|
DataMuseum.dkPresents historical artifacts from the history of: DKUUG/EUUG Conference tapes |
This is an automatic "excavation" of a thematic subset of
See our Wiki for more about DKUUG/EUUG Conference tapes Excavated with: AutoArchaeologist - Free & Open Source Software. |
top - downloadIndex: ┃ T ┃
Length: 17019 (0x427b) Types: TextFile Names: »TRY_ME.out«
└─⟦87ddcff64⟧ Bits:30001253 CPHDIST85 Tape, 1985 Autumn Conference Copenhagen └─ ⟦this⟧ »cph85dist/stat/test/DATA/TRY_ME.out«
This is a test of the statistical programs from CSL First, let's look at the anova for errors: dm s1 s2 s3 s4 s5 < data | anova subject OS time difficulty errors SOURCE: grand mean OS time diffi N MEAN SD SE 66 -0.6515 2.5267 0.3110 SOURCE: OS OS time diffi N MEAN SD SE UNIX 36 -1.5556 1.8890 0.3148 UNIQ 30 0.4333 2.7877 0.5090 SOURCE: time OS time diffi N MEAN SD SE 6hour 33 0.5455 2.2233 0.3870 month 33 -1.8485 2.2517 0.3920 SOURCE: OS time OS time diffi N MEAN SD SE UNIX 6hour 18 -0.4444 1.6881 0.3979 UNIX month 18 -2.6667 1.3720 0.3234 UNIQ 6hour 15 1.7333 2.2509 0.5812 UNIQ month 15 -0.8667 2.7220 0.7028 SOURCE: difficulty OS time diffi N MEAN SD SE easy 22 -2.3636 1.8910 0.4032 mediu 22 -0.9091 1.9978 0.4259 hard 22 1.3182 2.2336 0.4762 SOURCE: OS difficulty OS time diffi N MEAN SD SE UNIX easy 12 -2.8333 1.1146 0.3218 UNIX mediu 12 -2.0833 1.3114 0.3786 UNIX hard 12 0.2500 1.6583 0.4787 UNIQ easy 10 -1.8000 2.4855 0.7860 UNIQ mediu 10 0.5000 1.7795 0.5627 UNIQ hard 10 2.6000 2.2211 0.7024 SOURCE: time difficulty OS time diffi N MEAN SD SE 6hour easy 11 -1.0909 1.6404 0.4946 6hour mediu 11 0.0000 1.5492 0.4671 6hour hard 11 2.7273 1.4894 0.4491 month easy 11 -3.6364 1.1201 0.3377 month mediu 11 -1.8182 2.0405 0.6152 month hard 11 -0.0909 1.9725 0.5947 SOURCE: OS time difficulty OS time diffi N MEAN SD SE UNIX 6hour easy 6 -2.0000 0.6325 0.2582 UNIX 6hour mediu 6 -1.0000 0.6325 0.2582 UNIX 6hour hard 6 1.6667 0.5164 0.2108 UNIX month easy 6 -3.6667 0.8165 0.3333 UNIX month mediu 6 -3.1667 0.7528 0.3073 UNIX month hard 6 -1.1667 0.9832 0.4014 UNIQ 6hour easy 5 0.0000 1.8708 0.8367 UNIQ 6hour mediu 5 1.2000 1.4832 0.6633 UNIQ 6hour hard 5 4.0000 1.2247 0.5477 UNIQ month easy 5 -3.6000 1.5166 0.6782 UNIQ month mediu 5 -0.2000 1.9235 0.8602 UNIQ month hard 5 1.2000 2.1679 0.9695 FACTOR: subject OS time difficulty errors LEVELS: 11 2 2 3 66 TYPE : RANDOM BETWEEN WITHIN WITHIN DATA SOURCE SS df MS F p =============================================================== mean 28.0152 1 28.0152 27.741 0.001 *** s/O 9.0889 9 1.0099 OS 64.7293 1 64.7293 64.096 0.000 *** s/O 9.0889 9 1.0099 time 94.5606 1 94.5606 106.086 0.000 *** ts/O 8.0222 9 0.8914 Ot 0.5838 1 0.5838 0.655 0.439 ts/O 