|
DataMuseum.dkPresents historical artifacts from the history of: DKUUG/EUUG Conference tapes |
This is an automatic "excavation" of a thematic subset of
See our Wiki for more about DKUUG/EUUG Conference tapes Excavated with: AutoArchaeologist - Free & Open Source Software. |
top - metrics - downloadIndex: T V
Length: 11594 (0x2d4a) Types: TextFile Names: »Vec.ccP«
└─⟦a05ed705a⟧ Bits:30007078 DKUUG GNU 2/12/89 └─⟦cc8755de2⟧ »./libg++-1.36.1.tar.Z« └─⟦23757c458⟧ └─⟦this⟧ »libg++/g++-include/Vec.ccP«
// This may look like C code, but it is really -*- C++ -*- /* Copyright (C) 1988 Free Software Foundation written by Doug Lea (dl@rocky.oswego.edu) This file is part of GNU CC. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY. No author or distributor accepts responsibility to anyone for the consequences of using it or for whether it serves any particular purpose or works at all, unless he says so in writing. Refer to the GNU CC General Public License for full details. Everyone is granted permission to copy, modify and redistribute GNU CC, but only under the conditions described in the GNU CC General Public License. A copy of this license is supposed to have been given to you along with GNU CC so you can know your rights and responsibilities. It should be in a file named COPYING. Among other things, the copyright notice and this notice must be preserved on all copies. */ #include <stream.h> #include "<T>.Vec.h" // error handling void default_<T>Vec_error_handler(char* msg) { cerr << "Fatal <T>Vec error. " << msg << "\n"; exit(1); } one_arg_error_handler_t <T>Vec_error_handler = default_<T>Vec_error_handler; one_arg_error_handler_t set_<T>Vec_error_handler(one_arg_error_handler_t f) { one_arg_error_handler_t old = <T>Vec_error_handler; <T>Vec_error_handler = f; return old; } void <T>Vec::error(const char* msg) { (*<T>Vec_error_handler)(msg); } void <T>Vec::range_error() { (*<T>Vec_error_handler)("Index out of range."); } // can't just realloc since there may be need for constructors/destructors void <T>Vec::resize(int newl) { <T>* news = new <T> [newl]; <T>* p = news; int minl = len <? newl; <T>* top = &(s[minl]); <T>* t = s; while (t < top) *p++ = *t++; delete [len] s; s = news; len = newl; } <T>Vec concat(<T>Vec & a, <T>Vec & b) { int newl = a.len + b.len; <T>* news = new <T> [newl]; <T>* p = news; <T>* top = &(a.s[a.len]); <T>* t = a.s; while (t < top) *p++ = *t++; top = &(b.s[b.len]); t = b.s; while (t < top) *p++ = *t++; return <T>Vec(newl, news); } <T>Vec combine(<T>Combiner f, <T>Vec& a, <T>Vec& b) { int newl = a.len <? b.len; <T>* news = new <T> [newl]; <T>* p = news; <T>* top = &(a.s[newl]); <T>* t = a.s; <T>* u = b.s; while (t < top) *p++ = (*f)(*t++, *u++); return <T>Vec(newl, news); } <T> <T>Vec::reduce(<T>Combiner f, <T&> base) { <T> r = base; <T>* top = &(s[len]); <T>* t = s; while (t < top) r = (*f)(r, *t++); return r; } <T>Vec reverse(<T>Vec& a) { <T>* news = new <T> [a.len]; if (a.len != 0) { <T>* lo = news; <T>* hi = &(news[a.len - 1]); while (lo < hi) { <T> tmp = *lo; *lo++ = *hi; *hi-- = tmp; } } return <T>Vec(a.len, news); } void <T>Vec::reverse() { if (len != 0) { <T>* lo = s; <T>* hi = &(s[len - 1]); while (lo < hi) { <T> tmp = *lo; *lo++ = *hi; *hi-- = tmp; } } } int <T>Vec::index(<T&> targ) { for (int i = 0; i < len; ++i) if (targ == s[i]) return