|
DataMuseum.dkPresents historical artifacts from the history of: DKUUG/EUUG Conference tapes |
This is an automatic "excavation" of a thematic subset of
See our Wiki for more about DKUUG/EUUG Conference tapes Excavated with: AutoArchaeologist - Free & Open Source Software. |
top - metrics - downloadIndex: T W
Length: 29715 (0x7413) Types: TextFile Names: »Wraphelp.c«
└─⟦276d19d6e⟧ Bits:30007243 EUUGD5_I: X11R5 └─⟦this⟧ »./Wraphelp.c«
/* * Wraphelp.c - DES for Xdm authentication. */ /* Dennis Ferguson, University of Toronto */ #include <X11/Xos.h> #include <X11/X.h> #include <X11/Xmd.h> #include <X11/Xdmcp.h> #ifdef HASXDMAUTH /* * This is a concatentation of several files from an existing library. * Please ignore funny sounding comments. */ #include "Wrap.h" /* * Include the following declaration in any code which uses the * DES_SP_ENCRYPT_ROUND() and DES_SP_DECRYPT_ROUND() macros below. * This may be declared const if you wish, as long as you change the * declaration in des_table.c as well. * * extern unsigned long _Auth_SP_Table[8][64]; */ /* * Use standard shortform to reference the table to save typing */ #define SP _Auth_SP_Table /* * Code to do a DES round using the tables. Note that the E expansion * is easy to compute algorithmically, especially if done out-of-order. * Take a look at its form and compare it to everything involving temp * below. * * Be careful when comparing the results of the inner DES loop to other * implementations. To save a rotation inside the loop, "left" and "right" * are kept rotated 11 bits to the right (i.e. by ((x) >> 11) | (x) << 21). * The SP table is similarly rotated to maintain this. We make it the * responsibility of the IP code to do the initial rotation, and the FP * code to undo it, as integrating this can save an instruction or so. * In any event, if you want to do a step-by-step comparison of the results * with another DES implementation you will need to rotate the intermediate * results 11 bits to the left to make them match the standard. * * Note too that the SP table has been reordered to match the order of * the keys (if the original order of SP was 12345678, the reordered * table is 71354682). This is unnecessary, but was done since some * compilers seem to like you going through the matrix from beginning * to end. * * There is a difference in the best way to do this depending on whether * one is encrypting or decrypting. If encrypting we move forward through * the keys and hence should move forward through the table. If decrypting * we go back. Part of the need for this comes from trying to emulate * existing software which generates a single key schedule and uses it * both for encrypting and decrypting. Generating separate encryption * and decryption key schedules would allow one to use the same code * for both. * * left, right and temp should be unsigned long values. left and right * should be the high and low order parts of the cipher block at the * current stage of processing (this makes sense if you read the spec). * kp should be an unsigned long pointer which points at the current * set of subkeys in the key schedule. It is advanced to the next set * (i.e. by 8 bytes) when this is done. * * This occurs in the innermost loop of the DES function. The four * variables should really be in registers. * * When using this, the inner loop of the DES function might look like: * * for (i = 0; i < 8; i++) { * DES_SP_{EN,DE}CRYPT_ROUND(left, right, temp, kp); * DES_SP_{EN,DE}CRYPT_ROUND(right, left, temp, kp); * } * * Note the trick above. You are supposed