DataMuseum.dk

Presents historical artifacts from the history of:

DKUUG/EUUG Conference tapes

This is an automatic "excavation" of a thematic subset of
artifacts from Datamuseum.dk's BitArchive.

See our Wiki for more about DKUUG/EUUG Conference tapes

Excavated with: AutoArchaeologist - Free & Open Source Software.


top - metrics - download
Index: C T

⟦b82c0013b⟧ TextFile

    Length: 62814 (0xf55e)
    Types: TextFile
    Names: »CH16«

Derivation

└─⟦276d19d6e⟧ Bits:30007243 EUUGD5_I: X11R5
    └─⟦4856bf7e7⟧ »./mit-4/mit-4.00« 
        └─⟦635ff9e7e⟧ 
            └─⟦this⟧ »mit/doc/Xlib/CH16« 

TextFile

\&
.sp 1
.ce 3
\s+1\fBChapter 16\fP\s-1

\s+1\fBApplication Utility Functions\fP\s-1
.sp 2
.nr H1 16
.nr H2 0
.nr H3 0
.nr H4 0
.nr H5 0
.na
.LP
.XS
Chapter 16: Application Utility Functions 
.XE
Once you have initialized the X system,
you can use the Xlib utility functions to:
.IP \(bu 5
Obtain and classify KeySyms
.IP \(bu 5
Allocate permanent storage
.IP \(bu 5
Parse window geometry strings
.IP \(bu 5
Manipulate regions
.IP \(bu 5
Use cut buffers
.IP \(bu 5
Determine the appropriate visual 
.IP \(bu 5
Manipulate images
.IP \(bu 5
Manipulate bitmaps
.IP \(bu 5
Use the context manager
.RE
As a group,
the functions discussed in this chapter provide the functionality that 
is frequently needed and that spans toolkits.
Many of these functions do not generate actual protocol requests to the server.
.NH 2
Keyboard Utility Functions
.XS
\*(SN Keyboard Utility Functions 
.XE
.LP
This section discusses mapping between KeyCodes and KeySyms,
names for KeySyms, and KeySym classification macros.
The functions in this section operate on an cached copy of the
server keyboard mapping.  The first four KeySyms for each key code
are modified according to the rules given in section 12.7.
If you want the untransformed KeySyms defined for a key,
you should only use the functions described in section 12.7.
.LP
.sp
To obtain a KeySym for the key code of an event, use
.PN XLookupKeysym .
.IN "XLookupKeysym" "" "@DEF@"
.\" Start marker code here
.FD 0
KeySym XLookupKeysym(\^\fIkey_event\fP, \fIindex\fP\^)
.br
      XKeyEvent *\fIkey_event\fP\^;
.br
      int \fIindex\fP\^;
.FN
.IP \fIkey_event\fP 1i
Specifies the 
.PN KeyPress
or
.PN KeyRelease
event.
.IP \fIindex\fP 1i
Specifies the index into the KeySyms list for the event's KeyCode.
.\" End marker code here
.LP
.\" $Header: XLKeysym.d,v 1.3 88/04/07 15:54:30 mento Exp $
The
.PN XLookupKeysym
function uses a given keyboard event and the index you specified to return
the KeySym from the list that corresponds to the KeyCode member in the
.PN XKeyPressedEvent
or
.PN XKeyReleasedEvent
structure.
If no KeySym is defined for the KeyCode of the event,
.PN XLookupKeysym
returns
.PN NoSymbol .
.LP
.sp
To obtain a KeySym for a specific key code, use
.PN XKeycodeToKeysym .
.IN "XKeycodeToKeysym" "" "@DEF@"
.\" Start marker code here
.FD 0
KeySym XKeycodeToKeysym\^(\^\fIdisplay\fP, \fIkeycode\fP, \fIindex\fP\^)
.br
      Display *\fIdisplay\fP\^;
.br
      KeyCode \fIkeycode\fP\^;
.br
      int \fIindex\fP\^;
.FN
.\" $Header: display.a,v 1.1 88/02/26 10:26:29 mento Exp $
.IP \fIdisplay\fP 1i
Specifies the connection to the X server.
.\" $Header: keycode.a,v 1.2 88/04/06 17:41:50 mento Exp $
.IP \fIkeycode\fP 1i
Specifies the KeyCode.
.IP \fIindex\fP 1i
Specifies the element of KeyCode vector.
.\" End marker code here
.LP
.\" $Header: XKTKeysym.d,v 1.4 88/08/20 10:08:36 mento Exp $
The
.PN XKeycodeToKeysym
function uses internal Xlib tables
and returns the KeySym defined for the specified KeyCode and
the element of the KeyCode vector.
If no symbol is defined,
.PN XKeycodeToKeysym
returns
.PN NoSymbol .
.LP
.sp
To obtain a key code for a key having a specific KeySym, use
.PN XKeysymToKeycode .
.IN "XKeysymToKeycode" "" "@DEF@"
.\" Start marker code here
.FD 0
KeyCode XKeysymToKeycode\^(\^\fIdisplay\fP, \fIkeysym\fP\^)
.br
      Display *\fIdisplay\fP\^;
.br
      KeySym \fIkeysym\fP\^;
.FN
.\" $Header: display.a,v 1.1 88/02/26 10:26:29 mento Exp $
.IP \fIdisplay\fP 1i
Specifies the connection to the X server.
.IP \fIkeysym\fP 1i
Specifies the KeySym that is to be searched for.
.\" End marker code here
.LP
.\" $Header: XKTKeycode.d,v 1.4 88/06/11 07:51:42 mento Exp $
If the specified KeySym is not defined for any KeyCode,
.PN XKeysymToKeycode
returns zero.
.LP
.sp
The mapping between key codes and KeySyms is cached internal to Xlib.
When this information is changed at the server, an Xlib function must
be called to refresh the cache.
To refresh the stored modifier and keymap information, use
.PN XRefreshKeyboardMapping .
.IN "XRefreshKeyboardMapping" "" "@DEF@"
.\" Start marker code here
.FD 0
XRefreshKeyboardMapping(\^\fIevent_map\fP\^)
.br
      XMappingEvent *\fIevent_map\fP\^;
.FN
.IP \fIevent_map\fP 1i
Specifies the mapping event that is to be used.
.\" End marker code here
.LP
.\" $Header: XRKMap.d,v 1.2 88/06/11 07:52:44 mento Exp $
The
.PN XRefreshKeyboardMapping
function refreshes the stored modifier and keymap information.
You usually call this function when a
.PN MappingNotify
event with a request member of
.PN MappingKeyboard
or
.PN MappingModifier
occurs.
The result is to update Xlib's knowledge of the keyboard.
.LP
.sp
KeySyms have string names as well as numeric codes.
To convert the name of the KeySym to the KeySym code, use
.PN XStringToKeysym .
.IN "XStringToKeysym" "" "@DEF@"
.\" Start marker code here
.FD 0
KeySym XStringToKeysym\^(\^\fIstring\fP\^)
.br
      char *\fIstring\fP\^;
.FN
.IP \fIstring\fP 1i
Specifies the name of the KeySym that is to be converted.
.\" End marker code here
.LP
.\" $Header: XSTKeysym.d,v 1.3 88/06/11 07:52:54 mento Exp $
Standard KeySym names are obtained from
.Pn < X11/keysymdef.h >
by removing the XK_ prefix from each name.
KeySyms that are not part of the Xlib standard also may be obtained
with this function.
Note that the set of KeySysms that are available in this manner 
and the mechanisms by which Xlib obtains them is implementation dependent.
.LP
If the keysym name is not in the Host Portable Character Encoding
the result is implementation dependent.
If the specified string does not match a valid KeySym,
.PN XStringToKeysym
returns
.PN NoSymbol .
.LP
.sp
To convert a KeySym code to the name of the KeySym, use
.PN XKeysymToString .
.IN "XKeysymToString" "" "@DEF@"
.\" Start marker code here
.FD 0
char *XKeysymToString\^(\^\fIkeysym\fP\^)
.br
      KeySym \fIkeysym\fP\^;
.FN
.ds Fn converted
.IP \fIkeysym\fP 1i
Specifies the KeySym that is to be \*(Fn.
.\" End marker code here
.LP
.\" $Header: XKTString.d,v 1.3 88/06/11 07:51:44 mento Exp $
The returned string is in a static area and must not be modified.
The returned string is in the Host Portable Character Encoding.
If the specified KeySym is not defined,
.PN XKeysymToString
returns a NULL.
.NH 3
Keysym Classification Macros
.XS
\*(SN Keysym Classification Macros 
.XE
.LP
You may want to test if a KeySym is, for example, 
on the keypad or on one of the function keys.
You can use the KeySym macros to perform the following tests.
.LP
.sp
.\" Start marker code here
.FD 0
IsCursorKey\^(\^\fIkeysym\fP\^)
.FN
.ds Fn tested
.IP \fIkeysym\fP 1i
Specifies the KeySym that is to be \*(Fn.
.\" End marker code here
.IN "IsCursorKey" "" "@DEF@"
.LP
Returns
.PN True
if the specified KeySym is a cursor key.
.LP
.sp
.\" Start marker code here
.FD 0
IsFunctionKey\^(\^\fIkeysym\fP\^)
.FN
.ds Fn tested
.IP \fIkeysym\fP 1i
Specifies the KeySym that is to be \*(Fn.
.\" End marker code here
.IN "IsFunctionKey" "" "@DEF@"
.LP
Returns 
.PN True
if the specified KeySym is a function key.
.LP
.sp
.\" Start marker code here
.FD 0
IsKeypadKey\^(\^\fIkeysym\fP\^)
.FN
.ds Fn tested
.IP \fIkeysym\fP 1i
Specifies the KeySym that is to be \*(Fn.
.\" End marker code here
.IN "IsKeypadKey" "" "@DEF@"
.LP
Returns
.PN True
if the specified KeySym is a keypad key.
