|
DataMuseum.dkPresents historical artifacts from the history of: DKUUG/EUUG Conference tapes |
This is an automatic "excavation" of a thematic subset of
See our Wiki for more about DKUUG/EUUG Conference tapes Excavated with: AutoArchaeologist - Free & Open Source Software. |
top - metrics - downloadIndex: T l
Length: 148132 (0x242a4) Types: TextFile Names: »loop.c«
└─⟦a05ed705a⟧ Bits:30007078 DKUUG GNU 2/12/89 └─⟦d53cfc7b2⟧ »./gcc-1.35.tar.Z« └─⟦90f628c1d⟧ └─⟦this⟧ »gcc-1.35/loop.c«
/* Move constant computations out of loops. Copyright (C) 1987, 1988 Free Software Foundation, Inc. This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 1, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ /* This is the loop optimization pass of the compiler. It finds invariant computations within loops and moves them to the beginning of the loop. Then it identifies basic and general induction variables. Strength reduction is applied to the general induction variables, and induction variable elimination is applied to the basic induction variables. It also finds cases where a register is set within the loop by zero-extending a narrower value and changes these to zero the entire register once before the loop and merely copy the low part within the loop. Most of the complexity is in heuristics to decide when it is worth while to do these things. */ /* ??? verify_loop would run faster if we made one table of the minimum and maximum luids from which each label is reached. Also, it would be faster if loop_store_addrs were a hash table. */ #include "config.h" #include "rtl.h" #include "expr.h" #include "insn-config.h" #include "regs.h" #include "recog.h" #include "flags.h" #include <stdio.h> /* Vector mapping INSN_UIDs to luids. The luids are like uids but increase monononically always. We use them to see whether a jump comes from outside a given loop. */ static short *uid_luid; /* Get the luid of an insn. */ #define INSN_LUID(INSN) (uid_luid[INSN_UID (INSN)]) /* 1 + largest uid of any insn. */ static int max_uid; /* 1 + luid of last insn. */ static int max_luid; /* Nonzero if somewhere in the current loop there is either a subroutine call, or a store into a memory address that is not fixed, or a store in a BLKmode memory operand, or too many different fixed addresses stored in to record them all in `loop_store_addrs'. In any of these cases, no memory location can be regarded as invariant. */ static int unknown_address_altered; /* Nonzero if somewhere in the current loop there is a store into a memory address that is not fixed but is known to be part of an aggregate. In this case, no memory reference in an aggregate may be considered invariant. */ static int unknown_aggregate_altered; /* Nonzero if somewhere in the current loop there is a store into a memory address other than a fixed address not in an aggregate. In this case, no memory reference in an aggregate at a varying address may be considered invariant. */ static int fixed_aggregate_altered; /* Nonzero if there is a subroutine call in the current loop. (unknown_address_altered is also nonzero in this case.) */ static int loop_has_call; /* Added loop_continue which is the NOTE_INSN_LOOP_CONT of the current loop. A continue statement will generate a branch to NEXT_INSN (loop_continue). */ static rtx loop_continue; /* Indexed by register number, contains the number of times the reg is set during the loop being scanned. During code motion, -1 indicates a reg that has been made a candidate. After code motion, regs moved have 0 (which is accurate now) while the failed candidates have the original number of times set. Therefore, at all times, 0 indicates an invariant register; -1 a conditionally invariant one. */ static short *n_times_set; /* Original value of n_times_set; same except that this value is not set to -1 for a reg whose sets have been made candidates and not set to 0 for a reg that is moved. */ static short *n_times_used; /* Nonzero means reg N has already been moved out of one loop. This reduces the desire to move it out of another. */ static char *moved_once; /* Array of fixed memory addresses that are stored in this loop. If there are too many to fit here, we just turn on unknown_address_altered. */ #define NUM_STORES 10 static rtx loop_store_addrs[NUM_STORES]; static int loop_store_widths[NUM_STORES]; /* Index of first available slot in above array. */ static int loop_store_addrs_idx; /* Count of movable (i.e. invariant) instructions discovered in the loop. */ static int num_movables; /* Count of memory write instructions discovered in the loop. */ static int num_mem_sets; /* Number of loops contained within the current one, including itself. */ static int loops_enclosed; /* Bound on pseudo register number before loop optimization. A pseudo has valid regscan info if its number is < old_max_reg. */ static int old_max_reg; /* During the analysis of a loop, a chain of `struct movable's is made to record all the movable insns found. Then the entire chain can be scanned to decide which to move. */ struct movable { rtx insn; /* A movable insn */ rtx set_src; /* The expression this reg is set from. Either SET_SRC (body) or a REG_EQUAL. */ int consec; /* Number of consecutive following insns that must be moved with this one. */ int regno; /* The register it sets */ short lifetime; /* lifetime of that register; may be adjusted when matching movables that load the same value are found. */ short savings; /* Number of insns we can move for this reg, including other movables that force this or match this one. */ unsigned int cond : 1; /* 1 if only conditionally movable */ unsigned int force : 1; /* 1 means MUST move this insn */ unsigned int global : 1; /* 1 means reg is live outside this loop */ unsigned int done : 1; /* 1 inhibits further processing of this */ unsigned int partial : 1; /* 1 moving this doesn't make it invariant */ enum machine_mode savemode; /* Nonzero means it is a mode for a low part that we should avoid changing when clearing the rest of the reg. */ struct movable *match; /* First entry for same value */ struct movable *forces; /* An insn that must be moved if this is */ struct movable *next; }; static FILE *loop_dump_stream; static rtx verify_loop (); static int invariant_p (); static int consec_sets_invariant_p (); static int can_jump_into_range_p (); static void count_loop_regs_set (); static void note_addr_stored (); static int loop_reg_used_before_p (); static void constant_high_bytes (); static void scan_loop (); static rtx replace_regs (); static void replace_call_address (); static void move_movables (); static int may_trap_p (); static void strength_reduce (); static void find_mem_givs (); static void record_giv (); static void delete_insn_forces (); static int basic_induction_var (); static int general_induction_var (); static int consec_sets_giv (); static int check_dbra_loop (); static void emit_iv_init_code (); static int product_cheap_p (); static void emit_iv_inc (); static void check_eliminate_biv (); static int can_eliminate_biv_p (); static void eliminate_biv (); static rtx final_biv_value (); static int last_use_this_basic_block (); \f /* Entry point of this file. Perform loop optimization on the current function. F is the first insn of the function and DUMPFILE is a stream for output of a trace of actions taken (or 0 if none should be output). */ void loop_optimize (f, dumpfile) /* f is the first instruction of a chain of insns for one function */ rtx f; FILE *dumpfile; { register rtx insn; register int i; rtx end; rtx last_insn; loop_dump_stream = dumpfile; init_recog (); old_max_reg = max_reg_num (); moved_once = (char *) alloca (old_max_reg); bzero (moved_once, old_max_reg); /* First find the last real insn, and count the number of insns, and assign insns their suids. */ for (insn = f, i = 0; insn; insn = NEXT_INSN (insn)) if (INSN_UID (insn) > i) i = INSN_UID (insn); max_uid = i + 1; uid_luid = (short *) alloca ((i + 1) * sizeof (short)); bzero (uid_luid, (i + 1) * sizeof (short)); /* Compute the mapping from uids to luids. LUIDs are numbers assigned to insns, like uids, except that luids increase monotonically through the code. */ for (insn = f, i = 0; insn; insn = NEXT_INSN (insn)) { last_insn = insn; INSN_LUID (insn) = ++i; } max_luid = i; /* Don't leave gaps in uid_luid for insns that have been deleted. It is possible that the first or last insn using some register has been deleted by cross-jumping. Make sure that uid_luid for that former insn's uid points to the general area where that insn used to be. */ for (i = 0; i < max_uid; i++) { uid_luid[0] = uid_luid[i]; if (uid_luid[0] != 0) break; } for (i = 0; i < max_uid; i++) if (uid_luid[i] == 0) uid_luid[i] = uid_luid[i - 1]; /* Find and process each loop. We scan from the end, and process each loop when its start is seen, so we process innermost loops first. */ for (insn = last_insn; insn; insn = PREV_INSN (insn)) if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG) { /* Make sure it really is a loop -- no jumps in from outside. */ end = verify_loop (f, insn); if (end != 0) /* If so, optimize this loop. */ scan_loop (insn, end, max_reg_num ()); else if (loop_dump_stream) fprintf (loop_dump_stream, "\nLoop at %d ignored due to multiple entry points.\n", INSN_UID (insn)); } } \f /* Optimize one loop whose start is LOOP_START and end is END. LOOP_START is the NOTE_INSN_LOOP_BEG and END is the matching NOTE_INSN_LOOP_END. */ /* ??? can also move memory writes out of loop if destination address is invariant? */ static void scan_loop (loop_start, end, nregs) rtx loop_start, end; int nregs; { register int i; register rtx p = NEXT_INSN (loop_start); /* 1 if we are scanning insns that could be executed zero times. */ int maybe_never = 0; /* 1 if we are scanning insns that might never be executed due to a subroutine call which might exit before they are reached. */ int call_passed = 0; /* For a rotated loop that is entered near the bottom, this is the label at the top. Otherwise it is zero. */ rtx loop_top = 0; /* Jump insn that enters the loop, or 0 if control drops in. */ rtx loop_entry_jump = 0; /* Place in the loop where control enters. */ rtx scan_start; /* Number of insns in the loop. */ int insn_count; int tem; rtx temp; /* Indexed by register number, contains 1 for a register whose assignments may not be moved out of the loop. */ char *may_not_move; /* Chain describing insns movable in current loop. */ struct movable *movables = 0; /* Last element in `movables' -- so we can add elements at the end. */ struct movable *last_movable = 0; /* Ratio of extra register life span we can justify for saving an instruction. More if loop doesn't call subroutines since in that case saving an insn makes more difference and more registers are available. */ int threshold = loop_has_call ? 15 : 30; /* Nonzero if the insn that jumps into the real loop is not the very first thing after the loop-beginning note. */ int something_before_entry_jump = 0; n_times_set = (short *) alloca (nregs * sizeof (short)); n_times_used = (short *) alloca (nregs * sizeof (short)); may_not_move = (char *) alloca (nregs); /* Determine whether this loop starts with a jump down to a test at the end. */ while (p != end && GET_CODE (p) != CODE_LABEL && GET_CODE (p) != JUMP_INSN) { if (GET_CODE (p) == CALL_INSN || GET_CODE (p) == INSN) something_before_entry_jump = 1; p = NEXT_INSN (p); } /* "Loop" contains neither jumps nor labels; it must have been a dummy. Think no more about it. */ if (p == end) return; scan_start = p; /* If loop has a jump before the first label, the true entry is the target of that jump. Start scan from there. But record in LOOP_TOP the place where the end-test jumps back to so we can scan that after the end of the loop. */ if (GET_CODE (p) == JUMP_INSN) { loop_entry_jump = p; loop_top = NEXT_INSN (p); /* Loop entry will never be a conditional jump. If we see one, this must not be a real loop. Also, a return-insn isn't a jump to enter the loop. */ if (GET_CODE (loop_top) != BARRIER || GET_CODE (PATTERN (p)) != SET) return; /* Get the label at which the loop is entered. */ p = XEXP (SET_SRC (PATTERN (p)), 0); /* Check to see whether the jump actually jumps out of the loop (meaning it's no loop). This case can happen for things like do {..} while (0). */ if (p == 0 || INSN_LUID (p) < INSN_LUID (loop_start) || INSN_LUID (p) >= INSN_LUID (end)) { if (loop_dump_stream) fprintf (loop_dump_stream, "\nLoop from %d to %d is phony.\n\n", INSN_UID (loop_start), INSN_UID (end)); return; } /* Find the first label after the entry-jump. */ while (GET_CODE (loop_top) != CODE_LABEL) { loop_top = NEXT_INSN (loop_top); if (loop_top == 0) abort (); } /* Maybe rearrange the loop to drop straight in with a new test to jump around it entirely. (The latter is considered outside the loop.) If this is done, we no longer enter with a jump. */ if (! something_before_entry_jump && loop_skip_over (loop_start, end, loop_entry_jump)) { scan_start = loop_top; loop_top = 0; } else /* We really do enter with a jump; scan the loop from the place where the jump jumps to. */ scan_start = p; } /* Count number of times each reg is set during this loop. Set MAY_NOT_MOVE[I] if it is not safe to move out the setting of register I. */ bzero (n_times_set, nregs * sizeof (short)); bzero (may_not_move, nregs); count_loop_regs_set (loop_top ? loop_top : loop_start, end, may_not_move, &insn_count, nregs); for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) may_not_move[i] = 1, n_times_set[i] = 1; bcopy (n_times_set, n_times_used, nregs * sizeof (short)); if (loop_dump_stream) { fprintf (loop_dump_stream, "\nLoop from %d to %d: %d real insns.\n", INSN_UID (loop_start), INSN_UID (end), insn_count); if (loop_continue) fprintf (loop_dump_stream, "Continue at insn %d.