|
DataMuseum.dkPresents historical artifacts from the history of: DKUUG/EUUG Conference tapes |
This is an automatic "excavation" of a thematic subset of
See our Wiki for more about DKUUG/EUUG Conference tapes Excavated with: AutoArchaeologist - Free & Open Source Software. |
top - metrics - downloadIndex: T c
Length: 107529 (0x1a409) Types: TextFile Names: »cplus-init.c«
└─⟦a05ed705a⟧ Bits:30007078 DKUUG GNU 2/12/89 └─⟦6f889378a⟧ »./g++-1.36.1.tar.Z« └─⟦3aa9a3deb⟧ └─⟦this⟧ »g++-1.36.1/cplus-init.c«
/* Handle initialization things in C++. Copyright (C) 1987 Free Software Foundation, Inc. Contributed by Michael Tiemann (tiemann@mcc.com) This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 1, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ /* High-level class interface. */ #include "config.h" #include "tree.h" #include "cplus-tree.h" #include "flags.h" #include "assert.h" /* For expand_asm_operands. */ extern char *input_filename; extern int lineno; #define NULL 0 /* In C++, structures with well-defined constructors are initialized by those constructors, unasked. CURRENT_BASE_INIT_LIST holds a list of stmts for a BASE_INIT term in the grammar. This list has one element for each base class which must be initialized. The list elements are [basename, init], with type basetype. This allows the possibly anachronistic form (assuming d : a, b, c) "d (int a) : c(a+5), b (a-4), a (a+3)" where each successive term can be handed down the constructor line. Perhaps this was not intended. */ tree current_base_init_list, current_member_init_list; void init_init_processing (); void finish_base_init (); void expand_aggr_vbase_init (); void expand_member_init (); void expand_aggr_init (); tree build_virtual_init (); tree build_vbase_delete (); static void expand_aggr_init_1 (); static void expand_recursive_init_1 (); static void expand_recursive_init (); tree expand_vec_init (); void expand_vec_delete (); tree build_vec_delete (); static void add_friend (), add_friends (); int is_aggr_typedef (); /* Cache _builtin_new and _builtin_delete exprs. */ static tree BIN, BIVN, BID; static tree USR_NEW, USR_VNEW; static tree build_user_new (); #ifdef SOS tree get_linktable_name (), get_dtable_name (), get_sos_dtable (); static tree __sosFindCode, __sosLookup, __sosImport; static tree build_dynamic_new (); #endif static tree minus_one; /* Set up local variable for this file. MUST BE CALLED AFTER INIT_DECL_PROCESSING. */ void init_init_processing () { BIN = default_conversion (TREE_VALUE (lookup_name (get_identifier ("__builtin_new")))); BIVN = default_conversion (TREE_VALUE (lookup_name (get_identifier ("__builtin_vec_new")))); BID = default_conversion (TREE_VALUE (lookup_name (get_identifier ("__builtin_delete")))); USR_NEW = get_identifier ("__user_new"); USR_VNEW = get_identifier ("__user_vec_new"); minus_one = build_int_2 (-1, -1); #ifdef SOS if (flag_all_virtual == 2) { __sosFindCode = default_conversion (lookup_name (get_identifier ("sosFindCode"))); __sosLookup = default_conversion (lookup_name (get_identifier ("sosLookup"))); __sosImport = default_conversion (lookup_name (get_identifier ("sosImport"))); } #endif } /* When a stmt has been parsed, this function is called. Currently, this function only does something within a constructor's scope: if a stmt has just assigned to this, and we are in a derived class, we call `finish_base_init'. */ void finish_stmt () { extern struct nesting *cond_stack, *loop_stack, *case_stack; if (current_function_assigns_this || ! current_function_just_assigned_this) return; if (DECL_CONSTRUCTOR_P (current_function_decl)) { /* Constructors must wait until we are out of control zones before calling base constructors. */ if (cond_stack || loop_stack || case_stack) return; /* Ok to initialize virtual base classes now. */ if (TYPE_USES_VIRTUAL_BASECLASSES (current_class_type)) expand_aggr_vbase_init (current_class_type, C_C_D, current_class_decl, current_function_decl); finish_base_init (current_class_type, 1); } current_function_assigns_this = 1; } /* Perform whatever initialization have yet to be done on the base class of the class variable. These actions are in the global variable CURRENT_BASE_INIT_LIST. Such an action could be NULL_TREE, meaning that the user has explicitly called the base class constructor with no arguments. If there is a need for a call to a constructor, we must surround that call with a pushlevel/poplevel pair, since we are technically at the PARM level of scope. Argument ASSIGNS_THIS_P is nonzero if the current function assigns `this' explicitly. We cannot get this value by checking `current_function_assigns_this', since it is set up after this function is called. (although I don't know if its really necessary to wait until afterward to do that.) Note that finish_base_init does *not* initialize virtual base classes. That is done specially, elsewhere. */ void finish_base_init (t, assigns_this_p) tree t; int assigns_this_p; { tree member, decl; tree basetype; int i, n_baseclasses = CLASSTYPE_N_BASECLASSES (t); tree vbase_init_list = NULL_TREE; tree fields_to_unmark = NULL_TREE; /* We only care about constructors. */ assigns_this_p &= DECL_CONSTRUCTOR_P (current_function_decl); for (; current_base_init_list; current_base_init_list = TREE_CHAIN (current_base_init_list)) { tree basename = TREE_PURPOSE (current_base_init_list); tree basetype; tree init = TREE_VALUE (current_base_init_list); if (basename == NULL_TREE) { /* Initializer for single base class. Must not use multiple inheritance or this is ambiguous. */ switch (n_baseclasses) { case 0: error ("type `%s' does not have a base class to initialize", IDENTIFIER_POINTER (current_class_name)); return; case 1: break; default: error ("unnamed initializer ambiguous for type `%s' which uses multiple inheritance", IDENTIFIER_POINTER (current_class_name)); return; } basetype = CLASSTYPE_BASECLASS (t, 1); } else if (is_aggr_typedef (basename, 1)) { basetype = get_base_type (TREE_TYPE (TREE_TYPE (basename)), t, 0); if (basetype == NULL_TREE) { error ("type `%s' is not a base class for type `%s'", IDENTIFIER_POINTER (basename), IDENTIFIER_POINTER (current_class_name)); continue; } /* Virtual base classes are special cases. Their initializers are recorded with this constructor, and they are used when this constructor is the top-level constructor called. */ if (! TREE_VIA_VIRTUAL (basetype)) { /* Otherwise, if it is not an immediate base class, complain. */ for (i = n_baseclasses; i > 0; i--) if (basetype == CLASSTYPE_BASECLASS (t, i)) break; if (i == 0) { error ("type `%s' is not an immediate base class of type `%s'", IDENTIFIER_POINTER (basename), IDENTIFIER_POINTER (current_class_name)); continue; } } } else continue; /* Now we are ready to initialize BASETYPE with INIT. */ /* The base initialization list goes up to the first base class which can actually use it. */ if (CLASSTYPE_MARKED3 (basetype)) { error ("class `%s' initializer already specified", IDENTIFIER_POINTER (basename)); continue; } CLASSTYPE_MARKED3 (basetype) = 1; { char *msgp = (! TYPE_HAS_CONSTRUCTOR (basetype)) ? "cannot pass initialization up to class `%s'" : 0; while (! TYPE_HAS_CONSTRUCTOR (basetype) && CLASSTYPE_N_BASECLASSES (basetype) == 1) basetype = CLASSTYPE_BASECLASS (basetype, 1); if (basetype) { if (msgp) if (pedantic) { error_with_aggr_type (basetype, msgp); continue; } else if (! TYPE_HAS_CONSTRUCTOR (basetype)) { if (CLASSTYPE_N_BASECLASSES (basetype) == 0) error_with_aggr_type (basetype, msgp); else sorry ("passing initializations up multiple inheritance lattice"); continue; } } else { error ("no constructor found for initialization of `%s'", IDENTIFIER_POINTER (basename)); continue; } } if (TREE_VIA_VIRTUAL (basetype)) { vbase_init_list = perm_tree_cons (init, basetype, vbase_init_list); continue; } member = convert_to_nonzero_pointer (TYPE_POINTER_TO (basetype), current_class_decl); expand_aggr_init_1 (t, 0, build_indirect_ref (member, 0), init, ! DECL_OFFSET (TYPE_NAME (basetype)), LOOKUP_PROTECTED_OK|LOOKUP_COMPLAIN); } /* Now, perform default initialization of all base classes which have not yet been initialized, and unmark baseclasses which have been