DataMuseum.dk

Presents historical artifacts from the history of:

CP/M

This is an automatic "excavation" of a thematic subset of
artifacts from Datamuseum.dk's BitArchive.

See our Wiki for more about CP/M

Excavated with: AutoArchaeologist - Free & Open Source Software.


top - metrics - download

⟦5439f7e11⟧

    Length: 1152 (0x480)
    Names: »PARAB.CSV«

Derivation

└─⟦f974e4adc⟧ Bits:30003931/CCPM_Studie.imd Disketter indleveret af Steffen Jensen (Piccolo/Piccoline)
    └─⟦this⟧ »PARAB.CSV« 

Hex Dump

0x000…020 (0,) 24 83 e9 f7 00 00 c0 04 a8 04 30 31 2f 70 61 72 61 62 2e 43 73 76 20 20 20 20 0a 00 d3 1f 01 01   ┆$         01/parab.Csv          ┆
0x020…040      20 50 4f 4c 59 32 20 20 20 20 53 74 65 66 66 65 6e 20 42 65 72 69 6e 67 20 4a 65 6e 73 65 6e 20   ┆ POLY2    Steffen Bering Jensen ┆
0x040…060      20 20 20 20 20 20 20 20 20 20 20 20 20 4a 61 6e 75 61 72 20 31 39 38 38 14 00 d3 1b 01 01 20 46   ┆             Januar 1988       F┆
0x060…080      69 6e 64 65 72 20 72 7c 64 64 65 72 20 66 6f 72 20 61 6e 64 65 6e 67 72 61 64 73 70 6f 6c 79 6e   ┆inder rødder for andengradspolyn┆
0x080…0a0      6f 6d 69 65 74 20 41 78 9e 2b 42 78 2b 43 1e 00 d3 03 01 01 32 00 86 04 08 00 01 00 3c 00 87 18   ┆omiet Ax +Bx+C      2       <   ┆
0x0a0…0c0      22 c0 20 00 20 20 49 6e 64 74 61 73 74 20 41 20 20 20 20 69 20 20 41 78 9e 2b 42 78 2b 63 3d 30   ┆"     Indtast A    i  Ax +Bx+c=0┆
0x0c0…0e0      20 20 20 3a 12 3a 02 80 05 00 01 00 46 00 87 18 22 c0 20 00 20 20 49 6e 64 74 61 73 74 20 42 20   ┆   : :      F   "     Indtast B ┆
0x0e0…100      20 20 20 20 20 20 20 20 2d 20 20 20 20 20 20 20 20 20 20 3a 12 3a 06 80 05 00 01 00 50 00 87 18   ┆        -          : :      P   ┆
0x100…120      22 c0 20 00 20 20 49 6e 64 74 61 73 74 20 43 20 20 20 20 20 20 20 20 20 2d 20 20 20 20 20 20 20   ┆"     Indtast C         -       ┆
0x120…140      20 20 20 3a 12 3a 0a 80 05 00 01 00 5a 00 86 19 28 c0 26 00 88 88 88 88 88 88 88 88 88 88 88 88   ┆   : :      Z   ( &             ┆
0x140…160      88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 07 00 01 00 64 00   ┆                              d ┆
0x160…180      d1 0e 0e 80 06 80 81 f2 20 00 81 f4 02 80 21 00 0a 80 21 00 23 00 1d 00 01 00 6e 00 86 13 18 c0   ┆              !   ! #     n     ┆
0x180…1a0      16 00 20 20 44 69 73 6b 72 69 6d 69 6e 61 6e 74 65 6e 20 44 20 20 3d 20 07 3b 0e 80 07 00 01 00   ┆    Diskriminanten D  =  ;      ┆
0x1a0…1c0      78 00 3f 09 00 00 b6 1e 0e 80 00 f0 27 00 2d 72 01 00 82 00 86 11 18 c0 16 00 20 20 49 6e 67 65   ┆x ?         ' -r            Inge┆
0x1c0…1e0      6e 20 6c 7c 73 6e 69 6e 67 65 72 20 44 3c 30 20 07 00 01 00 8c 00 5d 04 88 1f 01 00 96 00 3f 09   ┆n løsninger D<0       Å       ? ┆
