|
DataMuseum.dkPresents historical artifacts from the history of: DKUUG/EUUG Conference tapes |
This is an automatic "excavation" of a thematic subset of
See our Wiki for more about DKUUG/EUUG Conference tapes Excavated with: AutoArchaeologist - Free & Open Source Software. |
top - metrics - downloadIndex: T a
Length: 13543 (0x34e7) Types: TextFile Names: »a386.texinfo«
└─⟦a05ed705a⟧ Bits:30007078 DKUUG GNU 2/12/89 └─⟦4b5df2b9d⟧ »./gas-doc.tar.Z« └─⟦9810ddab3⟧ └─⟦this⟧ »a386.texinfo«
@subsection AT&T Syntax versus Intel Syntax In order to maintain compatibility with the output of @code{GCC}, @code{as} supports AT&T System V/386 assembler syntax. This is quite different from Intel syntax. We mention these differences because almost all 80386 documents used only Intel syntax. Noteable differences between the two syntaxes are: @itemize @bullet @item AT&T immediate operands are preceded by @samp{$}; Intel immediate operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}). AT&T register operands are preceded by @samp{%}; Intel register operands are undelimited. AT&T absolute (as opposed to PC relative) jump/call operands are prefixed by @samp{*}; they are undelimited in Intel syntax. @item AT&T and Intel syntax use the opposite order for source and destination operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The @samp{source, dest} convention is maintained for compatibility with previous Un*x assemblers. @item In AT&T syntax the size of memory operands is determined from the last character of the opcode name. Opcode suffixes of @samp{b}, @samp{w}, and @samp{l} specify byte (8-bit), word (16-bit), and long (32-bit) memory references. Intel syntax accomplishes this by prefixes memory operands (@emph{not} the opcodes themselves) with @samp{byte ptr}, @samp{word ptr}, and @samp{dword ptr}. Thus, Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T syntax. @item Immediate form long jumps and calls are @samp{lcall/ljmp $@var{segment}, $@var{offset}} in AT&T syntax; the Intel syntax is @samp{call/jmp far @var{segment}:@var{offset}}. Also, the far return instruction is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is @samp{ret far @var{stack-adjust}}. @item The AT&T assembler does not provide support for multiple segment programs. Un*x style systems expect all programs to be single segments. @end itemize @subsection Opcode Naming Opcode names are suffixed with one character modifiers which specify the size of operands. The letters @samp{b}, @samp{w}, and @samp{l} specify byte, word, and long operands. If no suffix is specified by an instruction and it contains no memory operands then @code{as} tries to fill in the missing suffix based on the destination register operand (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to @samp{movw $1, %bx}. Note that this is incompatible with the AT&T Un*x assembler which assumes that a missing opcode suffix implies long operand size. (This incompatibility does not affect compiler output since compilers always explicitly specify the opcode suffix.) Almost all opcodes have the same names in AT&T and Intel format. There are a few exceptions. The sign extend and zero extend instructions need two sizes to specify them. They need a size to sign/zero extend @emph{from} and a size to zero extend @emph{to}. This is accomplished by using two opcode suffixes in AT&T syntax. Base names for sign extend and zero extend are @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx} and @samp{movzx} in Intel syntax). The opcode suffixes are tacked on to this base name, the @emph{from} suffix before the @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes, thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word), and @samp{wl} (from word to long). The Intel syntax conversion instructions @itemize @bullet @item @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax}, @item @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax}, @item @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax}, @item @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax}, @end itemize are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, and @samp{cltd} in AT&T naming. @code{as} accepts either naming for these instructions. Far call/jump instructions are @samp{lcall} and @samp{ljmp} in AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel convention. @subsection Register Naming Register operands are always prefixes with @samp{%}. The 80386 registers consist of @itemize @bullet @item the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx}, @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the frame pointer), and @samp{%esp} (the stack pointer). @item the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx}, @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}. @item the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh}, @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx}, @samp{%cx}, and @samp{%dx}) @item the 6 segment registers @samp{%cs} (code segment), @samp{%ds} (data segment), @samp{%ss} (stack segment), @samp{%es}, @samp{%fs}, and @samp{%gs}. @item the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and @samp{%cr3}. @item the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2}, @samp{%db3}, @samp{%db6}, and @samp{%db7}. @item the 2 test registers @samp{%tr6} and @samp{%tr7}. @item the 8 floating point register stack @samp{%st} or equivalently @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)}, @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}. @end itemize @subsection Opcode Prefixes Opcode prefixes are used to modify the following opcode. They are used to repeat string instructions, to provide segment overrides, to perform bus lock operations, and to give operand and address size (16-bit operands are specified in an instruction by prefixing what would normally be 32-bit operands with a ``operand size'' opcode prefix). Opcode prefixes are usually given as single-line instructions with no operands, and must directly precede the instruction they act upon. For example, the @samp{scas} (scan string) instruction is repeated with: @example repne scas @end example Here is a list of opcode prefixes: @itemize @bullet @item Segment override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es}, @samp{fs}, @samp{gs}. These are automatically added by specifying using the @var{segment}:@var{memory-operand} form for memory references. @item Operand/Address size prefixes @samp{data16} and @samp{addr16} change 32-bit operands/addresses into 16-bit operands/addresses. Note that 16-bit addressing modes (i.e. 8086 and 80286 addressing modes) are not supported (yet). @item The bus