to do 16 rounds, swapping * left and right at the end of each round. By doing two rounds at * a time and swapping left and right in the code we can avoid the * swaps altogether. */ #define DES_SP_ENCRYPT_ROUND(left, right, temp, kp) \ (temp) = (right) ^ *(kp)++; \ (left) ^= SP[0][((temp) >> 24) & 0x3f] \ | SP[1][((temp) >> 16) & 0x3f] \ | SP[2][((temp) >> 8) & 0x3f] \ | SP[3][((temp) ) & 0x3f]; \ (temp) = (((right) >> 12) | ((right) << 20)) ^ *(kp)++; \ (left) ^= SP[4][((temp) >> 24) & 0x3f] \ | SP[5][((temp) >> 16) & 0x3f] \ | SP[6][((temp) >> 8) & 0x3f] \ | SP[7][((temp) ) & 0x3f] #define DES_SP_DECRYPT_ROUND(left, right, temp, kp) \ (temp) = (((right) >> 12) | ((right) << 20)) ^ *(--(kp)); \ (left) ^= SP[7][((temp) ) & 0x3f] \ | SP[6][((temp) >> 8) & 0x3f] \ | SP[5][((temp) >> 16) & 0x3f] \ | SP[4][((temp) >> 24) & 0x3f]; \ (temp) = (right) ^ *(--(kp)); \ (left) ^= SP[3][((temp) ) & 0x3f] \ | SP[2][((temp) >> 8) & 0x3f] \ | SP[1][((temp) >> 16) & 0x3f] \ | SP[0][((temp) >> 24) & 0x3f] /* * The following implements the initial permutation, followed by * an 11 bit right rotation of both halves to keep the inner loop * happy. This sequence was shown to me by Richard Outerbridge. */ #define DES_INITIAL_PERM(left, right, temp) \ (temp) = (((left) >> 4) ^ right) & 0x0f0f0f0f; \ (right) ^= (temp); \ (left) ^= (temp) << 4; \ (temp) = (((left) >> 16) ^ (right)) & 0x0000ffff; \ (right) ^= (temp); \ (left) ^= (temp) << 16; \ (temp) = (((right) >> 2) ^ (left)) & 0x33333333; \ (left) ^= (temp); \ (right) ^= ((temp) << 2); \ (temp) = (((right) >> 8) ^ (left)) & 0x00ff00ff; \ (left) ^= (temp); \ (right) ^= (temp) << 8; \ (temp) = (((left) >> 1) ^ (right)) & 0x55555555; \ (right) ^= (temp); \ (left) ^= ((temp) << 1); \ (left) = (((left) >> 11) | ((left) << 21)); \ (right) = (((right) >> 11) | ((right) << 21)) /* * Here is the final permutation, which is simply the inverse of * the initial permuation. Note that there is a tiny trick here. * We are supposed to swap left and right before doing the final * permutation. We instead do the swap in the first five lines * below (compare to the last five lines above), for free. */ #define DES_FINAL_PERM(left, right, temp) \ (temp) = (((left) << 11) | ((left) >> 21)); \ (left) = (((right) << 11) | ((right) >> 21)); \ (right) = (((left) >> 1) ^ (temp)) & 0x55555555; \ (left) ^= (right) << 1; \ (right) ^= (temp); \ (temp) = (((right) >> 8) ^ (left)) & 0x00ff00ff; \ (left) ^= (temp); \ (right) ^= (temp) << 8; \ (temp) = (((right) >> 2) ^ (left)) & 0x33333333; \ (left) ^= (temp); \ (right) ^= ((temp) << 2); \ (temp) = (((left) >> 16) ^ (right)) & 0x0000ffff; \ (right) ^= (temp); \ (left) ^= (temp) << 16; \ (temp) = (((left) >> 4) ^ right) & 0x0f0f0f0f; \ (right) ^= (temp); \ (left) ^= ((temp) << 4) /* * Finally, as a sample of how all this might be held together, the * following two macros do in-place encryptions and decryptions. left * and right are two unsigned long variables which at the beginning * are expected to hold the clear (encrypted) block in host byte order * (left the high order four bytes, right the low order). At the end * they will contain the encrypted (clear) block. temp is an unsigned long * used as a temporary. kp is an unsigned long pointer pointing at * the start of the key schedule. All these should be in registers. * * You can probably sometimes do better than these by rewriting for * particular situations. These aren't bad, though. */ #define DES_DO_ENCRYPT(left, right, temp, kp) \ do { \ register int i; \ DES_INITIAL_PERM((left), (right), (temp)); \ for (i = 0; i < 8; i++) { \ DES_SP_ENCRYPT_ROUND((left), (right), (temp), (kp)); \ DES_SP_ENCRYPT_ROUND((right), (left), (temp), (kp)); \ } \ DES_FINAL_PERM((left), (right), (temp)); \ (kp) -= (2 * 16); \ } while (0) #define DES_DO_DECRYPT(left, right, temp, kp) \ do { \ register int i; \ DES_INITIAL_PERM((left), (right), (temp)); \ (kp) += (2 * 16); \ for (i = 0; i < 8; i++) { \ DES_SP_DECRYPT_ROUND((left), (right), (temp), (kp)); \ DES_SP_DECRYPT_ROUND((right), (left), (temp), (kp)); \ } \ DES_FINAL_PERM((left), (right), (temp)); \ } while (0) /* * These are handy dandy utility thingies for straightening out bytes. * Included here because they're used a couple of places. */ #define GET_HALF_BLOCK(lr, ip) \ (lr) = ((unsigned long)(*(ip)++)) << 24; \ (lr) |= ((unsigned long)(*(ip)++)) << 16; \ (lr) |= ((unsigned long)(*(ip)++)) << 8; \ (lr) |= (unsigned long)(*(ip)++) #define PUT_HALF_BLOCK(lr, op) \ *(op)++ = ((lr) >> 24) & 0xff; \ *(op)++ = ((lr) >> 16) & 0xff; \ *(op)++ = ((lr) >> 8) & 0xff; \ *(op)++ = (lr) & 0xff /* * These tables may be declared const if you want. Many compilers * don't support this, though. */ /* * The DES algorithm which uses these is intended to be fairly speedy * at the expense of some memory. All the standard hacks are used. * The S boxes and the P permutation are precomputed into one table. * The E box never actually appears explicitly since it is easy to apply * this algorithmically as needed. This should run pretty fast on machines * with 32 bit words and bit field/multiple bit shift instructions which * are fast. * * [There used to be tables used to do the initial and final permutations * here. These were deleted in favour of algorithmic code (table-free). ] */ /* * The SP table is actually the S boxes and the P permutation * table combined. This table is actually reordered from the * spec, to match the order of key application we follow. Each * entry has also been rotated right by 11 bits, to remove a * rotation from the inner loop. */ static unsigned long _Auth_SP_Table[8][64] = { 0x00000200, 0x00204200, 0x80204000, 0x00000000, /* 7 */ 0x80000000, 0x80204000, 0x80200200, 0x80004200, 0x80204200, 0x00000200, 0x00000000, 0x00204000, 0x00200000, 0x00004000, 0x00204200, 0x80200000, 0x80004000, 0x80200200, 0x00200200, 0x80004000, 0x00204000, 0x00004200, 0x80004200, 0x00200200, 0x00004200, 0x80000000, 0x80200000, 0x80204200, 0x80000200, 0x00200000, 0x00004000, 0x80000200, 0x00004000, 0x80000200, 0x00000200, 0x80204000, 0x80204000, 0x00204200, 0x00204200, 0x00200000, 0x00200200, 0x00004000, 0x80004000, 0x00000200, 0x80004200, 0x80200000, 0x80200200, 0x80004200, 0x80200000, 0x00204000, 0x80204200, 0x00004200, 0x80000200, 0x00000000, 0x00200000, 0x80204200, 0x00000000, 0x80200200, 0x00004200, 0x80000000, 0x00204000, 0x80004000, 0x80000000, 0x00200200, 0x40001010, 0x00000000, 0x00000010, 0x40401010, /* 1 */ 0x00401010, 0x40400010, 0x00400000, 0x00000010, 0x40000000, 0x40001010, 0x40401010, 0x40000000, 0x40401000, 0x00401010, 0x00001000, 0x00400000, 0x40400000, 0x40001000, 0x40001000, 0x40000010, 0x40000010, 0x00001010, 0x00001010, 0x40401000, 0x00400010, 0x00401000, 0x00401000, 0x00400010, 0x00000000, 0x40400000, 0x40400010, 0x00001000, 0x00000010, 0x40401010, 0x00400000, 0x00001010, 0x40001010, 0x00001000, 0x00001000, 0x40000000, 0x00401010, 0x00000010, 0x40000010, 0x00401000, 0x40000000, 0x00400000, 0x40401000, 0x40400010, 0x40401010, 0x00400010, 0x00001010, 0x40401000, 0x00401000, 0x40400000, 0x40400010, 0x40001010, 0x40400000, 0x40001000, 0x40001000, 0x00000000, 0x00400010, 