\n", INSN_UID (loop_continue)); } /* Scan through the loop finding insns that are safe to move. In each such insn, store QImode as the mode, to mark it. Then set n_times_set to -1 for the reg being set, so that this reg will be considered invariant for subsequent insns. We consider whether subsequent insns use the reg in deciding whether it is worth actually moving. MAYBE_NEVER is nonzero if we have passed a conditional jump insn and therefore it is possible that the insns we are scanning would never be executed. At such times, we must make sure that it is safe to execute the insn once instead of zero times. When MAYBE_NEVER is 0, all insns will be executed at least once so that is not a problem. */ p = scan_start; while (1) { p = NEXT_INSN (p); /* At end of a straight-in loop, we are done. At end of a loop entered at the bottom, scan the top. */ if (p == scan_start) break; if (p == end) { if (loop_top != 0) p = NEXT_INSN (loop_top); else break; if (p == scan_start) break; } if (GET_CODE (p) == INSN && GET_CODE (PATTERN (p)) == SET && GET_CODE (SET_DEST (PATTERN (p))) == REG && ! may_not_move[REGNO (SET_DEST (PATTERN (p)))]) { int tem1 = 0; /* Don't try to optimize a register that was made by loop-optimization for an inner loop. We don't know its life-span, so we can't compute the benefit. */ if (REGNO (SET_DEST (PATTERN (p))) >= old_max_reg) ; /* If this register is used or set outside the loop, then we can move it only if we know this insn is executed exactly once per iteration, and we can check all the insns executed before it to make sure none of them used the value that was lying around at entry to the loop. */ else if ((uid_luid[regno_last_uid[REGNO (SET_DEST (PATTERN (p)))]] > INSN_LUID (end) || uid_luid[regno_first_uid[REGNO (SET_DEST (PATTERN (p)))]] < INSN_LUID (loop_start)) && (maybe_never || loop_reg_used_before_p (p, loop_start, scan_start, end))) ; else if (((tem = invariant_p (SET_SRC (PATTERN (p)))) || ((temp = find_reg_note (p, REG_EQUAL, 0)) && (tem = invariant_p (XEXP (temp, 0))))) && (n_times_set[REGNO (SET_DEST (PATTERN (p)))] == 1 || (tem1 = consec_sets_invariant_p (SET_DEST (PATTERN (p)), n_times_set[REGNO (SET_DEST (PATTERN (p)))], p))) /* If the insn can cause a trap (such as divide by zero), can't move it unless it's guaranteed to be executed once loop is entered. Even a function call might prevent the trap insn from being reached (since it might exit!) */ && ! ((maybe_never || call_passed) && (may_trap_p (SET_SRC (PATTERN (p))) || ((temp = find_reg_note (p, REG_EQUAL, 0)) && may_trap_p (XEXP (temp, 0)))))) { register struct movable *m; register int regno = REGNO (SET_DEST (PATTERN (p))); int count; m = (struct movable *) alloca (sizeof (struct movable)); m->next = 0; m->insn = p; temp = find_reg_note (p, REG_EQUAL, 0); if (temp) m->set_src = XEXP (temp, 0); else m->set_src = SET_SRC (PATTERN (p)); m->force = 0; m->consec = n_times_set[REGNO (SET_DEST (PATTERN (p)))] - 1; m->done = 0; m->forces = 0; m->partial = 0; m->savemode = VOIDmode; m->regno = regno; /* Set M->cond if either invariant_p or consec_sets_invariant_p returned 2 (only conditionally invariant). */ m->cond = ((tem | tem1) > 1); m->global = (uid_luid[regno_last_uid[regno]] > INSN_LUID (end) || uid_luid[regno_first_uid[regno]] < INSN_LUID (loop_start)); m->match = 0; m->lifetime = (uid_luid[regno_last_uid[regno]] - uid_luid[regno_first_uid[regno]]); m->savings = n_times_used[regno]; n_times_set[regno] = -1; /* Add M to the end of the chain MOVABLES. */ if (movables == 0) movables = m; else last_movable->next = m; last_movable = m; /* Skip the consecutive insns, if there are any. */ for (count = m->consec - 1; count >= 0; count--) { do p = NEXT_INSN (p); while (GET_CODE (p) == NOTE); } } /* If this register is always set within a STRICT_LOW_PART or set to zero, then its high bytes are constant. So clear them outside the loop and within the loop just load the low bytes. We must check that the machine has an instruction to do so. Also, if the value loaded into the register depends on the same register, this cannot be done. */ else if (SET_SRC (PATTERN (p)) == const0_rtx && GET_CODE (NEXT_INSN (p)) == INSN && GET_CODE (PATTERN (NEXT_INSN (p))) == SET && (GET_CODE (SET_DEST (PATTERN (NEXT_INSN (p)))) == STRICT_LOW_PART) && (GET_CODE (XEXP (SET_DEST (PATTERN (NEXT_INSN (p))), 0)) == SUBREG) && (SUBREG_REG (XEXP (SET_DEST (PATTERN (NEXT_INSN (p))), 0)) == SET_DEST (PATTERN (p))) && !reg_mentioned_p (SET_DEST (PATTERN (p)), SET_SRC (PATTERN (NEXT_INSN (p))))) { register int regno = REGNO (SET_DEST (PATTERN (p))); if (n_times_set[regno] == 2) { register struct movable *m; int count; m = (struct movable *) alloca (sizeof (struct movable)); m->next = 0; m->insn = p; m->force = 0; m->consec = 0; m->done = 0; m->forces = 0; m->partial = 1; /* If the insn may not be executed on some cycles, we can't clear the whole reg; clear just high part. Consider this: while (1) while (1) { if (foo ()) x = *s; use (x); } Clearing x before the inner loop could clobber a value being saved from the last time around the outer loop. */ if (maybe_never) m->savemode = GET_MODE (SET_SRC (PATTERN (NEXT_INSN (p)))); else m->savemode = VOIDmode; m->regno = regno; m->cond = 0; /* Say "global" so this register is not combined with any other. In fact, it is sometimes possible to combine two of these registers, but the criteria are special and have not been programmed in. */ m->global = 1; m->match = 0; m->lifetime = (uid_luid[regno_last_uid[regno]] - uid_luid[regno_first_uid[regno]]); m->savings = 1; n_times_set[regno] = -1; /* Add M to the end of the chain MOVABLES. */ if (movables == 0) movables = m; else last_movable->next = m; last_movable = m; /* Skip the consecutive insns, if there are any. */ for (count = m->consec - 1; count >= 0; count--) { /* If first insn of libcall sequence, skip to end. */ /* Do this at start of loop, since p is guaranteed to be an insn here. */ if (temp = find_reg_note (p, REG_LIBCALL, 0)) { p = XEXP (temp, 0); /* Count the libcall as ten insns in terms of importance of moving it. */ m->savings += 10; } do p = NEXT_INSN (p); while (GET_CODE (p) == NOTE); } } } } /* Past a call insn, we get to insns which might not be executed because the call might exit. This matters for insns that trap. */ else if (GET_CODE (p) == CALL_INSN) call_passed = 1; /* Past a label or a jump, we get to insns for which we can't count on whether or how many times they will be executed during each iteration. Therefore, we can only move out sets of trivial variables (those not used after the loop). */ else if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN) maybe_never = 1; } /* For each movable insn, see if the reg that it loads leads when it dies right into another conditionally movable insn. If so, record that the second insn "forces" the first one, since the second can be moved only if the first is. */ { register struct movable *m, *m1; for (m1 = movables; m1; m1 = m1->next) /* Omit this if moving just the (SET (REG) 0) of a zero-extend. */ if (!m1->partial) { int regno = m1->regno; for (m = m1->next; m; m = m->next) /* ??? Could this be a bug? What if CSE caused the register of M1 to be used after this insn? Since CSE does not update regno_last_uid, this insn M->insn might not be where it dies. But very likely this doesn't matter; what matters is that M's reg is computed from M1's reg. */ if (INSN_UID (m->insn) == regno_last_uid[regno]) break; if (m != 0 && m->set_src == SET_DEST (PATTERN (m1->insn))) m = 0; /* Increase the priority of the moving the first insn since it permits the second to be moved as well. */ if (m != 0) { m->forces = m1; m1->lifetime += m->lifetime; m1->savings += m1->savings; } } } /* See if there are multiple movable insns that load the same value. If there are, make all but the first point at the first one through the `match' field, and add the priorities of them all together as the priority of the first. */ { register struct movable *m; char *matched_regs = (char *) alloca (nregs); /* Regs that are set more than once are not allowed to match or be matched. I'm no longer sure why not. */ /* Perhaps testing m->consec_sets would be more appropriate here? */ for (m = movables; m; m = m->next) if (m->match == 0 && n_times_used[m->regno] == 1) { register struct movable *m1; int regno = m->regno; bzero (matched_regs, nregs); matched_regs[regno] = 1; for (m1 = m->next; m1; m1 = m1->next) if (m1->match == 0 && n_times_used[m1->regno] == 1 /* A reg used outside the loop mustn't be eliminated. */ && !m1->global && (matched_regs[m1->regno] || ( /* Can't combine regs with different modes even if loaded from the same constant. */ (GET_MODE (SET_DEST (PATTERN (m->insn))) == GET_MODE (SET_DEST (PATTERN (m1->insn)))) /* See if the source of M1 says it matches M. */ && ((GET_CODE (m1->set_src) == REG && matched_regs[REGNO (m1->set_src)]) || rtx_equal_p (m->set_src, m1->set_src) || (REG_NOTES (m->insn) && REG_NOTES (m1->insn) && REG_NOTE_KIND (REG_NOTES (m->insn)) == REG_EQUIV && REG_NOTE_KIND (REG_NOTES (m1->insn)) == REG_EQUIV && rtx_equal_p (XEXP (REG_NOTES (m->insn), 0), XEXP (REG_NOTES (m1->insn), 0))))))) { m->lifetime += m1->lifetime; m->savings += m1->savings; m1->match = m; matched_regs[m1->regno] = 1; } } } /* Now consider each movable insn to decide whether it is worth moving. Store 0 in n_times_set for each reg that is moved. */ move_movables (movables, threshold, insn_count, loop_start, end, nregs); /* Now candidates that still have -1 are those not moved. Change n_times_set to indicate that those are not actually invariant. */ for (i = 0; i < nregs; i++) if (n_times_set[i] < 0) n_times_set[i] = n_times_used[i]; if (flag_strength_reduce) strength_reduce (scan_start, end, loop_top, insn_count, loop_start, end, nregs); } \f /* Scan MOVABLES, and move the insns that deserve to be moved. If two matching movables are combined, replace one reg with the other throughout. */ static void move_movables (movables, threshold, insn_count, loop_start, end, nregs) struct movable *movables; int threshold; int insn_count; rtx loop_start; rtx end; int nregs; { rtx new_start = 0; register struct movable *m; register rtx p; /* Map of pseudo-register replacements to handle combining when we move several insns that load the same value into different pseudo-registers. */ rtx *reg_map = (rtx *) alloca (nregs * sizeof (rtx)); char *already_moved = (char *) alloca (nregs); bzero (already_moved, nregs); bzero (reg_map, nregs * sizeof (rtx)); num_movables = 0; for (m = movables; m; m = m->next) { /* Describe this movable insn. */ if (loop_dump_stream) { fprintf (loop_dump_stream, "Insn %d: regno %d (life %d), ", INSN_UID (m->insn), m->regno, m->lifetime); if (m->consec > 0) fprintf (loop_dump_stream, "consec %d, ", m->consec); if (m->cond) fprintf (loop_dump_stream, "cond "); if (m->force) fprintf (loop_dump_stream, "force "); if (m->global) fprintf (loop_dump_stream, "global "); if (m->done) fprintf (loop_dump_stream, "done "); if (m->match) fprintf (loop_dump_stream, "matches %d ", INSN_UID (m->match->insn)); if (m->forces) fprintf (loop_dump_stream, "forces %d ", INSN_UID (m->forces->insn)); } /* Count movables. Value used in heuristics in strength_reduce. */ num_movables++; /* Ignore the insn if it's already done (it matched something else). Otherwise, see if it is now safe to move. */ if (!m->done && (! m->cond || (1 == invariant_p (m->set_src) && (m->consec == 0 || 1 == consec_sets_invariant_p (SET_DEST (PATTERN (m->insn)), m->consec + 1, m->insn)))) && (! m->forces || m->forces->done)) { register int regno; register rtx p; int savings = m->savings; /* We have an insn that is safe to move. Compute its desirability. */ p = m->insn; regno = m->regno; if (loop_dump_stream) fprintf (loop_dump_stream, "savings %d ", savings); if (moved_once[regno]) { insn_count *= 2; if (loop_dump_stream) fprintf (loop_dump_stream, "halved since already moved "); } /* An insn MUST be moved if we already moved something else which is safe only if this one is moved too: that is, if already_moved[REGNO] is nonzero. */ /* An insn is desirable to move if the new lifetime of the register is no more than THRESHOLD times the old lifetime. If it's not desirable, it means the loop is so big that moving won't speed things up much, and it is liable to make register usage worse. */ /* It is also desirable to move if it can be moved at no extra cost because something else was already moved. */ if (already_moved[regno] || (threshold * savings * m->lifetime) >= insn_count || (m->forces && m->forces->done && n_times_used[m->forces->regno] == 1)) { int count; register struct movable *m1; rtx first; /* Now move the insns that set the reg. */ for (count = m->consec; count >= 0; count--) { rtx i1, temp; /* If first insn of gnulib call sequence, skip to end. */ /* Do this at start of loop, since p is guaranteed to be an insn here. */ if (temp = find_reg_note (p, REG_LIBCALL, 0)) p = XEXP (temp, 0); /* If last insn of gnulib call sequence, move all insns except the last before the loop. The last insn is handled in the normal manner. */ if (temp = find_reg_note (p, REG_RETVAL, 0)) { rtx fn_address = 0; rtx fn_reg = 0; first = 0; for (temp = XEXP (temp, 0); temp != p; temp = NEXT_INSN (temp)) { rtx body = PATTERN (temp); rtx n; /* Extract the function address from the insn that loads it into a register. If this insn was cse'd, we get incorrect code. So delete it and stick the fn address right into the call insn. Since the moved insns won't be cse'd, that does no harm. */ if (GET_CODE (NEXT_INSN (temp)) == CALL_INSN && GET_CODE (body) == SET && GET_CODE (SET_DEST (body)) == REG && (n = find_reg_note (temp, REG_EQUIV, 0))) { fn_reg = SET_SRC (body); if (GET_CODE (fn_reg) != REG) fn_reg = SET_DEST (body); fn_address = XEXP (n, 0); continue; } /* We have the call insn. Substitute the fn address for the reg that we believe this insn will use. */ if (GET_CODE (temp) == CALL_INSN && fn_address != 0) replace_call_address (body, fn_reg, fn_address); if (GET_CODE (temp) == CALL_INSN) i1 = emit_call_insn_before (body, loop_start); else i1 = emit_insn_before (body, loop_start); if (first == 0) first = i1; REG_NOTES (i1) = REG_NOTES (temp); delete_insn (temp); } } if (m->savemode != VOIDmode) { /* P sets REG to zero; but we should clear only the bits that are not covered by the mode m->savemode. */ rtx reg = SET_DEST (PATTERN (p)); i1 = emit_insn_before (gen_rtx (SET, VOIDmode, reg, gen_rtx (AND, GET_MODE (reg), reg, gen_rtx (CONST_INT, VOIDmode, (1 << GET_MODE_BITSIZE (m->savemode)) - 1))), loop_start); } else if (GET_CODE (PATTERN (p)) == CALL_INSN) i1 = emit_call_insn_before (PATTERN (p), loop_start); else i1 = emit_insn_before (PATTERN (p), loop_start); if (new_start == 0) new_start = i1; if (loop_dump_stream) fprintf (loop_dump_stream, "moved to %d", INSN_UID (i1)); /* Mark the moved, invariant reg as being equivalent to its constant value. */ REG_NOTES (i1) = REG_NOTES (p); if (REG_NOTES (i1) == 0 && ! m->partial /* But not if it's a zero-extend clr. */ && ! m->global /* and not if used outside the loop (since it might get set outside). */ && CONSTANT_P (SET_SRC (PATTERN (p)))) REG_NOTES (i1) = gen_rtx (EXPR_LIST, REG_EQUIV, SET_SRC (PATTERN (p)), REG_NOTES (i1)); /* If library call, now fix the REG_NOTES that contain insn pointers, namely REG_LIBCALL on FIRST and REG_RETVAL on I1. */ if (temp = find_reg_note (i1, REG_RETVAL, 0)) { XEXP (temp, 0) = first; temp = find_reg_note (first, REG_LIBCALL, 0); XEXP (temp, 0) = i1; } delete_insn (p); do p = NEXT_INSN (p); while (GET_CODE (p) == NOTE); } /* The more regs we move, the less we like moving them. */ threshold -= 3; /* Any other movable that loads the same register MUST be moved. */ already_moved[regno] = 1; /* This reg has been moved out of one loop. */ moved_once[regno] = 1; /* The reg set here is now invariant. */ if (! m->partial) n_times_set[regno] = 0; m->done = 1; /* Change the length-of-life info for the register to say it lives at least the full length of this loop. This will help guide optimizations in outer loops. */ if (uid_luid[regno_first_uid[regno]] > INSN_LUID (loop_start)) /* This is the old insn before all the moved insns. We can't use the moved insn because it is out of range in uid_luid. Only the old insns have luids. */ regno_first_uid[regno] = INSN_UID (loop_start); if (uid_luid[regno_last_uid[regno]] < INSN_LUID (end)) regno_last_uid[regno] = INSN_UID (end); /* Combine with this moved insn any other matching movables. */ for (m1 = m->next; m1; m1 = m1->next) if (m1->match == m) { rtx temp; /* Schedule the reg loaded by M1 for replacement so that shares the reg of M. */ reg_map[m1->regno] = SET_DEST (PATTERN (m->insn)); /* Get rid of the matching insn and prevent further processing of it. */ m1->done = 1; /* if library call, delete all insn except last, which is deleted below */ if (temp = find_reg_note (m1->insn, REG_RETVAL, 0)) { for (temp = XEXP (temp, 0); temp != m1->insn; temp = NEXT_INSN (temp)) delete_insn (temp); } delete_insn (m1->insn); /* Any other movable that loads the same register MUST be moved. */ already_moved[m1->regno] = 1; /* The reg merged here is now invariant, if the reg it matches is invariant. */ if (! m->partial) n_times_set[m1->regno] = 0; } } else if (loop_dump_stream) fprintf (loop_dump_stream, "not desirable"); } else if (loop_dump_stream && !m->match) fprintf (loop_dump_stream, "not safe"); if (loop_dump_stream) fprintf (loop_dump_stream, "\n"); } if (new_start == 0) new_start = loop_start; /* Go through all the instructions in the loop, making all the register substitutions scheduled in REG_MAP. */ for (p = new_start; p != end; p = NEXT_INSN (p)) if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN || GET_CODE (p) == CALL_INSN) replace_regs (PATTERN (p), reg_map, nregs); } \f /* Optionally change a loop which enters just before the endtest to one which falls straight in after skipping around the entire loop if the endtest would drop out. Returns 1 if the change was made, 0 if the loop was not really suitable. */ int loop_skip_over (start, end, loop_entry_jump) rtx start; rtx end; rtx loop_entry_jump; { rtx endtestjump; register rtx p = JUMP_LABEL (loop_entry_jump); while (GET_CODE (p) != INSN && GET_CODE (p) != JUMP_INSN && GET_CODE (p) != CALL_INSN) p = NEXT_INSN (p); endtestjump = next_real_insn (p); /* Check