DataMuseum.dk

Presents historical artifacts from the history of:

CP/M

This is an automatic "excavation" of a thematic subset of
artifacts from Datamuseum.dk's BitArchive.

See our Wiki for more about CP/M

Excavated with: AutoArchaeologist - Free & Open Source Software.


top - metrics - download

⟦787fe95fa⟧

    Length: 2048 (0x800)
    Names: »korrelat.ion«

Derivation

└─⟦07d5ad368⟧ Bits:30003894/4xCOMAL_2.afd.imd 4 * COMAL - RC700 - Disketter til bogen
    └─⟦this⟧ »korrelat.ion« 

Hex Dump

0x000…020 (0,) 09 81 c2 c5 74 21 2a 04 cf 03 31 2f 6b 6f 72 72 65 6c 61 74 69 6f 6e 20 20 20 0a 00 d3 1f 01 01   ┆    t!*   1/korrelation         ┆
0x020…040      20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 20 6b 6f 72 72 65 6c 61 74 69 6f 6e   ┆ ------------------- korrelation┆
0x040…060      20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 14 00 d3 1e 01 01 20 50   ┆ -----------------------       P┆
0x060…080      72 6f 67 72 61 6d 6d 65 74 20 66 69 6e 64 65 72 20 65 6e 20 72 7b 6b 6b 65 20 64 65 73 6b 72 69   ┆rogrammet finder en række deskri┆
0x080…0a0      70 74 6f 72 65 72 20 66 6f 72 20 6e 20 74 61 6c 70 61 72 3a 1e 00 d3 18 01 01 20 28 78 31 2c 79   ┆ptorer for n talpar:       (x1,y┆
0x0a0…0c0      31 29 2c 28 78 32 2c 79 32 29 2c 2e 2e 2e 2e 2e 2e 2e 2e 2e 2e 2e 2e 2e 2e 2e 2e 2c 28 78 6e 2c   ┆1),(x2,y2),................,(xn,┆
0x0c0…0e0      79 6e 29 2e 28 00 d3 15 01 01 20 6e 20 61 6e 67 69 76 65 73 20 69 20 64 65 6e 20 66 7c 72 73 74   ┆yn).(      n angives i den først┆
0x0e0…100      65 20 64 61 74 61 73 7b 74 6e 69 6e 67 2e 32 00 d3 1c 01 01 20 78 31 2c 78 32 2c 20 2e 2e 2e 20   ┆e datasætning.2      x1,x2, ... ┆
0x100…120      2c 20 78 6e 20 61 6e 67 69 76 65 73 20 69 20 64 65 20 6e 7b 73 74 65 20 64 61 74 61 73 7b 74 6e   ┆, xn angives i de næste datasætn┆
0x120…140      69 6e 67 65 72 00 3c 00 d3 1c 01 01 20 79 31 2c 79 32 2c 20 2e 2e 2e 20 2c 20 79 6e 20 61 6e 67   ┆inger <      y1,y2, ... , yn ang┆
0x140…160      69 76 65 73 20 69 20 64 65 20 6e 7b 73 74 65 20 64 61 74 61 73 7b 74 6e 69 6e 67 65 72 00 46 00   ┆ives i de næste datasætninger F ┆
0x160…180      d3 03 01 00 50 00 86 0a fc af 01 20 00 00 00 00 00 82 55 00 07 00 01 00 5a 00 69 05 ff ff 06 00   ┆    P             U     Z i     ┆
0x180…1a0      01 00 64 00 67 0b ff ff 03 01 fb ff 2d 2c ff ff 03 01 f7 ff 2d 00 01 00 6e 00 d1 12 f3 ff 00 90   ┆  d g       -,      -   n       ┆