0x40000010, 0x00000000, 0x00401010, 0x20800000, 0x20008020, 0x00000000, 0x00808020, /* 3 */ 0x20008000, 0x00000000, 0x20800020, 0x20008000, 0x00800020, 0x00808000, 0x00808000, 0x00000020, 0x20808020, 0x00800020, 0x00008020, 0x20800000, 0x00008000, 0x00800000, 0x20008020, 0x20000000, 0x20000020, 0x00008020, 0x00808020, 0x20800020, 0x20808000, 0x20000020, 0x00000020, 0x20808000, 0x00800000, 0x20808020, 0x20000000, 0x00008000, 0x20008020, 0x00008000, 0x00800020, 0x20800000, 0x00000020, 0x20008020, 0x20008000, 0x00000000, 0x20000000, 0x00800020, 0x20808020, 0x20008000, 0x00808000, 0x20000000, 0x00000000, 0x00808020, 0x20808000, 0x00000020, 0x00008000, 0x20808020, 0x00800000, 0x20800020, 0x20000020, 0x00808000, 0x00008020, 0x20808000, 0x20800000, 0x00008020, 0x20800020, 0x00800000, 0x00808020, 0x20000020, 0x10000000, 0x10002080, 0x00002080, 0x10042000, /* 5 */ 0x00000080, 0x10000000, 0x00040000, 0x00002080, 0x10040080, 0x00000080, 0x10002000, 0x10040080, 0x10042000, 0x00042080, 0x10000080, 0x00040000, 0x00002000, 0x00040080, 0x00040080, 0x00000000, 0x10040000, 0x10042080, 0x10042080, 0x10002000, 0x00042080, 0x10040000, 0x00000000, 0x00042000, 0x10002080, 0x00002000, 0x00042000, 0x10000080, 0x00000080, 0x10042000, 0x10000000, 0x00002000, 0x00040000, 0x00002080, 0x10042000, 0x10040080, 0x10002000, 0x00040000, 0x00042080, 0x10002080, 0x10040080, 0x10000000, 0x00002000, 0x00042080, 0x10042080, 0x10000080, 0x00042000, 0x10042080, 0x00002080, 0x00000000, 0x00040080, 0x00042000, 0x10000080, 0x10002000, 0x10040000, 0x00000080, 0x00000000, 0x00040080, 0x10002080, 0x10040000, 0x00100802, 0x08100002, 0x08100002, 0x08000000, /* 4 */ 0x08000802, 0x08100800, 0x00100800, 0x00100002, 0x00000000, 0x00000802, 0x00000802, 0x08100802, 0x08100000, 0x00000000, 0x08000800, 0x00100800, 0x00100000, 0x00000002, 0x00000800, 0x00100802, 0x08000000, 0x00000800, 0x00100002, 0x08000002, 0x08100800, 0x00100000, 0x08000002, 0x08000800, 0x00000002, 0x08000802, 0x08100802, 0x08100000, 0x08000800, 0x00100800, 0x00000802, 0x08100802, 0x08100000, 0x00000000, 0x00000000, 0x00000802, 0x08000002, 0x08000800, 0x08100800, 0x00100000, 0x00100802, 0x08100002, 0x08100002, 0x08000000, 0x08100802, 0x08100000, 0x00100000, 0x00000002, 0x00100800, 0x00100002, 0x08000802, 0x08100800, 0x00100002, 0x08000002, 0x00000800, 0x00100802, 0x08000000, 0x00000800, 0x00000002, 0x08000802, 0x01020000, 0x00020400, 0x00000004, 0x01020404, /* 6 */ 0x00020400, 0x01000000, 0x01020404, 0x00000400, 0x00020004, 0x01000404, 0x00000400, 0x01020000, 0x01000400, 0x00020004, 0x00020000, 0x01000004, 0x00000000, 0x01000400, 0x01020004, 0x00000004, 0x00000404, 0x01020004, 0x01000000, 0x01020400, 0x01020400, 0x00000000, 0x01000404, 0x00020404, 0x01000004, 0x00000404, 0x00020404, 0x00020000, 0x00020004, 0x01000000, 0x01020400, 0x00000404, 0x01020404, 0x00000400, 0x01000004, 0x01020000, 0x00000400, 0x00020004, 0x00020000, 0x01000004, 0x01020000, 0x01020404, 0x00000404, 0x00020400, 0x01000404, 0x00020404, 0x00000000, 0x01020400, 0x01000000, 0x00000004, 0x00020400, 0x01000404, 0x00000004, 0x01000400, 0x01020004, 0x00000000, 0x00020404, 0x00020000, 0x01000400, 0x01020004, 0x04010001, 0x00000001, 0x00000040, 0x04010041, /* 8 */ 0x00010000, 0x04010001, 0x04000000, 0x00010000, 0x04000040, 0x00010040, 0x04010041, 0x00000041, 0x00010041, 0x04000041, 0x00000001, 0x04000000, 0x00010040, 0x04010000, 0x00010001, 0x04000001, 0x00000041, 0x04000040, 0x04010040, 0x00010041, 0x04000001, 0x00000000, 0x00000000, 0x04010040, 0x04010000, 0x00010001, 0x04000041, 0x00000040, 0x04000041, 0x00000040, 0x00010041, 