lock prefix @samp{lock} inhibits interrupts during execution of the instruction it precedes. (This is only valid with certain instructions; see a 80386 manual for details). @item The wait for coprocessor prefix @samp{wait} waits for the coprocessor to complete the current instruction. This should never be needed for the 80386/80387 combination. @item The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added to string instructions to make them repeat @samp{%ecx} times. @end itemize @subsection Memory References An Intel syntax indirect memory reference of the form @center @var{segment}:[@var{base} + @var{index}*@var{scale} + @var{disp}] is translated into the AT&T syntax @center @var{segment}:@var{disp}(@var{base}, @var{index}, @var{scale}) where @var{base} and @var{index} are the optional 32-bit base and index registers, @var{disp} is the optional displacement, and @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index} to calculate the address of the operand. If no @var{scale} is specified, @var{scale} is taken to be 1. @var{segment} specifies the optional segment register for the memory operand, and may override the default segment register (see a 80386 manual for segment register defaults). Note that segment overrides in AT&T syntax @emph{must} have be preceded by a @samp{%}. If you specify a segment override which coincides with the default segment register, @code{as} will @emph{not} output any segment register override prefixes to assemble the given instruction. Thus, segment overrides can be specified to emphasize which segment register is used for a given memory operand. Here are some examples of Intel and AT&T style memory references: @table @asis @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]} @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{segment} is missing, and the default segment is used (@samp{%ss} for addressing with @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing. @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]} @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is @samp{foo}. All other fields are missing. The segment register here defaults to @samp{%ds}. @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]} This uses the value pointed to by @samp{foo} as a memory operand. Note that @var{base} and @var{index} are both missing, but there is only @emph{one} @samp{,}. This is a syntactic exception. @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo} This selects the contents of the variable @samp{foo} with segment register @var{segment} being @samp{%gs}. @end table Absolute (as opposed to PC relative) call and jump operands must be prefixed with @samp{*}. If no @samp{*} is specified, @code{as} will always choose PC relative addressing for jump/call labels. Any instruction that has a memory operand @emph{must} specify its size (byte, word, or long) with an opcode suffix (@samp{b}, @samp{w}, or @samp{l}, respectively). @subsection Handling of Jump Instructions Jump instructions are always optimized to use the smallest possible displacements. This is accomplished by using byte (8-bit) displacement jumps whenever the target is sufficiently close. If a byte displacement is insufficient a long (32-bit) displacement is used. We do not support word (16-bit) displacement jumps (i.e. prefixing the jump instruction with the @samp{addr16} opcode prefix), since the 80386 insists upon masking @samp{%eip} to 16 bits after the word displacement is added. Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz}, @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte displacements, so that it is possible that use of these instructions (@code{GCC} does not use them) will cause the assembler to print an error message (and generate incorrect code). The AT&T 80386 assembler tries to get around this problem by expanding @samp{jcxz foo} to @example jcxz cx_zero jmp cx_nonzero cx_zero: jmp foo cx_nonzero: @end example @subsection Floating Point All 80387 floating point types except packed BCD are supported. (BCD support may be added without much difficulty). These data types are 16-, 32-, and 64- bit integers, and single (32-bit), double (64-bit), and extended (80-bit) precision floating point. Each supported type has an opcode suffix and a constructor associated with it. Opcode suffixes specify operand's data types. Constructors build these data types into memory. @itemize @bullet @item Floating point constructors are @samp{.float} or @samp{.single}, @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats. These correspond to opcode suffixes @samp{s}, @samp{l}, and @samp{t}. @samp{t} stands for temporary real, and that the 80387 only supports this format via the @samp{fldt} (load temporary real to stack top) and @samp{fstpt} (store temporary real and pop stack) instructions. @item Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The corresponding opcode suffixes are @samp{s} (single), @samp{l} (long), and @samp{q} (quad). As with the temporary real format the 64-bit @samp{q} format is only present in the @samp{fildq} (load quad integer to stack top) and @samp{fistpq} (store quad integer and pop stack) instructions. @end itemize Register to register operations do not require opcode suffixes, so that @samp{fst %st, %st(1)} is equivalent to @samp{fstl %st, %st(1)}. Since the 80387 automatically synchronizes with the 80386 @samp{fwait} instructions are almost never needed (this is not the case for the 80286/80287 and 8086/8087 combinations). Therefore, @code{as} supresses the @samp{fwait} instruction whenever it is implicitly selected by one of the @samp{fn@dots{}} instructions. For example, @samp{fsave} and @samp{fnsave} are treated identically. In general, all the @samp{fn@dots{}} instructions are made equivalent to @samp{f@dots{}} instructions. If @samp{fwait} is desired it must be explicitly coded. @subsection Notes There is some trickery concerning the @samp{mul} and @samp{imul} instructions that deserves mention. The 16-, 32-, and 64-bit expanding multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5 for @samp{imul}) can be output only in the one operand form. Thus, @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply; the expanding multiply would clobber the @samp{%edx} register, and this would confuse @code{GCC} output. Use @samp{imul %ebx} to get the 64-bit product in @samp{%edx:%eax}. We have added a two operand form of @samp{imul} when the first operand is an immediate mode expression and the second operand is a register. This is just a shorthand, so that, multiplying @samp{%eax} by 69, for example, can be done with @samp{imul $69, %eax} rather than @samp{imul $69, %eax, %eax}.