initialized. */ for (i = 1; i <= n_baseclasses; i++) { tree base = current_class_decl; basetype = CLASSTYPE_BASECLASS (t, i); if (! TREE_VIA_VIRTUAL (basetype) && ! CLASSTYPE_MARKED3 (basetype)) { if (TYPE_NEEDS_CONSTRUCTING (basetype)) { tree ref; base = convert_to_nonzero_pointer (TYPE_POINTER_TO (basetype), current_class_decl); if (TREE_CODE (base) == COND_EXPR) base = save_expr (base); ref = build_indirect_ref (base, 0); expand_aggr_init_1 (t, 0, ref, NULL_TREE, ! DECL_OFFSET (TYPE_NAME (basetype)), LOOKUP_PROTECTED_OK|LOOKUP_COMPLAIN); } } else CLASSTYPE_MARKED3 (basetype) = 0; if (DECL_OFFSET (TYPE_NAME (basetype))) { tree assoc; /* If the vtable installed by the constructor was not the right one, fix that here. */ if (TREE_VIA_VIRTUAL (basetype)) assoc = value_member (TYPE_MAIN_VARIANT (basetype), CLASSTYPE_VBASECLASSES (t)); else assoc = assoc_value (TYPE_MAIN_VARIANT (basetype), t); if (ASSOC_VTABLE (assoc) != CLASS_ASSOC_VTABLE (basetype)) expand_expr_stmt (build_virtual_init (t, basetype, base)); } } if (TYPE_VIRTUAL_P (t)) { if (CLASSTYPE_NEEDS_VIRTUAL_REINIT (t)) expand_expr_stmt (build_virtual_init (t, t, current_class_decl)); } #ifdef SOS else if (TYPE_DYNAMIC (t) && CLASSTYPE_NEEDS_VIRTUAL_REINIT (t)) expand_expr_stmt (build_virtual_init (t, t, current_class_decl)); #endif if (TYPE_USES_VIRTUAL_BASECLASSES (t)) { DECL_VBASE_INIT_LIST (current_function_decl) = vbase_init_list; while (vbase_init_list) { CLASSTYPE_MARKED3 (TREE_VALUE (vbase_init_list)) = 0; vbase_init_list = TREE_CHAIN (vbase_init_list); } } /* Members we through expand_member_init. We initialize all the members needing initialization that did not get it so far. */ for (; current_member_init_list; current_member_init_list = TREE_CHAIN (current_member_init_list)) { tree name = TREE_PURPOSE (current_member_init_list); tree init = TREE_VALUE (current_member_init_list); tree field = IDENTIFIER_CLASS_VALUE (name); tree type = TREE_TYPE (field); if (TREE_STATIC (field)) { error_with_aggr_type (DECL_FIELD_CONTEXT (field), "field `%s::%s' is static; only point of initialization is its declaration", IDENTIFIER_POINTER (name)); continue; } decl = build_component_ref (C_C_D, name, 0, 1); if (TYPE_HAS_CONSTRUCTOR (field)) error ("multiple initializations given for member `%s'", IDENTIFIER_POINTER (DECL_NAME (field))); if (assigns_this_p && TREE_USED (field)) error ("field `%s' used before initialized (after assignment to `this')", IDENTIFIER_POINTER (DECL_NAME (field))); /* Mark this node as having been initialized. */ TYPE_HAS_CONSTRUCTOR (field) = 1; if (DECL_FIELD_CONTEXT (field) != t) fields_to_unmark = tree_cons (NULL_TREE, field, fields_to_unmark); if (TYPE_NEEDS_CONSTRUCTING (type)) expand_aggr_init (decl, init, 0); else { if (init == NULL_TREE) { error ("types without constructors must have complete initializers"); init = error_mark_node; } else if (TREE_CHAIN (init)) { warning ("initializer list treated as compound expression"); init = build_compound_expr (init); } else init = TREE_VALUE (init); expand_expr_stmt (build_modify_expr (decl, INIT_EXPR, init)); } } for (member = TYPE_FIELDS (t); member; member = TREE_CHAIN (member)) { /* All we care about is this unique member. It contains all the information we need to know, and that right early. */ tree type = TREE_TYPE (member); tree init = TYPE_HAS_CONSTRUCTOR (member) ? error_mark_node : DECL_INITIAL (member); /* Unmark this field. If it is from an anonymous union, then unmark the field recursively. */ TYPE_HAS_CONSTRUCTOR (member) = 0; if (TREE_ANON_UNION_ELEM (member)) finish_base_init (TREE_TYPE (member), 0); /* Member had explicit initializer. */ if (init == error_mark_node) continue; if (TREE_CODE (member) != FIELD_DECL) continue; if (type == error_mark_node) continue; if (assigns_this_p && TREE_USED (member) && (TYPE_NEEDS_CONSTRUCTING (type) || init)) error ("member `%s' used before initialized (after assignment to `this')", IDENTIFIER_POINTER (DECL_NAME (member))); if (TYPE_NEEDS_CONSTRUCTING (type)) { if (init) init = build_tree_list (NULL_TREE, init); expand_aggr_init (build_component_ref (C_C_D, DECL_NAME (member), 0, 0), init, 0); } else { if (init) { decl = build_component_ref (C_C_D, DECL_NAME (member), 0, 0); expand_expr_stmt (build_modify_expr (decl, INIT_EXPR, init)); } else if (TREE_CODE (TREE_TYPE (member)) == REFERENCE_TYPE) warning ("uninitialized reference member `%s'", IDENTIFIER_POINTER (DECL_NAME (member))); } } /* Unmark fields which are initialized for the base class. */ while (fields_to_unmark) { TYPE_HAS_CONSTRUCTOR (TREE_VALUE (fields_to_unmark)) = 0; fields_to_unmark = TREE_CHAIN (fields_to_unmark); } } /* This code sets up the virtual function tables appropriate for the pointer DECL. It is a one-ply initialization. TYPE is the exact type that DECL is supposed to be. In muliple inheritance, this might mean "C's A" if C : A, B. */ tree build_virtual_init (for_type, type, decl) tree for_type, type; tree decl; { tree vtbl, vtbl_ptr; tree vtype; #ifdef SOS if (TYPE_DYNAMIC (type)) vtbl = build1 (NOP_EXPR, ptr_type_node, lookup_name (get_identifier (AUTO_VTABLE_NAME))); else #endif { #if 1 vtbl = ASSOC_VTABLE (assoc_value (DECL_FIELD_CONTEXT (CLASSTYPE_VFIELD (type)), for_type)); #else assert (for_type == type); vtbl = CLASS_ASSOC_VTABLE (for_type); #endif /* 1 */ TREE_USED (vtbl) = 1; vtbl = build1 (ADDR_EXPR, TYPE_POINTER_TO (TREE_TYPE (vtbl)), vtbl); } vtype = DECL_CONTEXT (CLASSTYPE_VFIELD (type)); decl = convert_to_nonzero_pointer (TYPE_POINTER_TO (vtype), decl); vtbl_ptr = build_vfield_ref (build_indirect_ref (decl, 0), vtype); return build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl); } /* Initialize this object's virtual base class pointers. This must be done only at the top-level of the object being constructed. FNDECL, if non-NULL, is the constructor for which this initialization takes place. If it is NULL, then it means that a call to that constructor will perform the virtual base class initialization. */ void expand_aggr_vbase_init (type, exp, addr, fndecl) tree type; tree exp; tree addr; tree fndecl; { if (TYPE_USES_VIRTUAL_BASECLASSES (type)) { tree result = init_vbase_pointers (type, addr); tree basetype, tmp; if (result) expand_expr_stmt (build_compound_expr (result)); if (fndecl) for (tmp = result; tmp; tmp = TREE_CHAIN (tmp)) { basetype = TREE_TYPE (TREE_TYPE (TREE_VALUE (tmp))); if (TYPE_NEEDS_CONSTRUCTING (basetype) && CLASSTYPE_MARKED3 (basetype) == 0) { tree addr = TREE_OPERAND (TREE_VALUE (tmp), 0); tree ref = build_indirect_ref (addr, 0); tree init = NULL_TREE; CLASSTYPE_MARKED3 (basetype) = 1; init = value_member (basetype, DECL_VBASE_INIT_LIST (fndecl)); if (init) init = TREE_PURPOSE (init); /* Call constructors, but don't set up vtables. */ expand_aggr_init_1 (basetype, exp, ref, init, 0, LOOKUP_PROTECTED_OK|LOOKUP_COMPLAIN|LOOKUP_SPECULATIVELY); } } for (tmp = result; tmp; tmp = TREE_CHAIN (tmp)) { basetype = TREE_TYPE (TREE_TYPE (TREE_VALUE (tmp))); CLASSTYPE_MARKED3 (basetype) = 0; } #ifdef sparc expand_asm_operands (build_string (30, "! end of vbase initialization"), 0, 0, 0, 0, input_filename, lineno); #endif } } /* If NAME is a viable field name for the aggregate DECL, and PARMS is a viable parameter list, then expand an _EXPR which describes this initialization. Note that we do not need to chase through the class's base classes to look for NAME, because if it's in that list, it will be handled by the constructor for that base class. We do not yet have a fixed-point finder to instantiate types being fed to overloaded constructors. If there is a unique constructor, then argument types can be got from that one. If INIT is non-NULL, then it the initialization should be placed in `current_base_init_list', where it will be processed by `finish_base_init'. */ void expand_member_init (exp, name, init) tree exp, name, init; { extern tree ptr_type_node; /* should be in tree.h */ tree basetype = NULL_TREE, field; tree parm; tree rval, type; tree actual_name; if (exp == NULL_TREE) return; /* complain about this later */ type = TYPE_MAIN_VARIANT (TREE_TYPE (exp)); if (name == NULL_TREE && IS_AGGR_TYPE (type)) switch (CLASSTYPE_N_BASECLASSES (type)) { case 0: error ("base class initializer specified, but no base class to initialize"); return; case 1: basetype = CLASSTYPE_BASECLASS (type, 1); break; default: error ("initializer for unnamed base class ambiguous"); error_with_aggr_type (type, "(type `%s' uses multiple inheritance)"); return; } if (init) { /* The grammar should not allow fields which have names that are TYPENAMEs. Therefore, if the field has a non-NULL TREE_TYPE, we may assume that this is an attempt to initialize a base class member of the current type. Otherwise, it is an attempt to initialize a member field. */ if (init == void_type_node) init = NULL_TREE; if (name == NULL_TREE || TREE_TYPE (name)) { tree base_init; if (name == NULL_TREE) if (basetype) name = DECL_NAME (TYPE_NAME (basetype)); else { error ("no base class to initialize"); return; } else { basetype = TREE_TYPE (TREE_TYPE (name)); if (basetype != type && (basetype = get_base_type (basetype, type, 0)) == 0) { error ("type `%s' is not a base type for `%s'", IDENTIFIER_POINTER (name), TYPE_NAME_STRING (type)); return; } } if (purpose_member (name, current_base_init_list)) { error ("base class `%s' already initialized", IDENTIFIER_POINTER (name)); return; } base_init = build_tree_list (name, init); TREE_TYPE (base_init) = basetype; current_base_init_list = chainon (current_base_init_list, base_init); } else { tree member_init; field = lookup_field (type, name, 1); if (field == error_mark_node) return; if (field == NULL_TREE) { error_with_aggr_type (type, "class `%s' does not have any field named `%s'", IDENTIFIER_POINTER (name)); return; } if (purpose_member (name, current_member_init_list)) { error ("field `%s' already initialized", IDENTIFIER_POINTER (name)); return; } member_init = build_tree_list (name, init); TREE_TYPE (member_init) = TREE_TYPE (field); current_member_init_list = chainon (current_member_init_list, member_init); } return; } else if (name == NULL_TREE) { compiler_error ("expand_member_init: name == NULL_TREE"); return; } basetype = type; field = lookup_field (basetype, name, 0); if (field == error_mark_node) return; if (field) { /* now see if there is a constructor for this type which will take these args. */ if (TREE_TYPE (field) == error_mark_node) rval = error_mark_node; if (TYPE_HAS_CONSTRUCTOR (TREE_TYPE (field))) { tree parmtypes, fndecl; if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL) { /* just know that we've seen something for this node */ DECL_INITIAL (exp) = error_mark_node; TREE_USED (exp) = 1; } type = TYPE_MAIN_VARIANT (TREE_TYPE (field)); actual_name = DECL_NAME (TYPE_NAME (type)); parm = build_component_ref (exp, name, 0, 0); /* Now get to the constructor. */ field = TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (type), 0); /* Get past destructor, if any. */ if (TYPE_HAS_DESTRUCTOR (type)) field = TREE_CHAIN (field); /* If the field is unique, we can use the parameter types to guide possible type instantiation. */ if (TREE_CHAIN (field) == NULL_TREE) { fndecl = TREE_TYPE (field); parmtypes = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fndecl))); } else { parmtypes = NULL_TREE; fndecl = NULL_TREE; } init = actualparameterlist (parm, parmtypes, NULL_TREE, fndecl); if (init == NULL_TREE || TREE_TYPE (init) != error_mark_node) rval = build_method_call (NULL_TREE, actual_name, init, NULL_TREE, LOOKUP_NORMAL); else return; if (rval != error_mark_node) { /* Now, fill in the first parm with our guy */ TREE_VALUE (TREE_OPERAND (rval, 1)) = build_unary_op (ADDR_EXPR, parm, 0); TREE_TYPE (rval) = ptr_type_node; TREE_VOLATILE (rval) = 1; } } else if (TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (field))) { parm = build_component_ref (exp, name, 0, 0); expand_aggr_init (parm, NULL_TREE, 0); rval = error_mark_node; } /* Now initialize the member. It does not have to be of aggregate type to receive initialization. */ if (rval != error_mark_node) expand_expr_stmt (rval); } else { error_with_aggr_type (basetype, "class `%s' does not have any field named `%s'", IDENTIFIER_POINTER (name)); } } /* This is like `expand_member_init', only it stores one aggregate value into another. INIT comes in two flavors: it is either a value which is to be stored in EXP, or it is a parameter list to go to a constructor, which will operate on EXP. If `init' is a CONSTRUCTOR, then we emit a warning message, explaining that such initializaitions are illegal. ALIAS_THIS is nonzero iff we are initializing something which is essentially an alias for C_C_D. In this case, the base constructor may move it on us, and we must keep track of such deviations. If INIT resolves to a CALL_EXPR which happens to return something of the type we are looking for, then we know that we can safely use that call to perform the initialization. The virtual function table pointer cannot be set up here, because we do not really know its type. Virtual baseclass pointers are also set up here. This never calls operator=(). When initializing, nothing is CONST. */ void expand_aggr_init (exp, init, alias_this) tree exp, init; int alias_this; { tree type = TREE_TYPE (exp); tree addr; int was_const = TREE_READONLY (exp); if (init == error_mark_node) return; TREE_READONLY (exp) = 0; if (TREE_CODE (type) == ARRAY_TYPE) { /* Must arrange to initialize each element of EXP from elements of INIT. */ expand_vec_init (exp, exp, array_type_nelts (type), init); TREE_READONLY (exp) = was_const; return; } if (TYPE_USES_VIRTUAL_BASECLASSES (type)) { addr = build_unary_op (ADDR_EXPR, exp, 0); expand_aggr_vbase_init (type, exp, addr, NULL_TREE); /* Should the vtables be set up now, or one at a time, just before calling the constructor? In any event they must be set up after any calls to constructors other than our own. */ if (TYPE_NEEDS_CONSTRUCTOR (type) || (TYPE_VIRTUAL_P (type) && CLASSTYPE_VSIZE (type) == 0)) { expand_expr_stmt (build_vbase_vtables_init (type, type, exp, addr)); #ifdef sparc expand_asm_operands (build_string (32, "! end of vtable initialization"), 0, 0, 0, 0, input_filename, lineno); #endif } } if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL) { /* just know that we've seen something for this node */ TREE_USED (exp) = 1; } expand_aggr_init_1 (type, exp, exp, init, alias_this, LOOKUP_NORMAL); TREE_READONLY (exp) = was_const; } /* This function is responsible for initializing EXP with INIT (if any). FOR_TYPE is the type for who we are performing the initialization. For example, if W is a virtual base class of A and B, and C : A, B if we are initializing B, then W must contain B's W vtable, whereas were we initializing C, W must contain C's W vtable. TRUE_EXP is nonzero if it is the true expression being initialized. In this case, it may be EXP, or may just contain EXP. The reason we need this is because if EXP is a base element of TRUE_EXP, we don't necessarily know by looking at EXP where its virtual baseclass fields should really be pointing. But we do know from TRUE_EXP. In constructors, we don't know anything about the value being initialized. ALIAS_THIS serves the same purpose it serves for expand_aggr_init. FLAGS is just passes to `build_method_call'. See that function for its description. */ static void expand_aggr_init_1 (for_type, true_exp, exp, init, alias_this, flags) tree for_type; tree true_exp, exp; tree init; int alias_this; int flags; { tree type = TREE_TYPE (exp); tree init_type = NULL_TREE; tree rval; assert (init != error_mark_node && type != error_mark_node); /* Use a function returning the desired type to initialize EXP for us. If the function is a constructor, and its first argument is NULL_TREE, know that it was meant for us--just slide exp on in and expand the constructor. Constructors now come as NEW_EXPRS. */ if (init) { tree init_list = NULL_TREE; if (TREE_CODE (init) == TREE_LIST) { init_list = init; if (TREE_CHAIN (init) == NULL_TREE) init = TREE_VALUE (init); } init_type = TREE_TYPE (init); if (TREE_CODE (init) != TREE_LIST) { if (TREE_CODE (init_type) == ERROR_MARK) return; #if 0 /* These lines are found troublesome 5/11/89. */ if (TREE_CODE (init_type) == REFERENCE_TYPE) init_type = TREE_TYPE (init_type); #endif /* This happens when we use C++'s