DataMuseum.dk

Presents historical artifacts from the history of:

DKUUG/EUUG Conference tapes

This is an automatic "excavation" of a thematic subset of
artifacts from Datamuseum.dk's BitArchive.

See our Wiki for more about DKUUG/EUUG Conference tapes

Excavated with: AutoArchaeologist - Free & Open Source Software.


top - download
Index: ┃ T o

⟦41ec28296⟧ TextFile

    Length: 23827 (0x5d13)
    Types: TextFile
    Names: »output.c«

Derivation

└─⟦a0efdde77⟧ Bits:30001252 EUUGD11 Tape, 1987 Spring Conference Helsinki
    └─ ⟦this⟧ »EUUGD11/gnu-31mar87/bison/output.c« 

TextFile

/* Output the generated parsing program for bison,
   Copyright (C) 1984, 1986 Bob Corbett and Free Software Foundation, Inc.

BISON is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY.  No author or distributor accepts responsibility to anyone
for the consequences of using it or for whether it serves any
particular purpose or works at all, unless he says so in writing.
Refer to the BISON General Public License for full details.

Everyone is granted permission to copy, modify and redistribute BISON,
but only under the conditions described in the BISON General Public
License.  A copy of this license is supposed to have been given to you
along with BISON so you can know your rights and responsibilities.  It
should be in a file named COPYING.  Among other things, the copyright
notice and this notice must be preserved on all copies.

 In other words, you are welcome to use, share and improve this program.
 You are forbidden to forbid anyone else to use, share and improve
 what you give them.   Help stamp out software-hoarding!  */

/* functions to output parsing data to various files.  Entries are:

  output_headers ()

Output constant strings to the beginning of certain files.

  output_trailers()

Output constant strings to the ends of certain files.

  output ()

Output the parsing tables and the parser code to ftable.

The parser tables consist of:  (starred ones needed only for the semantic parser)

yytranslate = vector mapping yylex's token numbers into bison's token numbers.

yytname = vector of string-names indexed by bison token number

yyrline = vector of line-numbers of all rules.  For yydebug printouts.

* yyrhs = vector of items of all rules.
        This is exactly what ritems contains.

* yyprhs[r] = index in yyrhs of first item for rule r.

yyr1[r] = symbol number of symbol that rule r derives.

yyr2[r] = number of symbols composing right hand side of rule r.

* yystos[s] = the symbol number of the symbol that leads to state s.

yydefact[s] = default rule to reduce with in state s,
	      when yytable doesn't specify something else to do.
	      Zero means the default is an error.

yydefgoto[i] = default state to go to after a reduction of a rule that
	       generates variable ntokens + i, except when yytable
	       specifies something else to do.

yypact[s] = index in yytable of the portion describing state s.
            The lookahed token's type is used to index that portion
            to find out what to do.

	    If the value in yytable is positive,
	    we shift the token and go to that state.

	    If the value is negative, it is minus a rule number to reduce by.

	    If the value is zero, the default action from yydefact[s] is used.

yypgoto[i] = the index in yytable of the portion describing 
             what to do after reducing a rule that derives variable i + ntokens.
             This portion is indexed by the parser state number
	     as of before the text for this nonterminal was read.
	     The value from yytable is the state to go to.

yytable = a vector filled with portions for different uses,
          found via yypact and yypgoto.

yycheck = a vector indexed in parallel with yytable.
	  It indicates, in a roundabout way, the bounds of the
	  portion you are trying to examine.

	  Suppose that the portion of yytable starts at index p
	  and the index to be examined within the portion is i.
	  Then if yycheck[p+i] != i, i is outside the bounds
	  of what is actually allocated, and the default
	  (from yydefact or yydefgoto) should be used.
	  Otherwise, yytable[p+i] should be used.

YYFINAL = the state number of the termination state.
YYFLAG = most negative short int.  Used to flag ??
YYNTBASE = ntokens.