that we (1) enter at a compare insn and (2) the insn (presumably a jump) following that compare is the last in the loop and jumps back to the loop beginning. */ if (sets_cc0_p (PATTERN (p)) > 0 && endtestjump == prev_real_insn (end) && prev_real_insn (JUMP_LABEL (endtestjump)) == loop_entry_jump) { rtx newlab; /* This is the jump that we insert. */ rtx new_jump; /* Ok, duplicate that test before start of loop. */ emit_insn_before (copy_rtx (PATTERN (p)), start); /* Make a new entry-jump (before the original one) whose condition is opposite to the loop-around endtest and which jumps around the loop (to just after the ending NOTE). */ newlab = gen_label_rtx (); emit_label_after (newlab, end); emit_jump_insn_before (copy_rtx (PATTERN (endtestjump)), start); new_jump = PREV_INSN (start); JUMP_LABEL (new_jump) = JUMP_LABEL (endtestjump); LABEL_NUSES (JUMP_LABEL (endtestjump))++; invert_jump (new_jump, newlab); /* Delete the original entry-jump. */ delete_insn (loop_entry_jump); return 1; } return 0; } \f /* Throughout the rtx X, replace many registers according to REG_MAP. Return the replacement for X (which may be X with altered contents). REG_MAP[R] is the replacement for register R, or 0 for don't replace. NREGS is the length of REG_MAP; regs >= NREGS are not mapped. */ static rtx replace_regs (x, reg_map, nregs) rtx x; rtx *reg_map; int nregs; { register enum rtx_code code; register int i; register char *fmt; if (x == 0) return x; code = GET_CODE (x); switch (code) { case PC: case CC0: case CONST_INT: case CONST_DOUBLE: case CONST: case SYMBOL_REF: case LABEL_REF: return x; case REG: /* Verify that the register has an entry before trying to access it. */ if (REGNO (x) < nregs && reg_map[REGNO (x)] != 0) return reg_map[REGNO (x)]; return x; } fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e') XEXP (x, i) = replace_regs (XEXP (x, i), reg_map, nregs); if (fmt[i] == 'E') { register int j; for (j = 0; j < XVECLEN (x, i); j++) XVECEXP (x, i, j) = replace_regs (XVECEXP (x, i, j), reg_map, nregs); } } return x; } \f /* Scan X and replace the address of any MEM in it with ADDR. REG is the address that MEM should have before the replacement. */ static void replace_call_address (x, reg, addr) rtx x, reg, addr; { register enum rtx_code code; register int i; register char *fmt; if (x == 0) return; code = GET_CODE (x); switch (code) { case PC: case CC0: case CONST_INT: case CONST_DOUBLE: case CONST: case SYMBOL_REF: case LABEL_REF: case REG: return; case SET: /* Short cut for very common case. */ replace_call_address (XEXP (x, 1), reg, addr); return; case CALL: /* Short cut for very common case. */ replace_call_address (XEXP (x, 0), reg, addr); return; case MEM: /* If this MEM uses a reg other than the one we expected, something is wrong. */ if (XEXP (x, 0) != reg) abort (); XEXP (x, 0) = addr; return; } fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e') replace_call_address (XEXP (x, i), reg, addr); if (fmt[i] == 'E') { register int j; for (j = 0; j < XVECLEN (x, i); j++) replace_call_address (XVECEXP (x, i, j), reg, addr); } } } \f #if 0 /* P is an instruction that sets a register to the result of a ZERO_EXTEND. Replace it with an instruction to load just the low bytes if the machine supports such an instruction, and insert above LOOP_START an instruction to clear the register. */ static void constant_high_bytes (p, loop_start) rtx p, loop_start; { register rtx new; register int insn_code_number; /* Try to change (SET (REG ...) (ZERO_EXTEND (..:B ...))) to (SET (STRICT_LOW_PART (SUBREG:B (REG...))) ...). */ new = gen_rtx (SET, VOIDmode, gen_rtx (STRICT_LOW_PART, VOIDmode, gen_rtx (SUBREG, GET_MODE (XEXP (SET_SRC (PATTERN (p)), 0)), SET_DEST (PATTERN (p)), 0)), XEXP (SET_SRC (PATTERN (p)), 0)); insn_code_number = recog (new, p); if (insn_code_number) { register int i; /* Clear destination register before the loop. */ emit_insn_before (gen_rtx (SET, VOIDmode, SET_DEST (PATTERN (p)), const0_rtx), loop_start); /* Inside the loop, just load the low part. */ PATTERN (p) = new; } } #endif \f /* Verify that the ostensible loop starting at START really is a loop: nothing jumps into it from outside. Return the marker for the end of the loop, or zero if not a real loop. Also set the variables `unknown_*_altered' and `loop_has_call', and fill in the array `loop_store_addrs'. */ static rtx verify_loop (f, start) rtx f, start; { register int level = 1; register rtx insn, end; /* First find the LOOP_END that matches. Also check each insn for storing in memory and record where. */ unknown_address_altered = 0; unknown_aggregate_altered = 0; fixed_aggregate_altered = 0; loop_has_call = 0; loop_store_addrs_idx = 0; num_mem_sets = 0; loops_enclosed = 1; loop_continue = 0; for (insn = NEXT_INSN (start); level > 0; insn = NEXT_INSN (insn)) { if (insn == 0) /* Parse errors can cause a loop-beg with no loop-end. */ return 0; if (GET_CODE (insn) == NOTE) { if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG) { ++level; /* Count number of loops contained in this one. */ loops_enclosed++; } else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END) { --level; if (level == 0) { end = insn; break; } } else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT) { if (level == 1) loop_continue = insn; } /* Don't optimize loops containing setjmps. On some machines, longjmp does not restore the reg values as of the time of the setjmp. */ else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP) return 0; } else if (GET_CODE (insn) == CALL_INSN) { unknown_address_altered = 1; loop_has_call = 1; } /* ??? else if (! unknown_address_altered) */ else { if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN) note_stores (PATTERN (insn), note_addr_stored); } } /* Now scan all jumps in the function and see if any of them can reach a label within the range of the loop. */ for (insn = f; insn; insn = NEXT_INSN (insn)) if (GET_CODE (insn) == JUMP_INSN /* Don't get fooled by jumps inserted by loop-optimize. They don't have valid LUIDs, and they never jump into loops. */ && INSN_UID (insn) < max_uid && (INSN_LUID (insn) < INSN_LUID (start) || INSN_LUID (insn) > INSN_LUID (end)) /* We have a jump that is outside the loop. Does it jump into the loop? */ && can_jump_into_range_p (PATTERN (insn), INSN_LUID (start), INSN_LUID (end))) return 0; #if 0 /* Now scan all labels between them and check for any jumps from outside. This uses the ref-chains set up by find_basic_blocks. This code is not used because it's more convenient for other reasons to do the loop optimization before find_basic_blocks. */ for (insn = start; insn != end; insn = NEXT_INSN (insn)) if (GET_CODE (insn) == CODE_LABEL) { register rtx y; for (y = LABEL_REFS (insn); y != insn; y = LABEL_NEXTREF (y)) if (INSN_LUID (CONTAINING_INSN (y)) < INSN_LUID (start) || INSN_LUID (CONTAINING_INSN (y)) > INSN_LUID (end)) return 0; } #endif return end; } \f /* Return 1 if somewhere in X is a LABEL_REF to a label located between BEG and END. */ static int can_jump_into_range_p (x, beg, end) rtx x; int beg, end; { register enum rtx_code code = GET_CODE (x); register int i; register char *fmt; if (code == LABEL_REF) { register int luid = INSN_LUID (XEXP (x, 0)); return luid > beg && luid < end; } fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e') { if (can_jump_into_range_p (XEXP (x, i), beg, end)) return 1; } else if (fmt[i] == 'E') { register int j; for (j = 0; j < XVECLEN (x, i); j++) if (can_jump_into_range_p (XVECEXP (x, i, j), beg, end)) return 1; } } return 0; } /* Record that a memory reference X is being set. */ static void note_addr_stored (x) rtx x; { if (x == 0 || GET_CODE (x) != MEM) return; /* Count number of memory writes. This affects heuristics in strength_reduce. */ num_mem_sets++; if (unknown_address_altered) return; if (GET_MODE (x) == BLKmode) unknown_address_altered = 1; else if (rtx_addr_varies_p (x)) { if (GET_CODE (XEXP (x, 0)) == PLUS) unknown_aggregate_altered = 1; else unknown_address_altered = 1; } else { register int i; register rtx addr = XEXP (x, 0); if (MEM_IN_STRUCT_P (x)) fixed_aggregate_altered = 1; for (i = 0; i < loop_store_addrs_idx; i++) if (rtx_equal_p (loop_store_addrs[i], addr)) { if (loop_store_widths[i] < GET_MODE_SIZE (GET_MODE (x))) loop_store_widths[i] = GET_MODE_SIZE (GET_MODE (x)); break; } if (i == NUM_STORES) unknown_address_altered = 1; else if (i == loop_store_addrs_idx) { loop_store_widths[i] = GET_MODE_SIZE (GET_MODE (x)); loop_store_addrs[loop_store_addrs_idx++] = addr; } } } \f /* Return nonzero if the rtx X is invariant over the current loop. The value is 2 if we refer to something only conditionally invariant. If `unknown_address_altered' is nonzero, no memory ref is invariant. Otherwise if `unknown_aggregate_altered' is nonzero, a memory ref is invariant if it is not part of an aggregate and its address is fixed and not in `loop_store_addrs'. Otherwise if `fixed_aggregate_altered' is nonzero, a memory ref is invariant if its address is fixed and not in `loop_store_addrs'. Otherwise, a memory ref is invariant if its address is fixed and not in `loop_store_addrs' or if it is not an aggregate. */ static int invariant_p (x) register rtx x; { register int i; register enum rtx_code code; register char *fmt; int conditional = 0; if (x == 0) return 1; code = GET_CODE (x); switch (code) { case CONST_INT: case CONST_DOUBLE: case SYMBOL_REF: case LABEL_REF: case CONST: return 1; case PC: case CC0: return 0; case REG: /* We used to check RTX_UNCHANGING_P (x) here, but that is invalid since the reg might be set by initialization within the loop. */ if (x == frame_pointer_rtx || x == arg_pointer_rtx) return 1; if (n_times_set[REGNO (x)] == -1) return 2; return n_times_set[REGNO (x)] == 0; case MEM: /* Constants in the constant pool are invariant. ?? Really we should detect any constant address in the text section. */ if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0))) return 1; /* A store in a varying-address scalar (or a subroutine call) could clobber anything in memory. */ if (unknown_address_altered) return 0; /* Don't mess with volatile memory references. */ if (MEM_VOLATILE_P (x)) return 0; #if 0 /* If it's declared read-only, it is invariant if its address is invariant. */ if (RTX_UNCHANGING_P (x)) return invariant_p (XEXP (x, 0)); #endif /* A store in a varying-address aggregate component could clobber anything except a scalar with a fixed address. */ if (unknown_aggregate_altered && ((MEM_IN_STRUCT_P (x) || GET_CODE (XEXP (x, 0)) == PLUS) || rtx_addr_varies_p (x))) return 0; /* A store in a fixed-address aggregate component could clobber anything whose address is not fixed, even an aggregate component. */ if (fixed_aggregate_altered && rtx_addr_varies_p (x)) return 0; /* Any store could clobber a varying-address scalar. */ if (loop_store_addrs_idx && !(MEM_IN_STRUCT_P (x) || GET_CODE (XEXP (x, 0)) == PLUS) && rtx_addr_varies_p (x)) return 0; /* A store in a fixed address clobbers overlapping references. */ for (i = loop_store_addrs_idx - 1; i >= 0; i--) if (addr_overlap_p (x, loop_store_addrs[i], loop_store_widths[i])) return 0; /* It's not invalidated by a store in memory but we must still verify the address is invariant. */ break; case ASM_OPERANDS: /* Don't mess with insns declared volatile. */ if (MEM_VOLATILE_P (x)) return 0; } fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e') { int tem = invariant_p (XEXP (x, i)); if (tem == 0) return 0; if (tem == 2) conditional = 1; } else if (fmt[i] == 'E') { register int j; for (j = 0; j < XVECLEN (x, i); j++) { int tem = invariant_p (XVECEXP (x, i, j)); if (tem == 0) return 0; if (tem == 2) conditional = 1; } } } return 1 + conditional; } /* Return 1 if OTHER (a mem ref) overlaps the area of memory which is SIZE bytes starting at BASE. */ int addr_overlap_p (other, base, size) rtx other; rtx base; int size; { int start = 0, end; if (GET_CODE (base) == CONST) base = XEXP (base, 0); if (GET_CODE (base) == PLUS && GET_CODE (XEXP (base, 1)) == CONST_INT) { start = INTVAL (XEXP (base, 1)); base = XEXP (base, 0); } end = start + size; return refers_to_mem_p (other, base, start, end); } \f /* Return nonzero if all the insns in the loop that set REG are INSN and the immediately following insns, and if each of those insns sets REG in an invariant way (not counting uses of REG in them). The value is 2 if some of these insns are only conditionally invariant. We assume that INSN itself is the first set of REG and that its source is invariant. */ static int consec_sets_invariant_p (reg, n_sets, insn) int n_sets; rtx reg, insn; { register rtx p = insn; register int regno = REGNO (reg); rtx temp; /* Number of sets we have to insist on finding after INSN. */ int count = n_sets - 1; int old = n_times_set[regno]; int tem = 0; /* If N_SETS hit the limit, we can't rely on its value. */ if (n_sets == 127) return 0; n_times_set[regno] = 0; while (count > 0) { register enum rtx_code code; p = NEXT_INSN (p); code = GET_CODE (p); /* If library call, skip to end of of it. */ if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, 0))) p = XEXP (temp, 0); if (code == INSN && GET_CODE (PATTERN (p)) == SET && GET_CODE (SET_DEST (PATTERN (p))) == REG && REGNO (SET_DEST (PATTERN (p))) == regno && ((tem |= invariant_p (SET_SRC (PATTERN (p)))) || ((temp = find_reg_note (p, REG_EQUAL, 0)) && (tem |= invariant_p (XEXP (temp, 0)))))) count--; else if (code != NOTE) { n_times_set[regno] = old; return 0; } } n_times_set[regno] = old; /* If invariant_p ever returned 2, we return 2. */ return 1 + (tem & 2); } #if 0 /* I don't think this condition is sufficient to allow INSN to be moved, so we no longer test it. */ /* Return 1 if all insns in the basic block of INSN and following INSN that set REG are invariant according to TABLE. */ static int all_sets_invariant_p (reg, insn, table) rtx reg, insn; short *table; { register rtx p = insn; register int regno = REGNO (reg); while (1) { register enum rtx_code code; p = NEXT_INSN (p); code = GET_CODE (p); if (code == CODE_LABEL || code == JUMP_INSN) return 1; if (code == INSN && GET_CODE (PATTERN (p)) == SET && GET_CODE (SET_DEST (PATTERN (p))) == REG && REGNO (SET_DEST (PATTERN (p))) == regno) { if (!invariant_p (SET_SRC (PATTERN (p)), table)) return 0; } } } #endif /* 0 */ \f /* Increment N_TIMES_SET at the index of each register that is modified by an insn between FROM and TO. If the value of an element of N_TIMES_SET becomes 127 or more, stop incrementing it, to avoid overflow. Store in *COUNT_PTR the number of actual instruction in the loop. We use this to decide what is worth moving out. */ /* last_set[n] is nonzero iff reg n has been set in the current basic block. In that case, it is the insn that last set reg n. */ static void count_loop_regs_set (from, to, may_not_move, count_ptr, nregs) register rtx from, to; char *may_not_move; int *count_ptr; int nregs; { register rtx *last_set = (rtx *) alloca (nregs * sizeof (rtx)); register rtx insn; register int count = 0; register rtx dest; bzero (last_set, nregs * sizeof (rtx)); for (insn = from; insn != to; insn = NEXT_INSN (insn)) { if (GET_CODE (insn) == CALL_INSN) { /* If a register is used as a subroutine address, don't allow this register's setting to be moved out of the loop. This condition is not at all logically correct but it averts a very common lossage pattern and creates lossage much less often. */ if (GET_CODE (PATTERN (insn)) == CALL && GET_CODE (XEXP (PATTERN (insn), 0)) == MEM && GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) == REG) { register int regno = REGNO (XEXP (XEXP (PATTERN (insn), 0), 0)); may_not_move[regno] = 1; } else if (GET_CODE (PATTERN (insn)) == SET && GET_CODE (SET_SRC (PATTERN (insn))) == CALL && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 0)) == MEM && GET_CODE (XEXP (XEXP (SET_SRC (PATTERN (insn)), 0), 0)) == REG) { register int regno = REGNO (XEXP (XEXP (SET_SRC (PATTERN (insn)), 0), 0)); may_not_move[regno] = 1; /* The call insn itself sets a reg, which cannot be moved. */ may_not_move[REGNO (SET_DEST (PATTERN (insn)))] = 1; if (n_times_set[REGNO (SET_DEST (PATTERN (insn)))] < 127) n_times_set[REGNO (SET_DEST (PATTERN (insn)))]++; } } if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN) { ++count; if (GET_CODE (PATTERN (insn)) == CLOBBER && GET_CODE (XEXP (PATTERN (insn), 0)) == REG) /* Don't move a reg that has an explicit clobber. We might do so sometimes, but it's not worth the pain. */ may_not_move[REGNO (XEXP (PATTERN (insn), 0))] = 1; else if (GET_CODE (PATTERN (insn)) == SET) { dest = SET_DEST (PATTERN (insn)); while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT || GET_CODE (dest) == STRICT_LOW_PART) dest = XEXP (dest, 0); if (GET_CODE (dest) == REG) { register int regno = REGNO (dest); /* If this is the first setting of this reg in current basic block, and it was set before, it must be set in two basic blocks, so it cannot be moved out of the loop. */ if (n_times_set[regno] > 0 && last_set[regno] == 0) may_not_move[regno] = 1; /* If this is not first setting in current basic block, see if reg was used in between previous one and this. If so, neither one can be moved. */ if (last_set[regno] != 0 && reg_used_between_p (dest, last_set[regno], insn)) may_not_move[regno] = 1; if (n_times_set[regno] < 127) ++n_times_set[regno]; last_set[regno] = insn; } } else if (GET_CODE (PATTERN (insn)) == PARALLEL) { register int i; for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--) { register rtx x = XVECEXP (PATTERN (insn), 0, i); if (GET_CODE (x) == CLOBBER && GET_CODE (XEXP (x, 0)) == REG) /* Don't move a reg that has an explicit clobber. It's not worth the pain to try to do it correctly. */ may_not_move[REGNO (XEXP (x, 0))] = 1; if (GET_CODE (x) == SET) { dest = SET_DEST (x); while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT || GET_CODE (dest) == STRICT_LOW_PART) dest = XEXP (dest, 0); if (GET_CODE (dest) == REG) { register int regno = REGNO (dest); if (n_times_set[regno] < 127) ++n_times_set[regno]; may_not_move[regno] = 1; last_set[regno] = insn; } } } } } if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN) bzero (last_set, nregs * sizeof (rtx)); } *count_ptr = count; } \f /* Given a loop that is bounded by LOOP_START and LOOP_END and that is entered at SCAN_START, return 1 if the register set by insn INSN is used by any insn that precedes INSN in cyclic order starting from the loop entry point. */ static int loop_reg_used_before_p (insn, loop_start, scan_start, loop_end) rtx insn, loop_start, scan_start, loop_end; { rtx reg = SET_DEST (PATTERN (insn)); if (INSN_LUID (scan_start) > INSN_LUID (insn)) return (reg_used_between_p (reg, scan_start, loop_end) || reg_used_between_p (reg, loop_start, insn)); else return reg_used_between_p (reg, scan_start, insn); } /* Return nonzero if evaluating rtx X might cause a trap. */ static int may_trap_p (x) rtx x; { int i; enum rtx_code code; char *fmt; if (x == 0) return 0; code = GET_CODE (x); switch (code) { /* Handle these cases fast. */ case CONST_INT: case CONST_DOUBLE: case SYMBOL_REF: case LABEL_REF: case CONST: case PC: case CC0: case REG: return 0; /* Memory ref can trap unless it's a static var or a stack slot. */ case MEM: return rtx_varies_p (XEXP (x, 0)); /* Division by a non-constant might trap. */ case DIV: case MOD: case UDIV: case UMOD: if (! CONSTANT_P (XEXP (x, 1)) && GET_CODE (XEXP (x, 1)) != CONST_DOUBLE) return 1; default: /* Any floating arithmetic may trap. */ if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT) return 1; } fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e') { if (may_trap_p (XEXP (x, i))) return 1; } else if (fmt[i] == 'E') { register int j; for (j = 0; j < XVECLEN (x, i); j++) if (may_trap_p (XVECEXP (x, i, j))) return 1; } } return 0; } \f /* A "basic induction variable" or biv is a pseudo reg that is set (within this loop) only by incrementing or decrementing it. */ /* A "general induction variable" or giv is a pseudo reg whose value is a linear function of a biv. */ /* Bivs are recognized by `basic_induction_var'; Givs by `general_induct_var'. */ /* An enum for the two different types of givs, those that are used as memory addresses and those that are calculated into registers. */ enum g_types { DEST_ADDR, DEST_REG }; /* A `struct induction' is created for every instruction that sets an induction variable (either a biv or a giv). */ struct induction { rtx insn; /* The insn that sets a biv or giv */ rtx new_reg; /* New register, containing strength reduced version of this giv. */ int src_regno; /* Biv from which this giv is computed. (If this is a biv, then this is the biv.) */ enum g_types giv_type; /* Indicate whether DEST_ADDR or DEST_REG giv */ int dest_regno; /* Destination register for insn: this is the register which was the biv or giv. For a biv, this equals src_reg. For a DEST_ADDR type giv, this is 0. */ rtx *location; /* Place in the insn where this giv occurs. If GIV_TYPE is DEST_REG, this is 0. */ enum machine_mode mode; /* The mode of this biv or giv */ rtx mult_val; /* Multiplicative factor for src_reg. */ rtx add_val; /* Additive constant for that product. */ int benefit; /* Gain from eliminating this insn. */ int consec; /* The number of consecutive insn that set this register; they are all eliminated if this one is. */ char replaceable; /* 1 if we can substitute the strength-reduced variable for the original variable. 0 means they must be kept separate and the new one must be copied into the old pseudo reg each time the old one is set. */ char ignore; /* 1 prohibits further processing of this giv */ int lifetime; /* Length of life of this giv */ int times_used; /* # times this giv is used. */ struct induction *family; /* Links together all induction variables that have the same src register. */ struct induction *forces; /* Points to an induction variable insn which is used only once, to compute this giv, and hence can be deleted if this insn is strength reduced. */ struct induction *forces2; /* Likewise. */ struct induction *same; /* Links together all induction variables that have the same tuple (src, mult, add). */ }; /* A `struct iv_class' is created for each biv. */ struct iv_class { int regno; /* Pseudo reg which is the biv. */ int biv_count; /* Number of insns setting this reg. */ struct induction *biv; /* List of all insns that set this reg. */ int giv_count; /* Number of DEST_REG givs computed from this biv. The resulting count is only used in check_dbra_loop. */ struct induction *giv; /* List of all insns that compute a giv from this reg. */ int total_benefit; /* Sum of BENEFITs of all those givs */ rtx initial_value; /* Value of reg at loop start */ struct iv_class *next; /* Links all class structures together */ rtx init_insn; /* insn which intializes biv, 0 if none seen. */ char eliminable; /* 1 if plausible candidate for elimination. */ char nonneg; /* 1 if we added a REG_NONNEG note for this. */ }; /* Definitions used by the basic induction variable discovery code. */ enum iv_mode { UNKNOWN_INDUCT, BASIC_INDUCT, NOT_BASIC_INDUCT, GENERAL_INDUCT }; /* Relative gain of eliminating various kinds of operations. */ #define NO_BENEFIT 0 #define ADD_BENEFIT 1 #define SHIFT_BENEFIT 2 #define MULT_BENEFIT 4 #define LIBCALL_BENEFIT 15 /* Benefit penalty, if a giv is not replaceable, i.e. must emit an insn to copy the value of the strength reduced giv to its original register. */ #define COPY_PENALTY 2 /* Indexed by register number, indicates whether or not register is an induction variable, and if so what type. */ static enum iv_mode *induct_var; /* Indexed by register number, contains pointer to `struct induction' if register is a general induction variable. */ static struct induction **induct_struct; /* Indexed by register number, contains pointer to `struct iv_class' if register is a basic induction variable. */ static struct iv_class **class_struct; /*********************************/ /* ??? Unfinished optimizations, wilson@ji.Berkeley.EDU */ /* strength reduce addresses found in sources (set () (mem ())*/ /* There is one more optimization you might be interested in doing: to allocate pseudo registers for frequently-accessed memory locations. If the same memory location is referenced each time around, it might be possible to copy it into a register before and out after. This is especially useful when the memory location is a variable which is in a stack slot because somewhere its address is taken. If the loop doesn't contain a function call and the variable isn't volatile, it is safe to keep the value in a register for the duration of the loop. One tricky thing is that the copying of the value back from the register has to be done on all exits from the loop. You need to check that all the exits from the loop go to the same place. */ /* WARNING: the interaction of biv elimination, and recognizing 'constant' bivs may cause problems */ /* add heuristic so that DEST_ADDR strength reduction does not cause performance problems */ /* don't eliminate things that can be combined with an addressing mode? find all giv that have same biv and mult_val (now must also have same add_val), then for each giv, check to see if its only use dies in a following memory address, generate a new memory address and check to see if valid, if valid then store modified mem addr, else if not valid addr mark giv as not done so that it will get its own iv */ /* consec_sets_giv does not calculate replaceable and forces correctly, forces should be a more general linked list instead of two entries */ /* try to optimize branches when it is known that a biv is always positive */ /* when replace biv in compare insn, should replace with closest giv so that an optimized branch can still be recognized by combiner, i.e. VAXen acb */ /* should merge final_value calculation in check_dbra_loop with the new final_biv_value function */ /* many of the checks involving uid_luid could be simplified if regscan was rerun in loop_optimize() whenever a register was added or moved, also some of the optimizations could be a little less conservative */ \f /* Perform strength reduction and induction variable elimination. */ /* Pseudo registers created during this function will be beyond the last valid index in several tables including n_times_set and regno_last_uid. This does not cause a problem here, because the added registers cannot be givs outside of their loop, and hence will never be reconsidered. But scan_loop must check regnos to make sure they are in bounds. */ static void strength_reduce (scan_start, end, loop_top, insn_count, loop_start, loop_end, nregs) rtx scan_start; rtx end; rtx loop_top; int insn_count; rtx loop_start; rtx loop_end; int nregs; { rtx p; rtx inc_val; rtx mult_val; int dest_regno; int biv_found; /* This is 1 if current insn could be executed zero times in the loop. */ int maybe_never = 0; /* List of all possible basic induction variables. */ struct iv_class *iv_list = 0; /* Temporary list pointers for traversing iv_list. */ struct iv_class *bl, *backbl; /* Ratio of extra register life span we can justify for saving an instruction. More if loop doesn't call subroutines since in that case saving an insn makes more difference and more registers are available. */ /* ??? could set this to last value of threshold in move_movables */ int threshold = loop_has_call ? 17 : 34; /* Map of pseudo-register replacements. */ rtx *reg_map; induct_var = (enum iv_mode *) alloca (nregs * sizeof (induct_var[0])); bzero ((char *)induct_var, nregs * sizeof (induct_var[0])); induct_struct = (struct induction **) alloca (nregs * sizeof (struct induction *)); bzero ((char *)induct_struct, nregs * sizeof (struct induction *)); class_struct = (struct iv_class **) alloca (nregs * sizeof (struct iv_class *)); bzero ((char *)class_struct, nregs * sizeof (struct iv_class *)); /* Scan through loop to find all possible bivs. */ for (p = NEXT_INSN (loop_start); p != end; p = NEXT_INSN (p)) { if (GET_CODE (p) == INSN && GET_CODE (PATTERN (p)) == SET && GET_CODE (SET_DEST (PATTERN (p))) == REG) { dest_regno = REGNO (SET_DEST (PATTERN (p))); if (induct_var[dest_regno] != NOT_BASIC_INDUCT) { if (basic_induction_var (SET_SRC (PATTERN (p)), dest_regno, &inc_val, &mult_val)) { /* It is a possible basic induction variable. Create and initialize an induction structure for it. */ struct induction *v = (struct induction *) alloca (sizeof (struct induction)); v->insn = p; v->src_regno = dest_regno; v->dest_regno = dest_regno; v->mult_val = mult_val; v->add_val = inc_val; v->mode = GET_MODE (SET_DEST (PATTERN (p))); /* Add this to the reg's iv_class, creating a class if this is the first incrementation of the reg. */ bl = class_struct[dest_regno]; if (bl) { v->family = bl->biv; bl->biv = v; bl->biv_count++; } else { /* Create and initialize new iv_class. */ bl = (struct iv_class *) alloca (sizeof (struct iv_class)); bl->regno = dest_regno; bl->biv = v; v->family = 0; bl->giv = 0; bl->biv_count = 1; bl->giv_count = 0; /* Set initial value to the reg itself. */ bl->initial_value = SET_DEST (PATTERN (p)); /* We haven't seen the intializing insn yet */ bl->init_insn = 0; bl->eliminable = 0; bl->nonneg = 0; /* Add this insn to iv_list. */ bl->next = iv_list; iv_list = bl; /* Put it in the array of iv_lists. */ class_struct[dest_regno] = bl; } induct_var[dest_regno] = BASIC_INDUCT; if (loop_dump_stream) { fprintf (loop_dump_stream, "Insn %d: possible biv, reg %d,", INSN_UID (p), dest_regno); if (GET_CODE (inc_val) == CONST_INT) fprintf (loop_dump_stream, " const = %d\n", INTVAL (inc_val)); else { fprintf (loop_dump_stream, " const = "); print_rtl (loop_dump_stream, inc_val); fprintf (loop_dump_stream, "\n"); } } } else induct_var[dest_regno] = NOT_BASIC_INDUCT; } } } /* Scan iv_list to remove all regs that proved not to be bivs. Make a sanity check against n_times_set. */ biv_found = 0; for (backbl = bl = iv_list; bl; backbl = bl, bl = bl->next) { if (induct_var[bl->regno] != BASIC_INDUCT) { /* Not a basic induction variable, remove this iv_class. */ if (backbl == bl) iv_list = bl->next; else backbl->next = bl->next; if (loop_dump_stream) fprintf (loop_dump_stream, "Reg %d: biv discarded, not induct\n", bl->regno); } else if (n_times_set[bl->regno] != bl->biv_count) { /* This happens if register modified by subreg, etc. */ /* Make sure it is not recognized as a basic induction var: */ /* remove this iv_class from iv_list. */ induct_var[bl->regno] = NOT_BASIC_INDUCT; if (backbl == bl) iv_list = bl->next; else backbl->next = bl->next; if (loop_dump_stream) fprintf (loop_dump_stream, "Reg %d: biv discarded, count error\n", bl->regno); } else { /* This is a valid basic induction variable. */ biv_found++; if (loop_dump_stream) fprintf (loop_dump_stream, "Reg %d: biv verified\n", bl->regno); } } /* Exit if there are no bivs. */ if (!iv_list) return; /* Find initial value for each biv. */ /* Search backwards from loop_start, halting at first label or when all bivs have been seen. */ p = loop_start; while (biv_found) { p = PREV_INSN (p); if (p == 0) break; if (GET_CODE (p) == INSN && GET_CODE (PATTERN (p)) == SET && GET_CODE (SET_DEST (PATTERN (p))) == REG) { int dest_regno = REGNO (SET_DEST (PATTERN (p))); if (induct_var[dest_regno] == BASIC_INDUCT && class_struct[dest_regno]->init_insn == 0) { /* This is the first modification found for this reg. */ /* Record the intializing INSN */ class_struct[dest_regno]->init_insn = p; if (loop_dump_stream) fprintf (loop_dump_stream, "Biv %d initialized at insn %d: ", dest_regno, INSN_UID (p)); /* Save value if it is a constant or register. */ if (CONSTANT_P (SET_SRC (PATTERN (p))) || GET_CODE (SET_SRC (PATTERN (p))) == REG) { class_struct[dest_regno]->initial_value = SET_SRC (PATTERN (p)); if (loop_dump_stream) fprintf (loop_dump_stream, "initial value "); if (loop_dump_stream) { if (GET_CODE (SET_SRC (PATTERN (p))) == CONST_INT) fprintf (loop_dump_stream, "%d\n", INTVAL (SET_SRC (PATTERN (p)))); else { print_rtl (loop_dump_stream, SET_SRC (PATTERN (p))); fprintf (loop_dump_stream, "\n"); } } } else { /* Biv initial value is not simple move, so let it keep intial value of "itself". */ if (loop_dump_stream) fprintf (loop_dump_stream, "complex initial value\n"); } biv_found--; } } else if (GET_CODE (p) == CODE_LABEL) break; } /* Search the loop for general induction variables. */ /* A register is a giv if: it is only set once, it is a function of a biv and a constant (or invariant), and it is not a biv. */ p = scan_start; while (1) { p = NEXT_INSN (p); /* At end of a straight-in loop, we are done. At end of a loop entered at the bottom, scan the top. */ if (p == scan_start) break; if (p == end) { if (loop_top != 0) p = NEXT_INSN (loop_top); else break; if (p == scan_start) break; } /* Look for a general induction variable in a register. */ if (GET_CODE (p) == INSN && GET_CODE (PATTERN (p)) == SET && GET_CODE (SET_DEST (PATTERN (p))) == REG) { int src_regno; rtx add_val; rtx mult_val; int benefit; rtx regnote = 0; struct induction *forces = 0; struct induction *forces2 = 0; dest_regno = REGNO (SET_DEST (PATTERN (p))); if (/* Normal giv. */ ((benefit = general_induction_var (SET_SRC (PATTERN (p)), &src_regno, &add_val, &mult_val, &forces, &forces2)) /* Giv set with call to a library routine. */ || ((regnote = find_reg_note (p, REG_EQUAL, 0)) && (benefit = general_induction_var (XEXP (regnote, 0), &src_regno, &add_val, &mult_val, &forces, &forces2)))) /* Don't try to handle any regs made by loop optimization. We have nothing on them in regno_first_uid, etc. */ && dest_regno < old_max_reg /* Don't recognize a BASIC_INDUCT_VAR here. */ && dest_regno != src_regno /* This must be the only place where the register is set. */ && (n_times_set[dest_regno] == 1 || (benefit = consec_sets_giv (benefit, p, src_regno, dest_regno, &add_val, &mult_val)))) { int count; struct induction *v = (struct induction *) alloca (sizeof (struct induction)); rtx temp; record_giv (v, p, src_regno, dest_regno, mult_val, add_val, benefit, forces, forces2, DEST_REG, maybe_never, 0, loop_end); /* Skip the consecutive insns, if there are any. */ for (count = v->consec - 1; count >= 0; count--) { /* If first insn of libcall sequence, skip to end. */ /* Do this at start of loop, since INSN is guaranteed to be an insn here. */ if (temp = find_reg_note (p, REG_LIBCALL, 0)) { /* Eliminating a libcall does more good than eliminating a single insn to do the same job. */ benefit += LIBCALL_BENEFIT; p = XEXP (temp, 0); } do p = NEXT_INSN (p); while (GET_CODE (p) == NOTE); } } } #ifndef DONT_REDUCE_ADDR /* Look for givs which are memory addresses. */ /* This resulted in worse code on a VAX 8600. I wonder if it still does. */ if (GET_CODE (p) == INSN) find_mem_givs (PATTERN (p), p, maybe_never, loop_end); #endif /* Past a label or a jump, we get to insns for which we can't count on whether or how many times they will be executed during each iteration. Givs found afterwards cannot be marked replaceable. */ if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN) maybe_never = 1; } /* Try to prove that the loop counter variable (if any) is always nonnegative; if so, record that fact with a REG_NONNEG note so that "decrement and branch until zero" insn can be used. */ check_dbra_loop (loop_end, iv_list, insn_count, loop_start); /* Create reg_map to hold substitutions for replaceable giv regs. */ reg_map = (rtx *) alloca (nregs * sizeof (rtx)); bzero ((char *)reg_map, nregs * sizeof (rtx)); /* Examine each iv class for feasibility of strength reduction/induction variable elimination. */ for (bl = iv_list; bl; bl = bl->next) { struct induction *v; int benefit; int replaceable; int all_reduced; rtx final_value = 0; /* Test whether it will be possible to eliminate this biv provided all givs are reduced. This is possible if either the reg is not used outside the loop, or we can compute what its final value will be. Don't try if we put a REG_NONNEG note on the endtest for this biv. ??? That should be only on machines that have dbra insns. */ /* Compare against bl->init_insn rather than loop_start. We aren't concerned with any uses of the biv between init_insn and loop_start since these won't be affected by the value of the biv elsewhere in the function, so long as init_insn doesn't use the biv itself. March 14, 1989 -- self@bayes.arc.nasa.gov */ if ((uid_luid[regno_last_uid[bl->regno]] < INSN_LUID (loop_end) && bl->init_insn && uid_luid[regno_first_uid[bl->regno]] >= INSN_LUID (bl->init_insn) && ! reg_mentioned_p (SET_DEST (PATTERN (bl->biv->insn)), SET_SRC (PATTERN (bl->init_insn))) && ! bl->nonneg) || (final_value = final_biv_value (bl, loop_end))) check_eliminate_biv (bl, loop_start, end, 0); else { if (loop_dump_stream) { fprintf (loop_dump_stream, "Cannot eliminate biv %d.\n", bl->regno); fprintf (loop_dump_stream, "First use: insn %d, last use: insn %d.\n", regno_first_uid[bl->regno], regno_last_uid[bl->regno]); } } /* This will be true at the end, if all givs which depend on this biv have been strength reduced. We can't (currently) eliminate the biv unless this is so. */ all_reduced = 1; /* Check each giv in this class. */ for (v = bl->giv; v; v = v->family) { struct induction *tv; if (v->ignore) continue; benefit = v->benefit; replaceable = v->replaceable; /* Reduce benefit if not replaceable, since we will insert a move-insn to replace the insn that calculates this giv. */ if (!replaceable && ! bl->eliminable) benefit -= COPY_PENALTY; /* Decrease the benefit to count the add-insns that we will insert to increment the reduced reg for the giv. */ benefit -= ADD_BENEFIT * bl->biv_count; /* Find all equivalent givs (that bear same relation to the biv). Link them via the `same' field and add their benefits together. They can be replaced with a single register. */ for (tv = v->family; tv; tv = tv->family) { if (tv->ignore == 0 && tv->src_regno == v->src_regno && rtx_equal_p (tv->mult_val, v->mult_val) && rtx_equal_p (tv->add_val, v->add_val)) { benefit += tv->benefit; if (! tv->replaceable) benefit -= COPY_PENALTY; v->lifetime += tv->lifetime; v->times_used += tv->times_used; tv->ignore = 1; /* Link them together via `same' field. */ tv->same = v->same; v->same = tv; if (loop_dump_stream) fprintf (loop_dump_stream, "giv of insn %d combined with that of %d.\n", INSN_UID (v->insn), INSN_UID (tv->insn)); } } /* Decide whether to strength-reduce this giv or to leave the code unchanged (recompute it from the biv each time it is used). This decision can be made independently for each giv. */ /* ??? Perhaps attempt to guess whether autoincrement will handle some of the new add insns; if so, can increase BENEFIT (undo the subtraction of ADD_BENEFIT that was done above). */ /* If an insn is not to be strength reduced, then set its ignore flag, and clear all_reduced. */ /* Is it right to consider times_used? */ /* ??? What about the insns that are 'forced' by this one? Although this insn is not worthwhile to reduce, it may be worthwhile to reduce the simpler givs used to compute this complex giv. */ /* ??? Hey! If a giv has its forces field set, then that means it is not computed directly from the biv, it is instead computed from a simpler giv. If we define UNFORCE_INSNS, then the simpler giv will be considered for strength reduction, and this giv should not cause all_reduced to be cleared because it DOESN'T use the biv!!! If the simpler giv can not be reduced, then that simpler biv will still cause all_reduced to be cleared. */ if (benefit <= 0) { if (loop_dump_stream) fprintf (loop_dump_stream, "giv of insn %d, no benefit\n", INSN_UID (v->insn)); v->ignore = 1; all_reduced = 0; } if (v->lifetime * threshold * benefit < insn_count) { if (loop_dump_stream) fprintf (loop_dump_stream, "giv of insn %d not worth while, %d vs %d.\n", INSN_UID (v->insn), v->lifetime * threshold * benefit, insn_count); v->ignore = 1; all_reduced = 0; } /* Now check that we can increment the reduced giv without needing a multiply insn. If not, reject it. */ if (! v->ignore) { int success = 1; for (tv = bl->biv; tv; tv = tv->family) if (tv->mult_val == const1_rtx) success &= product_cheap_p (tv->add_val, v->mult_val); if (! success) { if (loop_dump_stream) fprintf (loop_dump_stream, "giv of insn %d: would need a multiply.\n", INSN_UID (v->insn)); v->ignore = 1; all_reduced = 0; } } } /* Reduce each giv that we decided to reduce. */ for (v = bl->giv; v; v = v->family) { struct induction *tv; if (! v->ignore) { rtx new_reg; /* Note Iris compiler dies if ?: is used inside gen_reg_rtx. */ if (v->giv_type == DEST_ADDR) new_reg = gen_reg_rtx (Pmode); else new_reg = gen_reg_rtx (GET_MODE (SET_DEST (PATTERN (v->insn)))); /* For each place where the biv is incremented, add an insn to increment the new, reduced reg for the giv. Insert it before the insn that sets the biv, so that the biv increment remains last before the endtest, so that dbra will still be recognized. */ for (tv = bl->biv; tv; tv = tv->family) { struct induction *iv; rtx before_insn = tv->insn; /* If this increment is between the setting of the giv and its use, don't increment until after the use. */ for (iv = v; iv; iv = iv->same) { if (INSN_LUID (tv->insn) <= INSN_LUID (iv->insn) && ((iv->forces && (INSN_LUID (tv->insn) >= INSN_LUID (iv->forces->insn)) || (iv->forces2 && (INSN_LUID (tv->insn) >= INSN_LUID (iv->forces2->insn)))))) { before_insn = NEXT_INSN (iv->insn); break; } } if (tv->mult_val == const1_rtx) emit_iv_inc (tv->add_val, v->mult_val, new_reg, before_insn); else /* tv->mult_val == const0_rtx */ /* A multiply is acceptable here since this is presumed to be seldom executed. */ emit_iv_init_code (tv->add_val, v->mult_val, v->add_val, new_reg, before_insn); } /* Add code at loop start to initialize giv's reduced reg. */ emit_iv_init_code (bl->initial_value, v->mult_val, v->add_val, new_reg, loop_start); /* For each giv register that can be reduced now: delete old insn that modifies the giv, if replaceable, substitute reduced reg wherever the old giv occurs; else add new move insn "giv_reg = reduced_reg". */ for (tv = v; tv; tv = tv->same) { /* Record the identity of the reduced reg. */ tv->new_reg = new_reg; if (tv->giv_type == DEST_ADDR) { /* Store reduced reg as the address in the memref where we found this giv. */ * tv->location = new_reg; } else if (tv->replaceable) { reg_map[tv->dest_regno] = new_reg; /* If giv lives after end of loop, emit insn to copy reduced reg into old reg, at the end of the loop. ?? insufficient; used before loop could mean live after loop, due to surrounding loop. */ /* Currently a giv used outside the loop will not be marked replaceable, so these deficiencies don't really hurt. */ if (uid_luid[regno_last_uid[tv->dest_regno]] > uid_luid[INSN_UID (loop_end)]) { /* ?? This won't work. We need to do this at ALL exits. */ emit_insn_after (gen_rtx (SET, VOIDmode, SET_DEST (PATTERN (tv->insn)), new_reg), loop_end); abort (); } } else { /* Not replaceable; emit an insn to set the original giv reg from the reduced giv. */ int count; rtx after_insn = tv->insn; for (count = tv->consec; count > 0; count--) after_insn = next_real_insn (after_insn); /* Put new insn after, not before, in case after_insn is the end of a libcall. */ emit_insn_after (gen_rtx (SET, VOIDmode, SET_DEST (PATTERN (tv->insn)), new_reg), after_insn); } /* Delete the insn that used to set the old giv reg, unless we modified an address in it. In any case, delete the other insns used for this one. */ delete_insn_forces (tv, tv->giv_type != DEST_ADDR); if (loop_dump_stream) fprintf (loop_dump_stream, "giv at %d reduced to reg %d\n", INSN_UID (tv->insn), REGNO (new_reg)); } /* One set of equivalent givs has been strength-reduced. */ } #if 0 else if (v->new_reg == 0) { /* This giv wasn't reduced and is not worth reducing. */ for (tv = v; tv; tv = tv->same) if (loop_dump_stream) fprintf (loop_dump_stream, "giv at %d not reduced\n", INSN_UID (tv->insn)); all_reduced = 0; } #endif } /* All the givs in this family have been reduced if they merit it. */ /* Try to eliminate the biv, if it is a candidate. This won't work if ! all_reduced, since the givs we planned to use might not have been reduced. */ if (all_reduced == 1 && bl->eliminable) { /* Get the REG rtx for the biv. */ rtx reg = SET_DEST (PATTERN (bl->biv->insn)); for (p = loop_start; p != end; p = NEXT_INSN (p)) { enum rtx_code code = GET_CODE (p); if ((code == INSN || code == JUMP_INSN || code == CALL_INSN) && reg_mentioned_p (reg, PATTERN (p)) && SET_DEST (PATTERN (p)) == cc0_rtx) /* Found a compare instruction using this biv; rewrite it to use a related giv. */ eliminate_biv (p, bl, loop_start); } /* Biv is no longer really needed inside the loop, so delete all insns that set the biv. */ for (v = bl->biv; v; v = v->family) delete_insn (v->insn); /* ?? If we created a new test to bypass the loop entirely, or otherwise drop straight in, based on this test, then we might want to rewrite it also. This way some later pass has more hope of removing the intialization of this biv entirely. */ /* If final_value != 0, then biv may be used after loop end and we must emit an insn to set it just in case. */ if (final_value != 0) emit_insn_after (gen_rtx (SET, VOIDmode, reg, final_value), loop_end); if (loop_dump_stream) fprintf (loop_dump_stream, "Reg %d: biv eliminated\n", bl->regno); } } /* Go through all the instructions in the loop, making all the register substitutions scheduled in REG_MAP. */ for (p = loop_start; p != end; p = NEXT_INSN (p)) if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN || GET_CODE (p) == CALL_INSN) replace_regs (PATTERN (p), reg_map, nregs); if (loop_dump_stream) fprintf (loop_dump_stream, "\n"); } \f /* Nonzero if register REG appears somewhere within IN, except in subexpressions EQ to EXPR. This is a modification of reg_mentioned_p. */ int only_reg_use_p (reg, expr, in) register rtx reg, expr, in; { register char *fmt; register int i; register enum rtx_code code; if (in == 0) return 0; if (reg == expr) return 0; if (reg == in) return 1; code = GET_CODE (in); switch (code) { /* Compare registers by number. */ case REG: return GET_CODE (reg) == REG && REGNO (in) == REGNO (reg); /* These codes have no constituent expressions and are unique. */ case CC0: case PC: case CONST_INT: case CONST_DOUBLE: case SYMBOL_REF: case CODE_LABEL: return 0; } fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'E') { register int j; for (j = XVECLEN (in, i) - 1; j >= 0; j--) if (only_reg_use_p (reg, expr, XVECEXP (in, i, j))) return 1; } else if (fmt[i] == 'e' && only_reg_use_p (reg, expr, XEXP (in, i))) return 1; } return 0; } \f /* Scan X for memory refs and check each memory address as a possible giv. INSN is the insn whose pattern X comes from. MAYBE_NEVER is 1 if the loop might execute INSN zero times. */ static void find_mem_givs (x, insn, maybe_never, loop_end) rtx x; rtx insn; int maybe_never; rtx loop_end; { register int i, j; register enum rtx_code code; register char *fmt; if (x == 0) return; code = GET_CODE (x); switch (code) { case REG: case CONST_INT: case CONST: case CONST_DOUBLE: case SYMBOL_REF: case LABEL_REF: case PC: case CC0: case ADDR_VEC: case ADDR_DIFF_VEC: case USE: case CLOBBER: return; case MEM: { int src_regno; rtx add_val; rtx mult_val; int benefit; struct induction *forces = 0; struct induction *forces2 = 0; benefit = general_induction_var (XEXP (x, 0), &src_regno, &add_val, &mult_val, &forces, &forces2); if (benefit > 0) { /* Found one; record it. */ struct induction *v = (struct induction *) oballoc (sizeof (struct induction)); record_giv (v, insn, src_regno, 0, mult_val, add_val, benefit, forces, forces2, DEST_ADDR, maybe_never, &XEXP (x, 0), loop_end); } return; } } /* Recursively scan the subexpressions for other mem refs. */ fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) if (fmt[i] == 'e') find_mem_givs (XEXP (x, i), insn, maybe_never, loop_end); else if (fmt[i] == 'E') for (j = 0; j < XVECLEN (x, i); j++) find_mem_givs (XVECEXP (x, i, j), insn, maybe_never, loop_end); } \f /* Fill in the data about one giv. V is the `struct induction' in which we record the giv. (It is allocated by the caller, with alloca.) INSN is the insn that sets it. BENEFIT estimates the savings from deleting this insn. TYPE is DEST_REG or DEST_ADDR; it