capable of up to 163 line
             connections.  Several prototype systems have been
             delivered and successfully tested.

             In addition to supplying the complete front-end
             configuration, Christian Rovsing also assumed responsibility
             for the definition, system design, and implementation
             of the NICS-TARE line coordination protocols, buffering
             and other communication preprocessing functions.

             Our U.S. subsidiary, Christian Rovsing Corp., assumed
             a major coordination role in supporting Litton
             NICS-TARE effort.

             A brief description of the TARE COMPROCESSOR subsystem
             and its major functional role now follows.


















































Fig. B-1…86…1         …02…   …02…   …02…   …02…                                         
  
             The TARE Communication Processor Subsystem is a
             fully-redundant front-end serving as concentrator
             and pre-processor for a maximum of 163 lines. 
             It interfaces the network to the Litton L3050 Message
             Processors.  A line-splitter assembly routes the
             lines to two CP's.  Both synchronous (2400 baud)
             and asynchronous (600 baud) channels are accomodated.
              Synchronous lines are controlled through an EDC
             protocol (LITSYNC).

             Message pre-processing is performed by a Multiplexer
             Processor and a Communications Processors; both
             are duplicated in the redundant configuration.
              The Multiplexer performs the line polling.  The
             Comprocessor does the message processing and manages
             the interface to the Message Processor; message
             processing functions include character sequence
             recognition, alphabet translation, channel, error
             recognition and EDC protocol management, security
             checking, and message sector assembly and distribution.

             The CR80 Communication Processor is a distributed
             minicomputer system specifically designed as a
             communications line concentrator and pre-processor.
              Of recent design and employing a modular architecture,
             it provides TARE with a flexible front-end for
             individual line terminations, multiplexing and
             character-orientated data processing, communication
             line characteristics such as speed, synchronisation,
             distortion, timeout, bit sampling, character and
             block assembly are completely divorced from the
             L3050 Message Processors.

             Extensive use of LSI contributes to the versatility
             of the microprocessor controlled line termination
             units.  These form an integral part of the front-end
             system and provide an interface to a variety of
             line types for the interchange of data, control,
             and timing signals.

             The impact of LSI on weight, size and power is
             clearly demonstrated by the compact hardware packaging.
             (See Fig. I  B-2)
             Of particular significance is the cost reduction
             realisable by LSI.


















































Fig. B-2…86…1         …02…   …02…   …02…   …02…                                         
  
         Of particular significance is the cost reduction realisable
         by LSI. By way of illustration, note that it was economically
         feasible to duplicate entire line termination units
         to route traffice to both the active and hot stand-by
         processors thus allowing on-line switchover without
         loss of data.…86…1         …02…   …02…   …02…   …02…                  
                                 
         o   F̲I̲K̲S̲ ̲D̲e̲f̲e̲n̲c̲e̲ ̲I̲n̲t̲e̲g̲r̲a̲t̲e̲d̲ ̲C̲o̲m̲m̲u̲n̲i̲c̲a̲t̲i̲o̲n̲ ̲S̲y̲s̲t̲e̲m̲

             FIKS is Denmark's tri-service defence communications
             network.  Its objective is to integrate, automate
             and upgrade teletype command networks and data
             communications systems previously operated by the
             army, navy, and the air force.

             Christian Rovsing and the Danish Air Material Command
             jointly developed the top-level system specification
             and a contract was awarded early in 1978.  The
             specification covers design, development, installation
             and cut-over of a common nodal network for message
             and data traffic.  When completed, FIKS will provide
             higher survivability, improved security, greater
             efficiency, simpler operation and easier expansion
             through computerisation.

             FIKS integrates and fully automates the message
             switching and data transfer functions.  It consists
             of a multi-node network geographically distributed
             throughout Denmark.  As initially structured, 8
             nodes are arranged in a grid configuration and
             interconnected via 15 full-duplex trunks operating
             at 9.6 kilobaud per line.

             Message and data traffic are interchanged between
             military users under control of computerised nodal
             switching centres.  Message users at remote terminals
             are served through COMCENTERs some of which are
             co-located at the nodes.