*/

#include <stdio.h>
#include "machine.h"
#include "new.h"
#include "files.h"
#include "gram.h"
#include "state.h"

#define	MAXTABLE 32767


extern char **tags;
extern int tokensetsize;
extern int final_state;
extern core **state_table;
extern shifts **shift_table;
extern errs **err_table;
extern reductions **reduction_table;
extern short *accessing_symbol;
extern unsigned *LA;
extern short *LAruleno;
extern short *lookaheads;
extern char *consistent;
extern short *goto_map;
extern short *from_state;
extern short *to_state;


static int nvectors;
static int nentries;
static short **froms;
static short **tos;
static short *tally;
static short *width;
static short *actrow;
static short *state_count;
static short *order;
static short *base;
static short *pos;
static short *table;
static short *check;
static int lowzero;
static int high;



#define	GUARDSTR	"\n#include \"%s\"\nextern int yyerror;\n\
extern int yycost;\nextern char * yymsg;\nextern YYSTYPE yyval;\n\n\
yyguard(n, yyvsp, yylsp)\nregister int n;\nregister YYSTYPE *yyvsp;\n\
register YYLTYPE *yylsp;\n\
{\n  yyerror = 0;\nyycost = 0;\n  yymsg = 0;\nswitch (n)\n    {"

#define	ACTSTR		"\n#include \"%s\"\nextern YYSTYPE yyval;\
\nextern int yychar;\
yyaction(n, yyvsp, yylsp)\nregister int n;\nregister YYSTYPE *yyvsp;\n\
register YYLTYPE *yylsp;\n{\n  switch (n)\n{"

#define	ACTSTR_SIMPLE	"\n  switch (yyn) {\n"



output_headers()
{
  if (semantic_parser)
    fprintf(fguard, GUARDSTR, attrsfile);
  fprintf(faction, (semantic_parser ? ACTSTR : ACTSTR_SIMPLE), attrsfile);
/*  if (semantic_parser)	JF moved this below
    fprintf(ftable, "#include \"%s\"\n", attrsfile);
  fprintf(ftable, "#include <stdio.h>\n\n"); */
}

output_trailers()
{
  if (semantic_parser)
    {
      fprintf(fguard, "\n    }\n}\n");
      fprintf(faction, "\n    }\n}\n");
    }
  else
    fprintf(faction, "\n}\n");
}


output()
{
  int c;

  /* output_token_defines(ftable);	/* JF put out token defines FIRST */
  if(!semantic_parser)		/* JF Put out other stuff */
    {
      rewind(fattrs);
      while((c=getc(fattrs))!=EOF)
        putc(c,ftable);
    }
  /* output_program();	/* JF do it NOW */
  if (semantic_parser)
    fprintf(ftable, "#include \"%s\"\n", attrsfile);
  fprintf(ftable, "#include <stdio.h>\n\n");

  free_itemsets();
  output_defines();
  output_token_translations();
  if (semantic_parser)
    output_gram();
  FREE(ritem);
  if (semantic_parser)
    output_stos();
  output_rule_data();
  output_actions();
  output_parser();
  output_program();
}

output_token_translations()
{
  register int i, j;
/*   register short *sp; JF unused */

  if (translations)
    {
      fprintf(ftable, "\n#define YYTRANSLATE(x) (yytranslate[x])\n");
    
      if (ntokens < 127)  /* play it very safe; check maximum element value.  */
        fprintf(ftable, "\nstatic char yytranslate[] = {     0");
      else
	fprintf(ftable, "\nstatic short yytranslate[] = {     0");
    
      j = 10;
      for (i = 1; i <= max_user_token_number; i++)
	{
	  putc(',', ftable);
    
	  if (j >= 10)
	    {
	      putc('\n', ftable);
	      j = 1;
	    }
	  else
	    {
	      j++;
	    }
    
	  fprintf(ftable, "%6d", token_translations[i]);
	}
    
      fprintf(ftable, "\n};\n");
    }
  else
    {
      fprintf(ftable, "\n#define YYTRANSLATE(x) (x)\n");
    } 
}



output_gram()
{
  register int i;
  register int j;
  register short *sp;

  fprintf(ftable, "\nstatic short yyprhs[] = {     0");