.LP
.sp
.\" Start marker code here
.FD 0
IsMiscFunctionKey\^(\^\fIkeysym\fP\^)
.FN
.ds Fn tested
.IP \fIkeysym\fP 1i
Specifies the KeySym that is to be \*(Fn.
.\" End marker code here
.IN "IsMiscFunctionKey" "" "@DEF@"
.LP
Returns 
.PN True
if the specified KeySym is a miscellaneous function key.
.LP
.sp
.\" Start marker code here
.FD 0
IsModifierKey\^(\^\fIkeysym\fP\^)
.FN
.ds Fn tested
.IP \fIkeysym\fP 1i
Specifies the KeySym that is to be \*(Fn.
.\" End marker code here
.IN "IsModifierKey" "" "@DEF@"
.LP
Returns 
.PN True
if the specified KeySym is a modifier key.
.LP
.sp
.\" Start marker code here
.FD 0
IsPFKey\^(\^\fIkeysym\fP\^)
.FN
.ds Fn tested
.IP \fIkeysym\fP 1i
Specifies the KeySym that is to be \*(Fn.
.\" End marker code here
.IN "IsPFKey" "" "@DEF@"
.LP
Returns 
.PN True
if the specified KeySym is a PF key.
.NH 2
Latin-1 Keyboard Event Functions
.XS
\*(SN Latin-1 Keyboard Event Functions 
.XE
.LP
Chapter 13 describes internationalized text input facilities,
but sometimes it is expedient to write an application that
only deals with Latin-1 characters and ASCII controls,
so Xlib provides a simple function for that purpose.
.PN XLookupString
handles the standard modifier semantics described in section 12.7.
This function does not use any of the input method facilities
described in chapter 13, and does not depend on the current locale.
.LP
.sp
To map a key event to an ISO Latin-1 string, use
.PN XLookupString .
.IN "XLookupString" "" "@DEF@"
.\" Start marker code here
.FD 0
int XLookupString(\^\fIevent_struct\fP, \fIbuffer_return\fP,\
 \fIbytes_buffer\fP, \fIkeysym_return\fP, \fIstatus_in_out\fP\^)
.br
      XKeyEvent *\fIevent_struct\fP\^;
.br
      char *\fIbuffer_return\fP\^;
.br
      int \fIbytes_buffer\fP\^;
.br
      KeySym *\fIkeysym_return\fP\^;
.br
      XComposeStatus *\fIstatus_in_out\fP\^;
.FN
.IP \fIevent_struct\fP 1i
Specifies the key event structure to be used.
You can pass
.PN XKeyPressedEvent
or
.PN XKeyReleasedEvent .
.IP \fIbuffer_return\fP 1i
Returns the translated characters.
.IP \fIbytes_buffer\fP 1i
Specifies the length of the buffer.
No more than bytes_buffer of translation are returned.
.IP \fIkeysym_return\fP 1i
Returns the KeySym computed from the event if this argument is not NULL.
.IP \fIstatus_in_out\fP 1i
Specifies or returns the 
.PN XComposeStatus 
structure or NULL.
.\" End marker code here
.LP
.\" $Header: XLookStr.d,v 1.4 88/08/20 10:08:02 mento Exp $
The
.PN XLookupString
function translates a key event to a KeySym and a string.
The KeySym is obtained by using the standard interpretation of the Shift,
Lock, and group modifiers as defined in the X Protocol specification.
If the KeySym has been rebound (see
.PN XRebindKeysym ),
the bound string will be stored in the buffer.
Otherwise, the KeySym is mapped, if possible, to an ISO Latin-1 character
or (if the Control modifier is on) to an ASCII control character,
and that character is stored in the buffer.
.PN XLookupString
returns the number of characters that are stored in the buffer.
.LP
If present (non-NULL),
the
.PN XComposeStatus
structure records the state,
which is private to Xlib,
that needs preservation across calls to
.PN XLookupString
to implement compose processing.
The creation of
.PN XComposeStatus
structures is implementation dependent;
a portable program must pass NULL for this argument.
.LP
.PN XLookupString
depends on the cached keyboard information mentioned in the
previous section, so it is necessary to use
.PN XRefreshKeyboardMapping
to keep this information up to date.
.LP
.sp
To rebind the meaning of a KeySym for
.PN XLookupString ,
use
.PN XRebindKeysym .
.IN "XRebindKeysym" "" "@DEF@"
.\" Start marker code here
.FD 0
XRebindKeysym(\^\fIdisplay\fP, \fIkeysym\fP, \fIlist\fP, \fImod_count\fP, \fIstring\fP, \fInum_bytes\fP\^)
.br
      Display *\fIdisplay\fP\^;
.br
      KeySym \fIkeysym\fP\^;
.br
      KeySym \fIlist\fP\^[\^]\^;
.br
      int \fImod_count\fP\^;
.br
      unsigned char *\fIstring\fP\^;
.br
      int \fInum_bytes\fP\^;
.FN
.\" $Header: display.a,v 1.1 88/02/26 10:26:29 mento Exp $
.IP \fIdisplay\fP 1i
Specifies the connection to the X server.
.ds Fn rebound
.IP \fIkeysym\fP 1i
Specifies the KeySym that is to be \*(Fn.
.IP \fIlist\fP 1i
Specifies the KeySyms to be used as modifiers.
.IP \fImod_count\fP 1i
Specifies the number of modifiers in the modifier list.
.IP \fIstring\fP 1i
Specifies the string that is copied and will be returned by 
.PN XLookupString .
.IP \fInum_bytes\fP 1i
Specifies the number of bytes in the string argument.
.\" End marker code here
.LP
.\" $Header: XRKeySym.d,v 1.3 88/06/11 07:52:44 mento Exp $
The
.PN XRebindKeysym
function can be used to rebind the meaning of a KeySym for the client.
It does not redefine any key in the X server but merely
provides an easy way for long strings to be attached to keys.
.PN XLookupString
returns this string when the appropriate set of
modifier keys are pressed and when the KeySym would have been used for
the translation.
No text conversions are performed;
the client is responsible for supplying appropriately encoded strings.
Note that you can rebind a KeySym that may not exist.
.NH 2
Allocating Permanent Storage
.XS
\*(SN Allocating Permanent Storage
.XE
.LP
To allocate some memory you will never give back, use
.PN Xpermalloc .
.IN "Xpermalloc" "" "@DEF@"
.\" Start marker code here
.FD 0
char *Xpermalloc\^(\^\fIsize\fP\^)
.br
     unsigned int \fIsize\fP\^;
.FN
.\" End marker code here
.LP
The
.PN Xpermalloc
function allocates storage that can never be freed for the life of the
program.  The memory is allocated with alignment for the C type double.
This function may provide some performance and space savings over
the standard operating system memory allocator.
.NH 2
Parsing the Window Geometry
.XS
\*(SN Parsing the Window Geometry 
.XE
.LP
To parse standard window geometry strings, use
.PN XParseGeometry .
.IN "Window" "determining location"
.IN "XParseGeometry" "" "@DEF@"
.LP
.\" Start marker code here
.FD 0
.\" $Header: XParseGeom.f,v 1.1 88/02/26 10:01:42 mento Exp $
int XParseGeometry\^(\^\fIparsestring\fP\^, \fIx_return\fP\^, \fIy_return\fP\^, \fIwidth_return\fP\^, \fIheight_return\fP\^)
.br
      char *\fIparsestring\fP\^;
.br
      int *\fIx_return\fP\^, *\fIy_return\fP\^; 
.br
      unsigned int *\fIwidth_return\fP\^, *\fIheight_return\fP\^;
.FN
.\" $Header: parsestring.a,v 1.1 88/02/26 10:30:19 mento Exp $
.IP \fIparsestring\fP 1i
Specifies the string you want to parse.
.\" $Header: xy_ret.a,v 1.3 88/05/20 05:05:44 mento Exp $
.IP \fIx_return\fP 1i
.br
.ns
.IP \fIy_return\fP 1i
Return the x and y offsets.
.\" $Header: widtheight2.a,v 1.1 88/02/26 10:32:28 mento Exp $
.IP \fIwidth_return\fP 1i
.br
.ns
.IP \fIheight_return\fP 1i
Return the width and height determined.
.\" End marker code here
.LP
.\" $Header: XParseGeom.d,v 1.3 88/08/20 10:15:39 mento Exp $
By convention,
X applications use a standard string to indicate window size and placement.
.PN XParseGeometry
makes it easier to conform to this standard because it allows you
to parse the standard window geometry.
Specifically, this function lets you parse strings of the form:
.LP
.Ds
[=][<\fIwidth\fP>{xX}<\fIheight\fP>][{+-}<\fIxoffset\fP>{+-}<\fIyoffset\fP>] 
.De
.LP
The fields map into the arguments associated with this function.
(Items enclosed in <\^> are integers, items in [\^] are optional, and
items enclosed in {\^} indicate ``choose one of.''
Note that the brackets should not appear in the actual string.)
If the string is not in the Host Portable Character Encoding
the result is implementation dependent.
.LP
The
.PN XParseGeometry
function returns a bitmask that indicates which of the four values (width,
height, xoffset, and yoffset) were actually found in the string 
and whether the x and y values are negative. 
By convention, \-0 is not equal to +0, because the user needs to
be able to say ``position the window relative to the right or bottom edge.''
For each value found, the corresponding argument is updated.
For each value not found, the argument is left unchanged.
The bits are represented by
.PN XValue , 
.PN YValue , 
.PN WidthValue , 
.PN HeightValue ,
.PN XNegative , 
or
.PN YNegative
and are defined in 
.Pn < X11/Xutil.h >.
They will be set whenever one of the values is defined 
or one of the signs is set.
.LP
If the function returns either the 
.PN XValue 
or 
.PN YValue 
flag,
you should place the window at the requested position.
.sp
.LP
To construct a window's geometry information, use
.PN XWMGeometry .