0x1e0…200      7c 1e 48 1f 0e 80 00 f0 2a 00 2d 72 01 00 a0 00 86 1e 1a c0 18 00 20 20 54 6f 20 6c 7c 73 6e 69   ┆ø H     * -r            To løsni┆
0x200…220      6e 67 65 72 20 20 20 20 20 4c 31 20 3d 20 07 3b 06 80 2b 00 0e 80 50 00 24 00 14 00 81 f2 02 80   ┆nger     L1 =  ;  +   P $       ┆
0x220…240      21 00 14 00 22 00 07 00 01 00 aa 00 86 1e 1a c0 18 00 20 20 20 20 20 20 20 20 20 20 20 20 20 20   ┆!   "                           ┆
0x240…260      20 20 20 20 20 4c 32 20 3d 20 07 3b 06 80 2b 00 0e 80 50 00 23 00 14 00 81 f2 02 80 21 00 14 00   ┆     L2 =  ;  +   P #       !   ┆
0x260…280      22 00 07 00 01 00 b4 00 5d 04 82 1f 01 00 be 00 86 1a 1a c0 18 00 20 20 45 6e 20 6c 7c 73 6e 69   ┆"       Å               En løsni┆
0x280…2a0      6e 67 20 20 20 20 20 20 20 4c 20 20 3d 20 07 3b 06 80 2b 00 81 f2 02 80 21 00 14 00 22 00 07 00   ┆ng       L  =  ;  +     !   "   ┆
0x2a0…2c0      01 00 c8 00 80 03 01 00 d2 00 80 03 01 00 dc 00 86 1a 2a c0 27 00 88 88 88 88 88 88 88 88 88 88   ┆                  * '           ┆
0x2c0…2e0      88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 00 07 00   ┆                                ┆
0x2e0…300      01 00 e6 00 86 2d 20 c0 1d 00 20 20 54 6f 70 70 75 6e 6b 74 20 28 2d 42 2f 32 41 2c 2d 44 2f 34   ┆     -      Toppunkt (-B/2A,-D/4┆
0x300…320      41 29 20 20 3d 20 28 00 07 3b 06 80 2b 00 81 f2 02 80 21 00 14 00 22 00 07 3b 04 c0 01 00 2c 00   ┆A)  = (  ;  +     !   "  ;    , ┆
0x320…340      07 3b 0e 80 2b 00 81 f4 02 80 21 00 14 00 22 00 07 3b 04 c0 01 00 29 00 07 00 01 00 f0 00 86 04   ┆ ;  +     !   "  ;    )         ┆
0x340…360      08 00 01 00 fa 00 86 14 1e c0 1b 00 20 49 6e 64 74 61 73 74 20 78 20 6f 67 20 79 20 72 65 74 75   ┆             Indtast x og y retu┆
0x360…380      72 6e 65 72 65 73 2e 00 07 00 01 00 04 01 83 04 00 00 01 00 0e 01 87 13 18 c0 16 00 20 54 61 73   ┆rneres.                      Tas┆
0x380…3a0      74 20 65 6e 20 76 7b 72 64 69 20 66 6f 72 20 78 20 3a 12 3a 12 80 05 00 01 00 18 01 86 30 2a c0   ┆t en værdi for x : :         0* ┆
0x3a0…3c0      27 00 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20   ┆'                               ┆
0x3c0…3e0      20 20 46 4f 52 20 58 3d 20 00 07 3b 12 80 07 3b 0c c0 09 00 20 20 20 45 52 20 59 3d 20 00 07 3b   ┆  FOR X=   ;   ;       ER Y=   ;┆
0x3e0…400      02 80 12 80 81 f2 20 00 21 00 06 80 12 80 21 00 24 00 0a 80 24 00 07 00 01 00 22 01 84 06 4e 20   ┆        !     ! $   $     "   N ┆
0x400…420 (1,) 00 e0 2d 0a 01 00 10 27 d6 00 e9 f7 02 41 da f7 02 42 cb f7 02 43 bc f7 02 44 ad f7 02 58 00 00   ┆  -    '     A   B   C   D   X  ┆
0x420…440      00 46 1a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   ┆ F                              ┆
0x440…460      00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   ┆                                ┆
       […0x1…]