  j = 10;
  for (i = 1; i <= nrules; i++)
    {
      putc(',', ftable);

      if (j >= 10)
	{
	  putc('\n', ftable);
	  j = 1;
	}
      else
	{
	  j++;
	}

      fprintf(ftable, "%6d", rrhs[i]);
    }

  fprintf(ftable, "\n};\n\nstatic short yyrhs[] = {%6d", ritem[0]);

  j = 10;
  for (sp = ritem + 1; *sp; sp++)
    {
      putc(',', ftable);

      if (j >= 10)
	{
	  putc('\n', ftable);
	  j = 1;
	}
      else
	{
	  j++;
	}

      if (*sp > 0)
	fprintf(ftable, "%6d", *sp);
      else
	fprintf(ftable, "     0");
    }

  fprintf(ftable, "\n};\n");
}



output_stos()
{
  register int i;
  register int j;

  fprintf(ftable, "\nstatic short yystos[] = {     0");

  j = 10;
  for (i = 1; i < nstates; i++)
    {
      putc(',', ftable);

      if (j >= 10)
	{
	  putc('\n', ftable);
	  j = 1;
	}
      else
	{
	  j++;
	}

      fprintf(ftable, "%6d", accessing_symbol[i]);
    }

  fprintf(ftable, "\n};\n");
}



output_rule_data()
{
  register int i;
  register int j;

  fprintf(ftable, "\nstatic short yyrline[] = {     0");

  j = 10;
  for (i = 1; i <= nrules; i++)
    {
      putc(',', ftable);

      if (j >= 10)
	{
	  putc('\n', ftable);
	  j = 1;
	}
      else
	{
	  j++;
	}

      fprintf(ftable, "%6d", rline[i]);
    }

  fprintf(ftable, "\n};\n\nstatic char * yytname[] = {     0");

  j = 10;
  for (i = 1; i <= ntokens; i++)
    {
      register char *p;
      putc(',', ftable);

      if (j >= 10)
	{
	  putc('\n', ftable);
	  j = 1;
	}
      else
	{
	  j++;
	}

      putc ('\"', ftable);

      for (p = tags[i]; *p; p++)
	if (*p == '"' || *p == '\\')
	  fprintf(ftable, "\\%c", *p);
	else if (*p == '\n')
	  fprintf(ftable, "\\n");
	else if (*p == '\t')
	  fprintf(ftable, "\\t");
	else if (*p == '\b')
	  fprintf(ftable, "\\b");
	else if (*p < 040 || *p >= 0177)
	  fprintf(ftable, "\\%03o", *p);
	else
	  putc(*p, ftable);

      putc ('\"', ftable);
    }

  fprintf(ftable, "\n};\n\nstatic short yyr1[] = {     0");

  j = 10;
  for (i = 1; i <= nrules; i++)
    {
      putc(',', ftable);

      if (j >= 10)
	{
	  putc('\n', ftable);
	  j = 1;
	}
      else
	{
	  j++;
	}

      fprintf(ftable, "%6d", rlhs[i]);
    }

  FREE(rlhs + 1);

  fprintf(ftable, "\n};\n\nstatic short yyr2[] = {     0");

  j = 10;
  for (i = 1; i < nrules; i++)
    {
      putc(',', ftable);

      if (j >= 10)
	{
	  putc('\n', ftable);
	  j = 1;
	}
      else
	{
	  j++;
	}

      fprintf(ftable, "%6d", rrhs[i + 1] - rrhs[i] - 1);
    }

  putc(',', ftable);
  if (j >= 10)
    putc('\n', ftable);

  fprintf(ftable, "%6d\n};\n", nitems - rrhs[nrules] - 1);
  FREE(rrhs + 1);
}



output_defines()
{
  fprintf(ftable, "\n\n#define\tYYFINAL\t\t%d\n", final_state);
  fprintf(ftable, "#define\tYYFLAG\t\t%d\n", MINSHORT);
  fprintf(ftable, "#define\tYYNTBASE\t%d\n", ntokens);
}