.IN "XWMGeometry" "" "@DEF@"
.\" Start marker code here
.FD 0
int XWMGeometry\^(\^\fIdisplay\fP, \fIscreen\fP, \fIuser_geom\fP, \
\fIdef_geom\fP, \fIbwidth\fP, \fIhints\fP, \fIx_return\fP, \fIy_return\fP,
.br
                \fIwidth_return\fP, \fIheight_return\fP, \fIgravity_return\fP\^)
.br
      Display *\fIdisplay\fP\^;
.br
      int \fIscreen\fP\^;
.br
      char *\fIuser_geom\fP\^;
.br
      char *\fIdef_geom\fP\^;
.br
      unsigned int \fIbwidth\fP\^;
.br
      XSizeHints *\fIhints\fP\^;
.br
      int *\fIx_return\fP, *\fIy_return\fP\^; 
.br
      int *\fIwidth_return\fP\^;
.br
      int *\fIheight_return\fP\^;
.br
      int *\fIgravity_return\fP\^;
.FN
.\" $Header: display.a,v 1.1 88/02/26 10:26:29 mento Exp $
.IP \fIdisplay\fP 1i
Specifies the connection to the X server.
.IP \fIscreen\fP 1i
Specifies the screen.
.IP \fIuser_geom\fP 1i
Specifies the user-specified geometry or NULL.
.IP \fIdef_geom\fP 1i
Specifies the application's default geometry or NULL.
.\" $Header: bwidth.a,v 1.1 88/02/26 10:05:23 mento Exp $
.IP \fIbwidth\fP 1i
Specifies the border width.
.IP \fIhints\fP 1i
Specifies the size hints for the window in its normal state.
.\" $Header: xy_ret.a,v 1.3 88/05/20 05:05:44 mento Exp $
.IP \fIx_return\fP 1i
.br
.ns
.IP \fIy_return\fP 1i
Return the x and y offsets.
.\" $Header: widtheight2.a,v 1.1 88/02/26 10:32:28 mento Exp $
.IP \fIwidth_return\fP 1i
.br
.ns
.IP \fIheight_return\fP 1i
Return the width and height determined.
.IP \fIgravity_return\fP 1i
Returns the window gravity.
.\" End marker code here
.LP
The 
.PN XWMGeometry 
function combines any geometry information (given in the format used by 
.PN XParseGeometry )
specified by the user and by the calling program with size hints 
(usually the ones to be stored in WM_NORMAL_HINTS) and returns the position, 
size, and gravity
.Pn ( NorthWestGravity , 
.PN NorthEastGravity , 
.PN SouthEastGravity ,
or
.PN SouthWestGravity ) 
that describe the window.
If the base size is not set in the 
.PN XSizeHints
structure, 
the minimum size is used if set.
Otherwise, a base size of zero is assumed.
If no minimum size is set in the hints structure, 
the base size is used.
A mask (in the form returned by 
.PN XParseGeometry ) 
that describes which values came from the user specification 
and whether or not the position coordinates are relative
to the right and bottom edges is returned.
Note that these coordinates will have already been accounted for 
in the x_return and y_return values.
.LP
Note that invalid geometry specifications can cause a width or height 
of zero to be returned.
The caller may pass the address of the hints win_gravity field 
as gravity_return to update the hints directly.
.NH 2
Manipulating Regions
.XS
\*(SN Manipulating Regions 
.XE
.LP
Regions are arbitrary sets of pixel locations.
Xlib provides functions for manipulating regions.
The opaque type 
.PN Region
is defined in 
.Pn < X11/Xutil.h >.
Xlib provides functions that you can use to manipulate regions.
This section discusses how to:
.IP \(bu 5
Create, copy, or destroy regions
.IP \(bu 5
Move or shrink regions
.IP \(bu 5
Compute with regions
.IP \(bu 5
Determine if regions are empty or equal
.IP \(bu 5
Locate a point or rectangle in a region
.LE
.NH 3
Creating, Copying, or Destroying Regions
.XS
\*(SN Creating, Copying, or Destroying Regions 
.XE
.LP
To create a new empty region, use
.PN XCreateRegion .
.IN "XCreateRegion" "" "@DEF@"
.\" Start marker code here
.FD 0
.\" $Header: XCreRegion.f,v 1.1 88/02/26 09:59:13 mento Exp $
Region XCreateRegion\^()
.FN
.\" End marker code here
.LP
.sp
To generate a region from a polygon, use
.PN XPolygonRegion .
.IN "XPolygonRegion" "" "@DEF@"
.\" Start marker code here
.FD 0
.\" $Header: XPolyRegion.f,v 1.1 88/02/26 10:01:56 mento Exp $
Region XPolygonRegion\^(\^\fIpoints\fP\^, \fIn\fP\^, \fIfill_rule\fP\^)
.br
      XPoint \fIpoints[]\fP\^;
.br
      int \fIn\fP\^;
.br
      int \fIfill_rule\fP\^;	
.FN
.\" $Header: points1.a,v 1.1 88/02/26 10:30:33 mento Exp $
.IP \fIpoints\fP 1i
Specifies an array of points.
.\" $Header: n1.a,v 1.1 88/02/26 10:29:03 mento Exp $
.IP \fIn\fP 1i
Specifies the number of points in the polygon. 
.\" $Header: fill_rule.a,v 1.3 88/05/09 11:57:36 mento Exp $
.IP \fIfill_rule\fP 1i
Specifies the fill-rule you want to set for the specified GC.
You can pass 
.PN EvenOddRule
or
.PN WindingRule .
.\" End marker code here
.LP 
.\" $Header: XPolyRegion.d,v 1.3 88/06/11 07:52:19 mento Exp $
The
.PN XPolygonRegion
function returns a region for the polygon defined by the points array.
For an explanation of fill_rule,
see
.PN XCreateGC .
.LP
.sp
To set the clip-mask of a GC to a region, use
.PN XSetRegion .
.IN "XSetRegion" "" "@DEF@"
.\" Start marker code here
.FD 0
.\" $Header: XSetRegion.f,v 1.1 88/02/26 10:03:27 mento Exp $
XSetRegion\^(\^\fIdisplay\fP, \fIgc\fP\^, \fIr\fP\^)
.br
      Display *\fIdisplay\fP\^;
.br
      GC \fIgc\fP\^;
.br
      Region \fIr\fP\^;
.FN
.\" $Header: display.a,v 1.1 88/02/26 10:26:29 mento Exp $
.IP \fIdisplay\fP 1i
Specifies the connection to the X server.
.\" $Header: gc.a,v 1.2 88/05/09 11:20:34 mento Exp $
.IP \fIgc\fP 1i
Specifies the GC.
.\" $Header: r.a,v 1.1 88/02/26 10:29:50 mento Exp $
.IP \fIr\fP 1i
Specifies the region.
.\" End marker code here
.LP
.\" $Header: XSetRegion.d,v 1.3 88/05/20 05:32:45 mento Exp $
The
.PN XSetRegion
function sets the clip-mask in the GC to the specified region.
Once it is set in the GC,
the region can be destroyed.
.LP 
.sp
To deallocate the storage associated with a specified region, use
.PN XDestroyRegion .
.IN "XDestroyRegion" "" "@DEF@"
.\" Start marker code here
.FD 0
.\" $Header: XDestroyReg.f,v 1.1 88/02/26 09:59:38 mento Exp $
XDestroyRegion\^(\^\fIr\fP\^)
.br
      Region \fIr\fP\^;
.FN
.\" $Header: r.a,v 1.1 88/02/26 10:29:50 mento Exp $
.IP \fIr\fP 1i
Specifies the region.
.\" End marker code here
.NH 3
Moving or Shrinking Regions
.XS
\*(SN Moving or Shrinking Regions 
.XE
.LP
To move a region by a specified amount, use 
.PN XOffsetRegion .
.IN "XOffsetRegion" "" "@DEF@"
.\" Start marker code here
.FD 0
.\" $Header: XOffsetReg.f,v 1.1 88/02/26 10:01:40 mento Exp $
XOffsetRegion\^(\^\fIr\fP\^, \fIdx\fP\^, \fIdy\fP\^)
.br
      Region \fIr\fP\^;
.br
      int \fIdx\fP\^, \fIdy\fP\^;
.FN
.\" $Header: r.a,v 1.1 88/02/26 10:29:50 mento Exp $
.IP \fIr\fP 1i
Specifies the region.
.ds Dy move
.\" $Header: dxdy.a,v 1.3 88/08/04 11:11:24 mento Exp $
.IP \fIdx\fP 1i
.br
.ns
.IP \fIdy\fP 1i
Specify the x and y coordinates,
which define the amount you want to \*(Dy the specified region.
.\" End marker code here
.LP 
.sp
To reduce a region by a specified amount, use
.PN XShrinkRegion .
.IN "XShrinkRegion" "" "@DEF@"
.\" Start marker code here
.FD 0
.\" $Header: XShrinkReg.f,v 1.1 88/02/26 10:03:47 mento Exp $
XShrinkRegion\^(\^\fIr\fP\^, \fIdx\fP\^, \fIdy\fP\^)
.br
      Region \fIr\fP\^;
.br
      int \fIdx\fP\^, \fIdy\fP\^;
.FN
.\" $Header: r.a,v 1.1 88/02/26 10:29:50 mento Exp $
.IP \fIr\fP 1i
Specifies the region.
.ds Dy shrink
.\" $Header: dxdy.a,v 1.3 88/08/04 11:11:24 mento Exp $
.IP \fIdx\fP 1i
.br
.ns
.IP \fIdy\fP 1i
Specify the x and y coordinates,
which define the amount you want to \*(Dy the specified region.
.\" End marker code here
.LP
Positive values shrink the size of the region, 
and negative values expand the region.
.NH 3
Computing with Regions
.XS
\*(SN Computing with Regions 
.XE
.LP
.sp
To generate the smallest rectangle enclosing a region, use
.PN XClipBox .
