DataMuseum.dk

Presents historical artifacts from the history of:

DKUUG/EUUG Conference tapes

This is an automatic "excavation" of a thematic subset of
artifacts from Datamuseum.dk's BitArchive.

See our Wiki for more about DKUUG/EUUG Conference tapes

Excavated with: AutoArchaeologist - Free & Open Source Software.


top - metrics - download
Index: T l

⟦807af334d⟧ TextFile

    Length: 20968 (0x51e8)
    Types: TextFile
    Names: »linpackud.f«

Derivation

└─⟦db229ac7e⟧ Bits:30007240 EUUGD20: SSBA 1.2 / AFW Benchmarks
    └─⟦this⟧ »EUUGD20/AFUU-ssba1.21/ssba1.21E/linpack/linpackud.f« 
    └─⟦this⟧ »EUUGD20/AFUU-ssba1.21/ssba1.21F/linpack/linpackud.f« 

TextFile

	program linpud
	common // aa(200,200),a(201,200),b(200),x(200)
	doubleprecision aa,a,b,x
      doubleprecision time(8,6),cray,ops,total,norma,normx
      doubleprecision resid,residn,eps,epslon
      integer ipvt(200)
      doubleprecision second
c	call fpmode(128)
	lda = 201
      ldaa = 200
c
      n = 100
      cray = .056
      ops = (2.0e0*n**3)/3.0e0 + 2.0e0*n**2
c
         call matgen(a,lda,n,b,norma)
         t1 = second()
         call sgefa(a,lda,n,ipvt,info)
         time(1,1) = second() - t1
         t1 = second()
         call sgesl(a,lda,n,ipvt,b,0)
         time(1,2) = second() - t1
         total = time(1,1) + time(1,2)
c
c     compute a residual to verify results.
c
         do 10 i = 1,n
            x(i) = b(i)
   10    continue
         call matgen(a,lda,n,b,norma)
         do 20 i = 1,n
            b(i) = -b(i)
   20    continue
         call smxpy(n,b,n,lda,x,a)
         resid = 0.0
         normx = 0.0
         do 30 i = 1,n
            resid = max( resid, abs(b(i)) )
            normx = max( normx, abs(x(i)) )
   30    continue
         eps = epslon(1.0d0)
	residn = resid/( n*norma*normx*eps )
cc        write(6,40)
cc  40    format('     norm. resid      resid           machep',
cc    $          '         x(1)-1        x(n)-1')
cc        write(6,50) residn,resid,eps,x(1)-1,x(n)-1
cc  50    format(1p5e16.8)
c
cc        write(6,60) n
cc  60    format(//'    times are reported for matrices of order ',i5)
cc        write(6,70)
cc  70    format(6x,'sgefa',6x,'sgesl',6x,'total',5x,'Kflops',7x,'unit',
cc    $         6x,'ratio')
c
         time(1,3) = total
         time(1,4) = ops/(1.0e3*total)
         time(1,5) = 2.0e3/time(1,4)
         time(1,6) = total/cray
cc        write(6,80) lda
cc  80    format(' times for array with leading dimension of',i4)
cc        write(6,110) (time(1,i),i=1,6)
c	goto 998
c
         call matgen(a,lda,n,b,norma)
         t1 = second()
         call sgefa(a,lda,n,ipvt,info)
         call sgesl(a,lda,n,ipvt,b,0)
         time(2,1) = second() - t1
         t1 = second()
         time(2,2) = 0
         total = time(2,1) + time(2,2)
         time(2,3) = total
         time(2,4) = ops/(1.0e3*total)
         time(2,5) = 2.0e3/time(2,4)
         time(2,6) = total/cray
cc        write(6,110) (time(2,i),i=1,6)
c
         call matgen(a,lda,n,b,norma)
         t1 = second()
         call sgefa(a,lda,n,ipvt,info)
         call sgesl(a,lda,n,ipvt,b,0)
         time(3,1) = second() - t1
         time(3,2) = 0
         total = time(3,1) + time(3,2)
         time(3,3) = total
         time(3,4) = ops/(1.0e3*total)
         time(3,5) = 2.0e3/time(3,4)
         time(3,6) = total/cray
cc        write(6,110) (time(3,i),i=1,6)
c
         ntimes = 10
         t1 = second()
         do 89 i = 1,ntimes
            call matgen(a,lda,n,b,norma)
 89	continue
	tm2 = second() - t1
	t1 = second()
	do 90 i = 1,ntimes
            call matgen(a,lda,n,b,norma)
            call sgefa(a,lda,n,ipvt,info)
            call sgesl(a,lda,n,ipvt,b,0)
   90    continue
         time(4,1) = (second() - t1 - tm2)/ntimes
         time(4,2) = 0
         total = time(4,1) + time(4,2)
         time(4,3) = total
         time(4,4) = ops/(1.0e3*total)
         time(4,5) = 2.0e3/time(4,4)
         time(4,6) = total/cray
c
cc        write(6,110) (time(4,i),i=1,6)
cc 110    format(3(f11.2),f11.0,2(f11.2))
 998	continue
c
cc        write(6,140) ldaa
cc 140    format(/' times for array with leading dimension of',i4)
         call matgen(aa,ldaa,n,b,norma)
         t1 = second()