/* compute and output yydefact, yydefgoto, yypact, yypgoto, yytable and yycheck.  */

output_actions()
{
  nvectors = nstates + nvars;

  froms = NEW2(nvectors, short *);
  tos = NEW2(nvectors, short *);
  tally = NEW2(nvectors, short);
  width = NEW2(nvectors, short);

  token_actions();
  free_shifts();
  free_reductions();
  FREE(lookaheads);
  FREE(LA);
  FREE(LAruleno);
  FREE(accessing_symbol);

  goto_actions();
  FREE(goto_map + ntokens);
  FREE(from_state);
  FREE(to_state);

  sort_actions();
  pack_table();
  output_base();
  output_table();
  output_check();
}



/* figure out the actions for the specified state, indexed by lookahead token type.

   The yydefact table is output now.  The detailed info
   is saved for putting into yytable later.  */

token_actions()
{
  register int i;
  register int j;
  register int k;

  actrow = NEW2(ntokens, short);

  k = action_row(0);
  fprintf(ftable, "\nstatic short yydefact[] = {%6d", k);
  save_row(0);

  j = 10;
  for (i = 1; i < nstates; i++)
    {
      putc(',', ftable);

      if (j >= 10)
	{
	  putc('\n', ftable);
	  j = 1;
	}
      else
	{
	  j++;
	}

      k = action_row(i);
      fprintf(ftable, "%6d", k);
      save_row(i);
    }

  fprintf(ftable, "\n};\n");
  FREE(actrow);
}



/* Decide what to do for each type of token if seen as the lookahead token in specified state.
   The value returned is used as the default action (yydefact) for the state.
   In addition, actrow is filled with what to do for each kind of token,
   index by symbol number, with zero meaning do the default action.
   The value MINSHORT, a very negative number, means this situation
   is an error.  The parser recognizes this value specially.

   This is where conflicts are resolved.  The loop over lookahead rules
   considered lower-numbered rules last, and the last rule considered that likes
   a token gets to handle it.  */

int
action_row(state)
int state;
{
  register int i;
  register int j;
  register int k;
  register int m;
  register int n;
  register int count;
  register int default_rule;
  register int nreds;
  register int max;
  register int rule;
  register int shift_state;
  register int symbol;
  register unsigned mask;
  register unsigned *wordp;
  register reductions *redp;
  register shifts *shiftp;
  register errs *errp;
  int nodefault = 0;  /* set nonzero to inhibit having any default reduction */

  for (i = 0; i < ntokens; i++)
    actrow[i] = 0;

  default_rule = 0;
  nreds = 0;
  redp = reduction_table[state];

  if (redp)
    {
      nreds = redp->nreds;

      if (nreds >= 1)
	{
	  /* loop over all the rules available here which require lookahead */
	  m = lookaheads[state];
	  n = lookaheads[state + 1];

	  for (i = n - 1; i >= m; i--)
	    {
	      rule = - LAruleno[i];
	      wordp = LA + i * tokensetsize;
	      mask = 1;

	      /* and find each token which the rule finds acceptable to come next */
	      for (j = 0; j < ntokens; j++)
		{
		  /* and record this rule as the rule to use if that token follows.  */
		  if (mask & *wordp)
		    actrow[j] = rule;

		  mask <<= 1;
		  if (mask == 0)
		    {
		      mask = 1;
		      wordp++;
		    }
		}
	    }
	}
    }

  shiftp = shift_table[state];

  /* now see which tokens are allowed for shifts in this state.
     For them, record the shift as the thing to do.  So shift is preferred to reduce.  */

  if (shiftp)
    {
      k = shiftp->nshifts;

      for (i = 0; i < k; i++)
	{
	  shift_state = shiftp->shifts[i];
	  if (! shift_state) continue;

	  symbol = accessing_symbol[shift_state];

	  if (ISVAR(symbol))
	    break;

	  actrow[symbol] = shift_state;

	  /* do not use any default reduction if there is a shift for error */

	  if (symbol == error_token_number) nodefault = 1;
	}
    }

  errp = err_table[state];