8.0222 9 0.8914 difficu 151.3030 2 75.6515 47.374 0.000 *** ds/O 28.7444 18 1.5969 Od 7.6192 2 3.8096 2.386 0.120 ds/O 28.7444 18 1.5969 td 2.9394 2 1.4697 0.629 0.545 tds/O 42.0778 18 2.3377 Otd 5.3162 2 2.6581 1.137 0.343 tds/O 42.0778 18 2.3377 Now let's look at the reaction time data: dm s1 s2 s3 s4 s6 < data | anova subject OS time difficulty rt SOURCE: grand mean OS time diffi N MEAN SD SE 66 368.0758 236.5611 29.1187 SOURCE: OS OS time diffi N MEAN SD SE UNIX 36 351.0833 230.7209 38.4535 UNIQ 30 388.4667 245.7558 44.8687 SOURCE: time OS time diffi N MEAN SD SE 6hour 33 492.0606 255.1066 44.4084 month 33 244.0909 129.9479 22.6210 SOURCE: OS time OS time diffi N MEAN SD SE UNIX 6hour 18 486.5000 251.9387 59.3825 UNIX month 18 215.6667 85.3801 20.1243 UNIQ 6hour 15 498.7333 267.5648 69.0849 UNIQ month 15 278.2000 165.7120 42.7866 SOURCE: difficulty OS time diffi N MEAN SD SE easy 22 260.0455 144.4535 30.7976 mediu 22 332.0455 162.2510 34.5920 hard 22 512.1364 301.1526 64.2059 SOURCE: OS difficulty OS time diffi N MEAN SD SE UNIX easy 12 230.1667 115.9646 33.4761 UNIX mediu 12 311.5000 132.7311 38.3162 UNIX hard 12 511.5833 304.2175 87.8200 UNIQ easy 10 295.9000 172.1462 54.4374 UNIQ mediu 10 356.7000 196.6091 62.1732 UNIQ hard 10 512.8000 313.8491 99.2478 SOURCE: time difficulty OS time diffi N MEAN SD SE 6hour easy 11 344.6364 157.7988 47.5781 6hour mediu 11 410.1818 182.2453 54.9490 6hour hard 11 721.3636 247.0232 74.4803 month easy 11 175.4545 56.3691 16.9959 month mediu 11 253.9091 92.9424 28.0232 month hard 11 302.9091 182.0090 54.8778 SOURCE: OS time difficulty OS time diffi N MEAN SD SE UNIX 6hour easy 6 305.8333 119.8589 48.9322 UNIX 6hour mediu 6 394.5000 127.7885 52.1694 UNIX 6hour hard 6 759.1667 215.8021 88.1009 UNIX month easy 6 154.5000 38.4435 15.6945 UNIX month mediu 6 228.5000 76.7796 31.3451 UNIX month hard 6 264.0000 99.6072 40.6645 UNIQ 6hour easy 5 391.2000 198.3046 88.6845 UNIQ 6hour mediu 5 429.0000 248.6152 111.1841 UNIQ 6hour hard 5 676.0000 299.3693 133.8820 UNIQ month easy 5 200.6000 68.1711 30.4870 UNIQ month mediu 5 284.4000 109.9832 49.1860 UNIQ month hard 5 349.6000 255.7739 114.3856 FACTOR: subject OS time difficulty rt LEVELS: 11 2 2 3 66 TYPE : RANDOM BETWEEN WITHIN WITHIN DATA SOURCE SS df MS F p =============================================================== mean 8941664.3788 1 8941664.3788 305.581 0.000 *** s/O 263350.3833 9 29261.1537 OS 22868.4045 1 22868.4045 0.782 0.400 s/O 263350.3833 9 29261.1537 time 1014568.0152 1 1014568.0152 23.351 0.001 *** ts/O 391045.4500 9 43449.4944 Ot 10350.3682 1 10350.3682 0.238 0.637 ts/O 391045.4500 9 43449.4944 difficu 741888.1212 2 370944.0606 21.074 0.000 *** ds/O 316841.3000 