functional cast notation to act as the initializer for something not of that same type. In that case, we need to create the initializer separately from the object being initialized. */ if (TREE_CODE (init) == NEW_EXPR && init_type != type) { init = build (CALL_EXPR, init_type, TREE_OPERAND (init, 0), TREE_OPERAND (init, 1), 0); TREE_VOLATILE (init) = 1; if (init_list) TREE_VALUE (init_list) = init; } if (init_type == type && TREE_CODE (init) == CALL_EXPR #if 0 /* It is legal to directly initialize from a CALL_EXPR without going through X(X&), apparently. */ && ! TYPE_GETS_INIT_REF (type) #endif ) { /* A CALL_EXPR is a legitmate form of initialization, so we should not print this warning message. */ if (TREE_CODE (TREE_TYPE (init)) == REFERENCE_TYPE) init = convert_from_reference (init); #if 0 if (TREE_GETS_ASSIGNMENT (type)) warning ("bitwise copy: `%s' has a member with operator=()", TYPE_NAME_STRING (type)); #endif expand_assignment (exp, init, 0, 0); if (exp == DECL_RESULT (current_function_decl)) { /* Failing this assertion means that the return value from receives multiple initializations. */ assert (DECL_INITIAL (exp) == NULL_TREE || DECL_INITIAL (exp) == error_mark_node); DECL_INITIAL (exp) = init; } return; } else if (init_type == type && TREE_CODE (init) == COND_EXPR) { /* Push value to be initialized into the cond, where possible. Avoid spurious warning messages when initializing the result of this function. */ TREE_OPERAND (init, 1) = build_modify_expr (exp, INIT_EXPR, TREE_OPERAND (init, 1)); if (exp == DECL_RESULT (current_function_decl)) DECL_INITIAL (exp) = NULL_TREE; TREE_OPERAND (init, 2) = build_modify_expr (exp, INIT_EXPR, TREE_OPERAND (init, 2)); if (exp == DECL_RESULT (current_function_decl)) DECL_INITIAL (exp) = init; expand_expr (init, 0, VOIDmode, 0); return; } } /* We did not know what we were initializing before. Now we do. */ if (TREE_CODE (init) == NEW_EXPR) { tree tmp = TREE_OPERAND (init, 1); assert (tmp != NULL_TREE); if (TREE_CODE (TREE_VALUE (tmp)) == NOP_EXPR && (TREE_OPERAND (TREE_VALUE (tmp), 0) == integer_zero_node)) { /* In order for this to work for RESULT_DECLs, if their type has a constructor, then they must be BLKmode so that they will be meaningfully addressable. */ tree arg = build_unary_op (ADDR_EXPR, exp, 0); init = build (CALL_EXPR, build_pointer_type (TREE_TYPE (init)), TREE_OPERAND (init, 0), TREE_OPERAND (init, 1), 0); TREE_VOLATILE (init) = 1; TREE_VALUE (TREE_OPERAND (init, 1)) = arg; if (for_type == type && TYPE_USES_VIRTUAL_BASECLASSES (type)) expand_aggr_vbase_init (type, exp, arg, TREE_OPERAND (TREE_OPERAND (init, 0), 0)); if (alias_this) { expand_assignment (current_function_decl, init, 0, 0); return; } if (exp == DECL_RESULT (current_function_decl)) { if (DECL_INITIAL (DECL_RESULT (current_function_decl))) fatal ("return value from function receives multiple initializations"); DECL_INITIAL (exp) = init; } expand_expr_stmt (init); return; } } /* Handle this case: when calling a constructor: xyzzy foo(bar); which really means: xyzzy foo = bar; Ugh! We can also be called with an initializer for an object which has virtual functions, but no constructors. In that case, we perform the assignment first, then initialize the virtual function table pointer fields. */ if (! TYPE_NEEDS_CONSTRUCTING (type)) { if (init_list && TREE_CHAIN (init_list)) { warning ("initializer list being treated as compound expression"); init = build_compound_expr (init_list); } expand_assignment (exp, init, 0, 0); if (TYPE_VIRTUAL_P (type)) expand_recursive_init (for_type, true_exp, exp, init, CLASSTYPE_BASE_INIT_LIST (type), alias_this); return; } } /* See whether we can go through a type conversion operator. This wins over going through a constructor because we may be able to avoid an X(X&) constructor. */ if (init && TREE_CODE (init) != TREE_LIST) { tree ttype = TREE_CODE (init_type) == REFERENCE_TYPE ? TREE_TYPE (init_type) : init_type; if (ttype != type && IS_AGGR_TYPE (ttype)) { tree rval = build_type_conversion (CONVERT_EXPR, type, init, 0); if (rval) { expand_assignment (exp, rval, 0, 0); return; } } } if (TYPE_HAS_CONSTRUCTOR (type)) { /* It fails because there may not be a constructor which takes its own type as the first (or only parameter), but which does take other types via a conversion. So, if the thing initializing the expression is a unit element of type X, first try X(X&), followed by initialization by X. If neither of these work out, then look hard. */ tree parms = (init == NULL_TREE || TREE_CODE (init) == TREE_LIST) ? init : build_tree_list (NULL_TREE, init); if (parms) init = TREE_VALUE (parms); if (parms && TREE_CHAIN (parms) == NULL_TREE && init_type == type && ! TYPE_GETS_INIT_REF (type)) { rval = build_modify_expr (exp, INIT_EXPR, init); expand_expr_stmt (rval); return; } rval = build_method_call (exp, DECL_NAME (TYPE_NAME (type)), parms, CLASSTYPE_AS_LIST (for_type), flags); /* Private, protected, or otherwise unavailable. */ if (rval == error_mark_node && (flags&LOOKUP_COMPLAIN)) error_with_aggr_type (for_type, "in base initialization for class `%s'"); /* A valid initialization using constructor. */ else if (rval != error_mark_node && rval != NULL_TREE) { if (alias_this == 0 && true_exp == exp && TYPE_USES_VIRTUAL_BASECLASSES (for_type)) { tree save_from_constructors = NULL_TREE; tree fndecl = TREE_OPERAND (TREE_OPERAND (rval, 0), 0); struct rtx_def **parm_slots; tree tmp, tmp2, tmp3; int i = 0; assert (TREE_CODE (fndecl) == FUNCTION_DECL); parm_slots = (struct rtx_def **)alloca (list_length (DECL_ARGUMENTS (fndecl)) * sizeof (struct rtx_def *)); /* Now we have to replace any PARM_DECLs which appear in the INIT term with the actual values which went to those parm slots in this call to the constructor that is FNDECL. */ for (tmp2 = DECL_ARGUMENTS (fndecl), tmp3 = TREE_OPERAND (rval, 1); tmp2; tmp2 = TREE_CHAIN (tmp2), tmp3 = TREE_CHAIN (tmp3)) { parm_slots[i++] = DECL_RTL (tmp2); TREE_VALUE (tmp3) = save_expr (TREE_VALUE (tmp3)); DECL_RTL (tmp2) = (struct rtx_def *)expand_expr (TREE_VALUE (tmp3), 0, 0, 0); } /* Initialize the virtual base classes first. */ for (tmp = CLASSTYPE_VBASECLASSES (for_type); tmp; tmp = TREE_CHAIN (tmp)) { /* Don't test TYPE_NEEDS_CONSTRUCTING, because we have already initialized the virtual base class virtual function table pointers. */ if (TYPE_NEEDS_CONSTRUCTOR (ASSOC_VALUE (tmp))) { tree addr = convert_to_nonzero_pointer (TYPE_POINTER_TO (ASSOC_VALUE (tmp)), TREE_VALUE (TREE_OPERAND (rval, 1))); tree ref = build_indirect_ref (addr, 0); tree init; if (ASSOC_VTABLE (tmp) != CLASS_ASSOC_VTABLE (ASSOC_VALUE (tmp))) { save_from_constructors = tree_cons (NULL_TREE, save_expr (build_vfield_ref (ref, ASSOC_VALUE (tmp))), save_from_constructors); expand_expr (TREE_VALUE (save_from_constructors), 0, 0, 0); } init = value_member (ASSOC_TYPE (tmp), DECL_VBASE_INIT_LIST (fndecl)); if (init) init = TREE_PURPOSE (init); expand_aggr_init_1 (ASSOC_VALUE (tmp), exp, ref, init, 0, LOOKUP_PROTECTED_OK|LOOKUP_COMPLAIN); } } i = 0; for (tmp2 = DECL_ARGUMENTS (fndecl); tmp2; tmp2 = TREE_CHAIN (tmp2)) DECL_RTL (tmp2) = parm_slots[i++]; /* For each virtual base class which has a constructor, reinitialize the virtual function table pointer here. */ while (save_from_constructors) { tmp = TREE_VALUE (save_from_constructors); expand_assignment (TREE_OPERAND (tmp, 0), tmp, 0, 0); save_from_constructors = TREE_CHAIN (save_from_constructors); } } /* p. 222: if the base class assigns to `this', then that value is used in the derived class. */ if (flag_this_is_variable && alias_this) { TREE_TYPE (rval) = TREE_TYPE (current_class_decl); expand_assignment (current_class_decl, rval, 0, 0); } else expand_expr_stmt (rval); } else if (parms && TREE_CHAIN (parms) == NULL_TREE) { /* If we are initializing one aggregate value from another, and though there are constructors, and none accept the initializer, just do a bitwise copy. @@ This should reject initializer which a constructor @@ rejected on visibility gounds, but there is @@ no way right now to recognize that case with @@ just `error_mark_node'. */ tree itype; init = TREE_VALUE (parms); itype = TREE_TYPE (init); if (TREE_CODE (itype) == REFERENCE_TYPE) { init = convert_from_reference (init); itype = TREE_TYPE (init); } itype = TYPE_MAIN_VARIANT (itype); if (comptypes (TYPE_MAIN_VARIANT (type), itype, 0)) { warning ("bitwise copy in initialization of type `%s'", TYPE_NAME_STRING (type)); rval = build (INIT_EXPR, type, exp, init); expand_expr_stmt (rval); } else { error_with_aggr_type (for_type, "in base initialization for class `%s',"); error_with_aggr_type (type, "invalid initializer to constructor for type `%s'"); return; } } else { if (init == NULL_TREE) assert (parms == NULL_TREE); error_with_aggr_type (for_type, "in base initialization for class `%s',"); /* This will make an error message for us. */ build_method_call (exp, DECL_NAME (TYPE_NAME (type)), parms, CLASSTYPE_AS_LIST (for_type), LOOKUP_NORMAL); return; } /* Constructor has been called, but vtables may be for TYPE rather than for FOR_TYPE. */ } else if (TREE_CODE (type) == ARRAY_TYPE) { if (TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (type))) expand_vec_init (exp, exp, array_type_nelts (type), init); else if (TYPE_VIRTUAL_P (TREE_TYPE (type))) sorry ("arrays of objects with virtual functions but no constructors"); } else expand_recursive_init (for_type, true_exp, exp, init, CLASSTYPE_BASE_INIT_LIST (type), alias_this); } /* A pointer which holds the initializer. First call to expand_aggr_init gets this value pointed to, and sets it to init_null. */ static tree *init_ptr, init_null; /* Subroutine of expand_recursive_init: ADDR is the address of the expression being initialized. INIT_LIST is the cons-list of initializations to be performed. ALIAS_THIS is its same, lovable self. */ static void expand_recursive_init_1 (for_type, true_exp, addr, init_list, alias_this) tree for_type, true_exp, addr; tree init_list; int alias_this; { while (init_list) { if (TREE_PURPOSE (init_list)) { if (TREE_CODE (TREE_PURPOSE (init_list)) == FIELD_DECL) { tree member = TREE_PURPOSE (init_list); tree subexp = build_indirect_ref (convert_to_nonzero_pointer (TYPE_POINTER_TO (TREE_VALUE (init_list)), addr), 0); tree member_base = build (COMPONENT_REF, TREE_TYPE (member), subexp, member); if (IS_AGGR_TYPE (TREE_TYPE (member))) expand_aggr_init (member_base, DECL_INITIAL (member), 0); else if (TREE_CODE (TREE_TYPE (member)) == ARRAY_TYPE && TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (member))) { member_base = save_expr (default_conversion (member_base)); expand_vec_init (member, member_base, array_type_nelts (TREE_TYPE (member)), DECL_INITIAL (member)); } else expand_expr_stmt (build_modify_expr (member_base, INIT_EXPR, DECL_INITIAL (member))); } else if (TREE_CODE (TREE_PURPOSE (init_list)) == TREE_LIST) { expand_recursive_init_1 (for_type, true_exp, addr, TREE_PURPOSE (init_list), alias_this); expand_recursive_init_1 (for_type, true_exp, addr, TREE_VALUE (init_list), alias_this); } else if (TREE_CODE (TREE_PURPOSE (init_list)) == ERROR_MARK) { /* Only initialize the virtual function tables if we are initializing the ultimate users of those vtables. */ if (TREE_VALUE (init_list)) { expand_expr_stmt (build_virtual_init (for_type, TREE_VALUE (init_list), addr)); if (TREE_VALUE (init_list) == for_type && TYPE_USES_VIRTUAL_BASECLASSES (for_type)) expand_expr_stmt (build_vbase_vtables_init (for_type, TREE_VALUE (init_list), true_exp, addr)); #ifdef sparc expand_asm_operands (build_string (32, "! end of vtable initialization"), 0, 0, 0, 0, input_filename, lineno); #endif } } else abort (); } else if (TREE_VALUE (init_list) && TREE_CODE (TREE_VALUE (init_list)) == RECORD_TYPE) { tree subexp = build_indirect_ref (convert_to_nonzero_pointer (TYPE_POINTER_TO (TREE_VALUE (init_list)), addr), 0); expand_aggr_init_1 (for_type, true_exp, subexp, *init_ptr, alias_this && ! DECL_OFFSET (TYPE_NAME (TREE_VALUE (init_list))), LOOKUP_PROTECTED_OK|LOOKUP_COMPLAIN); /* INIT_PTR is used up. */ init_ptr = &init_null; } else abort (); init_list = TREE_CHAIN (init_list); } } /* Initialize EXP with INIT. Type EXP does not have a constructor, but it has a baseclass with a constructor or a virtual function table which needs initializing. INIT_LIST is a cons-list describing what parts of EXP actually need to be initialized. INIT is given to the *unique*, first constructor within INIT_LIST. If there are multiple first constructors, such as with multiple inheritance, INIT must be zero or an ambiguity error is reported. ALIAS_THIS is passed from `expand_aggr_init'. See comments there. */ static void expand_recursive_init (for_type, true_exp, exp, init, init_list, alias_this) tree for_type, true_exp, exp, init; tree init_list; int alias_this; { tree *old_init_ptr = init_ptr; init_ptr = &init; expand_recursive_init_1 (for_type, true_exp, build_unary_op (ADDR_EXPR, exp, 0), init_list, alias_this); if (*init_ptr) { tree type = TREE_TYPE (exp); if (TREE_CODE (type) == REFERENCE_TYPE) type = TREE_TYPE (type); if (IS_AGGR_TYPE (type)) error_with_aggr_type (type, "unexpected argument to constructor `%s'"); else error ("unexpected argument to constructor"); } init_ptr = old_init_ptr; } /* Report an error if NAME is not the name of a user-defined, aggregate type. If OR_ELSE is nonzero, give an error message. */ int is_aggr_typedef (name, or_else) tree name; { tree type = TREE_TYPE (name); if (type == NULL_TREE || TREE_CODE (type) != TYPE_DECL) { if (or_else) error ("`%s' fails to be an aggregate typedef", IDENTIFIER_POINTER (name)); return 0; } type = TREE_TYPE (type); if (! IS_AGGR_TYPE (type)) { fatal ("type `%s' is of non-aggregate type", IDENTIFIER_POINTER (name)); return 0; } return 1; } \f /* This code could just as well go in `cplus-class.c', but is placed here for modularity. */ /* For an expression of the form CNAME :: NAME (PARMLIST), build the appropriate function call. */ tree build_member_call (cname, name, parmlist) tree cname, name, parmlist; { tree type, t; tree method_name = name; int dtor = 0; if (TREE_CODE (method_name) == BIT_NOT_EXPR) { method_name = TREE_OPERAND (method_name, 0); dtor = 1; } if (TREE_CODE (cname) == SCOPE_REF) { sorry ("multiple scope qualifications in build_member_call"); return error_mark_node; } if (! is_aggr_typedef (cname, 1)) return error_mark_node; /* An operator we did not like. */ if (name == NULL_TREE) return error_mark_node; if (dtor) { if (! TYPE_HAS_DESTRUCTOR (TREE_TYPE (TREE_TYPE (cname)))) error ("type `%s' does not have a destructor", IDENTIFIER_POINTER (cname)); else error ("destructor specification error"); return error_mark_node; } if (TREE_CODE (name) == OP_IDENTIFIER) method_name = build_operator_fnname (name, parmlist, 1); type = TREE_TYPE (TREE_TYPE (cname)); t = lookup_fnfields (CLASSTYPE_AS_LIST (type), method_name, 0); if (t) { /* No object? Then just fake one up, and let build_method_call figure out what to do. */ int dont_use_this = 0; tree basetype_path, decl; /* Determine whether to use `this' as the base object. */ if (current_class_type == 0 || get_base_distance (type, current_class_type, 0, &basetype_path) == -1) dont_use_this = 1; if (dont_use_this) { basetype_path = NULL_TREE; decl = build1 (NOP_EXPR, TYPE_POINTER_TO (TREE_TYPE (TREE_TYPE (cname))), error_mark_node); } else if (current_class_decl == 0) decl = build1 (NOP_EXPR, TYPE_POINTER_TO (TREE_TYPE (TREE_TYPE (cname))), error_mark_node); else decl = current_class_decl; return build_method_call (decl, method_name, parmlist, basetype_path, LOOKUP_NORMAL|LOOKUP_NONVIRTUAL); } else { char *err_name; if (TREE_CODE (name) == OP_IDENTIFIER) { char *op_name = operator_name_string (method_name); err_name = (char *)alloca (13 + strlen (op_name)); sprintf (err_name, "operator %s", op_name); } else if (TREE_CODE (name) == IDENTIFIER_NODE) err_name = IDENTIFIER_POINTER (name); else abort (); error ("no method `%s::%s'", IDENTIFIER_POINTER (cname), err_name); return error_mark_node; } } /* Build a reference to a member of an aggregate. This is not a C++ `&', but really something which can have its address taken, and then act as a pointer to member, for example CNAME :: FIELD can have its address taken by saying & CNAME :: FIELD. @@ Prints out lousy diagnostics for operator <typename> @@ fields. @@ This function