i; return -1; } <T>Vec map(<T>Mapper f, <T>Vec& a) { <T>* news = new <T> [a.len]; <T>* p = news; <T>* top = &(a.s[a.len]); <T>* t = a.s; while(t < top) *p++ = (*f)(*t++); return <T>Vec(a.len, news); } int operator == (<T>Vec& a, <T>Vec& b) { if (a.len != b.len) return 0; <T>* top = &(a.s[a.len]); <T>* t = a.s; <T>* u = b.s; while (t < top) if (*t++ != *u++) return 0; return 1; } void <T>Vec::fill(<T&> val, int from = 0, int n = -1) { int to; if (n < 0) to = len - 1; else to = from + n - 1; if ((unsigned)from > to) range_error(); <T>* t = &(s[from]); <T>* top = &(s[to]); while (t <= top) *t++ = val; } <T>Vec <T>Vec::at(int from = 0, int n = -1) { int to; if (n < 0) { n = len - from; to = len - 1; } else to = from + n - 1; if ((unsigned)from > to) range_error(); <T>* news = new <T> [n]; <T>* p = news; <T>* t = &(s[from]); <T>* top = &(s[to]); while (t <= top) *p++ = *t++; return <T>Vec(n, news); } <T>Vec merge(<T>Vec & a, <T>Vec & b, <T>Comparator f) { int newl = a.len + b.len; <T>* news = new <T> [newl]; <T>* p = news; <T>* topa = &(a.s[a.len]); <T>* as = a.s; <T>* topb = &(b.s[b.len]); <T>* bs = b.s; for (;;) { if (as >= topa) { while (bs < topb) *p++ = *bs++; break; } else if (bs >= topb) { while (as < topa) *p++ = *as++; break; } else if ((*f)(*as, *bs) <= 0) *p++ = *as++; else *p++ = *bs++; } return <T>Vec(newl, news); } static int gsort(<T>*, int, <T>Comparator); void <T>Vec::sort (<T>Comparator compar) { gsort(s, len, compar); } // An adaptation og Schmidt's new quicksort static inline void SWAP(<T>* A, <T>* B) { <T> tmp = *A; *A = *B; *B = tmp; } /* This should be replaced by a standard ANSI macro. */ #define BYTES_PER_WORD 8 /* The next 4 #defines implement a very fast in-line stack abstraction. */ #define STACK_SIZE (BYTES_PER_WORD * sizeof (long)) #define PUSH(LOW,HIGH) do {top->lo = LOW;top++->hi = HIGH;} while (0) #define POP(LOW,HIGH) do {LOW = (--top)->lo;HIGH = top->hi;} while (0) #define STACK_NOT_EMPTY (stack < top) /* Discontinue quicksort algorithm when partition gets below this size. This particular magic number was chosen to work best on a Sun 4/260. */ #define MAX_THRESH 4 /* Order size using quicksort. This implementation incorporates four optimizations discussed in Sedgewick: 1. Non-recursive, using an explicit stack of pointer that store the next array partition to sort. To save time, this maximum amount of space required to store an array of MAX_INT is allocated on the stack. Assuming a 32-bit integer, this needs only 32 * sizeof (stack_node) == 136 bits. Pretty cheap, actually. 2. Chose the pivot element using a median-of-three decision tree. This reduces the probability of selecting a bad pivot value and eliminates certain extraneous comparisons. 3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving insertion sort to order the MAX_THRESH items within each partition. This is a big win, since insertion sort is faster for small, mostly sorted array segements. 