.IN "XClipBox" "" "@DEF@"
.\" Start marker code here
.FD 0
.\" $Header: XClipBox.f,v 1.2 88/04/07 16:55:50 mento Exp $
XClipBox\^(\^\fIr\fP\^, \fIrect_return\fP\^)
.br
      Region \fIr\fP\^;
.br
      XRectangle *\fIrect_return\fP\^;
.FN
.\" $Header: r.a,v 1.1 88/02/26 10:29:50 mento Exp $
.IP \fIr\fP 1i
Specifies the region.
.\" $Header: rect.a,v 1.2 88/04/07 16:56:54 mento Exp $
.IP \fIrect_return\fP 1i
Returns the smallest enclosing rectangle.
.\" End marker code here
.LP
.\" $Header: XClipBox.d,v 1.3 88/04/23 12:41:53 mento Exp $
The
.PN XClipBox
function returns the smallest rectangle enclosing the specified region.
.LP
.sp
To compute the intersection of two regions, use
.PN XIntersectRegion .
.IN "XIntersectRegion" "" "@DEF@"
.\" Start marker code here
.FD 0
.\" $Header: XInterReg.f,v 1.2 88/04/07 17:02:01 mento Exp $
XIntersectRegion\^(\^\fIsra\fP\^, \fIsrb\fP\^, \fIdr_return\fP\^)
.br
      Region \fIsra\fP\^, \fIsrb\fP\^, \fIdr_return\fP\^;
.FN
.\" $Header: srasrb.a,v 1.1 88/02/26 10:31:19 mento Exp $
.IP \fIsra\fP 1i
.br
.ns
.IP \fIsrb\fP 1i
Specify the two regions with which you want to perform the computation.
.\" $Header: dr.a,v 1.2 88/04/07 17:02:49 mento Exp $
.IP \fIdr_return\fP 1i
Returns the result of the computation.
.\" End marker code here
.LP
.sp
To compute the union of two regions, use
.PN XUnionRegion .
.IN "XUnionRegion" "" "@DEF@"
.\" Start marker code here
.FD 0
.\" $Header: XUnionRegion.f,v 1.2 88/04/07 17:03:24 mento Exp $
XUnionRegion\^(\^\fIsra\fP\^, \fIsrb\fP\^, \fIdr_return\fP\^)
.br
      Region \fIsra\fP\^, \fIsrb\fP\^, \fIdr_return\fP\^;
.FN
.\" $Header: srasrb.a,v 1.1 88/02/26 10:31:19 mento Exp $
.IP \fIsra\fP 1i
.br
.ns
.IP \fIsrb\fP 1i
Specify the two regions with which you want to perform the computation.
.\" $Header: dr.a,v 1.2 88/04/07 17:02:49 mento Exp $
.IP \fIdr_return\fP 1i
Returns the result of the computation.
.\" End marker code here
.LP
.sp
To create a union of a source region and a rectangle, use
.PN XUnionRectWithRegion .
.IN "XUnionRectWithRegion" "" "@DEF@"
.\" Start marker code here
.FD 0
XUnionRectWithRegion\^(\^\fIrectangle\fP, \fIsrc_region\fP, \
\fIdest_region_return\fP\^)
.br
     XRectangle *\fIrectangle\fP\^;
.br
     Region \fIsrc_region\fP\^;
.br
     Region \fIdest_region_return\fP\^;
.FN
.IP \fIrectangle\fP 1i
Specifies the rectangle.
.IP \fIsrc_region\fP 1i
Specifies the source region to be used.
.IP \fIdest_region_return\fP 1i
Returns the destination region.
.\" End marker code here
.LP
The
.PN XUnionRectWithRegion
function updates the destination region from a union of the specified rectangle
and the specified source region.
.LP
.sp
To subtract two regions, use
.PN XSubtractRegion .
.IN "XSubtractRegion" "" "@DEF@"
.\" Start marker code here
.FD 0
.\" $Header: XSubtractReg.f,v 1.2 88/04/07 17:07:58 mento Exp $
XSubtractRegion\^(\^\fIsra\fP\^, \fIsrb\fP\^, \fIdr_return\fP\^)
.br
      Region \fIsra\fP\^, \fIsrb\fP\^, \fIdr_return\fP\^;
.FN
.\" $Header: srasrb.a,v 1.1 88/02/26 10:31:19 mento Exp $
.IP \fIsra\fP 1i
.br
.ns
.IP \fIsrb\fP 1i
Specify the two regions with which you want to perform the computation.
.\" $Header: dr.a,v 1.2 88/04/07 17:02:49 mento Exp $
.IP \fIdr_return\fP 1i
Returns the result of the computation.
.\" End marker code here
.LP
.\" $Header: XSubtractReg.d,v 1.3 88/08/20 10:20:59 mento Exp $
The
.PN XSubtractRegion
function subtracts srb from sra and stores the results in dr_return.
.LP
.sp
To calculate the difference between the union and intersection 
of two regions, use
.PN XXorRegion .
.IN "XXorRegion" "" "@DEF@"
.\" Start marker code here
.FD 0
.\" $Header: XXorRegion.f,v 1.2 88/04/07 17:09:05 mento Exp $
XXorRegion\^(\^\fIsra\fP\^, \fIsrb\fP\^, \fIdr_return\fP\^)
.br
      Region \fIsra\fP\^, \fIsrb\fP\^, \fIdr_return\fP\^;
.FN
.\" $Header: srasrb.a,v 1.1 88/02/26 10:31:19 mento Exp $
.IP \fIsra\fP 1i
.br
.ns
.IP \fIsrb\fP 1i
Specify the two regions with which you want to perform the computation.
.\" $Header: dr.a,v 1.2 88/04/07 17:02:49 mento Exp $
.IP \fIdr_return\fP 1i
Returns the result of the computation.
.\" End marker code here
.NH 3
Determining if Regions Are Empty or Equal
.XS
\*(SN Determining if Regions Are Empty or Equal 
.XE
.LP
To determine if the specified region is empty, use
.PN XEmptyRegion .
.IN "XEmptyRegion" "" "@DEF@"
.\" Start marker code here
.FD 0
.\" $Header: XEmptyRegion.f,v 1.2 88/04/07 17:09:49 mento Exp $
Bool XEmptyRegion\^(\^\fIr\fP\^)
.br
      Region \fIr\fP\^;
.FN
.\" $Header: r.a,v 1.1 88/02/26 10:29:50 mento Exp $
.IP \fIr\fP 1i
Specifies the region.
.\" End marker code here
.LP 
.\" $Header: XEmptyRegion.d,v 1.2 88/06/11 07:50:03 mento Exp $
The
.PN XEmptyRegion
function returns
.PN True
if the region is empty.
.LP
.sp
To determine if two regions have the same offset, size, and shape, use
.PN XEqualRegion .
.IN "XEqualRegion" "" "@DEF@"
.\" Start marker code here
.FD 0
.\" $Header: XEqualRegion.f,v 1.2 88/04/07 17:10:16 mento Exp $
Bool XEqualRegion\^(\^\fIr1\fP\^, \fIr2\fP\^)
.br
      Region \fIr1\fP\^, \fIr2\fP\^;
.FN
.\" $Header: r1r2.a,v 1.1 88/02/26 10:30:48 mento Exp $
.IP \fIr1\fP 1i
.br
.ns
.IP \fIr2\fP 1i
Specify the two regions.
.\" End marker code here
.LP
.\" $Header: XEqualRegion.d,v 1.2 88/06/11 07:50:04 mento Exp $
The
.PN XEqualRegion
function returns
.PN True
if the two regions have the same offset, size, and shape.
.NH 3
Locating a Point or a Rectangle in a Region
.XS
\*(SN Locating a Point or a Rectangle in a Region 
.XE
.LP
To determine if a specified point resides in a specified region, use
.PN XPointInRegion .
.IN "XPointInRegion" "" "@DEF@"
.\" Start marker code here
.FD 0
.\" $Header: XPointInReg.f,v 1.2 88/04/07 17:10:45 mento Exp $
Bool XPointInRegion\^(\^\fIr\fP\^, \fIx\fP\^, \fIy\fP\^)
.br
      Region \fIr\fP\^;
.br
      int \fIx\fP\^, \fIy\fP\^;
.FN
.\" $Header: r.a,v 1.1 88/02/26 10:29:50 mento Exp $
.IP \fIr\fP 1i
Specifies the region.
.ds Xy , which define the point
.\" $Header: xy_gen.a,v 1.2 88/08/04 11:22:37 mento Exp $
.IP \fIx\fP 1i
.br
.ns
.IP \fIy\fP 1i
Specify the x and y coordinates\*(Xy.
.\" Start marker code here
.LP
.\" $Header: XPointInReg.d,v 1.3 88/04/23 12:44:36 mento Exp $
The
.PN XPointInRegion
function returns 
.PN True
if the point (x, y) is contained in the region r.
.LP
.sp
To determine if a specified rectangle is inside a region, use
.PN XRectInRegion .
.IN "XRectInRegion" "" "@DEF@"
.\" Start marker code here
.FD 0
.\" $Header: XRectInReg.f,v 1.1 88/02/26 10:02:37 mento Exp $
int XRectInRegion\^(\^\fIr\fP\^, \fIx\fP\^, \fIy\fP\^, \fIwidth\fP\^, \fIheight\fP\^)
.br
      Region \fIr\fP\^;
.br
      int \fIx\fP\^, \fIy\fP\^; 
.br
      unsigned int \fIwidth\fP\^, \fIheight\fP\^;
.FN
.\" $Header: r.a,v 1.1 88/02/26 10:29:50 mento Exp $
.IP \fIr\fP 1i
Specifies the region.
.ds Xy , which define the coordinates of the upper-left corner of the rectangle
.\" $Header: xy_gen.a,v 1.2 88/08/04 11:22:37 mento Exp $
.IP \fIx\fP 1i
.br
.ns
.IP \fIy\fP 1i
Specify the x and y coordinates\*(Xy.