0x00000001, 0x04000000, 0x04010040, 0x00000001, 0x04000041, 0x00010001, 0x04000000, 0x04010000, 0x00010040, 0x04010040, 0x00010000, 0x00000040, 0x04010001, 0x00000000, 0x04010041, 0x04000040, 0x04010000, 0x00010040, 0x00010001, 0x04010001, 0x00000000, 0x04010041, 0x00000041, 0x00000041, 0x04000001, 0x04000001, 0x04000040, 0x00010000, 0x00010041, 0x02080108, 0x00080008, 0x00000008, 0x02000108, /* 2 */ 0x00000100, 0x02000000, 0x02080100, 0x02080008, 0x02080000, 0x02080108, 0x00080108, 0x00080000, 0x00080008, 0x00000100, 0x02000000, 0x02080100, 0x00000108, 0x02000100, 0x02080008, 0x00000000, 0x00080000, 0x00000008, 0x02000108, 0x00080100, 0x02000100, 0x02080000, 0x00000000, 0x00000108, 0x02000008, 0x00080108, 0x00080100, 0x02000008, 0x00000000, 0x02000108, 0x02080100, 0x00000100, 0x02080008, 0x00080100, 0x00080108, 0x00000008, 0x00080100, 0x00080008, 0x02000000, 0x02080108, 0x02000108, 0x02000000, 0x00000008, 0x00080000, 0x02000008, 0x00080108, 0x00000100, 0x02080000, 0x02000100, 0x02080008, 0x02080000, 0x02000100, 0x00000108, 0x00000000, 0x00080008, 0x02000008, 0x00080000, 0x02080100, 0x02080108, 0x00000108 }; /* * XdmcpAuthDoIt - {en,de}crypt a block in ECB mode */ void _XdmcpAuthDoIt(in, out, schedule, encrypt) auth_cblock *in; auth_cblock *out; auth_wrapper_schedule schedule; int encrypt; { register unsigned long left, right; register unsigned long temp; register int i; { /* * Need a temporary for copying the data in */ register unsigned char *datap; /* * Copy the input block into the registers */ datap = (unsigned char *)in; GET_HALF_BLOCK(left, datap); GET_HALF_BLOCK(right, datap); } /* * Do the initial permutation. */ DES_INITIAL_PERM(left, right, temp); /* * Now the rounds. Use different code depending on whether it * is an encryption or a decryption (gross, should keep both * sets of keys in the key schedule instead). */ if (encrypt) { register unsigned long *kp; kp = (unsigned long *)schedule; for (i = 0; i < 8; i++) { DES_SP_ENCRYPT_ROUND(left, right, temp, kp); DES_SP_ENCRYPT_ROUND(right, left, temp, kp); } } else { register unsigned long *kp; /* * Point kp past end of schedule */ kp = ((unsigned long *)schedule) + (2 * 16);; for (i = 0; i < 8; i++) { DES_SP_DECRYPT_ROUND(left, right, temp, kp); DES_SP_DECRYPT_ROUND(right, left, temp, kp); } } /* * Do the final permutation */ DES_FINAL_PERM(left, right, temp); /* * Finally, copy the result out a byte at a time */ { register unsigned char *datap; datap = (unsigned char *)out; PUT_HALF_BLOCK(left, datap); PUT_HALF_BLOCK(right, datap); } } /* * Permuted choice 1 tables. These are used to extract bits * from the left and right parts of the key to form Ci and Di. * The code that uses these tables knows which bits from which * part of each key are used to form Ci and Di. */ static unsigned long PC1_CL[8] = { 0x00000000, 0x00000010, 0x00001000, 0x00001010, 0x00100000, 0x00100010, 0x00101000, 0x00101010 }; static unsigned long PC1_DL[16] = { 0x00000000, 0x00100000, 0x00001000, 0x00101000, 0x00000010, 0x00100010, 0x00001010, 0x00101010, 0x00000001, 0x00100001, 0x00001001, 0x00101001, 0x00000011, 0x00100011, 0x00001011, 0x00101011 }; static unsigned long PC1_CR[16] = { 0x00000000, 0x00000001, 0x00000100, 0x00000101, 0x00010000, 0x00010001, 0x00010100, 0x00010101, 0x01000000, 0x01000001, 0x01000100, 0x01000101, 0x01010000, 0x01010001, 0x01010100, 0x01010101 }; static unsigned long PC1_DR[8] = { 0x00000000, 0x01000000, 0x00010000, 0x01010000, 0x00000100, 0x01000100, 0x00010100, 0x01010100 }; /* * At the start of some iterations of the key schedule we do * a circular left shift by one place, while for others we do a shift by * two places. This has bits set for the iterations where we do 2 bit * shifts, starting at the low order bit. */ #define TWO_BIT_SHIFTS 0x7efc /* * Permuted choice 2 tables. The first actually produces the low order * 24 bits of the subkey Ki from the 28 bit value of Ci. The second produces * the high order 24 bits from Di. The tables are indexed by six bit * segments of Ci and Di respectively. The code is handcrafted to compute * the appropriate 6 bit chunks. * * Note that for ease of computation, the 24 bit values are produced with * six bits going into each byte. Note also that the table has been byte * rearranged to produce keys which match the order we will apply them * in in the des code. */ static unsigned long PC2_C[4][64] = { 0x00000000, 0x00000004, 0x00010000, 0x00010004, 0x00000400, 0x00000404, 0x00010400, 0x00010404, 0x00000020, 0x00000024, 0x00010020, 0x00010024, 0x00000420, 0x00000424, 0x00010420, 0x00010424, 0x01000000, 0x01000004, 0x01010000, 0x01010004, 0x01000400, 0x01000404, 0x01010400, 0x01010404, 0x01000020, 0x01000024, 0x01010020, 0x01010024, 0x01000420, 0x01000424, 0x01010420, 0x01010424, 0x00020000, 0x00020004, 0x00030000, 0x00030004, 0x00020400, 0x00020404, 0x00030400, 0x00030404, 0x00020020, 0x00020024, 0x00030020, 0x00030024, 0x00020420, 0x00020424, 0x00030420, 0x00030424, 0x01020000, 0x01020004, 0x01030000, 0x01030004, 0x01020400, 0x01020404, 0x01030400, 0x01030404, 0x01020020, 0x01020024, 0x01030020, 0x01030024, 0x01020420, 0x01020424, 0x01030420, 0x01030424, 0x00000000, 0x02000000, 0x00000800, 0x02000800, 0x00080000, 0x02080000, 0x00080800, 0x02080800, 0x00000001, 0x02000001, 0x00000801, 0x02000801, 0x00080001, 0x02080001, 0x00080801, 0x02080801, 0x00000100, 0x02000100, 0x00000900, 0x02000900, 0x00080100, 0x02080100, 0x00080900, 0x02080900, 0x00000101, 0x02000101, 0x00000901, 0x02000901, 0x00080101, 0x02080101, 0x00080901, 0x02080901, 0x10000000, 0x12000000, 0x10000800, 0x12000800, 0x10080000, 0x12080000, 0x10080800, 0x12080800, 0x10000001, 0x12000001, 0x10000801, 0x12000801, 0x10080001, 0x12080001, 0x10080801, 0x12080801, 0x10000100, 0x12000100, 0x10000900, 0x12000900, 0x10080100, 0x12080100, 0x10080900, 0x12080900, 0x10000101, 0x12000101, 0x10000901, 0x12000901, 0x10080101, 0x12080101, 0x10080901, 0x12080901, 0x00000000, 0x00040000, 0x00002000, 0x00042000, 0x00100000, 0x00140000, 0x00102000, 0x00142000, 0x20000000, 0x20040000, 0x20002000, 0x20042000, 0x20100000, 0x20140000, 0x20102000, 0x20142000, 0x00000008, 0x00040008, 0x00002008, 0x00042008, 0x00100008, 0x00140008, 0x00102008, 0x00142008, 0x20000008, 0x20040008, 0x20002008, 0x20042008, 0x20100008, 0x20140008, 0x20102008, 0x20142008, 0x00200000, 0x00240000, 0x00202000, 0x00242000, 0x00300000, 0x00340000, 0x00302000, 0x00342000, 0x20200000, 0x20240000, 0x20202000, 0x20242000, 0x20300000, 0x20340000, 0x20302000, 0x20342000, 0x00200008, 0x00240008, 0x00202008, 0x00242008, 0x00300008, 0x00340008, 0x00302008, 0x00342008, 0x20200008, 0x20240008, 0x20202008, 0x20242008, 0x20300008, 0x20340008, 0x20302008, 0x20342008, 0x00000000, 0x00000010, 0x08000000, 0x08000010, 0x00000200, 0x00000210, 0x08000200, 0x08000210, 0x00000002, 0x00000012, 0x08000002, 0x08000012, 0x00000202, 0x00000212, 0x08000202, 0x08000212, 0x04000000, 0x04000010, 0x0c000000, 0x0c000010, 0x04000200, 0x04000210, 0x0c000200, 0x0c000210, 0x04000002, 0x04000012, 0x0c000002, 0x0c000012, 0x04000202, 0x04000212, 0x0c000202, 0x0c000212, 0x00001000, 0x00001010, 0x08001000, 0x08001010, 0x00001200, 