says whether the giv is computed into a register or is used as a memory address. SRC_REGNO is the biv reg number which the giv is computed from. DEST_REGNO is the giv's reg number (if the giv is stored in a reg). MULT_VAL and ADD_VAL are the coefficients used to compute the giv. FORCES and FORCES2, if nonzero, are other `struct induction's for other givs which are used to compute this giv indirectly. LOCATION points to the place where this giv's value appears in INSN. */ static void record_giv (v, insn, src_regno, dest_regno, mult_val, add_val, benefit, forces, forces2, type, maybe_never, location, loop_end) struct induction *v; rtx insn; int src_regno, dest_regno; rtx mult_val, add_val; int benefit; struct induction *forces, *forces2; enum g_types type; int maybe_never; rtx *location; rtx loop_end; { struct induction *b; struct iv_class *bl; v->insn = insn; v->src_regno = src_regno; v->giv_type = type; v->dest_regno = dest_regno; v->mult_val = mult_val; v->add_val = add_val; v->benefit = benefit; v->location = location; if (type == DEST_ADDR) { v->mode = GET_MODE (*location); v->consec = 0; v->lifetime = 1; v->times_used = 1; } else /* type == DEST_REG */ { v->mode = GET_MODE (SET_DEST (PATTERN (insn))); v->consec = n_times_set[dest_regno] - 1; v->lifetime = (uid_luid[regno_last_uid[dest_regno]] - uid_luid[regno_first_uid[dest_regno]]); v->times_used = n_times_used[dest_regno]; } v->same = 0; v->forces = 0; v->forces2 = 0; v->ignore = 0; v->new_reg = 0; /* Mark giv as forced if it is only used to compute another giv. */ /* This check is not sufficient as INSN may have been moved giving it a new uid, so make another check by calculating lifetimes. This is overconservative but seems to be correct. */ if (forces) { v->benefit += forces->benefit; if ((regno_last_uid[forces->dest_regno] == INSN_UID (insn) || ((uid_luid[regno_last_uid[forces->dest_regno]] - uid_luid[regno_first_uid[forces->dest_regno]]) == (INSN_UID (insn) - INSN_UID (forces->insn)))) && !reg_used_between_p (SET_DEST (PATTERN (forces->insn)), forces->insn, insn)) { v->forces = forces; forces->ignore = 1; } } if (forces2) { v->benefit += forces2->benefit; if ((regno_last_uid[forces2->dest_regno] == INSN_UID (insn) || ((uid_luid[regno_last_uid[forces2->dest_regno]] - uid_luid[regno_first_uid[forces2->dest_regno]]) == (INSN_UID (insn) - INSN_UID (forces2->insn)))) && !reg_used_between_p (SET_DEST (PATTERN (forces2->insn)), forces2->insn, insn)) { if (v->forces) v->forces2 = forces2; else v->forces = forces2; forces2->ignore = 1; } } if (type == DEST_REG) { induct_var[dest_regno] = GENERAL_INDUCT; induct_struct[dest_regno] = v; } /* Add the giv to the class of givs computed from one biv. */ bl = class_struct[src_regno]; if (bl) { v->family = bl->giv; bl->giv = v; /* Don't count DEST_ADDR. This is supposed to count the number of insns that calculate givs. */ if (type == DEST_REG) bl->giv_count++; bl->total_benefit += benefit; } else { /* Fatal error, biv missing for this giv? */ fflush (loop_dump_stream); abort (); } if (type == DEST_ADDR) v->replaceable = 1; else { /* The giv can be replaced outright by the reduced register if - the insn that sets the giv is always executed on any iteration on which the giv is used at all (there are two ways to deduce this: either the insn is executed on every iteration, or all uses follow that insn in the same basic block), - the giv is not used before the insn that sets it, i.e. no definition outside loop reaches into loop - no assignments to the biv occur during the giv's lifetime. */ /* Is this right? Don't we need to make sure the giv is not used outside the loop. Someday we will know where all the loop exits are so we can do better, but until then.... March 18, 1989 -- self@bayes.arc.nasa.gov */ if (regno_first_uid[dest_regno] == INSN_UID (insn) /* Previous line always fails if INSN was moved by loop opt. */ && uid_luid[regno_last_uid[dest_regno]] < INSN_LUID (loop_end) && (!maybe_never || last_use_this_basic_block (dest_regno, insn))) { v->replaceable = 1; for (b = bl->biv; b; b = b->family) { if ((uid_luid[INSN_UID (b->insn)] >= uid_luid[regno_first_uid[dest_regno]]) && (uid_luid[INSN_UID (b->insn)] <= uid_luid[regno_last_uid[dest_regno]])) { v->replaceable = 0; break; } } } else v->replaceable = 0; } if (loop_dump_stream) { if (type == DEST_REG) fprintf (loop_dump_stream, "Insn %d: giv reg %d", INSN_UID (insn), dest_regno); else fprintf (loop_dump_stream, "Insn %d: dest address", INSN_UID (insn)); fprintf (loop_dump_stream, " src reg %d benefit %d", src_regno, v->benefit); fprintf (loop_dump_stream, " used %d lifetime %d", v->times_used, v->lifetime); if (v->replaceable) fprintf (loop_dump_stream, " replaceable"); if (GET_CODE (mult_val) == CONST_INT) fprintf (loop_dump_stream, " mult %d", INTVAL (mult_val)); else { fprintf (loop_dump_stream, " mult "); print_rtl (loop_dump_stream, mult_val); } if (GET_CODE (add_val) == CONST_INT) fprintf (loop_dump_stream, " add %d", INTVAL (add_val)); else { fprintf (loop_dump_stream, " add "); print_rtl (loop_dump_stream, add_val); } } if (loop_dump_stream && v->forces) fprintf (loop_dump_stream, " forces insn %d", INSN_UID (v->forces->insn)); if (loop_dump_stream && v->forces2) fprintf (loop_dump_stream, " forces insn %d", INSN_UID (v->forces2->insn)); if (loop_dump_stream && v->consec) fprintf (loop_dump_stream, " consec %d", v->consec); if (loop_dump_stream) fprintf (loop_dump_stream, "\n"); } \f /* Delete the insns forced by the insn described by V. If THIS_TOO is nonzero, delete that insn itself as well. */ static void delete_insn_forces (v, this_too) struct induction *v; int this_too; { rtx x, p; int count; rtx insn; if (this_too) { insn = v->insn; for (count = v->consec; count >= 0; count--) { /* If first insn of libcall sequence, skip to end. */ /* Do this at start of loop, since p is guaranteed to be an insn here. */ if (x = find_reg_note (insn, REG_LIBCALL, 0)) insn = XEXP (x, 0); if (x = find_reg_note (insn, REG_RETVAL, 0)) { /* This is a library call; delete all insns backward until get to first insn in this group. */ rtx first = XEXP (x, 0); for (p = insn; p != first; p = PREV_INSN (p)) delete_insn (p); /* Delete first insn also. */ delete_insn (p); } else delete_insn (insn); do insn = NEXT_INSN (insn); while (GET_CODE (insn) == NOTE); } } if (v->forces) delete_insn_forces (v->forces, 1); if (v->forces2) delete_insn_forces (v->forces2, 1); } \f /* Check whether an insn is an increment legitimate for a basic induction var. X is the source of the insn. DEST_REG is the putative biv, also the destination of the insn. We accept patterns of these forms: REG = REG + INVARIANT REG = INVARIANT + REG REG = REG - CONSTANT If X is suitable, we return 1, and store the factor multiplying REF in X into *MULT_VAL and the additive term into *INC_VAL. Otherwise we return 0. */ static int basic_induction_var (x, dest_regno, inc_val, mult_val) register rtx x; int dest_regno; rtx *inc_val; rtx *mult_val; { register enum rtx_code code; rtx arg; if (x == 0) return 0; code = GET_CODE (x); switch (code) { case PLUS: if (GET_CODE (XEXP (x, 0)) == REG && REGNO (XEXP (x, 0)) == dest_regno) arg = XEXP (x, 1); else if (GET_CODE (XEXP (x, 1)) == REG && REGNO (XEXP (x, 1)) == dest_regno) arg = XEXP (x, 0); else return 0; if (invariant_p (arg) == 1) *inc_val = arg; else return 0; *mult_val = const1_rtx; return 1; case MINUS: if (GET_CODE (XEXP (x, 0)) == REG && REGNO (XEXP (x, 0)) == dest_regno && GET_CODE (XEXP (x, 1)) == CONST_INT) *inc_val = gen_rtx (CONST_INT, VOIDmode, - INTVAL (XEXP (x, 1))); else return 0; *mult_val = const1_rtx; return 1; /* Can accept constant setting of biv only when inside inner most loop. Otherwise, a biv of an inner loop may be incorrectly recognized as a biv of the outer loop, causing code to be moved INTO the inner loop. */ case REG: if (!invariant_p (x)) return 0; case CONST_INT: case SYMBOL_REF: case CONST: if (loops_enclosed == 1) { *inc_val = x; *mult_val = const0_rtx; return 1; } else return 0; default: return 0; } } \f /* A general induction variable (giv) is any quantity that is a linear function of a basic induction variable, i.e. giv = biv * mult_val + add_val. The coefficients can be any loop invariant quantity. A giv need not be computed directly from the biv; it can be computed by way of other givs. */ /* Determine whether X computes a giv. If it does, return a nonzero value which is the benefit from eliminating the computation of X; set *SRC_REGNO to the register number of the biv that it is computed from; set *ADD_VAL and *MULT_VAL to the coefficients, such that the value of X is biv * mult + add; set forces (and forces2) to identify any other givs that are used solely to compute this one. */ /* This routine recognizes four types of patterns that generate givs: - giv = biv op invariant v = 0, g = 0 - giv1 = giv2 op invariant v = 0, g = giv2 where giv1 and giv2 are functions of the same biv - giv1 = biv op giv2 v = giv2, g = 0 where giv2 is a function of biv - giv1 = giv2 op giv3 v = giv3, g = giv2 where giv2 and giv3 are functions of the save biv */ static int general_induction_var (x, src_regno, add_val, mult_val, forces, forces2) rtx x; int *src_regno; rtx *add_val; rtx *mult_val; struct induction **forces; struct induction **forces2; { register enum rtx_code code; rtx arg; struct induction *g = 0; struct induction *v = 0; int subexp = 0; int tem; if (x == 0) return 0; code = GET_CODE (x); switch (code) { case NEG: /* This can generate givs also, but it is not handled. */ return 0; case PLUS: case MINUS: case MULT: case UMULT: /* Result is linear in both operands. */ /* Determine which operand is the biv, and put the other in ARG. */ if (GET_CODE (XEXP (x, 0)) == REG && induct_var[REGNO (XEXP (x, 0))] == BASIC_INDUCT) { *src_regno = REGNO (XEXP (x, 0)); arg = XEXP (x, 1); } else if (GET_CODE (XEXP (x, 1)) == REG && induct_var[REGNO (XEXP (x, 1))] == BASIC_INDUCT) { *src_regno = REGNO (XEXP (x, 1)); arg = XEXP (x, 0); } /* Check for an rtl subexpression that is a giv. Memory address givs often look like (plus (reg) (mult (biv) (const))). */ /* Do this before checking for a giv operand, as this function will fail if this special operand is not recognized. */ #ifndef DONT_REDUCE_ADDR else if (tem = general_induction_var (XEXP (x, 1), src_regno, add_val, mult_val, forces, forces2)) { /* Set subexp true so that this can be handled a little differently from the normal case of g set. */ /* Note that SRC_REGNO is already set. */ subexp = TRUE; g = (struct induction *) alloca (sizeof (struct induction)); g->mult_val = *mult_val; g->add_val = *add_val; /* Count this multiply as a shift, since that's what it really will do. */ if (tem == MULT_BENEFIT) g->benefit = SHIFT_BENEFIT; else g->benefit = tem; arg = XEXP (x, 0); } #endif /* Also allow general induction variables. Could have a mult followed by an add (i.e. an address calculation), thereby generating two related general induction variables of which only the second is actually used. */ /* Do this after checking both args for basic induction variables. */ else if (GET_CODE (XEXP (x, 0)) == REG && induct_var[REGNO (XEXP (x, 0))] == GENERAL_INDUCT) { g = induct_struct[REGNO (XEXP (x, 0))]; *src_regno = g->src_regno; arg = XEXP (x, 1); } else if (GET_CODE (XEXP (x, 1)) == REG && induct_var[REGNO (XEXP (x, 1))] == GENERAL_INDUCT) { g = induct_struct[REGNO (XEXP (x, 1))]; *src_regno = g->src_regno; arg = XEXP (x, 0); } else return 0; /* Overall form of expression looks good. */ break; /* Could handle these also. */ case DIV: case UDIV: /* For a 68020 could handle these? */ case LSHIFT: case ASHIFT: case ASHIFTRT: case LSHIFTRT: /* These operations are linear only in first operand. Check for a biv or giv there; if found, put other operand in ARG. */ if (GET_CODE (XEXP (x, 0)) == REG && induct_var[REGNO (XEXP (x, 0))] == BASIC_INDUCT) { *src_regno = REGNO (XEXP (x, 0)); arg = XEXP (x, 1); } /* Also allow general induction variable. */ else if (GET_CODE (XEXP (x, 0)) == REG && induct_var[REGNO (XEXP (x, 0))] == GENERAL_INDUCT) { g = induct_struct[REGNO (XEXP (x, 0))]; *src_regno = g->src_regno; arg = XEXP (x, 1); } else return 0; /* Overall form of expression looks good. */ break; default: return 0; } /* ARG is the operand that is NOT a biv or giv. Test it for superficial validity. */ /* This is just a special case of invariant values, it is not really needed, but it's a shortcut. */ if (GET_CODE (arg) == CONST_INT) ; /* Depends on previous general induction variable, which has the same basic induction variable */ /* This code detects mults that have been generated as shift and add. */ else if (GET_CODE (arg) == REG && induct_var[REGNO (arg)] == GENERAL_INDUCT && induct_struct[REGNO (arg)]->src_regno == *src_regno) { v = induct_struct[REGNO (arg)]; /* Dependence indicated by forces, sort of kludgey. */ } /* Invariant expression, could be a constant-valued register. */ else if (invariant_p (arg) == 1) ; /* Failure */ else return 0; /* Now we know looks like a giv; extract the coefficients. We can still fail if the coefficients are not what we can handle. */ /* Only succeed if result mult_val and add_val are only one level of rtl, for example, (NEG:SI (REG:SI 34)) is not accepted. This mainly causes problems with the MINUS code. */ switch (code) { case PLUS: if (v && g) { if (GET_CODE (g->mult_val) == CONST_INT) { if (g->mult_val == const0_rtx) *mult_val = v->mult_val; else if (GET_CODE (v->mult_val) == CONST_INT) *mult_val = gen_rtx (CONST_INT, VOIDmode, INTVAL (g->mult_val) + INTVAL (v->mult_val)); else return 0; } else if (v->mult_val == const0_rtx) *mult_val = g->mult_val; else return 0; if (GET_CODE (g->add_val) == CONST_INT) { if (g->add_val == const0_rtx) *add_val = v->add_val; else if (GET_CODE (v->add_val) == CONST_INT) *add_val = gen_rtx (CONST_INT, VOIDmode, INTVAL (g->add_val) + INTVAL (v->add_val)); else return 0; } else if (v->add_val == const0_rtx) *add_val = g->add_val; else return 0; if (subexp) { /* g deleted when return, can't return pointer to it */ if (*forces2 == 0) *forces2 = v; return ADD_BENEFIT + g->benefit; } else { *forces = g; *forces2 = v; return ADD_BENEFIT; } } else if (v) { if (GET_CODE (v->mult_val) == CONST_INT) *mult_val = gen_rtx (CONST_INT, VOIDmode, INTVAL (v->mult_val) + 1); else return 0; *add_val = v->add_val; *forces = v; return ADD_BENEFIT; } else if (g) { *mult_val = g->mult_val; if (GET_CODE (g->add_val) == CONST_INT) { if (g->add_val == const0_rtx) *add_val = arg; else if (GET_CODE (arg) == CONST_INT) *add_val = gen_rtx (CONST_INT, VOIDmode, INTVAL (g->add_val) + INTVAL (arg)); else return 0; } else /* Could succeed if arg == 0, but that will never occur. */ return 0; if (subexp) /* g deleted when return, can't return pointer to it */ return ADD_BENEFIT + g->benefit; else { *forces = g; return ADD_BENEFIT; } } else { *mult_val = const1_rtx; *add_val = arg; return ADD_BENEFIT; } /* Takes a lot of code and will rarely succeed. */ case MINUS: if (v && g) { /* G is the first argument of MINUS. */ if (GET_CODE (g->mult_val) == CONST_INT) { if (g->mult_val == const0_rtx) #if 0 /* Should not have to fail here */ *mult_val = gen_rtx (NEG, SImode, v->mult_val); #endif return 0; else if (GET_CODE (v->mult_val) == CONST_INT) *mult_val = gen_rtx (CONST_INT, VOIDmode, INTVAL (g->mult_val) - INTVAL (v->mult_val)); else return 0; } else if (v->mult_val == const0_rtx) *mult_val = g->mult_val; else return 0; if (GET_CODE (g->add_val) == CONST_INT) { if (g->add_val == const0_rtx) #if 0 /* should not have to fail here */ *add_val = v->add_val; #endif return 0; else if (GET_CODE (v->add_val) == CONST_INT) *add_val = gen_rtx (CONST_INT, VOIDmode, INTVAL (g->add_val) - INTVAL (v->add_val)); else return 0; } else if (v->add_val == const0_rtx) *add_val = g->add_val; else return 0; if (subexp) { /* G deleted when return, can't return pointer to it */ if (*forces2 == 0) *forces2 = v; return ADD_BENEFIT + g->benefit; } else { *forces = g; *forces2 = v; return ADD_BENEFIT; } } else if (v) { if (GET_CODE (v->mult_val) != CONST_INT) return 0; if (arg == XEXP (x, 