         call sgefa(aa,ldaa,n,ipvt,info)
         time(5,1) = second() - t1
         t1 = second()
         call sgesl(aa,ldaa,n,ipvt,b,0)
         time(5,2) = second() - t1
         total = time(5,1) + time(5,2)
         time(5,3) = total
         time(5,4) = ops/(1.0e3*total)
         time(5,5) = 2.0e3/time(5,4)
         time(5,6) = total/cray
cc        write(6,110) (time(5,i),i=1,6)
c	goto 999
c
         call matgen(aa,ldaa,n,b,norma)
         t1 = second()
         call sgefa(aa,ldaa,n,ipvt,info)
         call sgesl(aa,ldaa,n,ipvt,b,0)
         time(6,1) = second() - t1
         time(6,2) = 0
         total = time(6,1) + time(6,2)
         time(6,3) = total
         time(6,4) = ops/(1.0e3*total)
         time(6,5) = 2.0e3/time(6,4)
         time(6,6) = total/cray
cc        write(6,110) (time(6,i),i=1,6)
c
         call matgen(aa,ldaa,n,b,norma)
         t1 = second()
         call sgefa(aa,ldaa,n,ipvt,info)
         call sgesl(aa,ldaa,n,ipvt,b,0)
         time(7,1) = second() - t1
         time(7,2) = 0
         total = time(7,1) + time(7,2)
         time(7,3) = total
         time(7,4) = ops/(1.0e3*total)
         time(7,5) = 2.0e3/time(7,4)
         time(7,6) = total/cray
cc        write(6,110) (time(7,i),i=1,6)
c
         ntimes = 10
         t1 = second()
         do 119 i = 1, ntimes
            call matgen(aa,ldaa,n,b,norma)
 119	continue
            tm2 = second() - t1
         t1 = second()
		do 120 i = 1,ntimes
            call matgen(aa,ldaa,n,b,norma)
            call sgefa(aa,ldaa,n,ipvt,info)
            call sgesl(aa,ldaa,n,ipvt,b,0)
  120    continue
         time(8,1) = (second() - t1 - tm2)/ntimes
         time(8,2) = 0
         total = time(8,1) + time(8,2)
         time(8,3) = total
         time(8,4) = ops/(1.0e3*total)
         time(8,5) = 2.0e3/time(8,4)
         time(8,6) = total/cray
c
cc        write(6,110) (time(8,i),i=1,6)
 999	continue
	write(*,*)
	write(*,*)'unrolled',' double ',' precision linpack performance ',
     $		nint(min(time(4,4),time(8,4))), ' Kflops '
	 stop
      end
      subroutine matgen(a,lda,n,b,norma)
      doubleprecision a(lda,1),b(1),norma
c
      init = 1325
      norma = 0.0
      do 30 j = 1,n
         do 20 i = 1,n
            init = mod(3125*init,65536)
            a(i,j) = (init - 32768.0)/16384.0
	    norma = max(a(i,j), norma)
   20    continue
   30 continue
      do 35 i = 1,n
          b(i) = 0.0
   35 continue
      do 50 j = 1,n
         do 40 i = 1,n
            b(i) = b(i) + a(i,j)
   40    continue
   50 continue
      return
      end
      subroutine sgefa(a,lda,n,ipvt,info)
      integer lda,n,ipvt(1),info
      doubleprecision a(lda,1)
c
c     sgefa factors a real matrix by gaussian elimination.
c
c     sgefa is usually called by dgeco, but it can be called
c     directly with a saving in time if  rcond  is not needed.
c     (time for dgeco) = (1 + 9/n)*(time for sgefa) .
c
c     on entry
c
c        a       real(lda, n)
c                the matrix to be factored.
c
c        lda     integer
c                the leading dimension of the array  a .
c
c        n       integer
c                the order of the matrix  a .
c
c     on return
c
c        a       an upper triangular matrix and the multipliers
c                which were used to obtain it.
c                the factorization can be written  a = l*u  where
c                l  is a product of permutation and unit lower
c                triangular matrices and  u  is upper triangular.
c
c        ipvt    integer(n)
c                an integer vector of pivot indices.
c
c        info    integer
c                = 0  normal value.
c                = k  if  u(k,k) .eq. 0.0 .  this is not an error
c                     condition for this subroutine, but it does
c                     indicate that sgesl or dgedi will divide by zero
c                     if called.  use  rcond  in dgeco for a reliable
c                     indication of singularity.
c
c     linpack. this version dated 08/14/78 .
c     cleve moler, university of new mexico, argonne national lab.
c
c     subroutines and functions
c
c     blas saxpy,sscal,isamax
c
c     internal variables
c
      doubleprecision t
      integer isamax,j,k,kp1,l,nm1
c
c
c     gaussian elimination with partial pivoting