should be rewritten and placed in cplus-search.c. */ tree build_member_ref (cname, name) tree cname, name; { tree decl, type, fnfields, fields, t = error_mark_node; tree basetypes = NULL_TREE; int dont_use_this = 0; int dtor = 0; if (TREE_CODE (cname) == SCOPE_REF) { sorry ("multiple scope qualifications in build_member_ref"); return error_mark_node; } if (! is_aggr_typedef (cname, 1)) return error_mark_node; type = TREE_TYPE (TREE_TYPE (cname)); if (TREE_CODE (name) == BIT_NOT_EXPR) { dtor = 1; name = TREE_OPERAND (name, 0); } if (TYPE_SIZE (type) == 0) { t = IDENTIFIER_CLASS_VALUE (name); if (t == 0) { error_with_aggr_type (type, "incomplete type `%s' does not have member `%s'", IDENTIFIER_POINTER (name)); return error_mark_node; } if (TREE_CODE (t) == TYPE_DECL) { error_with_decl (t, "member `%s' is just a type declaration"); return error_mark_node; } if (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == CONST_DECL) { TREE_USED (t) = 1; return t; } if (TREE_CODE (t) == FIELD_DECL) sorry ("use of member in incomplete aggregate type"); else if (TREE_CODE (t) == FUNCTION_DECL) sorry ("use of member function in incomplete aggregate type"); else abort (); return error_mark_node; } /* Unresolved multi-arity operator. */ if (TREE_CODE (name) == OP_IDENTIFIER) { t = copy_node (name); TREE_TYPE (t) = unknown_type_node; return t; } if (TREE_CODE (name) == TYPE_EXPR) /* Pass a TYPE_DECL to build_component_type_expr. */ return build_component_type_expr (TREE_TYPE (cname), name, NULL_TREE, 1); fnfields = lookup_fnfields (CLASSTYPE_AS_LIST (type), name, 0); fields = lookup_field (type, name, 0); if (fields == error_mark_node) return error_mark_node; if (fnfields) { basetypes = TREE_PURPOSE (fnfields); /* Go from the TREE_BASELINK to the member function info. */ t = TREE_VALUE (fnfields); if (fields) { if (DECL_FIELD_CONTEXT (fields) == DECL_FIELD_CONTEXT (t)) { error ("ambiguous member reference: member `%s' defined as both field and function", IDENTIFIER_POINTER (name)); return error_mark_node; } if (get_base_type (DECL_FIELD_CONTEXT (fields), DECL_FIELD_CONTEXT (t), 0)) ; else if (get_base_type (DECL_FIELD_CONTEXT (t), DECL_FIELD_CONTEXT (fields), 0)) t = fields; else { error ("ambiguous member reference: member `%s' derives from distinct classes in multiple inheritance lattice"); return error_mark_node; } } if (t == TREE_VALUE (fnfields)) { extern int flag_save_memoized_contexts; /* This does not handle visibility checking yet. */ if (TREE_CHAIN (t) == NULL_TREE || dtor) { enum visibility_type visibility; /* unique functions are handled easily. */ unique: visibility = compute_visibility (basetypes, t); if (visibility == visibility_protected) { error_with_decl (t, "member function `%s' is protected"); error ("in this context"); return error_mark_node; } if (visibility == visibility_private) { error_with_decl (t, "member function `%s' is private"); error ("in this context"); return error_mark_node; } return build (MEMBER_REF, TREE_TYPE (t), NULL_TREE, t); } /* overloaded functions may need more work. */ if (cname == name) { if (TYPE_HAS_DESTRUCTOR (type) && TREE_CHAIN (TREE_CHAIN (t)) == NULL_TREE) { t = TREE_CHAIN (t); goto unique; } } if (flag_save_memoized_contexts && !TREE_PERMANENT (fnfields) && global_bindings_p ()) fnfields = copy_list (fnfields); t = build_tree_list (error_mark_node, fnfields); TREE_TYPE (t) = build_member_type (type, unknown_type_node); return t; } } /* Now that we know we are looking for a field, see if we have access to that field. Lookup_field will give us the error message. */ if (current_class_type == 0 || get_base_distance (type, current_class_type, 0, &basetypes) == -1) dont_use_this = 1; if (dont_use_this) { basetypes = CLASSTYPE_AS_LIST (type); decl = build1 (NOP_EXPR, TREE_TYPE (TREE_TYPE (cname)), error_mark_node); } else if (current_class_decl == 0) decl = build1 (NOP_EXPR, TREE_TYPE (TREE_TYPE (cname)), error_mark_node); else decl = C_C_D; t = lookup_field (basetypes, name, 1); if (t == error_mark_node) return error_mark_node; if (t == NULL_TREE) { if (OPERATOR_TYPENAME_P (name)) error ("type conversion operator not a member of type `%s'", IDENTIFIER_POINTER (cname)); else error ("field `%s' is not a member of type `%s'", IDENTIFIER_POINTER (name), IDENTIFIER_POINTER (cname)); return error_mark_node; } if (TREE_CODE (t) == TYPE_DECL) { error_with_decl (t, "member `%s' is just a type declaration"); return error_mark_node; } /* static class members and class-specific enum values can be returned without further ado. */ if (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == CONST_DECL) { TREE_USED (t) = 1; return t; } /* static class functions too. */ if (TREE_CODE (t) == FUNCTION_DECL && TREE_CODE (TREE_TYPE (t)) == FUNCTION_TYPE) abort (); /* In member functions, the form `cname::name' is no longer equivalent to `this->cname::name'. */ return build (MEMBER_REF, build_member_type (type, TREE_TYPE (t)), decl, t); } /* Given an object EXP and a member function reference MEMBER, return the address of the actual member function. */ tree get_member_function (exp_addr_ptr, exp, member) tree *exp_addr_ptr; tree exp, member; { tree ctype = TREE_TYPE (exp); tree function = build_unary_op (ADDR_EXPR, member, 0); if (TYPE_VIRTUAL_P (ctype) || (flag_all_virtual == 1 && (TYPE_OVERLOADS_METHOD_CALL_EXPR (ctype) || TYPE_NEEDS_WRAPPER (ctype)))) { tree e0, e1, e3; tree exp_addr; e0 = build1 (NOP_EXPR, integer_type_node, function); #ifdef VTABLE_USES_MASK /* If we are willing to limit the number of virtual functions a class may have to some *small* number, then if, for a function address, we are passed some small number, we know that it is a virtual function index, and work from there. */ e1 = build (BIT_AND_EXPR, integer_type_node, e0, vtbl_mask); #else /* There is a hack here that takes advantage of twos complement arithmetic, and the fact that there are more than one UNITS to the WORD. If the high bit is set for the `function', then we pretend it is a virtual function, and the array indexing will knock this bit out the top, leaving a valid index. */ #if UNITS_PER_WORD <= 1 virtual_functions_lose !; #endif e1 = save_expr (build (GT_EXPR, integer_type_node, e0, integer_zero_node)); #endif /* This is really hairy: if the function pointer is a pointer to a non-virtual member function, then we can't go mucking with the `this' pointer (any more than we aleady have to this point). If it is a pointer to a virtual member function, then we have to adjust the `this' pointer according to what the virtual function table tells us. */ /* Save away the unadulterated `this' pointer. */ exp_addr = save_expr (*exp_addr_ptr); e3 = build_vfn_ref (exp_addr_ptr, exp, e0); assert (e3 != error_mark_node); /* Change this pointer type from `void *' to the type it is really supposed to be. */ TREE_TYPE (e3) = TREE_TYPE (function); /* If non-virtual, use what we had originally. Otherwise, use the value we get from the virtual function table. */ *exp_addr_ptr = build_conditional_expr (e1, exp_addr, *exp_addr_ptr); function = build_conditional_expr (e1, function, e3); } return build_indirect_ref (function, 0); } /* If a MEMBER_REF made it through to here, then it did not have its address taken. */ tree resolve_member_ref (exp) tree exp; { tree base; tree member; tree basetype, addr; if (TREE_CODE (exp) == TREE_LIST) return build_unary_op (ADDR_EXPR, exp, 0); assert (TREE_CODE (exp) == MEMBER_REF); member = TREE_OPERAND (exp, 1); if (TREE_STATIC (member)) { /* These were static members. */ if (mark_addressable (member) == 0) return error_mark_node; return member; } /* Syntax error can cause a member which should have been seen as static to be grok'd as non-static. */ if (C_C_D == NULL_TREE) { if (TREE_ADDRESSABLE (member) == 0) { error_with_decl (member, "member `%s' is non-static in static member function context"); TREE_ADDRESSABLE (member) = 1; } return error_mark_node; } base = TREE_OPERAND (exp, 0); assert (base != NULL_TREE); /* The first case is really just a reference to a member of `this'. */ if (TREE_CODE (member) == FIELD_DECL && (base == C_C_D || (TREE_CODE (base) == NOP_EXPR && TREE_OPERAND (base, 0) == error_mark_node))) { tree