0x1a0…1c0      1d 1b ee ff 00 90 1d 1b e9 ff 00 90 1d 1b e4 ff 00 90 1d 1b df ff 00 90 1d 00 01 00 78 00 5e 0e   ┆                            x ^ ┆
0x1c0…1e0      da ff 7f 8e 1d 00 ff ff 3b 00 11 3c 69 00 da ff 02 01 fb ff 06 00 01 00 82 00 5e 0e da ff 7f 8e   ┆        ;  <i             ^     ┆
0x1e0…200      1d 00 ff ff 3b 00 11 3c 69 00 da ff 02 01 f7 ff 06 00 01 00 8c 00 5f 0b 00 00 30 77 da ff 7f 8e   ┆    ;  <i             _   0w    ┆
0x200…220 (1,) 1d 00 ff ff 3b 00 11 3d 01 00 96 00 d1 0a f3 ff f3 ff da ff 02 01 fb ff 24 00 1d 00 01 00 a0 00   ┆    ;  =                $       ┆
0x220…240      d1 0a ee ff ee ff da ff 02 01 f7 ff 24 00 1d 00 01 00 aa 00 d1 0c e9 ff e9 ff da ff 02 01 fb ff   ┆            $                   ┆
0x240…260      7f 8d 20 00 24 00 1d 00 01 00 b4 00 d1 0c e4 ff e4 ff da ff 02 01 f7 ff 7f 8d 20 00 24 00 1d 00   ┆    $                       $   ┆
0x260…280      01 00 be 00 d1 0e df ff df ff da ff 02 01 fb ff da ff 02 01 f7 ff 21 00 24 00 1d 00 01 00 c8 00   ┆                      ! $       ┆
0x280…2a0      60 05 b2 76 da ff 01 00 d2 00 d1 08 d6 ff f3 ff ff ff 22 00 1d 00 01 00 dc 00 d1 08 d2 ff ee ff   ┆`  v              "             ┆
0x2a0…2c0      ff ff 22 00 1d 00 01 00 e6 00 d1 0c ce ff e9 ff ff ff 22 00 d6 ff d6 ff 21 00 23 00 1d 00 01 00   ┆  "               "     ! #     ┆
0x2c0…2e0      f0 00 d1 0c ca ff e4 ff ff ff 22 00 d2 ff d2 ff 21 00 23 00 1d 00 01 00 fa 00 d1 0c ba ff df ff   ┆          "     ! #             ┆
0x2e0…300      ff ff 22 00 d6 ff d2 ff 21 00 23 00 1d 00 01 00 04 01 d1 07 c6 ff ce ff 50 00 1d 00 01 00 0e 01   ┆  "     ! #             P       ┆
0x300…320      d1 07 c2 ff ca ff 50 00 1d 00 01 00 18 01 d1 0a be ff ba ff c6 ff 22 00 c2 ff 22 00 1d 00 01 00   ┆      P               "   "     ┆
0x320…340      22 01 d1 08 b4 ff ba ff ce ff 22 00 1d 00 01 00 2c 01 d1 0a b0 ff d2 ff b4 ff d6 ff 21 00 23 00   ┆"         "     ,           ! # ┆
0x340…360      1d 00 01 00 36 01 86 1e f0 bf 1d 00 4f 62 73 65 72 76 61 74 69 6f 6e 73 73 7b 74 74 65 74 20 62   ┆    6       Observationssættet b┆
0x360…380      65 73 74 7d 72 20 61 66 20 00 07 2c ff ff 07 2c fb bf 08 00 20 74 61 6c 70 61 72 2e 07 00 01 00   ┆estår af   ,   ,     talpar.    ┆
0x380…3a0      40 01 86 04 08 00 01 00 4a 01 86 11 f4 bf 15 00 4f 62 73 65 72 76 61 74 69 6f 6e 73 73 7b 74 74   ┆@       J       Observationssætt┆
0x3a0…3c0      65 74 20 58 3a 00 07 00 01 00 54 01 5e 14 da ff 7f 8e 1d 00 ff ff 3b 00 11 3c 86 00 fc bf 06 00   ┆et X:     T ^         ;  <      ┆