.ds Wh , which define the rectangle 
.\" $Header: w+h_gen.a,v 1.2 88/08/04 11:21:28 mento Exp $
.IP \fIwidth\fP 1i
.br
.ns
.IP \fIheight\fP 1i
Specify the width and height\*(Wh.
.\" End marker code here
.LP 
.\" $Header: XRectInReg.d,v 1.1 88/02/26 10:50:04 mento Exp $
The
.PN XRectInRegion
function returns
.PN RectangleIn
if the rectangle is entirely in the specified region,
.PN RectangleOut
if the rectangle is entirely out of the specified region,
and
.PN RectanglePart
if the rectangle is partially in the specified region.
.NH 2
Using Cut Buffers
.XS
\*(SN Using Cut Buffers 
.XE
.LP
.IN "Cut Buffers"
Xlib provides functions to manipulate cut buffers,
a very simple form of ``cut and paste'' inter-client communication.
Selections are a much more powerful and useful mechanism for
interchanging data between clients (see section 4.5),
and generally should be used instead of cut buffers.
.LP
Cut buffers are implemented as properties on the first root window
of the display.
The buffers can only contain text, in the STRING encoding.
The text encoding is not changed by Xlib, when fetching or storing.
Eight buffers are provided
and can be accessed as a ring or as explicit buffers (numbered 0 through 7).
.LP
.sp
To store data in cut buffer 0, use 
.PN XStoreBytes .
.IN "XStoreBytes" "" "@DEF@"
.\" Start marker code here
.FD 0
.\" $Header: XStoreBytes.f,v 1.2 88/04/07 17:21:31 mento Exp $
XStoreBytes\^(\^\fIdisplay\fP, \fIbytes\fP\^, \fInbytes\fP\^)
.br
      Display *\fIdisplay\fP\^;
.br
      char *\fIbytes\fP\^;
.br
      int \^\fInbytes\fP\^;
.br
.FN 
.\" $Header: display.a,v 1.1 88/02/26 10:26:29 mento Exp $
.IP \fIdisplay\fP 1i
Specifies the connection to the X server.
.\" $Header: bytes.a,v 1.2 88/05/20 05:55:18 mento Exp $
.IP \fIbytes\fP 1i
Specifies the bytes, which are not necessarily ASCII or null-terminated.
.IP \fInbytes\fP 1i
Specifies the number of bytes to be stored.
.\" End marker code here
.LP
.\" $Header: XStoreBytes.d,v 1.2 88/06/11 07:53:46 mento Exp $
Note that the data can have embedded null characters,
and need not be null terminated.
The cut buffer's contents can be retrieved later by
any client calling
.PN XFetchBytes .
.LP
.PN XStoreBytes
can generate a
.PN BadAlloc
error.
.LP
.sp
To store data in a specified cut buffer, use
.PN XStoreBuffer .
.IN "XStoreBuffer" "" "@DEF@"
.\" Start marker code here
.FD 0
.\" $Header: XStoreBuffer.f,v 1.2 88/04/07 17:22:43 mento Exp $
XStoreBuffer\^(\^\fIdisplay\fP, \fIbytes\fP\^, \fInbytes\fP\^, \fIbuffer\fP\^)
.br
      Display *\fIdisplay\fP\^;
.br
      char *\fIbytes\fP\^;
.br
      int \^\fInbytes\fP\^;
.br
      int \fIbuffer\fP\^;
.FN
.\" $Header: display.a,v 1.1 88/02/26 10:26:29 mento Exp $
.IP \fIdisplay\fP 1i
Specifies the connection to the X server.
.\" $Header: bytes.a,v 1.2 88/05/20 05:55:18 mento Exp $
.IP \fIbytes\fP 1i
Specifies the bytes, which are not necessarily ASCII or null-terminated.
.IP \fInbytes\fP 1i
Specifies the number of bytes to be stored.
.ds Fn in which you want to store the bytes
.\" $Header: buffer.a,v 1.4 88/08/04 11:02:57 mento Exp $
.IP \fIbuffer\fP 1i
Specifies the buffer \*(Fn.
.\" End marker code here
.LP
.\" $Header: XStoreBuffer.d,v 1.2 88/06/11 07:53:45 mento Exp $
If an invalid buffer is specified, the call has no effect.
Note that the data can have embedded null characters,
and need not be null terminated.
.LP
.PN XStoreBuffer
can generate a
.PN BadAlloc 
error.
.LP
.sp
To return data from cut buffer 0, use 
.PN XFetchBytes .
.IN "XFetchBytes" "" "@DEF@"
.\" Start marker code here
.FD 0
.\" $Header: XFetchBytes.f,v 1.1 88/02/26 10:00:00 mento Exp $
char *XFetchBytes\^(\^\fIdisplay\fP, \fInbytes_return\fP\^)
.br
      Display *\fIdisplay\fP\^;
.br
      int *\fInbytes_return\fP\^;
.FN
.\" $Header: display.a,v 1.1 88/02/26 10:26:29 mento Exp $
.IP \fIdisplay\fP 1i
Specifies the connection to the X server.
.\" $Header: nbytes.a,v 1.2 88/05/20 05:59:12 mento Exp $
.IP \fInbytes_return\fP 1i
Returns the number of bytes in the buffer.
.\" End marker code here
.LP
.\" $Header: XFetchBytes.d,v 1.3 88/08/20 10:22:26 mento Exp $
The
.PN XFetchBytes
function
returns the number of bytes in the nbytes_return argument,
if the buffer contains data.
Otherwise, the function
returns NULL and sets nbytes to 0.
The appropriate amount of storage is allocated and the pointer returned.
The client must free this storage when finished with it by calling
.PN XFree .
.LP
.sp
To return data from a specified cut buffer, use 
.PN XFetchBuffer .
.IN "XFetchBuffer" "" "@DEF@"
.\" Start marker code here
.FD 0
.\" $Header: XFetchBuffer.f,v 1.2 88/04/07 17:31:40 mento Exp $
char *XFetchBuffer\^(\^\fIdisplay\fP, \fInbytes_return\fP\^, \fIbuffer\fP\^)
.br
      Display *\fIdisplay\fP\^;
.br
      int *\fInbytes_return\fP\^;
.br
      int \fIbuffer\fP\^;
.FN
.\" $Header: display.a,v 1.1 88/02/26 10:26:29 mento Exp $
.IP \fIdisplay\fP 1i
Specifies the connection to the X server.
.\" $Header: nbytes.a,v 1.2 88/05/20 05:59:12 mento Exp $
.IP \fInbytes_return\fP 1i
Returns the number of bytes in the buffer.
.ds Fn from which you want the stored data returned
.\" $Header: buffer.a,v 1.4 88/08/04 11:02:57 mento Exp $
.IP \fIbuffer\fP 1i
Specifies the buffer \*(Fn.
.\" End marker code here
.LP
.\" $Header: XFetchBuffer.d,v 1.3 88/08/20 10:23:20 mento Exp $
The
.PN XFetchBuffer
function returns zero to the nbytes_return argument 
if there is no data in the buffer or if an invalid
buffer is specified.
.LP
.sp
To rotate the cut buffers, use 
.PN XRotateBuffers .
.IN "XRotateBuffers" "" "@DEF@"
.\" Start marker code here
.FD 0
.\" $Header: XRotateBufs.f,v 1.1 88/02/26 10:02:45 mento Exp $
XRotateBuffers\^(\^\fIdisplay\fP, \fIrotate\fP\^)
.br
      Display *\fIdisplay\fP\^;
.br
      int \fIrotate\fP\^;
.FN
.\" $Header: display.a,v 1.1 88/02/26 10:26:29 mento Exp $
.IP \fIdisplay\fP 1i
Specifies the connection to the X server.
.\" $Header: rotate.a,v 1.2 88/05/20 06:01:18 mento Exp $
.IP \fIrotate\fP 1i
Specifies how much to rotate the cut buffers.
.\" End marker code here
.LP 
.\" $Header: XRotateBufs.d,v 1.3 88/06/11 07:52:52 mento Exp $
The
.PN XRotateBuffers
function rotates the cut
buffers, such that buffer 0 becomes buffer n, 
buffer 1 becomes n + 1 mod 8, and so on.
This cut buffer numbering is global to the display.
Note that
.PN XRotateBuffers
generates
.PN BadMatch
errors if any of the eight buffers have not been created.
.NH 2
Determining the Appropriate Visual Type
.XS
\*(SN Determining the Appropriate Visual Type
.XE
.LP
A single display can support multiple screens.
Each screen can have several different visual types supported 
at different depths.
You can use the functions described in this section to determine
which visual to use for your application.
.LP
The functions in this section use the visual information masks and the
.PN XVisualInfo 
structure,
which is defined in
.Pn < X11/Xutil.h >
and contains:
.\" Start marker code here
.LP
/* Visual information mask bits */
.TS
lw(.5i) lw(2.5i) lw(.8i).
T{
#define
T}	T{
.PN VisualNoMask
T}	T{
0x0
T}
T{
#define
T}	T{
.PN VisualIDMask
T}	T{
0x1
T}
T{
#define
T}	T{
.PN VisualScreenMask
T}	T{
0x2
T}
T{
#define
T}	T{
.PN VisualDepthMask
T}	T{
0x4
T}
T{
#define
T}	T{
.PN VisualClassMask
T}	T{
0x8
T}
T{
#define
T}	T{
.PN VisualRedMaskMask
T}	T{
0x10
T}
T{
#define
T}	T{
.PN VisualGreenMaskMask
T}	T{
0x20
T}
T{
#define
T}	T{
.PN VisualBlueMaskMask
T}	T{
0x40
T}
T{
#define
T}	T{
.PN VisualColormapSizeMask
T}	T{
0x80
T}
T{
#define
T}	T{
.PN VisualBitsPerRGBMask
T}	T{
0x100
T}
T{
#define
T}	T{
.PN VisualAllMask
T}	T{
0x1FF
T}
.TE
.IN "XVisualInfo" "" "@DEF@"
.Ds 0
.TA .5i 3i
.ta .5i 3i
/* Values */

typedef struct {
	Visual *visual;
	VisualID visualid;
	int screen;
	unsigned int depth;
	int class;
	unsigned long red_mask;
	unsigned long green_mask;
	unsigned long blue_mask;
	int colormap_size;
	int bits_per_rgb;
} XVisualInfo;
.De
.\" End marker code here
.LP
To obtain a list of visual information structures that match a specified
template, use
.PN XGetVisualInfo .