             Message traffic rates range from low-speed 50 baud
             to medium-speed 2400 baud.  FIKS is sized to handle
             a throughput of 25,000 messages per busy hour including
             messages entering the network, multiple distribution
             of messages, retrievals, service messages and a
             25% allowance for growth.

             Data users, continuous or discontinuous, exchange
             information through the FIKS network.  Typical
             data users are military data systems which relate
             to air defence, air traffic control, intelligence
             and command nets such as LINK-1, LOW-LEVEL RADAR,
             TVT EXTRACTORS, ACBA-CCIS, TOSCA, FLY-PEP, CHODDEN,
             and INTEL.


             The FIKS network interfaces to NICS-TARE through
             compatible circuits and protocols.  Also, access
             to the Nordic Public Data Network, NPDN, is provided
             using CCITT X.21 for circuit-switched calls and
             conversion to X.25 for virtual calls, this interface
             is consistent with expansion to higher level X.25
             packet switching.

             To accomodate the navy's unique requirements, ship-to-shore
             secure communications channels are provided through
             the appropriate ground-based comcenters.

             The generic elements of the Nodal Switching Center,
             one of several in the FIKS network, are depicted
             in figure B-3.  Though physically separate, the
             Nodal Switch is shown co-located with the System
             Control Center and the Message Entry and Distribution
             Equipment.

             An abbreviated list of functions performed by the
             system includes:

             -   Message Preparation and Distribution
             -   Simplified and ACP127 Format Handling
             -   Message Storage and Retrieval
             -   Network Supervision and Control
             -   Automatic Switchover and Recovery
             -   Alternate Routing
             -   Traffic and Operational Security.

             A FIKS Site under factory integration and test
             is shown in figure B-4.


















































Fig. B-3…86…1         …02…   …02…   …02…   …02…                                         
  
















































Fig. B-4…86…1         …02…   …02…   …02…   …02…                                         
  
         o   C̲A̲M̲P̲S̲

             Christian Rovsing has contracted with NATO (SHAPE)
             to deliver CAMPS, the Computer Aided Message Processing
             System, on a turn-key basis to a number of sites
             within the NATO theatre.

             CAMPS has two essential functions:

             CAMPS assists the user in message handling, i.e.
             preparation, dispatch and receival of messages,
             and

             CAMPS communicates with data networks, and other
             systems such as SCARS II (Strategic Command and
             Alert Reporting System) and ACE CCIS (Command Control
             Information System).

             There are naturally high demands for reliability
             and security in a system like CAMPS.  These demands
             are met by the hardware and software as an entity.

             The hardware system is based upon the company's
             CR80 computer.  In designing this computer new
             proven technology has been employed.  Reliability
             is further secured by using MIL quality components
             and by subjecting all electronic modules to a burn-in
             cycle (see figure B-5).

             The CAMPS software consists of system programmes
             and application programmes.  The software engineering
             profits from the many experiences the company has
             obtained through the participation in other complex
             message processing and communication systems.

             CAMPS will exchange data with other computer-associated
             handling and communicatio systems. Interface systems
             which exist or are being developed include NATO-TARE
             and Tape Relay Centres plus SCARS II and ACE CCIS.

             The interface design is structured to permit the
             accomadation of newly evolved systems as they are
             introduced.

             The primary format for messages will conform to
             ACP-127 NATO SUPP-3 for all interfaces.

             CCIS and SCARS II will utilise the X-25 data communication
             protocol (CCITT) when interfacing with CAMPS.



         Extensive use of up-to-date technology is required
         to meet the strigent requirements set forth by SHAPE.
         The hardware configuration features distributed autonomous
         processing subsystems made economically feasible by
         LSI (RAM's, PROM's, CPU's, USART's, FIFO's, ALU's,
         etc.). The dualised configuration is partitioned into
         Central Processors, File Management Processors, Main
         Memories, Terminal Data Exchanges, and pre-processor-controlled
         Line Termination Units.

         CAMPS is characterised quantitively by (a) a connectivity
         of 256 full-duplex lines or an equivalent 153, 600
         bytes/second; (b) a 240-megabyte mass storage with
         40-msec access, providing immediate retrieval of 24-hour
         traffic; (c) a peak processing throughput of 30,000
         messages/hour; (d) a cross-office processing time of
         400 msec; (e) a system response time of less than 3
         seconds; and (f), a predicted systems availability
         of 0.999996.