c
      info = 0
      nm1 = n - 1
      if (nm1 .lt. 1) go to 70
      do 60 k = 1, nm1
         kp1 = k + 1
c
c        find l = pivot index
c
         l = isamax(n-k+1,a(k,k),1) + k - 1
         ipvt(k) = l
c
c        zero pivot implies this column already triangularized
c
         if (a(l,k) .eq. 0.0d0) go to 40
c
c           interchange if necessary
c
            if (l .eq. k) go to 10
               t = a(l,k)
               a(l,k) = a(k,k)
               a(k,k) = t
   10       continue
c
c           compute multipliers
c
            t = -1.0d0/a(k,k)
            call sscal(n-k,t,a(k+1,k),1)
c
c           row elimination with column indexing
c
            do 30 j = kp1, n
               t = a(l,j)
               if (l .eq. k) go to 20
                  a(l,j) = a(k,j)
                  a(k,j) = t
   20          continue
               call saxpy(n-k,t,a(k+1,k),1,a(k+1,j),1)
   30       continue
         go to 50
   40    continue
            info = k
   50    continue
   60 continue
   70 continue
      ipvt(n) = n
      if (a(n,n) .eq. 0.0d0) info = n
      return
      end
      subroutine sgesl(a,lda,n,ipvt,b,job)
      integer lda,n,ipvt(1),job
      doubleprecision a(lda,1),b(1)
c
c     sgesl solves the real system
c     a * x = b  or  trans(a) * x = b
c     using the factors computed by dgeco or sgefa.
c
c     on entry
c
c        a       real(lda, n)
c                the output from dgeco or sgefa.
c
c        lda     integer
c                the leading dimension of the array  a .
c
c        n       integer
c                the order of the matrix  a .
c
c        ipvt    integer(n)
c                the pivot vector from dgeco or sgefa.
c
c        b       real(n)
c                the right hand side vector.
c
c        job     integer
c                = 0         to solve  a*x = b ,
c                = nonzero   to solve  trans(a)*x = b  where
c                            trans(a)  is the transpose.
c
c     on return
c
c        b       the solution vector  x .
c
c     error condition
c
c        a division by zero will occur if the input factor contains a
c        zero on the diagonal.  technically this indicates singularity
c        but it is often caused by improper arguments or improper
c        setting of lda .  it will not occur if the subroutines are
c        called correctly and if dgeco has set rcond .gt. 0.0
c        or sgefa has set info .eq. 0 .
c
c     to compute  inverse(a) * c  where  c  is a matrix
c     with  p  columns
c           call dgeco(a,lda,n,ipvt,rcond,z)
c           if (rcond is too small) go to ...
c           do 10 j = 1, p
c              call sgesl(a,lda,n,ipvt,c(1,j),0)
c        10 continue
c
c     linpack. this version dated 08/14/78 .
c     cleve moler, university of new mexico, argonne national lab.
c
c     subroutines and functions
c
c     blas saxpy,sdot
c
c     internal variables
c
      doubleprecision sdot,t
      integer k,kb,l,nm1
c
      nm1 = n - 1
      if (job .ne. 0) go to 50
c
c        job = 0 , solve  a * x = b
c        first solve  l*y = b
c
         if (nm1 .lt. 1) go to 30
         do 20 k = 1, nm1
            l = ipvt(k)
            t = b(l)
            if (l .eq. k) go to 10
               b(l) = b(k)
               b(k) = t
   10       continue
            call saxpy(n-k,t,a(k+1,k),1,b(k+1),1)
   20    continue
   30    continue
c
c        now solve  u*x = y
c
         do 40 kb = 1, n
            k = n + 1 - kb
            b(k) = b(k)/a(k,k)
            t = -b(k)
            call saxpy(k-1,t,a(1,k),1,b(1),1)
   40    continue
      go to 100
   50 continue
c
c        job = nonzero, solve  trans(a) * x = b
c        first solve  trans(u)*y = b
c
         do 60 k = 1, n
            t = sdot(k-1,a(1,k),1,b(1),1)
            b(k) = (b(k) - t)/a(k,k)
   60    continue
c
c        now solve trans(l)*x = y
c
         if (nm1 .lt. 1) go to 90
         do 80 kb = 1, nm1
            k = n - kb
            b(k) = b(k) + sdot(n-k,a(k+1,k),1,b(k+1),1)
            l = ipvt(k)
            if (l .eq. k) go to 70
               t = b(l)
               b(l) = b(k)
               b(k) = t
   70       continue
   80    continue
   90    continue
  100 continue
      return
      end
      