.IN "XGetVisualInfo" "" "@DEF@"
.\" Start marker code here
.FD 0
XVisualInfo *XGetVisualInfo\^(\^\fIdisplay\fP, \fIvinfo_mask\fP, \fIvinfo_template\fP, \fInitems_return\fP\^)
.br
      Display *\fIdisplay\fP\^;
.br
      long \fIvinfo_mask\fP\^;
.br
      XVisualInfo *\fIvinfo_template\fP\^;
.br
      int *\fInitems_return\fP\^;
.FN
.\" $Header: display.a,v 1.1 88/02/26 10:26:29 mento Exp $
.IP \fIdisplay\fP 1i
Specifies the connection to the X server.
.IP \fIvinfo_mask\fP 1i
Specifies the visual mask value.
.IP \fIvinfo_template\fP 1i
Specifies the visual attributes that are to be used in matching the visual
structures.
.IP \fInitems_return\fP 1i
Returns the number of matching visual structures.
.\" End marker code here
.LP
.\" $Header: XGetVInfo.d,v 1.3 88/06/11 07:51:29 mento Exp $
The
.PN XGetVisualInfo
function returns a list of visual structures that have attributes 
equal to the attributes specified by vinfo_template.
If no visual structures match the template using the specified vinfo_mask,
.PN XGetVisualInfo
returns a NULL.
To free the data returned by this function, use
.PN XFree .
.LP
.sp
To obtain the visual information that matches the specified depth and
class of the screen, use
.PN XMatchVisualInfo .
.IN "XMatchVisualInfo" "" "@DEF@"
.\" Start marker code here
.FD 0
Status XMatchVisualInfo\^(\^\fIdisplay\fP, \fIscreen\fP, \fIdepth\fP, \fIclass\fP, \fIvinfo_return\fP\^)
.br
      Display *\fIdisplay\fP\^;
.br
      int \fIscreen\fP\^;
.br
      int \fIdepth\fP\^;
.br
      int \fIclass\fP\^;
.br
      XVisualInfo *\fIvinfo_return\fP\^;
.FN
.\" $Header: display.a,v 1.1 88/02/26 10:26:29 mento Exp $
.IP \fIdisplay\fP 1i
Specifies the connection to the X server.
.IP \fIscreen\fP 1i
Specifies the screen.
.IP \fIdepth\fP 1i
Specifies the depth of the screen.
.IP \fIclass\fP 1i
Specifies the class of the screen.
.IP \fIvinfo_return\fP 1i
Returns the matched visual information.
.\" End marker code here
.LP
.\" $Header: XMatVInfo.d,v 1.2 88/06/11 07:51:59 mento Exp $
The
.PN XMatchVisualInfo
function returns the visual information for a visual that matches the specified
depth and class for a screen.
Because multiple visuals that match the specified depth and class can exist,
the exact visual chosen is undefined.
If a visual is found,
.PN XMatchVisualInfo
returns nonzero and the information on the visual to vinfo_return.
Otherwise, when a visual is not found,
.PN XMatchVisualInfo
returns zero.
.NH 2
Manipulating Images
.XS
\*(SN Manipulating Images 
.XE
.LP
Xlib provides several functions that perform basic operations on images.
All operations on images are defined using an 
.PN XImage 
structure, 
as defined in
.Pn < X11/Xlib.h >.
Because the number of different types of image formats can be very large,
this hides details of image storage properly from applications.
.LP
This section describes the functions for generic operations on images.
Manufacturers can provide very fast implementations of these for the
formats frequently encountered on their hardware.
These functions are neither sufficient nor desirable to use for general image
processing.
Rather, they are here to provide minimal functions on screen format
images.
The basic operations for getting and putting images are
.PN XGetImage
and 
.PN XPutImage .
.LP
Note that no functions have been defined, as yet, to read and write images 
to and from disk files.
.LP
The
.PN XImage 
structure describes an image as it exists in the client's memory.  
The user can request that some of the members such as height, width, 
and xoffset be changed when the image is sent to the server.
Note that bytes_per_line in concert with offset can be used to
extract a subset of the image.
Other members (for example, byte order, bitmap_unit, and so forth)
are characteristics of both the image and the server.  
If these members
differ between the image and the server, 
.PN XPutImage 
makes the appropriate conversions.
The first byte of the first line of
plane n must be located at the address (data + (n * height * bytes_per_line)).
For a description of the 
.PN XImage 
structure,
see section 8.7.
.LP
.sp
To allocate sufficient memory for an 
.PN XImage 
structure, use
.PN XCreateImage .
.IN "XCreateImage" "" "@DEF@"
.\" Start marker code here
.FD 0
XImage *XCreateImage\^(\^\fIdisplay\fP, \fIvisual\fP, \fIdepth\fP, \fIformat\fP, \fIoffset\fP, \fIdata\fP, \fIwidth\fP, \fIheight\fP\^, \fIbitmap_pad\fP, 
.br
                        \fIbytes_per_line\fP\^)
.br
      Display *\fIdisplay\fP\^;
.br
      Visual *\fIvisual\fP\^;
.br
      unsigned int \fIdepth\fP\^;
.br
      int \fIformat\fP\^;
.br
      int \fIoffset\fP\^;
.br
      char *\fIdata\fP\^;
.br
      unsigned int \fIwidth\fP\^;
.br
      unsigned int \fIheight\fP\^;
.br
      int \fIbitmap_pad\fP\^;
.br
      int \fIbytes_per_line\fP\^;
.FN
.\" $Header: display.a,v 1.1 88/02/26 10:26:29 mento Exp $
.IP \fIdisplay\fP 1i
Specifies the connection to the X server.
.IP \fIvisual\fP 1i
Specifies the
.PN Visual
structure.
.IP \fIdepth\fP 1i
Specifies the depth of the image.
.IP \fIformat\fP 1i
Specifies the format for the image.
You can pass
.PN XYBitmap ,
.PN XYPixmap ,
or 
.PN ZPixmap .
.IP \fIoffset\fP 1i
Specifies the number of pixels to ignore at the beginning of the scanline.
.IP \fIdata\fP 1i
Specifies the image data.
.IP \fIwidth\fP 1i
Specifies the width of the image, in pixels.
.IP \fIheight\fP 1i
Specifies the height of the image, in pixels.
.IP \fIbitmap_pad\fP 1i
Specifies the quantum of a scanline (8, 16, or 32).
In other words, the start of one scanline is separated in client memory from 
the start of the next scanline by an integer multiple of this many bits.  
.IP \fIbytes_per_line\fP 1i
Specifies the number of bytes in the client image between
the start of one scanline and the start of the next.  
.\" End marker code here
.LP
.\" $Header: XCreImage.d,v 1.4 88/08/20 10:25:28 mento Exp $
The
.PN XCreateImage
function allocates the memory needed for an
.PN XImage
structure for the
specified display but does not allocate space for the image itself.
Rather, it initializes the structure byte-order, bit-order, and bitmap-unit
values from the display and returns a pointer to the 
.PN XImage 
structure.
The red, green, and blue mask values are defined for Z format images only
and are derived from the 
.PN Visual 
structure passed in.
Other values also are passed in.
The offset permits the rapid displaying of the image without requiring each 
scanline to be shifted into position.
If you pass a zero value in bytes_per_line,
Xlib assumes that the scanlines are contiguous
in memory and calculates the value of bytes_per_line itself.
.LP
Note that when the image is created using
.PN XCreateImage ,
.PN XGetImage ,
or
.PN XSubImage ,
the destroy procedure that the 
.PN XDestroyImage
function calls frees both the image structure 
and the data pointed to by the image structure.
.LP
The basic functions used to get a pixel, set a pixel, create a subimage,
and add a constant value to an image are defined in the image object.
The functions in this section are really macro invocations of the functions
in the image object and are defined in
.Pn < X11/Xutil.h >.
.LP
.sp
To obtain a pixel value in an image, use
.PN XGetPixel .
.IN "XGetPixel" "" "@DEF@"
.\" Start marker code here
.FD 0
unsigned long XGetPixel\^(\^\fIximage\fP, \fIx\fP, \fIy\fP\^)
.br
      XImage *\fIximage\fP\^;
.br
      int \fIx\fP\^;
.br
      int \fIy\fP\^;
.FN
.IP \fIximage\fP 1i
Specifies the image.
.\" $Header: xy.a,v 1.1 88/02/26 10:32:54 mento Exp $
.IP \fIx\fP 1i
.br
.ns
.IP \fIy\fP 1i
Specify the x and y coordinates.
.\" End marker code here
.LP
.\" $Header: XGetPixel.d,v 1.2 88/06/11 07:51:14 mento Exp $
The
.PN XGetPixel
function returns the specified pixel from the named image.
The pixel value is returned in normalized format (that is,
the least-significant byte of the long is the least-significant byte
of the pixel).
The image must contain the x and y coordinates.
.LP
.sp
To set a pixel value in an image, use
.PN XPutPixel .
.IN "XPutPixel" "" "@DEF@"
.\" Start marker code here
.FD 0
XPutPixel\^(\^\fIximage\fP, \fIx\fP, \fIy\fP, \fIpixel\fP\^)
.br
      XImage *\fIximage\fP\^;
.br
      int \fIx\fP\^;
.br
      int \fIy\fP\^;
.br
      unsigned long \fIpixel\fP\^;
.FN
.IP \fIximage\fP 1i
Specifies the image.