  /* See which tokens are an explicit error in this state
     (due to %nonassoc).  For them, record MINSHORT as the action.  */

  if (errp)
    {
      k = errp->nerrs;

      for (i = 0; i < k; i++)
	{
	  symbol = errp->errs[i];
	  actrow[symbol] = MINSHORT;
	}
    }

  /* now find the most common reduction and make it the default action for this state.  */

  if (nreds >= 1 && ! nodefault)
    {
      if (consistent[state])
	default_rule = redp->rules[0];
      else
	{
	  max = 0;
	  for (i = m; i < n; i++)
	    {
	      count = 0;
	      rule = - LAruleno[i];
    
	      for (j = 0; j < ntokens; j++)
		{
		  if (actrow[j] == rule)
		    count++;
		}
    
	      if (count > max)
		{
		  max = count;
		  default_rule = rule;
		}
	    }
    
	  /* actions which match the default are replaced with zero,
	     which means "use the default" */
    
	  if (max > 0)
	    {
	      for (j = 0; j < ntokens; j++)
		{
		  if (actrow[j] == default_rule)
		    actrow[j] = 0;
		}
    
	      default_rule = - default_rule;
	    }
	}
    }

  /* If have no default rule, the default is an error.
     So replace any action which says "error" with "use default".  */

  if (default_rule == 0)
    for (j = 0; j < ntokens; j++)
      {
	if (actrow[j] == MINSHORT)
	  actrow[j] = 0;
      }

  return (default_rule);
}



save_row(state)
int state;
{
  register int i;
  register int count;
  register short *sp;
  register short *sp1;
  register short *sp2;

  count = 0;
  for (i = 0; i < ntokens; i++)
    {
      if (actrow[i] != 0)
	count++;
    }

  if (count == 0)
    return;

  froms[state] = sp1 = sp = NEW2(count, short);
  tos[state] = sp2 = NEW2(count, short);

  for (i = 0; i < ntokens; i++)
    {
      if (actrow[i] != 0)
	{
	  *sp1++ = i;
	  *sp2++ = actrow[i];
	}
    }

  tally[state] = count;
  width[state] = sp1[-1] - sp[0] + 1;
}



/* figure out what to do after reducing with each rule,
   depending on the saved state from before the beginning
   of parsing the data that matched this rule.

   The yydefgoto table is output now.  The detailed info
   is saved for putting into yytable later.  */

goto_actions()
{
  register int i;
  register int j;
  register int k;

  state_count = NEW2(nstates, short);

  k = default_goto(ntokens);
  fprintf(ftable, "\nstatic short yydefgoto[] = {%6d", k);
  save_column(ntokens, k);

  j = 10;
  for (i = ntokens + 1; i < nsyms; i++)
    {
      putc(',', ftable);

      if (j >= 10)
	{
	  putc('\n', ftable);
	  j = 1;
	}
      else
	{
	  j++;
	}

      k = default_goto(i);
      fprintf(ftable, "%6d", k);
      save_column(i, k);
    }

  fprintf(ftable, "\n};\n");
  FREE(state_count);
}



int
default_goto(symbol)
int symbol;
{
  register int i;
  register int m;
  register int n;
  register int default_state;
  register int max;

  m = goto_map[symbol];
  n = goto_map[symbol + 1];

  if (m == n)
    return (-1);

  for (i = 0; i < nstates; i++)
    state_count[i] = 0;

  for (i = m; i < n; i++)
    state_count[to_state[i]]++;

  max = 0;
  default_state = -1;

  for (i = 0; i < nstates; i++)
    {
      if (state_count[i] > max)
	{
	  max = state_count[i];
	  default_state = i;
	}
    }

  return (default_state);
}



save_column(symbol, default_state)
int symbol;
int default_state;
{
  register int i;
  register int m;
  register int n;
  register short *sp;
  register short *sp1;
  register short *sp2;
  register int count;
  register int symno;

  m = goto_map[symbol];
  n = goto_map[symbol + 1];

  count = 0;
  for (i = m; i < n; i++)
    {
      if (to_state[i] != default_state)
	count++;
    }