4. The larger of the two sub-partitions is always pushed onto the stack first, with the algorithm then concentrating on the smaller partition. This *guarantees* no more than log (n) stack size is needed! */ static int gsort (<T> *base_ptr, int total_elems, <T>Comparator cmp) { /* Stack node declarations used to store unfulfilled partition obligations. */ struct stack_node { <T> *lo; <T> *hi; }; <T> pivot_buffer; int max_thresh = MAX_THRESH; if (total_elems > MAX_THRESH) { <T> *lo = base_ptr; <T> *hi = lo + (total_elems - 1); <T> *left_ptr; <T> *right_ptr; stack_node stack[STACK_SIZE]; /* Largest size needed for 32-bit int!!! */ stack_node *top = stack + 1; while (STACK_NOT_EMPTY) { { <T> *pivot = &pivot_buffer; { /* Select median value from among LO, MID, and HI. Rearrange LO and HI so the three values are sorted. This lowers the probability of picking a pathological pivot value and skips a comparison for both the LEFT_PTR and RIGHT_PTR. */ <T> *mid = lo + ((hi - lo) >> 1); if ((*cmp) (*mid, *lo) < 0) SWAP (mid, lo); if ((*cmp) (*hi, *mid) < 0) SWAP (mid, hi); else goto jump_over; if ((*cmp) (*mid, *lo) < 0) SWAP (mid, lo); jump_over: *pivot = *mid; pivot = &pivot_buffer; } left_ptr = lo + 1; right_ptr = hi - 1; /* Here's the famous ``collapse the walls'' section of quicksort. Gotta like those tight inner loops! They are the main reason that this algorithm runs much faster than others. */ do { while ((*cmp) (*left_ptr, *pivot) < 0) left_ptr += 1; while ((*cmp) (*pivot, *right_ptr) < 0) right_ptr -= 1; if (left_ptr < right_ptr) { SWAP (left_ptr, right_ptr); left_ptr += 1; right_ptr -= 1; } else if (left_ptr == right_ptr) { left_ptr += 1; right_ptr -= 1; break; } } while (left_ptr <= right_ptr); } /* Set up pointers for next iteration. First determine whether left and right partitions are below the threshold size. If so, ignore one or both. Otherwise, push the larger partition's bounds on the stack and continue sorting the smaller one. */ if ((right_ptr - lo) <= max_thresh) { if ((hi - left_ptr) <= max_thresh) /* Ignore both small partitions. */ POP (lo, hi); else /* Ignore small left partition. */ lo = left_ptr; } else if ((hi - left_ptr) <= max_thresh) /* Ignore small right partition. */ hi = right_ptr; else if ((right_ptr - lo) > (hi - left_ptr)) /* Push larger left partition indices. */ { PUSH (lo, right_ptr); lo = left_ptr; } else /* Push larger right partition indices. */ { PUSH (left_ptr, hi); hi = right_ptr; } } } /* Once the BASE_PTR array is partially sorted by quicksort the rest is completely sorted using insertion sort, since this is efficient for partitions below MAX_THRESH size. BASE_PTR points to the beginning of the array to sort, and END_PTR points at the very last element in the array (*not* one beyond it!). */ { <T> *end_ptr = base_ptr + 1 * (total_elems - 1); <T> *run_ptr; <T> *tmp_ptr = base_ptr; <T> *thresh = end_ptr <? (base_ptr + max_thresh); /* Find smallest element in first threshold and place it at the array's beginning. This is the smallest array element, and the operation speeds up insertion sort's inner loop. */ for (run_ptr = tmp_ptr + 1; run_ptr <= thresh; run_ptr += 1) if ((*cmp) (*run_ptr, *tmp_ptr) < 0) tmp_ptr = run_ptr; if (tmp_ptr != base_ptr) SWAP (tmp_ptr, base_ptr); /* Insertion sort, running from left-hand-side up to `right-hand-side.' Pretty much straight out of the original GNU qsort routine. */ for (run_ptr = base_ptr + 1; (tmp_ptr = run_ptr += 1) <= end_ptr; ) { while ((*cmp) (*run_ptr, *(tmp_ptr -= 1)) < 0) ; if ((tmp_ptr += 1) != run_ptr) { <T> *trav; for (trav = run_ptr + 1; --trav >= run_ptr;) { <T> c = *trav; <T> *hi, *lo; for (hi = lo = trav; (lo -= 1) >= tmp_ptr; hi = lo) *hi = *lo; *hi = c; } } } } return 1; }