.\" $Header: xy.a,v 1.1 88/02/26 10:32:54 mento Exp $
.IP \fIx\fP 1i
.br
.ns
.IP \fIy\fP 1i
Specify the x and y coordinates.
.IP \fIpixel\fP 1i
Specifies the new pixel value.
.\" End marker code here
.LP
.\" $Header: XPutPixel.d,v 1.2 88/06/11 07:52:30 mento Exp $
The
.PN XPutPixel
function overwrites the pixel in the named image with the specified pixel value.
The input pixel value must be in normalized format
(that is, the least-significant byte of the long is the least-significant
byte of the pixel).
The image must contain the x and y coordinates.
.LP
.sp
To create a subimage, use
.PN XSubImage .
.IN "XSubImage" "" "@DEF@"
.\" Start marker code here
.FD 0
XImage *XSubImage\^(\^\fIximage\fP, \fIx\fP, \fIy\fP, \fIsubimage_width\fP, \fIsubimage_height\fP\^)
.br
      XImage *\fIximage\fP\^;
.br
      int \fIx\fP\^;
.br
      int \fIy\fP\^;
.br
      unsigned int \fIsubimage_width\fP\^;
.br
      unsigned int \fIsubimage_height\fP\^;
.FN
.IP \fIximage\fP 1i
Specifies the image.
.\" $Header: xy.a,v 1.1 88/02/26 10:32:54 mento Exp $
.IP \fIx\fP 1i
.br
.ns
.IP \fIy\fP 1i
Specify the x and y coordinates.
.IP \fIsubimage_width\fP 1i
Specifies the width of the new subimage, in pixels.
.IP \fIsubimage_height\fP 1i
Specifies the height of the new subimage, in pixels.
.\" End marker code here
.LP
.\" $Header: XSubImage.d,v 1.3 88/08/20 10:26:23 mento Exp $
The
.PN XSubImage
function creates a new image that is a subsection of an existing one.
It allocates the memory necessary for the new
.PN XImage
structure
and returns a pointer to the new image.
The data is copied from the source image,
and the image must contain the rectangle defined by x, y, subimage_width,
and subimage_height.
.LP
.sp
To increment each pixel in an image by a constant value, use
.PN XAddPixel .
.IN "XAddPixel" "" "@DEF@"
.\" Start marker code here
.FD 0
XAddPixel\^(\^\fIximage\fP, \fIvalue\fP\^)
.br
      XImage *\fIximage\fP\^;
.br
      long \fIvalue\fP\^;
.FN
.IP \fIximage\fP 1i
Specifies the image.
.IP \fIvalue\fP 1i
Specifies the constant value that is to be added.
.\" End marker code here
.LP
.\" $Header: XAddPixel.d,v 1.2 88/06/11 07:48:34 mento Exp $
The
.PN XAddPixel
function adds a constant value to every pixel in an image.
It is useful when you have a base pixel value from allocating
color resources and need to manipulate the image to that form.
.LP
.sp
To deallocate the memory allocated in a previous call to
.PN XCreateImage ,
use
.PN XDestroyImage .
.IN "XDestroyImage" "" "@DEF@"
.\" Start marker code here
.FD 0
XDestroyImage\^(\^\fIximage\fP\^)
.br
        XImage *\^\fIximage\fP\^; 
.FN
.IP \fIximage\fP 1i
Specifies the image.
.\" End marker code here
.LP
.\" $Header: XDestImage.d,v 1.1 88/02/26 10:41:47 mento Exp $
The
.PN XDestroyImage
function deallocates the memory associated with the
.PN XImage
structure.
.LP
Note that when the image is created using
.PN XCreateImage ,
.PN XGetImage ,
or 
.PN XSubImage ,
the destroy procedure that this macro calls
frees both the image structure and the data pointed to by the image structure. 
.NH 2
Manipulating Bitmaps
.XS
\*(SN Manipulating Bitmaps 
.XE
.LP
Xlib provides functions that you can use to read a bitmap from a file,
save a bitmap to a file, or create a bitmap. 
This section describes those functions that transfer bitmaps to and
from the client's file system, thus allowing their reuse in a later
connection (for example, from an entirely different client or to a
different display or server).
.LP
The X version 11 bitmap file format is:
.LP
.\" Start marker code here
.Ds 0
#define \fIname\fP_width \fIwidth\fP
#define \fIname\fP_height \fIheight\fP
#define \fIname\fP_x_hot \fIx\fP
#define \fIname\fP_y_hot \fIy\fP
static unsigned char \fIname\fP_bits[] = { 0x\fINN\fP,... }
.De
.\" End marker code here
.LP
The lines for the variables ending with _x_hot and _y_hot suffixes are optional
because they are present only if a hotspot has been defined for this bitmap.
The lines for the other variables are required.
The word ``unsigned'' is optional; that is, the type of the _bits array
can be char or unsigned char.
The _bits array must be large enough to contain the size bitmap.
The bitmap unit is eight.
The name is derived from the name of the file that you specified
on the original command line by deleting the directory path and extension.
.LP
.sp
To read a bitmap from a file, use
.PN XReadBitmapFile .
.IN "XReadBitmapFile" "" "@DEF@"
.\" Start marker code here
.FD 0
int XReadBitmapFile(\^\fIdisplay\fP, \fId\fP, \fIfilename\fP, \fIwidth_return\fP, \fIheight_return\fP, \fIbitmap_return\fP, \fIx_hot_return\fP, 
.br
                       \fIy_hot_return\fP\^)
.br
      Display *\fIdisplay\fP\^;
.br
      Drawable \fId\fP\^;
.br
      char *\fIfilename\fP\^;
.br
      unsigned int *\fIwidth_return\fP, *\fIheight_return\fP\^;
.br
      Pixmap *\fIbitmap_return\fP\^;
.br
      int *\fIx_hot_return\fP, *\fIy_hot_return\fP\^;	
.FN
.\" $Header: display.a,v 1.1 88/02/26 10:26:29 mento Exp $
.IP \fIdisplay\fP 1i
Specifies the connection to the X server.
.ds Dr \ that indicates the screen
.\" $Header: d_gen.a,v 1.2 88/08/04 11:09:21 mento Exp $
.IP \fId\fP 1i
Specifies the drawable\*(Dr. 
.\" $Header: filename.a,v 1.2 88/05/20 07:30:24 mento Exp $
.IP \fIfilename\fP 1i
Specifies the file name to use.
The format of the file name is operating-system dependent.
.IP \fIwidth_return\fP 1i
.br
.ns
.IP \fIheight_return\fP 1i
Return the width and height values of the read in bitmap file.
.IP \fIbitmap_return\fP 1i
Returns the bitmap that is created.
.IP \fIx_hot_return\fP 1i
.br
.ns
.IP \fIy_hot_return\fP 1i
Return the hotspot coordinates.
.\" End marker code here
.LP
.\" $Header: XRBitFile.d,v 1.2 88/06/11 07:52:43 mento Exp $
The
.PN XReadBitmapFile
function reads in a file containing a bitmap.
The file is parsed in the encoding of the current locale.
The ability to read other than the standard format 
is implementation dependent.
If the file cannot be opened, 
.PN XReadBitmapFile 
returns 
.PN BitmapOpenFailed .  
If the file can be opened but does not contain valid bitmap data, 
it returns 
.PN BitmapFileInvalid .  
If insufficient working storage is allocated,
it returns
.PN BitmapNoMemory .  
If the file is readable and valid,
it returns 
.PN BitmapSuccess .
.LP
.PN XReadBitmapFile 
returns the bitmap's height and width, as read
from the file, to width_return and height_return.
It then creates a pixmap of the appropriate size, 
reads the bitmap data from the file into the pixmap,
and assigns the pixmap to the caller's variable bitmap.  
The caller must free the bitmap using 
.PN XFreePixmap 
when finished.
If \fIname\fP_x_hot and \fIname\fP_y_hot exist,
.PN XReadBitmapFile 
returns them to x_hot_return and y_hot_return;
otherwise, it returns \-1,\-1.
.LP
.PN XReadBitmapFile
can generate
.PN BadAlloc
and
.PN BadDrawable
errors.
.LP
.sp
To write out a bitmap to a file, use
.PN XWriteBitmapFile .
.IN "XWriteBitmapFile" "" "@DEF@"
.\" Start marker code here
.FD 0
int XWriteBitmapFile(\^\fIdisplay\fP, \fIfilename\fP, \fIbitmap\fP, \fIwidth\fP, \fIheight\fP, \fIx_hot\fP, \fIy_hot\fP\^)
.br
      Display *\fIdisplay\fP\^;
.br
      char *\fIfilename\fP\^;
.br
      Pixmap \fIbitmap\fP\^;
.br
      unsigned int \fIwidth\fP, \fIheight\fP\^;
.br
      int \fIx_hot\fP, \fIy_hot\fP\^;
.FN
.\" $Header: display.a,v 1.1 88/02/26 10:26:29 mento Exp $
.IP \fIdisplay\fP 1i
Specifies the connection to the X server.
.\" $Header: filename.a,v 1.2 88/05/20 07:30:24 mento Exp $
.IP \fIfilename\fP 1i
Specifies the file name to use.
The format of the file name is operating-system dependent.
.IP \fIbitmap\fP 1i
Specifies the bitmap.
.\" $Header: widtheight.a,v 1.1 88/02/26 10:32:27 mento Exp $
.IP \fIwidth\fP 1i
.br
.ns
.IP \fIheight\fP 1i
Specify the width and height.
.IP \fIx_hot\fP 1i
.br
.ns
.IP \fIy_hot\fP 1i
Specify where to place the hotspot coordinates (or \-1,\-1 if none are present)
in the file.
.\" End marker code here
.LP
.\" $Header: XWBitFile.d,v 1.2 88/06/11 07:54:35 mento Exp $
The
.PN XWriteBitmapFile
function writes a bitmap out to a file in the X version 11 format.