         CAMPS functional requirements deal with message handling,
         message preparation, coordination, and release, message
         distribution, format translation, storage and retrieval,
         supervision control, statistics and reports, protocols,
         and recovery and back-up-techniques. Three aspects
         of CAMPS are depicted by the simplified software description
         shown overleaf. (Figure B-6).

         Of particular significance are: (1) the cost, weight,
         and size reduction achieved by CAMPS, the 6-rack, 12
         KW Hardware represents a drastic reduction compared
         to similar equipment, and (2) the unique security features
         to prevent unauthorized access such as privileged instructions,
         memory bounds, and separate SYSTEM USER states.

         A typical CAMPS installation (see figure B-7) consists
         of the following elements:

         -   Processors and Mass Storage (3-bay Rack)

         -   Line Interface Equipment (4-bay Rack)

         -   Supervisory Console (varying from site to site)

         -   Software Maintenance Equipment

         -   Spares/Tools Cabinet.



         Above equipment complement, which does not include
         the terminal option for remote locations will be installed
         in a secure area dedicated CAMPS.

         The two racks are enclosed by a COMSEC approved cage,
         sufficiently large to allow normal maintanance of the
         central equipment. The cage will be located within
         the secure area so that periodic inspection of the
         cage will furthermore take into consideration the normal
         security requirements of the site in question.…86…1   
              …02…   …02…   …02…   …02…                                    
               
















































Fig. B-5…86…1         …02…   …02…   …02…   …02…                                         
  



















































Fig. B-6…86…1         …02…   …02…   …02…   …02…                                         
  
















































Fig. B-7…86…1         …02…   …02…   …02…   …02…                                         
  
         L̲M̲E̲N̲E̲T̲

         The L.M.Ericsson Data Network is being developed as
         a private data communication network, to cover the
         need within the organisation with regard to data communication
         between data centres and terminal users.

         LMENET is based on the CR80 computer and the first
         phase consists of (see fig B-8 ):

         o   a network centre,

         o   a host interface processor system for connection
             of IBM and UNIVAC computers,

         o   10 switching nodes where traffic is collected and
             directed to the receiver,

         o   a number of leased lines between the nodes, eight
             of which are in Sweden, one in Copenhagen and one
             in Madrid.

         In the later phases, the network will be enlarged with:

         o   more network control centres, which will enable
             certain distributed control parts of the network,

         o   more geographically distributed host interface
             processors, perhaps with interfaces to the other
             machine types (e.g. ICL),

         o   connection via satellite to new nodes (e.g. in
             Brazil).

         o   The LMENET architecture is based on the following
             concept:

         o   A general standardised transport facility is provided.
             The network will follow international standards
             for packet switch data networks, as defined by
             CCITT in the recommendation X.25. This shall enable
             a later connection to public networks and ensure
             the adaptation of LMENET to future standards.

         o   Existing makes of computers and terminals will
             be connected to the general network by means of
             mechanisms in the network which do not require
             modifications of the existing system.



         The above concept will enable a layered construction
         of LMENET following recognised principles of system
         construction in general, and network construction in
         particular (acc. to ISO's seven-layer model for network:
         Open Systems Interconnection Rference Model).

         LMENET has the following functions:

         o   a complete monitoring and control of the network
             independent of host computers connected,

         o   emulation of a network, complying with IBM's Systems
             Network Architecture (SNA) in order to establish
             communication between the IBM user programmes and
             the SNA terminals and certain non SNA terminals.

         o   emulation of network complying with UNIVAC's Distributed
             Communication Architecture (DCA) which enables
             a communication between UNIVAC user programmes
             and terminals,

         o   direct programme to programme communication,

         o   different traffic types with different resource
             requirements,

             - dialogue traffic,

             - batch traffic,

             - transparent traffic

         The first phase of the LMENET will be in operation
         from July, 1982, with six connected host computers
         and approx 2000 terminals.…86…1         …02…   …02…   …02…   …02…     
                                              
















































                        Fig.  B-8