|
DataMuseum.dkPresents historical artifacts from the history of: DKUUG/EUUG Conference tapes |
This is an automatic "excavation" of a thematic subset of
See our Wiki for more about DKUUG/EUUG Conference tapes Excavated with: AutoArchaeologist - Free & Open Source Software. |
top - metrics - downloadIndex: T e
Length: 3465 (0xd89) Types: TextFile Names: »eqnchar«
└─⟦060c9c824⟧ Bits:30007080 DKUUG TeX 2/12/89 └─⟦this⟧ »./DVIware/laser-setters/quicspool/src/eqnchar« └─⟦52210d11f⟧ Bits:30007239 EUUGD2: TeX 3 1992-12 └─⟦af5ba6c8e⟧ »unix3.0/DVIWARE.tar.Z« └─⟦ca79c7339⟧ └─⟦this⟧ »DVIware/laser-setters/quicspool/src/eqnchar«
.\" $Header: eqnchar,v 1.1 88/01/15 13:03:55 simpson Rel $ .\" $Log: eqnchar,v $ .\" Revision 1.1 88/01/15 13:03:55 simpson .\" initial release .\" .\" Revision 0.1 87/12/11 18:30:52 simpson .\" beta test .\" .EQ tdefine ciplus % "\o'\(pl\(ci'" % ndefine ciplus % O▶08◀+ % tdefine citimes % "\o'\(mu\(ci'" % ndefine citimes % O▶08◀x % tdefine =wig % "\(eq\h'-\w'\(eq'u-\w'\s-1\(ap'u/2u'\v'-.4m'\s-1\z\(ap\(ap\s+1\v'.4m'\h'\w'\(eq'u-\w'\s-1\(ap'u/2u'" % ndefine =wig % =▶08◀"~" % tdefine bigstar % "\o'\(pl\(mu'" % ndefine bigstar % X▶08◀|▶08◀- % tdefine =dot % "\z\(eq\v'-.6m'\h'.2m'\s+2.\s-2\v'.6m'\h'.1m'" % ndefine =dot % = dot % tdefine orsign % "\s-2\v'-.15m'\z\e\e\h'-.15m'\z\(sl\(sl\v'.15m'\s+2" % ndefine orsign % \e/ % tdefine andsign % "\s-2\v'-.15m'\z\(sl\(sl\h'-.15m'\z\e\e\v'.15m'\s+2" % ndefine andsign % /\e % tdefine =del % "\v'.3m'\z\(eq\v'-.6m'\s-1\(*D\s+1\v'.3m'" % ndefine =del % = to DELTA % tdefine oppA % "\s-2\v'-.15m'\z\e\e\h'-.15m'\z\(sl\(sl\v'-.15m'\h'-.75m'\z-\z-\h'.2m'\z-\z-\v'.3m'\h'.4m'\s+2" % ndefine oppA % V▶08◀- % tdefine oppE %"\s-3\v'.2m'\z\(em\v'-.5m'\z\(em\v'-.5m'\z\(em\v'.50m'\h'1m'\z\(br\z\(br\v'.25m'\s+3" % ndefine oppE % E▶08◀/ % tdefine incl % "\s-1\z\(or\v'-.5m'\z\(em\v'1.05m'\z\(em\v'.2m'\(em\v'-.75m'\s+1" % ndefine incl % C▶08◀_ % tdefine nomem % "\o'\(mo\(sl'" % ndefine nomem % C▶08◀-▶08◀/ % tdefine angstrom % "\fR\zA\v'-.15m'\(de\v'.15m'\fP\h'.2m'" % ndefine angstrom % A to o % tdefine star %{ roman "\v'.4m'\s+3*\s-3\v'-.4m'"}% ndefine star % * % tdefine || % \(or\(or % tdefine <wig % "\z<\v'.5m'\(ap\v'-.5m'" % ndefine <wig %{ < from "~" }% tdefine >wig % "\z>\v'.5m'\(ap\v'-.5m'" % ndefine >wig %{ > from "~" }% tdefine langle % "\s-3\b'\(sl\e'\s0" % ndefine langle %<% tdefine rangle % "\s-3\b'\e\(sl'\s0" % ndefine rangle %>% tdefine hbar % "\zh\v'-.6m'\h'.05m'\(ru\v'.6m'" % ndefine hbar % h▶08◀\u-\d % ndefine ppd % _▶08◀| % tdefine ppd % "\h'.25m'\v'-.2m'\s-2\z\(or\s+2\h'-.25m'\v'.2m'\(ru" % tdefine <-> % "\o'\(<-\(->'" % ndefine <-> % "<-->" % tdefine <=> % { roman "\s-2\z<\h'.3m'\z=\h'.45m'=\h'-.56m'>\s+2" } % ndefine <=> % "<=>" % tdefine |< % "\o'<\(or'" % ndefine |< % <▶08◀| % tdefine |> % "\o'>\(or'" % ndefine |> % |▶08◀> % tdefine ang % "\v'-.15m'\z\s-2\(sl\s+2\v'.15m'\(ru" % ndefine ang % /▶08◀_ % tdefine rang % "\h'-.05m'\v'-.2m'\s-2\z\(or\s+2\h'.05m'\v'.2m'\(ru" % ndefine rang % L % tdefine 3dot % "\v'-.8m'\z.\v'.5m'\z.\v'.5m'.\v'-.2m'" % ndefine 3dot % .▶08◀\u.▶08◀\u.\d\d % tdefine thf % ".\v'-.5m'.\v'.5m'." % ndefine thf % ..▶08◀\u.\d % tdefine quarter % roman \(14 % ndefine quarter % 1/4 % tdefine 3quarter % roman \(34 % ndefine 3quarter % 3/4 % tdefine degree % { roman \(de } % ndefine degree % nothing sup o % tdefine square % roman \(sq % ndefine square % [] % tdefine circle % \(ci % ndefine circle % O % tdefine blot % "\fB\(sq\fP" % ndefine blot % H▶08◀I▶08◀X % tdefine bullet % roman \(bu % ndefine bullet % o▶08◀x▶08◀e % tdefine -wig % "\(~=" % ndefine -wig % - to "~" % tdefine wig % \(ap % ndefine wig % "~" % tdefine prop % \(pt % ndefine prop % oc % tdefine empty % \(es % ndefine empty % O▶08◀/ % tdefine member % \(mo % ndefine member % C▶08◀- % tdefine cup % \(cu % ndefine cup % U % tdefine scrL % "\v'-.2m'\z\fI)\fP\fR(\fP\v'.2m'" % ndefine scrL % (▶08◀/ % tdefine ==> % "\z>\v'.6m'\(eq\v'-.6m'\h'.05m'" % ndefine ==> % >▶08◀\d=\u % tdefine ==< % "\z<\v'.6m'\(eq\v'-.6m'\h'.05m'" % ndefine ==< % <▶08◀\d=\u % define cap % \(ca % define subset % \(sb % define supset % \(sp % define !subset % \(ib % define !supset % \(ip % .EN