The file is written in the encoding of the current locale.
If the file cannot be opened for writing, 
it returns 
.PN BitmapOpenFailed .  
If insufficient memory is allocated,
.PN XWriteBitmapFile
returns
.PN BitmapNoMemory ;
otherwise, on no error,
it returns
.PN BitmapSuccess .
If x_hot and y_hot are not \-1, \-1, 
.PN XWriteBitmapFile
writes them out as the hotspot coordinates for the bitmap.
.LP
.PN XWriteBitmapFile
can generate
.PN BadDrawable
and
.PN BadMatch
errors.
.LP
.sp
To create a pixmap and then store bitmap-format data into it, use
.PN XCreatePixmapFromBitmapData .
.IN "XCreatePixmapFromBitmapData" "" "@DEF@"
.\" Start marker code here
.FD 0
Pixmap XCreatePixmapFromBitmapData\^(\^\fIdisplay\fP, \fId\fP, \fIdata\fP, \fIwidth\fP, \fIheight\fP, \fIfg\fP, \fIbg\fP, \fIdepth\fP\^)
.br
     Display *\fIdisplay\fP\^;
.br
     Drawable \fId\fP\^;
.br
     char *\fIdata\fP\^;
.br
     unsigned int \fIwidth\fP, \fIheight\fP\^;
.br
     unsigned long \fIfg\fP, \fIbg\fP\^;
.br
     unsigned int \fIdepth\fP\^;
.FN
.\" $Header: display.a,v 1.1 88/02/26 10:26:29 mento Exp $
.IP \fIdisplay\fP 1i
Specifies the connection to the X server.
.ds Dr \ that indicates the screen
.\" $Header: d_gen.a,v 1.2 88/08/04 11:09:21 mento Exp $
.IP \fId\fP 1i
Specifies the drawable\*(Dr. 
.IP \fIdata\fP 1i
Specifies the data in bitmap format.
.\" $Header: widtheight.a,v 1.1 88/02/26 10:32:27 mento Exp $
.IP \fIwidth\fP 1i
.br
.ns
.IP \fIheight\fP 1i
Specify the width and height.
.IP \fIfg\fP 1i
.br
.ns
.IP \fIbg\fP 1i
Specify the foreground and background pixel values to use.
.\" $Header: depth1.a,v 1.3 88/05/09 09:53:55 mento Exp $
.IP \fIdepth\fP 1i
Specifies the depth of the pixmap.
.\" End marker code here
.LP
The
.PN XCreatePixmapFromBitmapData
function creates a pixmap of the given depth and then does a bitmap-format
.PN XPutImage
of the data into it.
The depth must be supported by the screen of the specified drawable,
or a
.PN BadMatch
error results.
.LP
.PN XCreatePixmapFromBitmapData
can generate
.PN BadAlloc
and
.PN BadMatch
errors.
.LP
.sp
To include a bitmap written out by 
.PN XWriteBitmapFile 
.IN "XWriteBitmapFile"
in a program directly, as opposed to reading it in every time at run time, use
.PN XCreateBitmapFromData .
.IN "XCreateBitmapFromData" "" "@DEF@"
.\" Start marker code here
.FD 0
Pixmap XCreateBitmapFromData(\^\fIdisplay\fP, \fId\fP, \fIdata\fP, \fIwidth\fP, \fIheight\fP\^)
.br
      Display *\fIdisplay\fP\^;
.br
      Drawable \fId\fP\^;
.br
      char *\fIdata\fP\^;
.br
      unsigned int \fIwidth\fP, \fIheight\fP\^;
.FN
.\" $Header: display.a,v 1.1 88/02/26 10:26:29 mento Exp $
.IP \fIdisplay\fP 1i
Specifies the connection to the X server.
.ds Dr \ that indicates the screen
.\" $Header: d_gen.a,v 1.2 88/08/04 11:09:21 mento Exp $
.IP \fId\fP 1i
Specifies the drawable\*(Dr. 
.IP \fIdata\fP 1i
Specifies the location of the bitmap data.
.\" $Header: widtheight.a,v 1.1 88/02/26 10:32:27 mento Exp $
.IP \fIwidth\fP 1i
.br
.ns
.IP \fIheight\fP 1i
Specify the width and height.
.\" End marker code here
.LP
.\" $Header: XCreBmap.d,v 1.6 88/08/24 09:09:07 mento Exp $
The
.PN XCreateBitmapFromData
function allows you to include in your C program (using #include) a bitmap file
that was written out by
.PN XWriteBitmapFile
(X version 11 format only) without reading in the bitmap file.
The following example creates a gray bitmap:
.LP
.Ds 0
#include "gray.bitmap"
.sp 6p
Pixmap bitmap;
bitmap = XCreateBitmapFromData(display, window, gray_bits, gray_width, gray_height);
.De
.LP
If insufficient working storage was allocated,
.PN XCreateBitmapFromData
returns
.PN None .
It is your responsibility to free the
bitmap using
.PN XFreePixmap
when finished.
.LP
.PN XCreateBitmapFromData
can generate a
.PN BadAlloc
error.
.NH 2
Using the Context Manager
.XS
\*(SN Using the Context Manager 
.XE
.LP
The context manager provides a way of associating data with an X resource ID
(mostly typically a window) in your program.  
Note that this is local to your program;
the data is not stored in the server on a property list.
Any amount of data in any number of pieces can be associated with a
resource ID,
and each piece of data has a type associated with it.  
The context manager requires knowledge of the resource ID
and type to store or retrieve data.
.LP
Essentially, the context manager can be viewed as a two-dimensional, 
sparse array:  one dimension is subscripted by the X resource ID
and the other by a context type field.
Each entry in the array contains a pointer to the data.
Xlib provides context management functions with which you can
save data values, get data values, delete entries, and create a unique
context type.
The symbols used are in
.Pn < X11/Xutil.h >.
.LP
.sp
To save a data value that corresponds to a resource ID and context type, use
.PN XSaveContext .
.IN "XSaveContext" "" "@DEF@"
.\" Start marker code here
.FD 0
int XSaveContext(\^\fIdisplay\fP, \fIrid\fP, \fIcontext\fP, \fIdata\fP\^)
.br
      Display *\fIdisplay\fP\^;	
.br
      XID \fIrid\fP\^;
.br
      XContext \fIcontext\fP\^;
.br
      XPointer \fIdata\fP\^;
.FN
.\" $Header: display.a,v 1.1 88/02/26 10:26:29 mento Exp $
.IP \fIdisplay\fP 1i
Specifies the connection to the X server.
.IP \fIrid\fP 1i
Specifies the resource ID with which the data is associated.
.IP \fIcontext\fP 1i
Specifies the context type to which the data belongs.
.IP \fIdata\fP 1i
Specifies the data to be associated with the window and type.
.\" End marker code here
.LP
.\" $Header: XSContext.d,v 1.2 88/06/11 07:52:54 mento Exp $
If an entry with the specified resource ID and type already exists,
.PN XSaveContext
overrides it with the specified context.
The
.PN XSaveContext
function returns a nonzero error code if an error has occurred
and zero otherwise.
Possible errors are
.PN XCNOMEM
(out of memory).
.LP
.sp
To get the data associated with a resource ID and type, use
.PN XFindContext .
.IN "XFindContext" "" "@DEF@"
.\" Start marker code here
.FD 0
int XFindContext(\^\fIdisplay\fP, \fIrid\fP, \fIcontext\fP, \fIdata_return\fP\^)
.br
      Display *\fIdisplay\fP\^;
.br
      XID \fIrid\fP\^;
.br
      XContext \fIcontext\fP\^;
.br
      XPointer *\fIdata_return\fP\^;	
.FN
.\" $Header: display.a,v 1.1 88/02/26 10:26:29 mento Exp $
.IP \fIdisplay\fP 1i
Specifies the connection to the X server.
.IP \fIrid\fP 1i
Specifies the resource ID with which the data is associated.
.IP \fIcontext\fP 1i
Specifies the context type to which the data belongs.
.IP \fIdata_return\fP 1i
Returns the data.
.\" End marker code here
.LP
.\" $Header: XFContext.d,v 1.2 88/06/11 07:50:11 mento Exp $
Because it is a return value,
the data is a pointer.
The
.PN XFindContext
function returns a nonzero error code if an error has occurred
and zero otherwise.
Possible errors are
.PN XCNOENT
(context-not-found).
.LP
.sp
To delete an entry for a given resource ID and type, use
.PN XDeleteContext .
.IN "XDeleteContext" "" "@DEF@"
.\" Start marker code here
.FD 0
int XDeleteContext(\^\fIdisplay\fP, \fIrid\fP, \fIcontext\fP\^)
.br
      Display *\fIdisplay\fP\^;
.br
      XID \fIrid\fP;
.br
      XContext \fIcontext\fP;
.FN
.\" $Header: display.a,v 1.1 88/02/26 10:26:29 mento Exp $
.IP \fIdisplay\fP 1i
Specifies the connection to the X server.
.IP \fIrid\fP 1i
Specifies the resource ID with which the data is associated.
.IP \fIcontext\fP 1i
Specifies the context type to which the data belongs.
.\" End marker code here
.LP
.\" $Header: XDContext.d,v 1.3 88/08/20 10:50:15 mento Exp $
The
.PN XDeleteContext
function deletes the entry for the given resource ID 
and type from the data structure.
This function returns the same error codes that
.PN XFindContext
returns if called with the same arguments.
.PN XDeleteContext
does not free the data whose address was saved.
.LP
.sp
To create a unique context type that may be used in subsequent calls to
.PN XSaveContext 
and
.PN XFindContext ,
use
.PN XUniqueContext .
.IN "XUniqueContext" "" "@DEF@"
.\" Start marker code here
.FD 0
XContext XUniqueContext(\^)
.FN
.\" End marker code here
.bp