      subroutine saxpy(n,da,dx,incx,dy,incy)
      doubleprecision dx(1),dy(1),da
      integer i,incx,incy,ix,iy,m,mp1,n
      if(n.le.0)return
      if (da .eq. 0.0d0) return
      if(incx.eq.1.and.incy.eq.1)go to 20
      ix = 1
      iy = 1
      if(incx.lt.0)ix = (-n+1)*incx + 1
      if(incy.lt.0)iy = (-n+1)*incy + 1
      do 10 i = 1,n
        dy(iy) = dy(iy) + da*dx(ix)
        ix = ix + incx
        iy = iy + incy
   10 continue
      return

   20 m = mod(n,4)
      if( m .eq. 0 ) go to 40
      do 30 i = 1,m
        dy(i) = dy(i) + da*dx(i)
   30 continue
      if( n .lt. 4 ) return
   40 mp1 = m + 1
      do 50 i = mp1,n,4
        dy(i) = dy(i) + da*dx(i)
        dy(i + 1) = dy(i + 1) + da*dx(i + 1)
        dy(i + 2) = dy(i + 2) + da*dx(i + 2)
        dy(i + 3) = dy(i + 3) + da*dx(i + 3)
   50 continue

      return
      end

	doubleprecision function sdot(n,dx,incx,dy,incy)
c
c     forms the dot product of two vectors.
c     uses unrolled loops for increments equal to one.
c     Jack Dongarra, linpack, 3/11/78.
c
      doubleprecision dx(1),dy(1),dtemp
      integer i,incx,incy,ix,iy,m,mp1,n
c
      sdot = 0.0d0
      dtemp = 0.0d0
      if(n.le.0)return
      if(incx.eq.1.and.incy.eq.1)go to 20
c
c        code for unequal increments or equal increments
c          not equal to 1
c
      ix = 1
      iy = 1
      if(incx.lt.0)ix = (-n+1)*incx + 1
      if(incy.lt.0)iy = (-n+1)*incy + 1
      do 10 i = 1,n
        dtemp = dtemp + dx(ix)*dy(iy)
        ix = ix + incx
        iy = iy + incy
   10 continue
      sdot = dtemp
      return
c
c        code for both increments equal to 1
c
c
c        clean-up loop
c