  if (count == 0)
    return;

  symno = symbol - ntokens + nstates;

  froms[symno] = sp1 = sp = NEW2(count, short);
  tos[symno] = sp2 = NEW2(count, short);

  for (i = m; i < n; i++)
    {
      if (to_state[i] != default_state)
	{
	  *sp1++ = from_state[i];
	  *sp2++ = to_state[i];
	}
    }

  tally[symno] = count;
  width[symno] = sp1[-1] - sp[0] + 1;
}



/* the next few functions decide how to pack 
   the actions and gotos information into yytable. */

sort_actions()
{
  register int i;
  register int j;
  register int k;
  register int t;
  register int w;

  order = NEW2(nvectors, short);
  nentries = 0;

  for (i = 0; i < nvectors; i++)
    {
      if (tally[i] > 0)
	{
	  t = tally[i];
	  w = width[i];
	  j = nentries - 1;

	  while (j >= 0 && (width[order[j]] < w))
	    j--;

	  while (j >= 0 && (width[order[j]] == w) && (tally[order[j]] < t))
	    j--;

	  for (k = nentries - 1; k > j; k--)
	    order[k + 1] = order[k];

	  order[j + 1] = i;
	  nentries++;
	}
    }
}



pack_table()
{
  register int i;
  register int place;
  register int state;

  base = NEW2(nvectors, short);
  pos = NEW2(nentries, short);
  table = NEW2(MAXTABLE, short);
  check = NEW2(MAXTABLE, short);

  lowzero = 0;
  high = 0;

  for (i = 0; i < nvectors; i++)
    base[i] = MINSHORT;

  for (i = 0; i < MAXTABLE; i++)
    check[i] = -1;

  for (i = 0; i < nentries; i++)
    {
      state = matching_state(i);

      if (state < 0)
	place = pack_vector(i);
      else
	place = base[state];

      pos[i] = place;
      base[order[i]] = place;
    }

  for (i = 0; i < nvectors; i++)
    {
      FREE(froms[i]);
      FREE(tos[i]);
    }

  FREE(froms);
  FREE(tos);
  FREE(pos);
}



int
matching_state(vector)
int vector;
{
  register int i;
  register int j;
  register int k;
  register int t;
  register int w;
  register int match;
  register int prev;

  i = order[vector];
  if (i >= nstates)
    return (-1);

  t = tally[i];
  w = width[i];

  for (prev = vector - 1; prev >= 0; prev--)
    {
      j = order[prev];
      if (width[j] != w || tally[j] != t)
	return (-1);

      match = 1;
      for (k = 0; match && k < t; k++)
	{
	  if (tos[j][k] != tos[i][k] || froms[j][k] != froms[i][k])
	    match = 0;
	}

      if (match)
	return (j);
    }

  return (-1);
}



int
pack_vector(vector)
int vector;
{
  register int i;
  register int j;
  register int k;
  register int t;
  register int loc;
  register int ok;
  register short *from;
  register short *to;

  i = order[vector];
  t = tally[i];

  if (t == 0)
    berror("pack_vector");

  from = froms[i];
  to = tos[i];

  for (j = lowzero - from[0]; j < MAXTABLE; j++)
    {
      ok = 1;

      for (k = 0; ok && k < t; k++)
	{
	  loc = j + from[k];
	  if (loc > MAXTABLE)
	    fatals("maximum table size (%d) exceeded",MAXTABLE);

	  if (table[loc] != 0)
	    ok = 0;
	}

      for (k = 0; ok && k < vector; k++)
	{
	  if (pos[k] == j)
	    ok = 0;
	}

      if (ok)
	{
	  for (k = 0; k < t; k++)
	    {
	      loc = j + from[k];
	      table[loc] = to[k];
	      check[loc] = from[k];
	    }

	  while (table[lowzero] != 0)
	    lowzero++;

	  if (loc > high)
	    high = loc;

	  return (j);
	}
    }

  berror("pack_vector");
  return 0;	/* JF keep lint happy */
}



/* the following functions output yytable, yycheck
   and the vectors whose elements index the portion starts */