0x3c0…3e0      23 23 23 23 2c 20 2d 04 da ff 02 01 fb ff 09 2c 01 00 5e 01 86 04 08 00 01 00 68 01 86 04 08 00   ┆####, -        ,  ^       h     ┆
0x3e0…400      01 00 72 01 86 11 f4 bf 15 00 4f 62 73 65 72 76 61 74 69 6f 6e 73 73 7b 74 74 65 74 20 59 3a 00   ┆  r       Observationssættet Y: ┆
0x400…420 (2,) 07 00 01 00 7c 01 5e 14 da ff 7f 8e 1d 00 ff ff 3b 00 11 3c 86 00 fc bf 06 00 23 23 23 23 2c 20   ┆    ø ^         ;  <      ####, ┆
0x420…440      2d 04 da ff 02 01 f7 ff 09 2c 01 00 86 01 86 04 08 00 01 00 90 01 86 04 08 00 01 00 9a 01 86 21   ┆-        ,                     !┆
0x440…460      e4 bf 35 00 4f 62 73 65 72 76 61 74 69 6f 6e 73 73 7b 74 74 65 6e 65 20 58 20 6f 67 20 59 20 68   ┆  5 Observationssættene X og Y h┆
0x460…480      61 72 20 66 7c 6c 67 65 6e 64 65 20 64 65 73 6b 72 69 70 74 6f 72 65 72 3a 00 07 00 01 00 a4 01   ┆ar følgende deskriptorer:       ┆
0x480…4a0      86 04 08 00 01 00 ae 01 86 11 f6 bf 11 00 4d 28 58 29 20 20 20 20 3d 23 23 23 23 2e 23 23 23 00   ┆              M(X)    =####.### ┆
0x4a0…4c0      2d 04 d6 ff 09 00 01 00 b8 01 86 11 f6 bf 11 00 4d 28 59 29 20 20 20 20 3d 23 23 23 23 2e 23 23   ┆-               M(Y)    =####.##┆
0x4c0…4e0      23 00 2d 04 d2 ff 09 00 01 00 c2 01 86 11 f6 bf 11 00 56 28 58 29 20 20 20 20 3d 23 23 23 23 2e   ┆# -               V(X)    =####.┆
0x4e0…500      23 23 23 00 2d 04 ce ff 09 00 01 00 cc 01 86 11 f6 bf 11 00 56 28 59 29 20 20 20 20 3d 23 23 23   ┆### -               V(Y)    =###┆
0x500…520      23 2e 23 23 23 00 2d 04 ca ff 09 00 01 00 d6 01 86 11 f6 bf 11 00 53 28 58 29 20 20 20 20 3d 23   ┆#.### -               S(X)    =#┆
0x520…540      23 23 23 2e 23 23 23 00 2d 04 c6 ff 09 00 01 00 e0 01 86 11 f6 bf 11 00 53 28 59 29 20 20 20 20   ┆###.### -               S(Y)    ┆
0x540…560      3d 23 23 23 23 2e 23 23 23 00 2d 04 c2 ff 09 00 01 00 ea 01 86 11 f6 bf 11 00 43 4f 56 28 58 2c   ┆=####.### -               COV(X,┆
0x560…580      59 29 3d 23 23 23 23 2e 23 23 23 00 2d 04 ba ff 09 00 01 00 f4 01 86 11 f6 bf 11 00 52 28 58 2c   ┆Y)=####.### -               R(X,┆
0x580…5a0      59 29 20 20 3d 23 23 23 23 2e 23 23 23 00 2d 04 be ff 09 00 01 00 fe 01 86 04 08 00 01 00 08 02   ┆Y)  =####.### -                 ┆
0x5a0…5c0      86 1d e8 bf 2e 00 59 2d 72 65 67 72 65 73 73 69 6f 6e 73 6c 69 6e 69 65 6e 20 79 3a 3d 61 78 20   ┆    . Y-regressionslinien y:=ax ┆