   20 m = mod(n,5)
      if( m .eq. 0 ) go to 40
      do 30 i = 1,m
        dtemp = dtemp + dx(i)*dy(i)
   30 continue
      if( n .lt. 5 ) go to 60
   40 mp1 = m + 1
      do 50 i = mp1,n,5
        dtemp = dtemp + dx(i)*dy(i) + dx(i + 1)*dy(i + 1) +
     *   dx(i + 2)*dy(i + 2) + dx(i + 3)*dy(i + 3) + dx(i + 4)*dy(i + 4)
   50 continue

   60 sdot = dtemp
      return
      end
      subroutine  sscal(n,da,dx,incx)
c
c     scales a vector by a constant.
c     uses unrolled loops for increment equal to one.
c     Jack Dongarra, linpack, 3/11/78.
c
      doubleprecision da,dx(1)
      integer i,incx,m,mp1,n,nincx
c
      if(n.le.0)return
      if(incx.eq.1)go to 20
c
c        code for increment not equal to 1
c
      nincx = n*incx
      do 10 i = 1,nincx,incx
        dx(i) = da*dx(i)
   10 continue
      return
c
c        code for increment equal to 1
c
c
c        clean-up loop
c

   20 m = mod(n,5)
      if( m .eq. 0 ) go to 40
      do 30 i = 1,m
        dx(i) = da*dx(i)
   30 continue
      if( n .lt. 5 ) return
   40 mp1 = m + 1
      do 50 i = mp1,n,5
        dx(i) = da*dx(i)
        dx(i + 1) = da*dx(i + 1)
        dx(i + 2) = da*dx(i + 2)
        dx(i + 3) = da*dx(i + 3)
        dx(i + 4) = da*dx(i + 4)
   50 continue