output_base()
{
  register int i;
  register int j;

  fprintf(ftable, "\nstatic short yypact[] = {%6d", base[0]);

  j = 10;
  for (i = 1; i < nstates; i++)
    {
      putc(',', ftable);

      if (j >= 10)
	{
	  putc('\n', ftable);
	  j = 1;
	}
      else
	{
	  j++;
	}

      fprintf(ftable, "%6d", base[i]);
    }

  fprintf(ftable, "\n};\n\nstatic short yypgoto[] = {%6d", base[nstates]);

  j = 10;
  for (i = nstates + 1; i < nvectors; i++)
    {
      putc(',', ftable);

      if (j >= 10)
	{
	  putc('\n', ftable);
	  j = 1;
	}
      else
	{
	  j++;
	}

      fprintf(ftable, "%6d", base[i]);
    }

  fprintf(ftable, "\n};\n");
  FREE(base);
}



output_table()
{
  register int i;
  register int j;

  fprintf(ftable, "\n\n#define\tYYLAST\t\t%d\n\n", high);
  fprintf(ftable, "\nstatic short yytable[] = {%6d", table[0]);

  j = 10;
  for (i = 1; i <= high; i++)
    {
      putc(',', ftable);

      if (j >= 10)
	{
	  putc('\n', ftable);
	  j = 1;
	}
      else
	{
	  j++;
	}

      fprintf(ftable, "%6d", table[i]);
    }

  fprintf(ftable, "\n};\n");
  FREE(table);
}



output_check()
{
  register int i;
  register int j;

  fprintf(ftable, "\nstatic short yycheck[] = {%6d", check[0]);

  j = 10;
  for (i = 1; i <= high; i++)
    {
      putc(',', ftable);

      if (j >= 10)
	{
	  putc('\n', ftable);
	  j = 1;
	}
      else
	{
	  j++;
	}

      fprintf(ftable, "%6d", check[i]);
    }

  fprintf(ftable, "\n};\n");
  FREE(check);
}



/* copy the parser code into the ftable file at the end.  */

output_parser()
{
  register int c;
#ifdef DONTDEF
  FILE *fpars;
#else
#define fpars fparser
#endif

  if (pure_parser)
    fprintf(ftable, "#define YYIMPURE 1\n\n");
  else
    fprintf(ftable, "#define YYPURE 1\n\n");

#ifdef DONTDEF	/* JF no longer needed 'cuz open_extra_files changes the
		   currently open parser from bison.simple to bison.hairy */
  if (semantic_parser)
    fpars = fparser;
  else fpars = fparser1;
#endif

  c = getc(fpars);
  while (c != EOF)
    {
      if (c == '$') {
#ifdef DONTDEF
        fprintf(ftable, "#include \"%s\"\n", actfile);
#else
      	/* JF don't #include the action file.  Stuff it right in. */
	rewind(faction);
	for(c=getc(faction);c!=EOF;c=getc(faction))
		putc(c,ftable);
#endif
      } else
	putc(c, ftable);
      c = getc(fpars);
    }
}



output_program()
{
  register int c;
  extern int lineno;

  fprintf(ftable, "#line %d \"%s\"\n", lineno, infile);

  c = getc(finput);
  while (c != EOF)
    {
      putc(c, ftable);
      c = getc(finput);
    }
}



free_itemsets()
{
  register core *cp,*cptmp;

  FREE(state_table);

  for (cp = first_state; cp; cp = cptmp) {
    cptmp=cp->next;
    FREE(cp);
  }
}



free_shifts()
{
  register shifts *sp,*sptmp;/* JF derefrenced freed ptr */

  FREE(shift_table);

  for (sp = first_shift; sp; sp = sptmp) {
    sptmp=sp->next;
    FREE(sp);
  }
}



free_reductions()
{
  register reductions *rp,*rptmp;/* JF fixed freed ptr */

  FREE(reduction_table);

  for (rp = first_reduction; rp; rp = rptmp) {
    rptmp=rp->next;
    FREE(rp);
  }
}