18 17602.2944 Od 11851.9121 2 5925.9561 0.337 0.719 ds/O 316841.3000 18 17602.2944 td 240245.2121 2 120122.6061 3.645 0.047 * tds/O 593249.4333 18 32958.3019 Otd 31216.0212 2 15608.0106 0.474 0.630 tds/O 593249.4333 18 32958.3019 Now let's combine these and look at the efficiency (= #correct/rt): dm s1 s2 s3 s4 '(10-x5)/x6' < data | anova subject OS time difficulty efficiency SOURCE: grand mean OS time diffi N MEAN SD SE 66 0.0434 0.0298 0.0037 SOURCE: OS OS time diffi N MEAN SD SE UNIX 36 0.0490 0.0313 0.0052 UNIQ 30 0.0366 0.0268 0.0049 SOURCE: time OS time diffi N MEAN SD SE 6hour 33 0.0263 0.0172 0.0030 month 33 0.0604 0.0301 0.0052 SOURCE: OS time OS time diffi N MEAN SD SE UNIX 6hour 18 0.0295 0.0191 0.0045 UNIX month 18 0.0685 0.0292 0.0069 UNIQ 6hour 15 0.0225 0.0144 0.0037 UNIQ month 15 0.0508 0.0292 0.0075 SOURCE: difficulty OS time diffi N MEAN SD SE easy 22 0.0618 0.0331 0.0071 mediu 22 0.0415 0.0240 0.0051 hard 22 0.0268 0.0207 0.0044 SOURCE: OS difficulty OS time diffi N MEAN SD SE UNIX easy 12 0.0688 0.0325 0.0094 UNIX mediu 12 0.0487 0.0275 0.0079 UNIX hard 12 0.0295 0.0214 0.0062 UNIQ easy 10 0.0533 0.0335 0.0106 UNIQ mediu 10 0.0330 0.0165 0.0052 UNIQ hard 10 0.0236 0.0204 0.0064 SOURCE: time difficulty OS time diffi N MEAN SD SE 6hour easy 11 0.0380 0.0166 0.0050 6hour mediu 11 0.0295 0.0158 0.0048 6hour hard 11 0.0115 0.0051 0.0015 month easy 11 0.0856 0.0279 0.0084 month mediu 11 0.0535 0.0254 0.0077 month hard 11 0.0421 0.0188 0.0057 SOURCE: OS time difficulty OS time diffi N MEAN SD SE UNIX 6hour easy 6 0.0442 0.0166 0.0068 UNIX 6hour mediu 6 0.0325 0.0175 0.0072 UNIX 6hour hard 6 0.0120 0.0043 0.0017 UNIX month easy 6 0.0934 0.0245 0.0100 UNIX month mediu 6 0.0649 0.0270 0.0110 UNIX month hard 6 0.0470 0.0158 0.0064 UNIQ 6hour easy 5 0.0305 0.0146 0.0065 UNIQ 6hour mediu 5 0.0260 0.0146 0.0065 UNIQ 6hour hard 5 0.0110 0.0064 0.0029 UNIQ month easy 5 0.0762 0.0316 0.0141 UNIQ month mediu 5 0.0399 0.0167 0.0074 UNIQ month hard 5 0.0363 0.0222 0.0099 FACTOR: subject OS time difficulty efficiency LEVELS: 11 2 2 3 66 TYPE : RANDOM BETWEEN WITHIN WITHIN DATA SOURCE SS df MS F p =============================================================== mean 0.1242 1 0.1242 268.814 0.000 *** s/O 0.0042 9 0.0005 OS 0.0025 1 0.0025 5.410 0.045 * s/O 0.0042 9 0.0005 time 0.0192 1 0.0192 93.221 0.000 *** ts/O 0.0019 9 0.0002 Ot 0.0005 1 0.0005 2.249 0.168 ts/O 0.0019 9 0.0002 difficu 0.0135 2 0.0068 16.519 0.000 *** ds/O 0.0074 18 0.0004 Od 0.0003 2 0.0002 0.420 0.663 ds/O 0.0074 18 0.0004 td 0.0016 2 0.0008 2.280 0.131 tds/O 0.0064 18 0.0004 Otd 0.0002 2 0.0001 0.221 0.804 tds/O 0.0064 18 0.0004 Let's look at the linear relation between reaction