DataMuseum.dk

Presents historical artifacts from the history of:

CP/M

This is an automatic "excavation" of a thematic subset of
artifacts from Datamuseum.dk's BitArchive.

See our Wiki for more about CP/M

Excavated with: AutoArchaeologist - Free & Open Source Software.


top - metrics - download

⟦93771f4f7⟧

    Length: 1280 (0x500)
    Names: »FYS2KKP2.CSV«

Derivation

└─⟦f974e4adc⟧ Bits:30003931/CCPM_Studie.imd Disketter indleveret af Steffen Jensen (Piccolo/Piccoline)
    └─⟦this⟧ »FYS2KKP2.CSV« 

Hex Dump

0x000…020 (0,) 24 83 f1 f7 00 00 8d 05 c0 04 30 31 2f 66 79 73 6b 6b 70 32 2e 43 73 76 20 20 01 00 67 13 08 d0   ┆$         01/fyskkp2.Csv    g   ┆
0x020…040      06 50 00 00 00 00 00 82 03 01 65 80 2d 2c 08 d0 03 10 00 00 00 00 00 82 03 01 1d 80 2d 00 01 00   ┆ P        e -,              -   ┆
0x040…060      04 00 6c 05 81 f5 2d 00 01 00 05 00 6d 0d 81 f1 2d 1d 0a c0 08 00 74 64 79 74 2e 64 61 74 2d 1f   ┆  l   -     m   -     tdyt.dat- ┆
0x060…080      0d 00 01 00 06 00 5f 0f 00 00 78 1d 69 80 81 f1 1d 00 08 d0 06 20 00 00 00 00 00 82 3b 00 11 3d   ┆      _   x i               ;  =┆
0x080…0a0      01 00 07 00 69 09 81 f1 2d 1e 69 80 02 01 65 80 0c 00 01 00 08 00 60 05 5c 1d 69 80 01 00 09 00   ┆    i   - i   e       ` Ø i     ┆
0x0a0…0c0      8d 05 81 f1 2d 1c 01 00 0a 00 d3 03 01 00 14 00 5f 10 00 00 e0 1d 70 80 81 f1 1d 00 08 d0 06 20   ┆    -           _     p         ┆
0x0c0…0e0      00 00 00 00 00 82 3b 00 81 f2 5c 3d 01 00 15 00 d1 17 70 80 81 f1 23 00 14 00 81 f2 22 00 81 f1   ┆      ;   Ø=      p   #     "   ┆
0x0e0…100      24 00 02 01 1d 80 70 80 02 01 65 80 08 d0 02 22 00 00 00 00 00 82 23 00 1d 00 01 00 3c 00 60 05   ┆$     p   e    "      #     < ` ┆
0x100…120      a8 1d 70 80 01 00 46 00 d3 03 01 00 c1 02 d3 17 01 01 20 45 58 50 20 41 46 54 41 47 45 4e 44 45   ┆  p   F            EXP AFTAGENDE┆
0x120…140      20 46 55 4e 4b 54 49 4f 4e 20 46 59 53 49 4b 20 52 41 50 50 4f 52 54 20 32 2e c6 02 d3 03 01 00   ┆ FUNKTION FYSIK RAPPORT 2.      ┆
0x140…160      cb 02 d1 06 2b 80 83 f2 1d 00 01 00 f3 02 d3 03 01 00 f8 02 78 0b 5c 1e 00 02 50 80 57 80 00 00   ┆    +               x Ø   P W   ┆
0x160…180      1d 80 00 00 2d 00 01 00 fd 02 99 09 1d 80 4e 00 57 80 4e 00 22 00 2d 0e 01 00 02 03 aa 04 50 80   ┆    -         N W N " -       P ┆
0x180…1a0      01 00 07 03 d3 03 01 00 0c 03 d3 03 01 00 11 03 bb 05 81 f1 2d 00 01 00 16 03 b2 15 08 d0 04 50   ┆                    -          P┆
0x1a0…1c0      00 00 00 00 00 82 2b 00 2d 2c 08 d0 02 20 00 00 00 00 00 83 2d 2c 81 f1 2b 00 2d 2c 81 f3 2d 00   ┆      + -,          -,  + -,  - ┆
0x1c0…1e0      01 00 1b 03 43 05 33 80 2d 0d 01 00 20 03 d3 03 01 00 25 03 d3 11 01 01 46 4f 52 20 69 3a 3d 20   ┆    C 3 -         %     FOR i:= ┆
0x1e0…200      31 20 54 4f 20 32 30 30 20 53 54 45 50 20 30 2e 32 20 44 4f 2a 03 d3 08 01 01 61 3a 3d 20 6b 61   ┆1 TO 200 STEP 0.2 DO*     a:= ka┆
0x200…220      6c 28 69 29 2f 03 d3 16 01 01 49 46 20 61 3e 30 20 41 4e 44 20 61 3c 37 30 20 54 48 45 4e 20 70   ┆l(i)/     IF a>0 AND a<70 THEN p┆
0x220…240      6c 6f 74 28 69 2c 4c 4f 47 28 61 29 2a 31 30 29 34 03 d3 09 01 01 61 3a 3d 20 67 6c 61 73 28 69   ┆lot(i,LOG(a)*10)4     a:= glas(i┆