0x5c0…5e0      2b 20 62 20 65 72 20 66 61 73 74 6c 61 67 74 20 76 65 64 3a 07 00 01 00 12 02 86 0d fa bf 09 00   ┆+ b er fastlagt ved:            ┆
0x5e0…600      61 3d 23 23 23 2e 23 23 23 00 2d 04 b4 ff 09 00 01 00 1c 02 86 0d fa bf 09 00 62 3d 23 23 23 2e   ┆a=###.### -               b=###.┆
0x600…620 (3,) 23 23 23 00 2d 04 b0 ff 09 00 01 00 26 02 86 04 08 00 01 00 30 02 68 05 c8 7a 7f 87 01 00 3a 02   ┆### -       &       0 h  z    : ┆
0x620…640      68 10 e8 7a 7f 8a 7f 88 7f 87 7e 8e 7f 87 fc af 01 10 00 00 00 00 00 82 7f 86 7f 88 01 00 44 02   ┆h  z      ü                   D ┆
0x640…660      68 10 00 00 fc af 01 20 00 00 00 00 00 82 7f 87 7f 88 7f 89 7f 87 7f 8b 7f 88 7f 86 01 00 4e 02   ┆h                             N ┆
0x660…680      86 1f ea bf 29 00 4c 69 6e 69 65 6e 73 20 6c 69 67 6e 69 6e 67 3a 20 20 20 79 20 3d 20 23 23 23   ┆    ) Liniens ligning:   y = ###┆
0x680…6a0      2e 23 23 23 78 20 2b 20 23 23 23 2e 23 23 23 00 2d 04 b4 ff 09 2c b0 ff 09 00 01 00 58 02 83 04   ┆.###x + ###.### -    ,      X   ┆
0x6a0…6c0      00 00 01 00 62 02 d1 07 ac ff 79 00 56 00 1d 00 01 00 6c 02 86 19 7e 88 fc af 02 40 00 00 00 00   ┆    b     y V     l   ü    @    ┆
0x6c0…6e0      00 82 3a 02 07 3b fc af 01 30 00 00 00 00 00 83 55 00 07 3b fb bf 07 00 52 65 74 75 72 6e 21 00   ┆  :  ;   0      U  ;    Return! ┆
0x6e0…700      07 00 01 00 76 02 84 0c 4c 7b ac ff fc af 01 30 00 00 00 00 00 82 28 00 2d 0a 01 00 10 27 d6 00   ┆    v   Læ     0      ( -    '  ┆
0x700…720      c2 bc c2 bc 01 00 4e 00 7a bc 7a bc 01 00 58 00 32 bc 32 bc 01 00 59 00 26 bc 26 bc 02 00 53 55   ┆      N z z   X 2 2   Y & &   SU┆
0x720…740      4d 31 1a bc 1a bc 02 00 53 55 4d 32 0e bc 0e bc 02 00 53 55 4d 33 02 bc 02 bc 02 00 53 55 4d 34   ┆M1      SUM2      SUM3      SUM4┆
0x740…760      f6 bb f6 bb 02 00 53 55 4d 35 ea bb ea bb 01 00 49 00 de bb de bb 01 00 4d 58 d2 bb d2 bb 01 00   ┆      SUM5      I       MX      ┆
0x760…780      4d 59 c6 bb c6 bb 01 00 56 58 ba bb ba bb 01 00 56 59 a2 bb a2 bb 01 00 53 58 96 bb 96 bb 01 00   ┆MY      VX      VY      SX      ┆
0x780…7a0      53 59 8a bb 8a bb 01 00 52 00 ae bb ae bb 03 00 43 4f 56 58 59 00 7e bb 7e bb 01 00 41 00 72 bb   ┆SY      R       COVXY ü ü   A r ┆
0x7a0…7c0      72 bb 01 00 42 00 66 bb 66 bb 02 00 56 45 4e 54 00 00 00 00 00 00 1a 00 00 00 00 00 00 00 00 00   ┆r   B f f   VENT                ┆
0x7c0…7e0      00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   ┆                                ┆
       […0x1…]