      return
      end
      integer function isamax(n,dx,incx)
c
c     finds the index of element having max. absolute value.
c     Jack Dongarra, linpack, 3/11/78.
c
      doubleprecision dx(1),dmax
      integer i,incx,ix,n
c
      isamax = 0
      if( n .lt. 1 ) return
      isamax = 1
      if(n.eq.1)return
      if(incx.eq.1)go to 20
c
c        code for increment not equal to 1
c
      ix = 1
      dmax = abs(dx(1))
      ix = ix + incx
      do 10 i = 2,n
         if(abs(dx(ix)).le.dmax) go to 5
         isamax = i
         dmax = abs(dx(ix))
    5    ix = ix + incx
   10 continue
      return
c
c        code for increment equal to 1
c
   20 dmax = abs(dx(1))
      do 30 i = 2,n
         if(abs(dx(i)).le.dmax) go to 30
         isamax = i
         dmax = abs(dx(i))
   30 continue
      return
      end
      doubleprecision function epslon (x)
      doubleprecision x
c
c     estimate unit roundoff in quantities of size x.
c
      doubleprecision a,b,c,eps
c
c     this program should function properly on all systems
c     satisfying the following two assumptions,
c        1.  the base used in representing floating point
c            numbers is not a power of three.
c        2.  the quantity  a  in statement 10 is represented to 
c            the accuracy used in floating point variables
c            that are stored in memory.
c     the statement number 10 and the go to 10 are intended to
c     force optimizing compilers to generate code satisfying 
c     assumption 2.
c     under these assumptions, it should be true that,
c            a  is not exactly equal to four-thirds,
c            b  has a 0.0d0 for its last bit or digit,
c            c  is not exactly equal to 1.0d0,
c            eps  measures the separation of 1.0 from
c                 the next larger floating point number.
c     the developers of eispack would appreciate being informed
c     about any systems where these assumptions do not hold.
c
c     *****************************************************************
c     this routine is 1.0d0 of the auxiliary routines used by eispack iii
c     to avoid machine dependencies.
c     *****************************************************************
c
c     this version dated 4/6/83.
c
      a = dble(4)/dble(3)
   10 b = a - 1.0d0
      c = b + b + b
      eps = abs(c-1.0d0)
      if (eps .eq. 0.0d0) go to 10
      epslon = eps*abs(x)
      return
      end
      subroutine mm (a, lda, n1, n3, b, ldb, n2, c, ldc)
      doubleprecision a(lda,*), b(ldb,*), c(ldc,*)
c
c   purpose:
c     multiply matrix b times matrix c and store the result in matrix a.
c
c   parameters:
c
c     a doubleprecision(lda,n3), matrix of n1 rows and n3 columns
c
c     lda integer, leading dimension of array a
c
c     n1 integer, number of rows in matrices a and b
c
c     n3 integer, number of columns in matrices a and c
c
c     b doubleprecision(ldb,n2), matrix of n1 rows and n2 columns
c
c     ldb integer, leading dimension of array b
c
c     n2 integer, number of columns in matrix b, and number of rows in
c         matrix c
c
c     c doubleprecision(ldc,n3), matrix of n2 rows and n3 columns
c
c     ldc integer, leading dimension of array c
c
c ----------------------------------------------------------------------
c
      do 20 j = 1, n3
         do 10 i = 1, n1
            a(i,j) = 0.0d0
   10    continue
         call smxpy (n2,a(1,j),n1,ldb,c(1,j),b)
   20 continue
c
      return
      end
      subroutine smxpy (n1, y, n2, ldm, x, m)
      doubleprecision y(*), x(*), m(ldm,*)
c
c   purpose:
c     multiply matrix m times vector x and add the result to vector y.
c
c   parameters:
c
c     n1 integer, number of elements in vector y, and number of rows in
c         matrix m
c
c     y doubleprecision(n1), vector of length n1 to which is added the product m*x
c
c     n2 integer, number of elements in vector x, and number of columns
c         in matrix m
c
c     ldm integer, leading dimension of array m
c
c     x doubleprecision(n2), vector of length n2
c
c     m doubleprecision(ldm,n2), matrix of n1 rows and n2 columns
c
c ----------------------------------------------------------------------
c
c   cleanup odd vector
c
      j = mod(n2,2)
      if (j .ge. 1) then
         do 10 i = 1, n1
            y(i) = (y(i)) + x(j)*m(i,j)
   10    continue
      endif
c
c   cleanup odd group of two vectors
c
      j = mod(n2,4)
      if (j .ge. 2) then
         do 20 i = 1, n1
            y(i) = ( (y(i))
     $             + x(j-1)*m(i,j-1)) + x(j)*m(i,j)
   20    continue
      endif
c
c   cleanup odd group of four vectors
c
      j = mod(n2,8)
      if (j .ge. 4) then
         do 30 i = 1, n1
            y(i) = ((( (y(i))
     $             + x(j-3)*m(i,j-3)) + x(j-2)*m(i,j-2))
     $             + x(j-1)*m(i,j-1)) + x(j)  *m(i,j)
   30    continue
      endif
c
c   cleanup odd group of eight vectors
c
      j = mod(n2,16)
      if (j .ge. 8) then
         do 40 i = 1, n1
            y(i) = ((((((( (y(i))
     $             + x(j-7)*m(i,j-7)) + x(j-6)*m(i,j-6))
     $             + x(j-5)*m(i,j-5)) + x(j-4)*m(i,j-4))
     $             + x(j-3)*m(i,j-3)) + x(j-2)*m(i,j-2))
     $             + x(j-1)*m(i,j-1)) + x(j)  *m(i,j)
   40    continue
      endif
c
c   main loop - groups of sixteen vectors
c
      jmin = j+16
      do 60 j = jmin, n2, 16
         do 50 i = 1, n1
            y(i) = ((((((((((((((( (y(i))
     $             + x(j-15)*m(i,j-15)) + x(j-14)*m(i,j-14))
     $             + x(j-13)*m(i,j-13)) + x(j-12)*m(i,j-12))
     $             + x(j-11)*m(i,j-11)) + x(j-10)*m(i,j-10))
     $             + x(j- 9)*m(i,j- 9)) + x(j- 8)*m(i,j- 8))
     $             + x(j- 7)*m(i,j- 7)) + x(j- 6)*m(i,j- 6))
     $             + x(j- 5)*m(i,j- 5)) + x(j- 4)*m(i,j- 4))
     $             + x(j- 3)*m(i,j- 3)) + x(j- 2)*m(i,j- 2))
     $             + x(j- 1)*m(i,j- 1)) + x(j)   *m(i,j)
   50    continue
   60 continue
      return
      end

        doubleprecision function second()
        real tarray(2)
	doubleprecision etime
	second = etime(tarray)
        return
        end