0x00001210, 0x08001200, 0x08001210, 0x00001002, 0x00001012, 0x08001002, 0x08001012, 0x00001202, 0x00001212, 0x08001202, 0x08001212, 0x04001000, 0x04001010, 0x0c001000, 0x0c001010, 0x04001200, 0x04001210, 0x0c001200, 0x0c001210, 0x04001002, 0x04001012, 0x0c001002, 0x0c001012, 0x04001202, 0x04001212, 0x0c001202, 0x0c001212 }; static unsigned long PC2_D[4][64] = { 0x00000000, 0x02000000, 0x00020000, 0x02020000, 0x00000100, 0x02000100, 0x00020100, 0x02020100, 0x00000008, 0x02000008, 0x00020008, 0x02020008, 0x00000108, 0x02000108, 0x00020108, 0x02020108, 0x00200000, 0x02200000, 0x00220000, 0x02220000, 0x00200100, 0x02200100, 0x00220100, 0x02220100, 0x00200008, 0x02200008, 0x00220008, 0x02220008, 0x00200108, 0x02200108, 0x00220108, 0x02220108, 0x00000200, 0x02000200, 0x00020200, 0x02020200, 0x00000300, 0x02000300, 0x00020300, 0x02020300, 0x00000208, 0x02000208, 0x00020208, 0x02020208, 0x00000308, 0x02000308, 0x00020308, 0x02020308, 0x00200200, 0x02200200, 0x00220200, 0x02220200, 0x00200300, 0x02200300, 0x00220300, 0x02220300, 0x00200208, 0x02200208, 0x00220208, 0x02220208, 0x00200308, 0x02200308, 0x00220308, 0x02220308, 0x00000000, 0x00001000, 0x00000020, 0x00001020, 0x00100000, 0x00101000, 0x00100020, 0x00101020, 0x08000000, 0x08001000, 0x08000020, 0x08001020, 0x08100000, 0x08101000, 0x08100020, 0x08101020, 0x00000004, 0x00001004, 0x00000024, 0x00001024, 0x00100004, 0x00101004, 0x00100024, 0x00101024, 0x08000004, 0x08001004, 0x08000024, 0x08001024, 0x08100004, 0x08101004, 0x08100024, 0x08101024, 0x00000400, 0x00001400, 0x00000420, 0x00001420, 0x00100400, 0x00101400, 0x00100420, 0x00101420, 0x08000400, 0x08001400, 0x08000420, 0x08001420, 0x08100400, 0x08101400, 0x08100420, 0x08101420, 0x00000404, 0x00001404, 0x00000424, 0x00001424, 0x00100404, 0x00101404, 0x00100424, 0x00101424, 0x08000404, 0x08001404, 0x08000424, 0x08001424, 0x08100404, 0x08101404, 0x08100424, 0x08101424, 0x00000000, 0x10000000, 0x00010000, 0x10010000, 0x00000002, 0x10000002, 0x00010002, 0x10010002, 0x00002000, 0x10002000, 0x00012000, 0x10012000, 0x00002002, 0x10002002, 0x00012002, 0x10012002, 0x00040000, 0x10040000, 0x00050000, 0x10050000, 0x00040002, 0x10040002, 0x00050002, 0x10050002, 0x00042000, 0x10042000, 0x00052000, 0x10052000, 0x00042002, 0x10042002, 0x00052002, 0x10052002, 0x20000000, 0x30000000, 0x20010000, 0x30010000, 0x20000002, 0x30000002, 0x20010002, 0x30010002, 0x20002000, 0x30002000, 0x20012000, 0x30012000, 0x20002002, 0x30002002, 0x20012002, 0x30012002, 0x20040000, 0x30040000, 0x20050000, 0x30050000, 0x20040002, 0x30040002, 0x20050002, 0x30050002, 0x20042000, 0x30042000, 0x20052000, 0x30052000, 0x20042002, 0x30042002, 0x20052002, 0x30052002, 0x00000000, 0x04000000, 0x00000001, 0x04000001, 0x01000000, 0x05000000, 0x01000001, 0x05000001, 0x00000010, 0x04000010, 0x00000011, 0x04000011, 0x01000010, 0x05000010, 0x01000011, 0x05000011, 0x00080000, 0x04080000, 0x00080001, 0x04080001, 0x01080000, 0x05080000, 0x01080001, 0x05080001, 0x00080010, 0x04080010, 0x00080011, 0x04080011, 0x01080010, 0x05080010, 0x01080011, 0x05080011, 0x00000800, 0x04000800, 0x00000801, 0x04000801, 0x01000800, 0x05000800, 0x01000801, 0x05000801, 0x00000810, 0x04000810, 0x00000811, 0x04000811, 0x01000810, 0x05000810, 0x01000811, 0x05000811, 0x00080800, 0x04080800, 0x00080801, 0x04080801, 0x01080800, 0x05080800, 0x01080801, 0x05080801, 0x00080810, 0x04080810, 0x00080811, 0x04080811, 0x01080810, 0x05080810, 0x01080811, 0x05080811 }; /* * Permute the key to give us our key schedule. */ void _XdmcpAuthSetup(key, schedule) auth_cblock *key; auth_wrapper_schedule