0)) /* giv1 = giv2 - biv */ { *mult_val = gen_rtx (CONST_INT, VOIDmode, INTVAL (v->mult_val) - 1); *add_val = v->add_val; } else /* giv1 = biv - giv2 */ { *mult_val = gen_rtx (CONST_INT, VOIDmode, 1 - INTVAL (v->mult_val)); if (GET_CODE (v->add_val) == CONST_INT) *add_val = gen_rtx (CONST_INT, VOIDmode, - INTVAL (v->add_val)); else return 0; } *forces = v; return ADD_BENEFIT; } else if (g) { if (arg == XEXP (x, 1)) *mult_val = g->mult_val; else { if (GET_CODE (g->mult_val) == CONST_INT) *mult_val = gen_rtx (CONST_INT, VOIDmode, - INTVAL (g->mult_val)); else return 0; } if (GET_CODE (g->add_val) == CONST_INT) { if (g->add_val == const0_rtx) { if (arg == XEXP (x, 1)) /* giv1 = giv2 - arg */ { /* Fail unless arg is a constant. */ if (GET_CODE (arg) == CONST_INT) *add_val = gen_rtx (CONST_INT, VOIDmode, -INTVAL (arg)); else return 0; } else /* giv1 = arg - giv2 */ *add_val = arg; } else if (GET_CODE (arg) == CONST_INT) { if (arg == XEXP (x, 1)) /* giv1 = giv2 - arg */ *add_val = gen_rtx (CONST_INT, VOIDmode, INTVAL (g->add_val) - INTVAL (arg)); else /* giv1 = arg - giv2 */ *add_val = gen_rtx (CONST_INT, VOIDmode, INTVAL (arg), - INTVAL (g->add_val)); } else return 0; } else /* Could succeed if arg == 0, but that will never occur. */ return 0; if (subexp) /* G deleted when return, can't return pointer to it. */ return ADD_BENEFIT + g->benefit; else { *forces = g; return ADD_BENEFIT; } } else if (GET_CODE (arg) == CONST_INT) { if (arg == XEXP (x, 1)) { *add_val = gen_rtx (CONST_INT, VOIDmode, - INTVAL (arg)); *mult_val = const1_rtx; } else { *add_val = arg; *mult_val = gen_rtx (CONST_INT, VOIDmode, -1); } return ADD_BENEFIT; } else return 0; /* UMULT can be handled like MULT since C ignores overflows. */ case MULT: case UMULT: if (v && g) { /* Quadratic term, just fail. */ return 0; } else if (v) { /* Quadratic term, just fail. */ return 0; } else if (g) { /* Takes a lot of code and will rarely succeed. */ /* dest = m * arg * b + a * arg */ if (GET_CODE (g->mult_val) == CONST_INT) { if (g->mult_val == const0_rtx) *mult_val = const0_rtx; else if (g->mult_val == const1_rtx) *mult_val = arg; else if (GET_CODE (arg) == CONST_INT) *mult_val = gen_rtx (CONST_INT, VOIDmode, INTVAL (g->mult_val) * INTVAL (arg)); else return 0; } else /* Could suceed if arg == 1 or 0, but this will never occur. */ return 0; if (GET_CODE (g->add_val) == CONST_INT) { if (g->add_val == const0_rtx) *add_val = const0_rtx; else if (g->add_val == const1_rtx) *add_val = arg; else if (GET_CODE (arg) == CONST_INT) *add_val = gen_rtx (CONST_INT, VOIDmode, INTVAL (g->add_val) * INTVAL (arg)); else return 0; } else /* Could suceed if arg == 1 or 0, but this will never occur. */ return 0; if (subexp) /* G deleted when return, can't return pointer to it. */ return MULT_BENEFIT + g->benefit; else { *forces = g; return MULT_BENEFIT; } } else { *mult_val = arg; *add_val = const0_rtx; return MULT_BENEFIT; } /* These are not worth the trouble. */ case DIV: case UDIV: return 0; /* Handle these, but only for left shift. */ case LSHIFT: case ASHIFT: if (v && g) { /* Quadratic term, just fail. */ return 0; } else if (v) { /* Quadratic term, just fail. */ return 0; } else if (g) { /* Takes a lot of code and will rarely succeed. */ /* dest = ((m * b) << arg) + (a << arg) */ if (GET_CODE (g->mult_val) == CONST_INT) { if (g->mult_val == const0_rtx) *mult_val = const0_rtx; else if (GET_CODE (arg) == CONST_INT && INTVAL (arg) >= 0) *mult_val = gen_rtx (CONST_INT, VOIDmode, INTVAL (g->mult_val) * (1 << INTVAL (arg))); else return 0; } else /* Could suceed if arg == 0, but this will never occur. */ return 0; if (GET_CODE (g->add_val) == CONST_INT) { if (g->add_val == const0_rtx) *add_val = const0_rtx; else if (GET_CODE (arg) == CONST_INT) *add_val = gen_rtx (CONST_INT, VOIDmode, INTVAL (g->add_val) * (1 << INTVAL (arg))); else return 0; } else /* Could suceed if arg == 0, but this will never occur. */ return 0; if (subexp) /* G deleted when return, can't return pointer to it. */ return SHIFT_BENEFIT + g->benefit; else { *forces = g; return SHIFT_BENEFIT; } } if (GET_CODE (arg) == CONST_INT && INTVAL (arg) >= 0) *mult_val = gen_rtx (CONST_INT, VOIDmode, 1 << INTVAL (arg)); else return 0; *add_val = const0_rtx; return SHIFT_BENEFIT; /* These are not worth the trouble. */ case ASHIFTRT: case LSHIFTRT: return 0; /* should never reach here */ default: abort (); return 0; } } \f /* Help detect a giv that is calculated by several consecutive insns; for example, giv = biv * M giv = giv + A The caller has already identified the first insn P as having a giv as dest; we check that all other insns that set the same register follow immediately after P, that they alter nothing else, and that the result of the last is still a giv. The value is 0 if the reg set in P is not really a giv. Otherwise, the value is the amount gained by eliminating all the consecutive insns that compute the value. FIRST_BENEFIT is the amount gained by eliminating the first insn, P. SRC_REGNO is the regno of the biv; DEST_REGNO is that of the giv. The coefficients of the ultimate giv value are stored in *MULT_VAL and *ADD_VAL. */ static int consec_sets_giv (first_benefit, p, src_regno, dest_regno, add_val, mult_val) int first_benefit; rtx p; int src_regno; int dest_regno; rtx *add_val; rtx *mult_val; { int count; int benefit = first_benefit; enum rtx_code code; rtx forces, forces2; rtx temp; int tem; /* Initialize info used by general_induction_var. */ struct induction *v = (struct induction *) oballoc (sizeof (struct induction)); v->src_regno = src_regno; v->mult_val = *mult_val; v->add_val = *add_val; induct_var[dest_regno] = GENERAL_INDUCT; induct_struct[dest_regno] = v; count = n_times_set[dest_regno] - 1; while (count > 0) { p = NEXT_INSN (p); code = GET_CODE (p); /* If libcall, skip to end of call sequence. */ if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, 0))) p = XEXP (temp, 0); if (code == INSN && GET_CODE (PATTERN (p)) == SET && GET_CODE (SET_DEST (PATTERN (p))) == REG && REGNO (SET_DEST (PATTERN (p))) == dest_regno && ((tem = general_induction_var (SET_SRC (PATTERN (p)), &src_regno, add_val, mult_val, &forces, &forces2)) /* Giv created by call to library routine. */ || ((temp = find_reg_note (p, REG_EQUAL, 0)) && (tem = general_induction_var (XEXP (temp, 0), &src_regno, add_val, mult_val, &forces, &forces2)))) && src_regno == v->src_regno) { count--; benefit += tem; v->mult_val = *mult_val; v->add_val = *add_val; } else if (code != NOTE) { induct_var[dest_regno] = UNKNOWN_INDUCT; return 0; } } return benefit; } \f /* Generate a SEQUENCE to multiply OP0 and OP1 with result in TARGET. Use expand_mult to "optimally" do the multiply. This also works for machines that do not have multiply insns. If one of the operands is a constant, it must be the second. */ static rtx gen_iv_mult (mode, op0, op1, target) enum machine_mode mode; register rtx op0, op1, target; { extern rtx gen_sequence (); extern rtx start_sequence (); rtx saved, result, temp; saved = start_sequence (); /* ??? It is very unmodular to use expand_mult here! This should be redesigned. */ /* UNSIGNEDP arg can be zero since operands/target always same width. */ temp = expand_mult (mode, op0, op1, target, 0); /* Move to target register, if expand_mult did not put it there. */ if (target != 0 && temp != target) emit_move_insn (target, temp); result = gen_sequence (); end_sequence (saved); return result; } /* Emit code to initialize an induction variable created by strength reduction. */ /* This is necessarily long and messy because cse has already been done, so we have to be careful to generate near optimal code for the sequence reg = b * m; reg += a */ /* Do we need to add code to deal with constants other than CONST_INT's, or will later passes recognize that the assembler can do the arithmetic? March 16, 1989 -- self@bayes.arc.nasa.gov */ static void emit_iv_init_code (b, m, a, reg, loop_start) rtx b; /* initial value of basic induction variable */ rtx m; /* multiplicative constant */ rtx a; /* additive constant */ rtx reg; /* destination register */ rtx loop_start; { /* Indicates which of B/M/A are constants. */ int status = 0; int const_val; rtx tmp; if (GET_CODE (b) == CONST_INT) status |= 0x1; if (GET_CODE (m) == CONST_INT) status |= 0x2; if (GET_CODE (a) == CONST_INT) status |= 0x4; switch (status) { case 0: /* nothing constant */ case 4: /* A constant */ emit_insn_before (gen_iv_mult (GET_MODE (reg), b, m, reg), loop_start); /* Don't emit add unless it is necessary. */ if (a != const0_rtx) emit_insn_before (gen_rtx (SET, VOIDmode, reg, gen_rtx (PLUS, GET_MODE (reg), reg, a)), loop_start); break; case 1: /* B constant */ /* Equivalent to state 2, just need to switch values of B and M and fall through. */ case 5: /* B, a constant */ /* Equivalent to state 6, just need to switch values of B and M and fall through. */ tmp = b; b = m; m = tmp; case 2: /* M constant */ case 6: /* M, A constant */ const_val = INTVAL (m); if (const_val == 0) /* REG = A */ emit_insn_before (gen_rtx (SET, VOIDmode, reg, a), loop_start); else if (const_val == 1) { /* REG = A + B */ if (a != const0_rtx) emit_insn_before (gen_rtx (SET, VOIDmode, reg, gen_rtx (PLUS, GET_MODE (reg), b, a)), loop_start); else emit_insn_before (gen_rtx (SET, VOIDmode, reg, b), loop_start); } else if (const_val == -1) { /* REG = A - B */ if (a != const0_rtx) emit_insn_before (gen_rtx (SET, VOIDmode, reg, gen_rtx (MINUS, GET_MODE (reg), a, b)), loop_start); else emit_insn_before (gen_rtx (SET, VOIDmode, reg, gen_rtx (NEG, GET_MODE (reg), b)), loop_start); } else { /* Must generate a `multiply' instruction. */ emit_insn_before (gen_iv_mult (GET_MODE (reg), b, m, reg), loop_start); if (a != const0_rtx) emit_insn_before (gen_rtx (SET, VOIDmode, reg, gen_rtx (PLUS, GET_MODE (reg), reg, a)), loop_start); } break; case 3: /* B, M constant */ const_val = INTVAL (b) * INTVAL (m); if (const_val == 0) emit_insn_before (gen_rtx (SET, VOIDmode, reg, a), loop_start); else emit_insn_before (gen_rtx (SET, VOIDmode, reg, gen_rtx (PLUS, GET_MODE (reg), a, gen_rtx (CONST_INT, VOIDmode, const_val))), loop_start); break; case 7: /* all are constant */ emit_insn_before (gen_rtx (SET, VOIDmode, reg, gen_rtx (CONST_INT, VOIDmode, INTVAL (b) * INTVAL (m) + INTVAL (a))), loop_start); break; default: abort (); } } \f /* Test whethen BIV_ADD * GIV_MULT can be computed without an actual multiply insn. Value is 1 if so. */ static int product_cheap_p (biv_add, giv_mult) rtx biv_add; rtx giv_mult; { /* Indicates which of MULT/ADD are constants. */ int status = 0; int const_val; rtx tmp; if (GET_CODE (biv_add) == CONST_INT) status |= 0x1; if (GET_CODE (giv_mult) == CONST_INT) status |= 0x2; switch (status) { case 0: /* Neither is constant: would need a multiply insn, so fail. */ return 0; case 1: /* BIV_ADD value is constant */ /* Equivalent to state 2, just switch values of BIV_ADD and GIV_MULT and fall through. */ tmp = biv_add; biv_add = giv_mult; giv_mult = tmp; case 2: /* GIV_MULT value is constant. If it is 1, 0 or -1 then we win. */ const_val = INTVAL (giv_mult); if (const_val < -1 || const_val > 1) { tmp = gen_iv_mult (GET_MODE (biv_add), biv_add, giv_mult, 0); /* Don't emit a multiply insn, just fail instead. */ if ((GET_CODE (tmp) == SET && GET_CODE (SET_SRC (tmp)) == MULT) /* Also fail if library call (which generates more then two insn) is needed. */ || (GET_CODE (tmp) == SEQUENCE && XVECLEN (tmp, 0) > 2)) return 0; } return 1; case 3: /* Both BIV_ADD and GIV_MULT are constant; can compute the product at compile time. */ return 1; default: abort (); } } \f /* Emit code to increment the induction variable inside the loop. Try to emit optimal code for the expression REG = REG + BIV_ADD * GIV_MULT. */ static void emit_iv_inc (biv_add, giv_mult, reg, insn) rtx biv_add; /* increment value for biv */ rtx giv_mult; /* multiply value of giv */ rtx reg; /* create insn to set this reg */ rtx insn; /* where to insert the new insn */ { /* Indicates which of MULT/ADD are constants. */ int status = 0; int const_val; rtx tmp, tempreg; enum machine_mode mode = GET_MODE (reg); if (GET_CODE (biv_add) == CONST_INT) status |= 0x1; if (GET_CODE (giv_mult) == CONST_INT) status |= 0x2; switch (status) { case 1: /* BIV_ADD value is constant */ /* Equivalent to state 2, just switch values of BIV_ADD and GIV_MULT and fall through. */ tmp = biv_add; biv_add = giv_mult; giv_mult = tmp; case 2: /* GIV_MULT value is constant */ const_val = INTVAL (giv_mult); if (const_val == 0) /* No code necessary. This should be VERY rare. */ break; else if (const_val == 1) { emit_insn_before (gen_rtx (SET, VOIDmode, reg, gen_rtx (PLUS, mode, reg, biv_add)), insn); break; } else if (const_val == -1) { emit_insn_before (gen_rtx (SET, VOIDmode, reg, gen_rtx (MINUS, mode, reg, biv_add)), insn); break; } case 0: /* Variable times variable, or variable times constant (not 0, -1 or 1): emit a real multiply. */ tempreg = gen_reg_rtx (mode); tmp = gen_iv_mult (mode, biv_add, giv_mult, tempreg); emit_insn_before (tmp, insn); emit_insn_before (gen_rtx (SET, VOIDmode, reg, gen_rtx (PLUS, mode, reg, tempreg)), insn); break; case 3: /* Both BIV_ADD and GIV_MULT are constant */ emit_insn_before (gen_rtx (SET, VOIDmode, reg, gen_rtx (PLUS, mode, reg, gen_rtx (CONST_INT, VOIDmode, INTVAL (biv_add) * INTVAL (giv_mult)))), insn); break; default: abort (); } } \f /* Check to see if loop can be terminated by a "decrement and branch until zero" instruction. If so, add a REG_NONNEG note to the branch insn if so. Also try reversing an increment loop to a decrement loop to see if the optimization can be performed. Value is nonzero if optimization was performed. */ static int check_dbra_loop (loop_end, iv_list, insn_count, loop_start) rtx loop_end; struct iv_class *iv_list; int insn_count; rtx loop_start; { struct iv_class *bl; rtx reg; rtx jump_label; rtx final_value; rtx start_value; enum rtx_code branch_code; rtx new_add_val; rtx tested_before_loop = 0; rtx p; /* See if the loop is contained in `if (X >= 0)' for some reg X. If so, then we know X is initially nonnegative even though we don't know its initial value. Record X in TESTED_BEFORE_LOOP. */ for (p = loop_start; p != 0; p = PREV_INSN (p)) if (GET_CODE (p) != NOTE) break; /* See if a conditional branch preceeds the loop. There may be no other insns or labels between it and the beginning of the loop. */ if (p != 0 && GET_CODE (p) == JUMP_INSN && condjump_p (p) && SET_SRC (PATTERN (p)) != pc_rtx && ((GET_CODE (XEXP (SET_SRC (PATTERN (p)), 0)) == LT && XEXP (SET_SRC (PATTERN (p)), 2) == pc_rtx) || (GET_CODE (XEXP (SET_SRC (PATTERN (p)), 0)) == GE && XEXP (SET_SRC (PATTERN (p)), 1) == pc_rtx)) && next_real_insn (JUMP_LABEL (p)) == next_real_insn (loop_end)) { /* Before the branch should be a test or compare. See if we are comparing something against zero. */ p = PREV_INSN (p); if (GET_CODE (p) == INSN && GET_CODE (PATTERN (p)) == SET && SET_DEST (PATTERN (p)) == cc0_rtx) { if (GET_CODE (SET_SRC (PATTERN (p))) == REG) tested_before_loop = SET_SRC (PATTERN (p)); else if (GET_CODE (SET_SRC (PATTERN (p))) == COMPARE && GET_CODE (XEXP (SET_SRC (PATTERN (p)), 0)) == REG && XEXP (SET_SRC (PATTERN (p)), 1) == const0_rtx) tested_before_loop = XEXP (SET_SRC (PATTERN (p)), 0); else if (GET_CODE (SET_SRC (PATTERN (p))) == COMPARE && GET_CODE (XEXP (SET_SRC (PATTERN (p)), 1)) == REG && XEXP (SET_SRC (PATTERN (p)), 0) == const0_rtx) tested_before_loop = XEXP (SET_SRC (PATTERN (p)), 1); } } /* If last insn is a conditional branch, and the insn before tests a register value, then try to optimize it. */ if (GET_CODE (PREV_INSN (loop_end)) == JUMP_INSN && GET_CODE (PATTERN (PREV_INSN (loop_end))) == SET && GET_CODE (SET_SRC (PATTERN (PREV_INSN (loop_end)))) == IF_THEN_ELSE && GET_CODE (PREV_INSN (PREV_INSN (loop_end))) == INSN && GET_CODE (PATTERN (PREV_INSN (PREV_INSN (loop_end)))) == SET && (GET_CODE (SET_DEST (PATTERN (PREV_INSN (PREV_INSN (loop_end))))) == CC0)) { /* Check all of the bivs to see if the compare uses one of them. */ for (bl = iv_list; bl; bl = bl->next) { if (reg_mentioned_p (SET_DEST (PATTERN (bl->biv->insn)), PREV_INSN (PREV_INSN (loop_end)))) break; } /* If biv set more than once, then give up. We can't guarantee that it will be zero on the last iteration. */ if (bl && bl->biv_count == 1) { /* Look for the case where the basic induction variable is always nonnegative, and equals zero on the last iteration. In this case, add a reg_note REG_NONNEG, which allows the m68k DBRA instruction to be used. */ /* the decrement case */ if (GET_CODE (bl->biv->add_val) == CONST_INT && INTVAL (bl->biv->add_val) < 0) { /* Initial value must be greater than 0, init_val % -dec_value == 0 to ensure that it equals zero on the last iteration */ if (GET_CODE (bl->initial_value) == CONST_INT && INTVAL (bl->initial_value) > 0 && (INTVAL (bl->initial_value) % (-INTVAL (bl->biv->add_val))) == 0) { /* register always nonnegative, add REG_NOTE to branch */ REG_NOTES (PREV_INSN (loop_end)) = gen_rtx (EXPR_LIST, REG_NONNEG, 0, REG_NOTES (PREV_INSN (loop_end))); bl->nonneg = 1; return 1; } /* If the decrement is 1 and the value was tested as >= 0 before the loop, then we can safely optimize. */ if (SET_DEST (PATTERN (bl->biv->insn)) == tested_before_loop && INTVAL (bl->biv->add_val) == -1) { REG_NOTES (PREV_INSN (loop_end)) = gen_rtx (EXPR_LIST, REG_NONNEG, 0, REG_NOTES (PREV_INSN (loop_end))); bl->nonneg = 1; return 1; } } else { /* Try to change inc to dec, so can apply above optimization. */ /* Can do this if: all registers modified are induction variables or invariant, all memory references have non-overlapping addresses (obviously true if only one write) allow 2 insns for the compare/jump at the end of the loop. */ /* This code only acts for innermost loops. Also it simplifies the memory address check by only reversing loops with zero or one memory access. */ if (num_mem_sets <= 1 && !loop_has_call && (bl->giv_count + bl->biv_count + num_mem_sets + num_movables + 2 == insn_count)) { rtx src_two_before_end; /* Loop can be reversed. */ if (loop_dump_stream) fprintf (loop_dump_stream, "Can reverse loop\n"); /* Now check other conditions: initial_value must be zero, final_value % add_val == 0, so that when reversed, the biv will be zero on the last iteration. */ /* Calculating the final value non trivial. If branch is (LT (CC0) (CONST 0), then value in compare is final value. If branch is (LE (CC0) (CONST 0), then value in compare is final_value - add_val */ branch_code = GET_CODE (XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 0)); src_two_before_end = SET_SRC (PATTERN (PREV_INSN (PREV_INSN (loop_end)))); if (bl->initial_value == const0_rtx && (branch_code == LT || branch_code == LE) && XEXP (XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 0), 1) == const0_rtx && GET_CODE (XEXP (src_two_before_end, 1)) == CONST_INT && (INTVAL (XEXP (src_two_before_end, 1)) % INTVAL (bl->biv->add_val)) == 0) { /* Register will always be nonnegative, with value 0 on last iteration if loop reversed */ /* Save some info needed to produce the new insns. */ reg = SET_DEST (PATTERN (bl->biv->insn)); jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 1); new_add_val = gen_rtx (CONST_INT, VOIDmode, - INTVAL (bl->biv->add_val)); if (branch_code == LT) { final_value = XEXP (src_two_before_end, 1); start_value = gen_rtx (CONST_INT, VOIDmode, (INTVAL (XEXP (src_two_before_end, 1)) - INTVAL (bl->biv->add_val))); } else /* branch_code == LE */ { start_value = XEXP (src_two_before_end, 1); final_value = gen_rtx (CONST_INT, VOIDmode, (INTVAL (XEXP (src_two_before_end, 1)) + INTVAL (bl->biv->add_val))); } /* Initialize biv to start_value before loop start. The old initializing insn will be deleted as a dead store by flow.c. */ emit_insn_before (gen_rtx (SET, VOIDmode, reg, start_value), loop_start); /* Add insn to decrement register, and delete insn that incremented the register. */ emit_insn_before (gen_rtx (SET, VOIDmode, reg, gen_rtx (PLUS, GET_MODE (reg), reg, new_add_val)), bl->biv->insn); /* Update biv info to reflect its new status. */ bl->biv->insn = PREV_INSN (bl->biv->insn); delete_insn (NEXT_INSN (bl->biv->insn)); /* Set LABEL_NUSES to two so that delete_insn will not delete the label. */ LABEL_NUSES (XEXP (jump_label, 0)) = 2; if (regno_last_uid[bl->regno] != INSN_UID (PREV_INSN (loop_end))) emit_insn_after (gen_rtx (SET, VOIDmode, reg, final_value), loop_end); /* Delete compare/branch at end of loop. */ delete_insn (PREV_INSN (loop_end)); delete_insn (PREV_INSN (loop_end)); /* Add new compare/branch insn at end of loop. */ emit_insn_before (gen_rtx (SET, VOIDmode, cc0_rtx, reg), loop_end); emit_jump_insn_before (gen_rtx (SET, VOIDmode, pc_rtx, gen_rtx (IF_THEN_ELSE, VOIDmode, gen_rtx (GE, VOIDmode, cc0_rtx, const0_rtx), jump_label, pc_rtx)), loop_end); /* Register is now always nonnegative, so add REG_NONNEG note to the branch. */ REG_NOTES (PREV_INSN (loop_end)) = gen_rtx (EXPR_LIST, REG_NONNEG, 0, REG_NOTES (PREV_INSN (loop_end))); bl->nonneg = 1; /* Update rest of biv info. */ bl->initial_value = start_value; bl->biv->add_val = new_add_val; if (loop_dump_stream) fprintf (loop_dump_stream, "Reversed loop and added reg_nonneg\n"); return 1; } } } } } return 0; } \f /* Verify whether the biv BL appears to be eliminable, based on the insns in the loop that refer to it. LOOP_START is the first insn of the loop, and END is the end insn. */ static void check_eliminate_biv (bl, loop_start, end) struct iv_class *bl; rtx loop_start; rtx end; { /* Get the REG rtx for the biv. */ rtx reg = SET_DEST (PATTERN (bl->biv->insn)); rtx p; struct induction *v; bl->eliminable = 0; for (p = loop_start; p != end; p = NEXT_INSN (p)) { enum rtx_code code = GET_CODE (p); if ((code == INSN || code == JUMP_INSN || code == CALL_INSN) && reg_mentioned_p (reg, PATTERN (p))) { /* This insn uses the biv. If we can't understand it, then we can't eliminate the biv. */ if (GET_CODE (PATTERN (p)) != SET) { if (loop_dump_stream) fprintf (loop_dump_stream, "Cannot eliminate biv %d: cannot understand insn %d.\n", bl->regno, INSN_UID (p)); break; } /* The insns that increment the biv are no problem. */ if (SET_DEST (PATTERN (p)) == reg) continue; /* If this is an insn which uses the biv ONLY in the calculation of a giv which is in the family of this biv, it's ok becuase it will go away when the giv is reduced. March 14, 1989 -- self@bayes.arc.nasa.gov */ for (v = bl->giv; v; v = v->family) if (v->insn == p) { if (v->giv_type == DEST_REG || (v->giv_type == DEST_ADDR && ! only_reg_use_p (reg, *(v->location), PATTERN (p)))) break; } if (v) continue; /* If can rewrite this insn not to use the biv, it's ok. */ if (can_eliminate_biv_p (p, bl)) continue; /* Biv is used in a way we cannot eliminate. */ if (loop_dump_stream) fprintf (loop_dump_stream, "Cannot eliminate biv %d: biv used in insn %d.\n", bl->regno, INSN_UID (p)); break; } } if (p == end) { bl->eliminable = 1; if (loop_dump_stream) fprintf (loop_dump_stream, "Can eliminate biv %d.\n", bl->regno); } } \f /* Return 1 if INSN, a compare insn which tests the biv described by BL, can be rewritten to use instead some reduced giv related to that biv. Does not change the rtl. We make the assumption that all the givs depending on this biv will be reduced, since only in that case will an attempt to eliminate the biv actually be made. The following function is very parallel to this one. */ static int can_eliminate_biv_p (insn, bl) rtx insn; struct iv_class *bl; { rtx src; enum rtx_code code; struct induction *v, *tv; rtx arg; int arg_operand; /* Mode of this biv. */ enum machine_mode mode = bl->biv->mode; if (SET_DEST (PATTERN (insn)) != cc0_rtx) return 0; src = SET_SRC (PATTERN (insn)); code = GET_CODE (src); switch (code) { /* a test insn */ case REG: /* Can replace with any giv that has (MULT_VAL != 0) and (ADD_VAL == 0) Require a constant integer for MULT_VAL, so we know it's nonzero. */ for (v = bl->giv; v; v = v->family) if (GET_CODE (v->mult_val) == CONST_INT && v->mult_val != const0_rtx && v->add_val == const0_rtx && ! v->ignore && v->mode == mode) return 1; /* Look for a giv with (MULT_VAL != 0) and (ADD_VAL != 0); replace test insn with a compare insn (cmp REDUCED_GIV ADD_VAL). Require a constant integer for MULT_VAL, so we know it's nonzero. */ for (v = bl->giv; v; v = v->family) if (GET_CODE (v->mult_val) == CONST_INT && v->mult_val != const0_rtx && ! v->ignore && v->mode == mode) return 1; if (loop_dump_stream) fprintf (loop_dump_stream, "Cannot eliminate biv %d in test insn %d: no appropriate giv.\n", bl->regno, INSN_UID (insn)); return 0; /* a compare insn */ case COMPARE: /* Figure out which operand is the biv. */ if ((GET_CODE (XEXP (src, 0)) == REG) && (REGNO (XEXP (src, 0)) == bl->regno)) { arg = XEXP (src, 1); arg_operand = 1; } else { arg = XEXP (src, 0); arg_operand = 0; } if (GET_CODE (arg) == CONST_INT) { /* Can replace with any giv that has constant coefficients. */ for (v = bl->giv; v; v = v->family) if (GET_CODE (v->mult_val) == CONST_INT && GET_CODE (v->add_val) == CONST_INT && ! v->ignore && v->mode == mode) return 1; /* Look for giv with constant mult_val and nonconst add_val, since we can insert add insn before loop to calculate new compare value. */ for (v = bl->giv; v; v = v->family) if (GET_CODE (v->mult_val) == CONST_INT && ! v->ignore && v->mode == mode) return 1; } else if (GET_CODE (arg) == REG || GET_CODE (arg) == MEM) { /* Comparing against invariant register or memref can be handled. */ if (invariant_p (arg)) { /* Look for giv with constant mult_val and nonconst add_val. Insert add-insn before loop to compute new compare value. */ for (v = bl->giv; v; v = v->family) if ((GET_CODE (v->mult_val) == CONST_INT) && ! v->ignore && v->mode == mode) return 1; } /* Otherwise, only comparing against a biv can be handled. */ if (GET_CODE (arg) != REG || induct_var[REGNO (arg)] != BASIC_INDUCT) return 0; /* Look for a giv for each biv that have identical values for mult_val and add_val. */ for (v = bl->giv; v; v = v->family) if (v->mode == mode && ! v->ignore) { for (tv = class_struct[REGNO (arg)]->giv; tv; tv = tv->family) if ((tv->new_reg != 0) && rtx_equal_p (tv->mult_val, v->mult_val) && rtx_equal_p (tv->mult_val, v->mult_val) && ! tv->ignore && tv->mode == mode) return 1; } } return 0; default: return 0; } } \f /* Rewrite a compare insn INSN which uses the biv described by BL so that it doesn't use that biv any more. Instead it will use some reduced giv related to that biv. The preceding function is very parallel to this one. */ static void eliminate_biv (insn, bl, loop_start) rtx insn; struct iv_class *bl; rtx loop_start; { rtx src = SET_SRC (PATTERN (insn)); enum rtx_code code = GET_CODE (src); struct induction *v, *tv; rtx arg; int arg_operand; /* Mode of this biv. */ enum machine_mode mode = bl->biv->mode; switch (code) { /* a test insn */ case REG: /* Can replace with any giv that was reduced and that has (MULT_VAL != 0) and (ADD_VAL == 0). Require a constant integer for MULT_VAL, so we know it's nonzero. */ for (v = bl->giv; v; v = v->family) if (GET_CODE (v->mult_val) == CONST_INT && v->mult_val != const0_rtx && v->add_val == const0_rtx && v->new_reg != 0 && v->mode == mode) break; if (v) { /* We can test the sign of that giv's reduced reg. */ SET_SRC (PATTERN (insn)) = v->new_reg; return; } /* Look for a giv with (MULT_VAL != 0) and (ADD_VAL != 0); replace test insn with a compare insn (cmp REDUCED_GIV ADD_VAL). Require a constant integer for MULT_VAL, so we know it's nonzero. */ for (v = bl->giv; v; v = v->family) if (GET_CODE (v->mult_val) == CONST_INT && v->mult_val != const0_rtx && v->new_reg != 0 && v->mode == mode) break; if (v) { /* Replace biv with the giv's reduced register. */ SET_SRC (PATTERN (insn)) = gen_rtx (COMPARE, GET_MODE (v->new_reg), v->new_reg, v->add_val); #if 0 /* add_val must be invariant, so don't bother storing in a register */ /* calculate the appropriate constant to compare against */ emit_insn_before (gen_rtx (SET, VOIDmode, compare_value, v->add_val), loop_start); #endif return; } abort (); break; /* a compare insn */ case COMPARE: /* Figure out which operand is the biv. */ if (GET_CODE (XEXP (src, 0)) == REG && REGNO (XEXP (src, 0)) == bl->regno) { arg = XEXP (src, 1); arg_operand = 1; } else { arg = XEXP (src, 0); arg_operand = 0; } if (GET_CODE (arg) == CONST_INT) { /* Can replace with any giv that has constant mult_val and add_val. Make sure it was strength reduced by checking new_reg != 0. */ for (v = bl->giv; v; v = v->family) if (GET_CODE (v->mult_val) == CONST_INT && GET_CODE (v->add_val) == CONST_INT && v->new_reg && v->mode == mode) break; if (v) { /* Replace biv with the giv's reduced reg. */ XEXP (src, 1-arg_operand) = v->new_reg; /* Calculate the appropriate constant to compare against. */ XEXP (src, arg_operand) = gen_rtx (CONST_INT, VOIDmode, (INTVAL (arg) * INTVAL (v->mult_val) + INTVAL (v->add_val))); return; } /* Look for giv with constant mult_val and nonconst add_val. Insert add insn before loop to calculate new compare value. */ for (v = bl->giv; v; v = v->family) if (GET_CODE (v->mult_val) == CONST_INT && v->new_reg && v->mode == mode) break; if (v) { rtx compare_value = gen_reg_rtx (mode); /* Replace biv with giv's reduced register. */ XEXP (src, 1-arg_operand) = v->new_reg; /* At start of loop, compute value to compare against. */ emit_insn_before (gen_rtx (SET, VOIDmode, compare_value, gen_rtx (PLUS, mode, v->add_val, gen_rtx (CONST_INT, VOIDmode, INTVAL (arg) * INTVAL (v->mult_val)))), loop_start); XEXP (src, arg_operand) = compare_value; return; } abort (); } else if (GET_CODE (arg) == REG || GET_CODE (arg) == MEM) { if (invariant_p (arg)) { /* Look for giv with constant mult_val and nonconst add_val. Insert add-insn before loop to compute new compare value. */ for (v = bl->giv; v; v = v->family) if (GET_CODE (v->mult_val) == CONST_INT && v->new_reg && v->mode == mode) break; if (v) { rtx compare_value = gen_reg_rtx (mode); /* Replace biv with giv's reduced register. */ XEXP (src, 1-arg_operand) = v->new_reg; /* Calculate the appropriate constant to compare against. */ emit_insn_before (gen_iv_mult (mode, arg, v->mult_val, compare_value), loop_start); emit_insn_before (gen_rtx (SET, VOIDmode, compare_value, gen_rtx (PLUS, mode, compare_value, v->add_val)), loop_start); XEXP (src, arg_operand) = compare_value; return; } } /* Otherwise the reg compared with had better be a biv. */ if (GET_CODE (arg) != REG || induct_var[REGNO (arg)] != BASIC_INDUCT) abort (); /* Look for a pair of givs, one for each biv, with identical coefficients. */ for (v = bl->giv; v; v = v->family) { if (!v->new_reg && v->mode == mode) continue; for (tv = class_struct[REGNO (arg)]->giv; tv; tv = tv->family) if ((tv->new_reg != 0) && rtx_equal_p (tv->mult_val, v->mult_val) && rtx_equal_p (tv->mult_val, v->mult_val) && tv->mode == mode) break; if (tv) break; } if (v) { /* Replace biv with its giv's reduced reg. */ XEXP (src, 1-arg_operand) = v->new_reg; /* Replace other operand with the other giv's reduced reg. */ XEXP (src, arg_operand) = tv->new_reg; return; } } abort (); default: abort (); } } \f /* Try to calculate the final value of the biv, the value it will have at the end of the loop. If we can do it, return that value. */ /* ??? One case that should be simple to handle is when the biv is incremented by an invariant exactly once each time around the loop, and when the number of iterations can be determined (as the value of some invariant). Then the final value would be BIV + (INCREMENT * NUM_ITERATIONS). Once that case is handled, it would become desirable to detect empty loops and delete them, since this optimization could make empty loops. */ static rtx final_biv_value (bl, loop_end) struct iv_class *bl; rtx loop_end; { /* wimpy, but guaranteed to work */ return 0; } /* Return nonzero if the last use of reg REGNO is in an insn following INSN in the same basic block. */ static int last_use_this_basic_block (regno, insn) int regno; rtx insn; { rtx n; for (n = insn; n && GET_CODE (n) != CODE_LABEL && GET_CODE (n) != JUMP_INSN; n = NEXT_INSN (n)) { if (regno_last_uid[regno] == INSN_UID (n)) return 1; } return 0; }