time and errors: dm s6 s5 < data | regress -p rt errors Analysis for 66 points of 2 variables: Variable rt errors Min 103.0000 -5.0000 Max 999.0000 5.0000 Sum 24293.0000 -43.0000 Mean 368.0758 -0.6515 SD 236.5611 2.5267 Correlation Matrix: rt 1.0000 errors 0.6440 1.0000 Variable rt errors Regression Equation for rt: rt = 60.3 errors + 407.36 Significance test for prediction of rt Mult-R R-Squared F(1,64) prob (F) 0.6440 0.4148 45.3611 0.0000 Significance test(s) for predictor(s) of rt Predictor beta b Rsq t(64) F(1,64) p errors 0.6440 60.2968 0.0000 6.7351 45.3611 0.0000 We can get similar information from pair as there are only two variables: dm s6 s5 < data | pair -ps -x rt -y errors rt errors Difference Minimums 103.0000 -5.0000 106.0000 Maximums 999.0000 5.0000 994.0000 Sums 24293.0000 -43.0000 24336.0000 SumSquares 12579139.0000 443.0000 12561192.0000 Means 368.0758 -0.6515 368.7273 SDs 236.5611 2.5267 234.9417 t(65) 12.6405 -2.0948 12.7502 p 0.0000 0.0401 0.0000 Correlation r-squared t(64) p 0.6440 0.4148 6.7351 0.0000 Intercept Slope -3.1835 0.0069 |--------------------------------------------------|5 | 2| | | | 1 1 1 | | | | 1 2 | | | | 1 1 1 1 1 2 | | | | 11 1 1 1 | | | | 11 1 11 1 1 1 | | | | 1 111 1 1 1 1 11 | | | | 11 112 1 21 2 | | | |1 1112 11 | | | | 11 3 | | 21 | |--------------------------------------------------|-5 103.000 999.000 We can look at the skew of the distribution or RT's after taking the log: dm 'Log(x6)' < data | desc -so -h -i 0.1 -m 2 -M 3 -cfp ------------------------------------------------------------ Under Range In Range Over Range Sum 0 66 0 164.330 ------------------------------------------------------------ Mean Median Midpoint Geometric Harmonic 2.490 2.462 2.506 2.477 2.465 ------------------------------------------------------------ SD Quart Dev Range SE mean 0.254 0.196 0.987 0.031 ------------------------------------------------------------ Minimum Quartile 1 Quartile 2 Quartile 3 Maximum 2.013 2.290 2.462 2.682 3.000 ------------------------------------------------------------ Skew Kurtosis 0.346 2.225 ------------------------------------------------------------ Midpt Freq Cum Prop Cum 2.050 1 1 0.015 0.015 * 2.150 8 9 0.121 0.136 ******** 2.250 9 18 0.136 0.273 ********* 2.350 7 25 0.106 0.379 ******* 2.450 12 37 0.182 0.561 ************ 2.550 8 45 0.121 0.682 ******** 2.650 5 50 0.076 0.758 ***** 2.750 7 57 0.106 0.864 ******* 2.850 3 60 0.045 0.909 *** 2.950 6 66 0.091 1.000 ****** Here's a strange way to get a mean: dm x6 < data | transpose | dm "'MEAN ='" SUM/N MEAN = 368.076 Hope these examples are useful. You might want to try out the textbook examples to make sure things are working right. Gary Perlman