schedule; { register unsigned long c, d; { /* * Need a pointer for the keys and a temporary long */ register unsigned char *k; register unsigned long tmp; /* * Fetch the key into something we can work with */ k = (unsigned char *)key; /* * The first permutted choice gives us the 28 bits for C0 and * 28 for D0. C0 gets 12 bits from the left key and 16 from * the right, while D0 gets 16 from the left and 12 from the * right. The code knows which bits go where. */ tmp = ((unsigned long)(*(k)++)) << 24; tmp |= ((unsigned long)(*(k)++)) << 16; tmp |= ((unsigned long)(*(k)++)) << 8; tmp |= (unsigned long)(*(k)++); /* left part of key */ c = PC1_CL[(tmp >> 29) & 0x7] | (PC1_CL[(tmp >> 21) & 0x7] << 1) | (PC1_CL[(tmp >> 13) & 0x7] << 2) | (PC1_CL[(tmp >> 5) & 0x7] << 3); d = PC1_DL[(tmp >> 25) & 0xf] | (PC1_DL[(tmp >> 17) & 0xf] << 1) | (PC1_DL[(tmp >> 9) & 0xf] << 2) | (PC1_DL[(tmp >> 1) & 0xf] << 3); tmp = ((unsigned long)(*(k)++)) << 24; tmp |= ((unsigned long)(*(k)++)) << 16; tmp |= ((unsigned long)(*(k)++)) << 8; tmp |= (unsigned long)(*(k)++); /* right part of key */ c |= PC1_CR[(tmp >> 28) & 0xf] | (PC1_CR[(tmp >> 20) & 0xf] << 1) | (PC1_CR[(tmp >> 12) & 0xf] << 2) | (PC1_CR[(tmp >> 4) & 0xf] << 3); d |= PC1_DR[(tmp >> 25) & 0x7] | (PC1_DR[(tmp >> 17) & 0x7] << 1) | (PC1_DR[(tmp >> 9) & 0x7] << 2) | (PC1_DR[(tmp >> 1) & 0x7] << 3); } { /* * Need several temporaries in here */ register unsigned long ltmp, rtmp; register unsigned long *k; register int two_bit_shifts; register int i; /* * Now iterate to compute the key schedule. Note that we * record the entire set of subkeys in 6 bit chunks since * they are used that way. At 6 bits/char, we need * 48/6 char's/subkey * 16 subkeys/encryption == 128 bytes. * The schedule must be this big. */ k = (unsigned long *)schedule; two_bit_shifts = TWO_BIT_SHIFTS; for (i = 16; i > 0; i--) { /* * Do the rotation. One bit and two bit rotations * are done separately. Note C and D are 28 bits. */ if (two_bit_shifts & 0x1) { c = ((c << 2) & 0xffffffc) | (c >> 26); d = ((d << 2) & 0xffffffc) | (d >> 26); } else { c = ((c << 1) & 0xffffffe) | (c >> 27); d = ((d << 1) & 0xffffffe) | (d >> 27); } two_bit_shifts >>= 1; /* * Apply permutted choice 2 to C to get the first * 24 bits worth of keys. Note that bits 9, 18, 22 * and 25 (using DES numbering) in C are unused. The * shift-mask stuff is done to delete these bits from * the indices, since this cuts the table size in half. * * The table is torqued, by the way. If the standard * byte order for this (high to low order) is 1234, * the table actually gives us 4132. */ ltmp = PC2_C[0][((c >> 22) & 0x3f)] | PC2_C[1][((c >> 15) & 0xf) | ((c >> 16) & 0x30)] | PC2_C[2][((c >> 4) & 0x3) | ((c >> 9) & 0x3c)] | PC2_C[3][((c ) & 0x7) | ((c >> 4) & 0x38)]; /* * Apply permutted choice 2 to D to get the other half. * Here, bits 7, 10, 15 and 26 go unused. The sqeezing * actually turns out to be cheaper here. * * This table is similarly torqued. If the standard * byte order is 5678, the table has the bytes permuted * to give us 7685. */ rtmp = PC2_D[0][((d >> 22) & 0x3f)] | PC2_D[1][((d >> 14) & 0xf) | ((d >> 15) & 0x30)] | PC2_D[2][((d >> 7) & 0x3f)] | PC2_D[3][((d ) & 0x3) | ((d >> 1) & 0x3c)]; /* * Make up two words of the key schedule, with a * byte order which is convenient for the DES * inner loop. The high order (first) word will * hold bytes 7135 (high to low order) while the * second holds bytes 4682. */ *k++ = (ltmp & 0x00ffff00) | (rtmp & 0xff0000ff); *k++ = (ltmp & 0xff0000ff) | (rtmp & 0x00ffff00); } } } #endif /* HASXDMAUTH */