0x240…260      29 00 39 03 d3 16 01 01 49 46 20 61 3e 30 20 41 4e 44 20 61 3c 37 30 20 54 48 45 4e 20 70 6c 6f   ┆) 9     IF a>0 AND a<70 THEN plo┆
0x260…280      74 28 69 2c 4c 4f 47 28 61 29 2a 31 30 29 3e 03 d3 06 01 01 4e 45 58 54 20 69 43 03 d3 03 01 00   ┆t(i,LOG(a)*10)>     NEXT iC     ┆
0x280…2a0      48 03 5f 0b 00 00 94 1f 02 80 81 f1 1d 00 82 f3 3b 00 11 3d 01 00 4d 03 43 0d 02 80 82 f1 02 80   ┆H _             ;  =  M C       ┆
0x2a0…2c0      02 01 1d 80 02 02 50 80 02 02 06 80 2d 0d 01 00 52 03 60 05 70 1f 02 80 01 00 57 03 63 0b ce 1f   ┆      P     -   R ` p     W c   ┆
0x2c0…2e0      00 02 06 80 0d 80 00 00 11 80 00 00 2d 00 01 00 5c 03 b4 07 0d 80 2d 2c 11 80 2d 00 01 00 61 03   ┆            -   Ø     -,  -   a ┆
0x2e0…300      b6 07 0d 80 2d 2c 11 80 2d 00 01 00 66 03 a3 04 06 80 01 00 6b 03 d3 03 01 00 70 03 63 07 f8 20   ┆    -,  -   f       k     p c   ┆
0x300…320      00 00 33 80 2d 00 01 00 75 03 b4 07 00 f0 2d 2c 00 f0 2d 00 01 00 7a 03 b7 07 83 f2 2d 2c 00 f0   ┆  3 -   u     -,  -   z     -,  ┆
0x320…340      2d 00 01 00 7f 03 b4 07 00 f0 2d 2c 00 f0 2d 00 01 00 84 03 b7 07 00 f0 2d 2c 81 f2 2d 00 01 00   ┆-         -,  -         -,  -   ┆
0x340…360      89 03 b4 07 00 f0 2d 2c 81 f1 2d 00 01 00 8e 03 5f 0f d6 1f 6c 20 3a 80 00 f0 1d 00 08 d0 04 80   ┆      -,  -     _   l :         ┆
0x360…380      00 00 00 00 00 82 3b 00 11 3d 01 00 93 03 b5 07 81 f2 2d 2c 00 f0 2d 00 01 00 98 03 b7 07 81 f2   ┆      ;  =        -,  -         ┆
0x380…3a0      2d 2c 00 f0 2d 00 01 00 9d 03 60 05 46 20 3a 80 01 00 a2 03 5f 0b d6 1f ae 20 2f 80 00 f0 1d 00   ┆-,  -     ` F :     _     /     ┆
0x3a0…3c0      82 f1 3b 00 11 3d 01 00 a7 03 b4 0a 81 f2 2b 00 2d 2c 2f 80 80 f2 21 00 2d 00 01 00 ac 03 b7 07   ┆  ;  =        + -,/   ! -       ┆
0x3c0…3e0      81 f4 2d 2c 00 f0 2d 00 01 00 b1 03 60 05 82 20 2f 80 01 00 b6 03 5f 0b d6 1f f0 20 2f 80 00 f0   ┆  -,  -     `   /     _     /   ┆
0x3e0…400      1d 00 82 f2 3b 00 11 3d 01 00 bb 03 b4 0a 2f 80 82 f1 21 00 2d 2c 80 f2 2b 00 2d 00 01 00 c0 03   ┆    ;  =      /   ! -,  + -     ┆
0x400…420 (1,) b7 07 00 f0 2d 2c 80 f4 2d 00 01 00 c5 03 60 05 c4 20 2f 80 01 00 ca 03 a3 04 33 80 01 00 10 27   ┆    -,  -     `   /       3    '┆
0x420…440      d6 00 65 f4 02 49 ea f7 05 50 4c 4f 54 00 00 02 58 00 00 02 59 00 00 02 46 00 00 02 41 bf f4 02   ┆  e  I   PLOT   X   Y   F   A   ┆
0x440…460      50 00 00 08 4c 4f 47 50 4c 4f 54 92 f4 02 55 74 f4 02 47 e3 f7 05 4b 4f 4f 52 83 f4 02 4b 00 00   ┆P   LOGPLOT   Ut  G   KOOR   K  ┆
0x460…480      05 47 4c 41 53 00 00 04 4b 41 4c 00 00 03 4c 4e f1 f7 05 4c 4f 47 42 00 00 02 42 00 00 08 45 4e   ┆ GLAS   KAL   LN   LOGB   B   EN┆
0x480…4a0      44 46 55 42 43 c9 f5 02 54 b0 f4 05 54 54 5b 4c a1 f4 03 54 31 00 00 02 4c 00 00 06 53 55 4d 5f   ┆DFUBC   T   TTÆL   T1   L   SUM_┆
0x4a0…4c0      41 00 00 06 54 5b 4c 5f 41 00 00 06 53 55 4d 5f 42 00 00 06 54 5b 4c 5f 42 00 00 03 48 31 00 00   ┆A   TÆL_A   SUM_B   TÆL_B   H1  ┆
0x4c0…4e0      03 48 32 00 00 03 54 41 00 00 03 43 41 00 00 03 54 42 00 00 03 43 42 00 00 03 58 31 00 00 03 59   ┆ H2   TA   CA   TB   CB   X1   Y┆
0x4e0…500      31 00 00 03 58 32 00 00 03 59 32 00 00 00 00 1a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   ┆1   X2   Y2                     ┆