basetype_path; enum visibility_type visibility; basetype = DECL_CONTEXT (member); addr = convert_to_nonzero_pointer (TYPE_POINTER_TO (basetype), current_class_decl); get_base_distance (basetype, current_class_type, 0, &basetype_path); visibility = compute_visibility (basetype_path, member); if (visibility == visibility_public) return build (COMPONENT_REF, TREE_TYPE (member), build_indirect_ref (addr, 0), member); if (visibility == visibility_protected) { error_with_decl ("member `%s' is protected"); error ("in this context"); return error_mark_node; } if (visibility == visibility_private) { error_with_decl ("member `%s' is private"); error ("in this context"); return error_mark_node; } abort (); } /* If this is a reference to a member function, then return the address of the member function (which may involve going through the object's vtable), otherwise, return an expression for the derefernced pointer-to-member construct. */ addr = build_unary_op (ADDR_EXPR, base, 0); if (TREE_CODE (TREE_TYPE (member)) == METHOD_TYPE) { basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (member)); addr = convert_to_nonzero_pointer (TYPE_POINTER_TO (basetype), addr); return build_unary_op (ADDR_EXPR, get_member_function (&addr, build_indirect_ref (addr, 0), member), 0); } else if (TREE_CODE (TREE_TYPE (member)) == OFFSET_TYPE) { basetype = TYPE_OFFSET_BASETYPE (TREE_TYPE (member)); addr = convert_to_nonzero_pointer (TYPE_POINTER_TO (basetype), addr); member = convert (ptr_type_node, build_unary_op (ADDR_EXPR, member, 0)); return build1 (INDIRECT_REF, TREE_TYPE (exp), build (PLUS_EXPR, ptr_type_node, convert (ptr_type_node, addr), member)); } abort (); } /* Return either DECL or its known constant value (if it has one). */ tree decl_constant_value (decl) tree decl; { if ( #if 0 /* These may be necessary for C, but they break C++. */ ! TREE_PUBLIC (decl) /* Don't change a variable array bound or initial value to a constant in a place where a variable is invalid. */ && current_function_decl != 0 && ! pedantic && #endif /* 0 */ ! TREE_THIS_VOLATILE (decl) && DECL_INITIAL (decl) != 0 && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK /* This is invalid if initial value is not constant. If it has either a function call, a memory reference, or a variable, then re-evaluating it could give different results. */ && TREE_LITERAL (DECL_INITIAL (decl)) #if 0 /* Check for cases where this is sub-optimal, even though valid. */ && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR && DECL_MODE (decl) != BLKmode #endif ) return DECL_INITIAL (decl); return decl; } /* Return list element whose TREE_VALUE is ELEM. Return 0 if ELEM is not in LIST. */ tree value_member (elem, list) tree elem, list; { while (list) { if (elem == TREE_VALUE (list)) return list; list = TREE_CHAIN (list); } return NULL_TREE; } /* Return list element whose TREE_PURPOSE is ELEM. Return 0 if ELEM is not in LIST. */ tree purpose_member (elem, list) tree elem, list; { while (list) { if (elem == TREE_PURPOSE (list)) return list; list = TREE_CHAIN (list); } return NULL_TREE; } \f /* Friend handling routines. */ /* Friend data structures: Friend lists come from TYPE_DECL nodes. Since all aggregate types are automatically typedef'd, these node are guaranteed to exist. The TREE_PURPOSE of a friend list is the name of the friend, and its TREE_VALUE is another list. The TREE_PURPOSE of that list is a type, which allows all functions of a given type to be friends. The TREE_VALUE of that list is an individual function which is a friend. Non-member friends will match only by their DECL. Their member type is NULL_TREE, while the type of the inner list will either be of aggregate type or error_mark_node. */ /* Tell if this function specified by FUNCTION_DECL can be a friend of type TYPE. Return nonzero if friend, zero otherwise. DECL can be zero if we are calling a constructor or accessing a member in global scope. */ int is_friend (type, decl) tree type, decl; { tree typedecl = TYPE_NAME (type); tree ctype = NULL_TREE; tree list; tree name; if (decl == NULL_TREE) return 0; if (TREE_CODE (TREE_TYPE (decl)) == METHOD_TYPE) ctype = TYPE_METHOD_BASETYPE (TREE_TYPE (decl)); else if (DECL_STATIC_FUNCTION_P (decl)) ctype = DECL_CONTEXT (decl); if (ctype) { list = CLASSTYPE_FRIEND_CLASSES (TREE_TYPE (typedecl)); while (list) { if (ctype == TREE_VALUE (list)) return 1; list = TREE_CHAIN (list); } } list = DECL_FRIENDLIST (typedecl); name = DECL_ORIGINAL_NAME (decl); while (list) { if (name == TREE_PURPOSE (list)) { tree friends = TREE_VALUE (list); name = DECL_NAME (decl); while (friends) { if (ctype == TREE_PURPOSE (friends)) return 1; if (name == DECL_NAME (TREE_VALUE (friends))) return 1; friends = TREE_CHAIN (friends); } return 0; } list = TREE_CHAIN (list); } return 0; } /* Add a new friend to the friends of the aggregate type TYPE. DECL is the FUNCTION_DECL of the friend being added. */ static void add_friend (type, decl) tree type, decl; { tree typedecl = TYPE_NAME (type); tree list = DECL_FRIENDLIST (typedecl); tree name = DECL_ORIGINAL_NAME (decl); tree ctype = TREE_CODE (TREE_TYPE (decl)) == METHOD_TYPE ? TYPE_METHOD_BASETYPE (TREE_TYPE (decl)) : error_mark_node; while (list) { if (name == TREE_PURPOSE (list)) { tree friends = TREE_VALUE (list); while (friends) { if (decl == TREE_VALUE (friends)) { warning_with_decl (decl, "`%s' is already a friend of class `%s'", IDENTIFIER_POINTER (DECL_NAME (typedecl))); return; } friends = TREE_CHAIN (friends); } TREE_VALUE (list) = tree_cons (ctype, decl, TREE_VALUE (list)); return; } list = TREE_CHAIN (list); } DECL_FRIENDLIST (typedecl) = tree_cons (DECL_ORIGINAL_NAME (decl), build_tree_list (error_mark_node, decl), DECL_FRIENDLIST (typedecl)); if (! strncmp (IDENTIFIER_POINTER (DECL_NAME (decl)), OPERATOR_MODIFY_FORMAT, OPERATOR_MODIFY_LENGTH)) { tree parmtypes = TYPE_ARG_TYPES (TREE_TYPE (decl)); TREE_HAS_ASSIGNMENT (TREE_TYPE (typedecl)) = 1; TREE_GETS_ASSIGNMENT (TREE_TYPE (typedecl)) = 1; if (parmtypes && TREE_CHAIN (parmtypes)) { tree parmtype = TREE_VALUE (TREE_CHAIN (parmtypes)); if (TREE_CODE (parmtype) == REFERENCE_TYPE && TREE_TYPE (parmtypes) == TREE_TYPE (typedecl)) { TYPE_HAS_ASSIGN_REF (TREE_TYPE (typedecl)) = 1; TYPE_GETS_ASSIGN_REF (TREE_TYPE (typedecl)) = 1; } } } } /* Declare that every member function NAME in FRIEND_TYPE (which may be NULL_TREE) is a friend of type TYPE. */ static void add_friends (type, name, friend_type) tree type, name, friend_type; { tree typedecl = TYPE_NAME (type); tree list = DECL_FRIENDLIST (typedecl); while (list) { if (name == TREE_PURPOSE (list)) { tree friends = TREE_VALUE (list); while (friends && TREE_PURPOSE (friends) != friend_type) friends = TREE_CHAIN (friends); if (friends) if (friend_type) warning ("method `%s::%s' is already a friend of class", TYPE_NAME_STRING (friend_type), IDENTIFIER_POINTER (name)); else warning ("function `%s' is already a friend of class `%s'", IDENTIFIER_POINTER (name), IDENTIFIER_POINTER (DECL_NAME (typedecl))); else TREE_VALUE (list) = tree_cons (friend_type, NULL_TREE, TREE_VALUE (list)); return; } list = TREE_CHAIN (list); } DECL_FRIENDLIST (typedecl) = tree_cons (name, build_tree_list (friend_type, NULL_TREE), DECL_FRIENDLIST (typedecl)); if (! strncmp (name, OPERATOR_MODIFY_FORMAT, OPERATOR_MODIFY_LENGTH)) { TREE_HAS_ASSIGNMENT (TREE_TYPE (typedecl)) = 1; TREE_GETS_ASSIGNMENT (TREE_TYPE (typedecl)) = 1; sorry ("declaring \"friend operator =\" will not find \"operator = (X&)\" if it exists"); } } /* Set up a cross reference so that type TYPE will make member function CTYPE::DECL a friend when CTYPE is finally defined. */ void xref_friend (type, decl, ctype) tree type, decl, ctype; { tree typedecl = TYPE_NAME (type); tree friend_decl = TYPE_NAME (ctype); tree t = tree_cons (NULL_TREE, ctype, DECL_UNDEFINED_FRIENDS (typedecl)); DECL_UNDEFINED_FRIENDS (typedecl) = t; SET_DECL_WAITING_FRIENDS (friend_decl, tree_cons (type, t, DECL_WAITING_FRIENDS (friend_decl))); TREE_TYPE (DECL_WAITING_FRIENDS (friend_decl)) = decl; } /* Set up a cross reference so that functions with name NAME and type CTYPE know that they are friends of TYPE. */ void xref_friends (type, name, ctype) tree type, name, ctype; { tree typedecl = TYPE_NAME (type); tree friend_decl = TYPE_NAME (ctype); tree t = tree_cons (NULL_TREE, ctype, DECL_UNDEFINED_FRIENDS (typedecl)); DECL_UNDEFINED_FRIENDS (typedecl) = t; SET_DECL_WAITING_FRIENDS (friend_decl, tree_cons (type, t, DECL_WAITING_FRIENDS (friend_decl))); TREE_TYPE (DECL_WAITING_FRIENDS (friend_decl)) = name; } /* Make FRIEND_TYPE a friend class to TYPE. If FRIEND_TYPE has already been defined, we make all of its member functions friends of TYPE. If not, we make it a pending friend, which can later be added when its definition is seen. If a type is defined, then its TYPE_DECL's DECL_UNDEFINED_FRIENDS contains a (possibly empty) list of friend classes that are not defined. If a type has not yet been defined, then the DECL_WAITING_FRIENDS contains a list of types waiting to make it their friend. Note that these two can both be in use at the same time! */ void make_friend_class (type, friend_type) tree type, friend_type; { tree classes; if (type == friend_type) { warning ("class `%s' is implicitly friends with itself", TYPE_NAME_STRING (type)); return; } classes = CLASSTYPE_FRIEND_CLASSES (type); while (classes && TREE_VALUE (classes) != friend_type) classes = TREE_CHAIN (classes); if (classes) warning ("class `%s' is already friends with class `%s'", TYPE_NAME_STRING (TREE_VALUE (classes)), TYPE_NAME_STRING (type)); else { CLASSTYPE_FRIEND_CLASSES (type) = tree_cons (NULL_TREE, friend_type, CLASSTYPE_FRIEND_CLASSES (type)); } } /* Main friend processor. This is large, and for modularity purposes, has been removed from grokdeclarator. It returns `void_type_node' to indicate that something happened, though a FIELD_DECL is not returned. CTYPE is the class this friend belongs to. DECLARATOR is the name of the friend. DECL is the FUNCTION_DECL that the friend is. In case we are parsing a friend which is part of an inline definition, we will need to store PARM_DECL chain that comes with it into the DECL_ARGUMENTS slot of the FUNCTION_DECL. FLAGS is just used for `grokclassfn'. QUALS say what special qualifies should apply to the object pointed to by `this'. */ tree do_friend (ctype, declarator, decl, parmdecls, flags, quals) tree ctype, declarator, decl, parmdecls; enum overload_flags flags; tree quals; { if (ctype) { tree cname = TYPE_NAME (ctype); if (TREE_CODE (cname) == TYPE_DECL) cname = DECL_NAME (cname); /* A method friend. */ if (TREE_CODE (decl) == FUNCTION_DECL) { if (flags == NO_SPECIAL && ctype && declarator == cname) DECL_CONSTRUCTOR_P (decl) = 1; /* This will set up DECL_ARGUMENTS for us. */ grokclassfn (ctype, cname, decl, flags, TYPE_SIZE (ctype) != 0, quals); if (TREE_TYPE (decl) != error_mark_node) { if (TYPE_SIZE (ctype)) { /* We don't call pushdecl here yet, or ever on this actual FUNCTION_DECL. We must preserve its TREE_CHAIN until the end. */ make_decl_rtl (decl, NULL_TREE, 1); add_friend (current_class_type, decl); } else xref_friend (current_class_type, decl, ctype); DECL_FRIEND_P (decl) = 1; } } else { /* Possibly a bunch of method friends. */ /* Get the class they belong to. */ tree ctype = TREE_TYPE (TREE_TYPE (cname)); /* This class is defined, use its methods now. */ if (TYPE_SIZE (ctype)) { tree fields = lookup_fnfields (CLASSTYPE_AS_LIST (ctype), declarator, 0); if (fields) add_friends (current_class_type, declarator, ctype); else error ("method `%s' is not a member of class `%s'", IDENTIFIER_POINTER (declarator), IDENTIFIER_POINTER (cname)); } else xref_friends (current_class_type, declarator, ctype); decl = void_type_node; } } else if (TREE_CODE (decl) == FUNCTION_DECL && ((IDENTIFIER_LENGTH (declarator) == 4 && IDENTIFIER_POINTER (declarator)[0] == 'm' && ! strcmp (IDENTIFIER_POINTER (declarator), "main")) || (IDENTIFIER_LENGTH (declarator) > 10 && IDENTIFIER_POINTER (declarator)[0] == '_' && IDENTIFIER_POINTER (declarator)[1] == '_' && strncmp (IDENTIFIER_POINTER (declarator)+2, "builtin_", 8) == 0))) { /* raw "main", and builtin functions never gets overloaded, but they can become friends. */ TREE_PUBLIC (decl) = 1; add_friend (current_class_type, decl); DECL_FRIEND_P (decl) = 1; if (IDENTIFIER_POINTER (declarator)[0] == '_') { if (! strcmp (IDENTIFIER_POINTER (declarator)+10, "new")) TREE_GETS_NEW (current_class_type) = 0; else if (! strcmp (IDENTIFIER_POINTER (declarator)+10, "delete")) TREE_GETS_DELETE (current_class_type) = 0; } decl = void_type_node; } /* A global friend. @@ or possibly a friend from a base class ?!? */ else if (TREE_CODE (decl) == FUNCTION_DECL) { /* Friends must all go through the overload machinery, even though they may not technically be overloaded. Note that because classes all wind up being top-level in their scope, their friend wind up in top-level scope as well. */ DECL_NAME (decl) = build_decl_overload (IDENTIFIER_POINTER (declarator), TYPE_ARG_TYPES (TREE_TYPE (decl)), TREE_CODE (TREE_TYPE (decl)) == METHOD_TYPE); DECL_ASSEMBLER_NAME (decl) = IDENTIFIER_POINTER (DECL_NAME (decl)); DECL_ARGUMENTS (decl) = parmdecls; /* We can call pushdecl here, because the TREE_CHAIN of this FUNCTION_DECL is not needed for other purposes. */ decl = pushdecl_top_level (decl); make_decl_rtl (decl, NULL_TREE, 1); add_friend (current_class_type, decl); if (! TREE_OVERLOADED (declarator) && IDENTIFIER_GLOBAL_VALUE (declarator) && TREE_CODE (IDENTIFIER_GLOBAL_VALUE (declarator)) == FUNCTION_DECL) { error ("friend `%s' implicitly overloaded", IDENTIFIER_POINTER (declarator)); error_with_decl (IDENTIFIER_GLOBAL_VALUE (declarator), "after declaration of non-overloaded `%s'"); } DECL_FRIEND_P (decl) = 1; TREE_OVERLOADED (decl) = 1; TREE_OVERLOADED (declarator) = 1; push_overloaded_decl (decl); } else { /* @@ Should be able to ingest later definitions of this function before use. */ tree decl = IDENTIFIER_GLOBAL_VALUE (declarator); if (decl == NULL_TREE) { warning ("implicitly declaring `%s' as struct", IDENTIFIER_POINTER (declarator)); decl = xref_tag (record_type_node, declarator, NULL_TREE); decl = TYPE_NAME (decl); } /* Allow abbreviated declarations of overloaded functions, but not if those functions are really class names. */ if (TREE_CODE (decl) == TREE_LIST && TREE_TYPE (TREE_PURPOSE (decl))) { warning ("`friend %s' archaic, use `friend class %s' instead", IDENTIFIER_POINTER (declarator), IDENTIFIER_POINTER (declarator)); decl = TREE_TYPE (TREE_PURPOSE (decl)); } if (TREE_CODE (decl) == TREE_LIST) add_friends (current_class_type, TREE_PURPOSE (decl), NULL_TREE); else make_friend_class (current_class_type, TREE_TYPE (decl)); decl = void_type_node; } return decl; } /* TYPE has now been defined. It may, however, have a number of things waiting make make it their friend. We resolve these references here. */ void embrace_waiting_friends (type) tree type; { tree waiters = DECL_WAITING_FRIENDS (TYPE_NAME (type)); while (waiters) { tree waiter = TREE_PURPOSE (waiters); tree waiter_prev = TREE_VALUE (waiters); tree decl = TREE_TYPE (waiters); tree name = decl ? (TREE_CODE (decl) == IDENTIFIER_NODE ? decl : DECL_ORIGINAL_NAME (decl)) : NULL_TREE; if (name) { /* @@ There may be work to be done since we have not verified @@ consistency between original and friend declarations @@ of the functions waiting to become friends. */ tree field = lookup_fnfields (CLASSTYPE_AS_LIST (type), name, 0); if (field) if (decl == name) add_friends (waiter, name, type); else add_friend (waiter, decl); else error_with_file_and_line (DECL_SOURCE_FILE (TYPE_NAME (waiter)), DECL_SOURCE_LINE (TYPE_NAME (waiter)), "no method `%s' defined in class `%s' to be friend", IDENTIFIER_POINTER (DECL_ORIGINAL_NAME (TREE_TYPE (waiters))), TYPE_NAME_STRING (type)); } else make_friend_class (type, waiter); if (TREE_CHAIN (waiter_prev)) TREE_CHAIN (waiter_prev) = TREE_CHAIN (TREE_CHAIN (waiter_prev)); else DECL_UNDEFINED_FRIENDS (TYPE_NAME (waiter)) = NULL_TREE; waiters = TREE_CHAIN (waiters); } } \f /* Generate a C++ "new" expression. DECL is either a TREE_LIST (which needs to go through some sort of groktypename) or it is the name of the class we are newing. INIT is an initialization value. It is either an EXPRLIST, an EXPR_NO_COMMAS, or something in braces. If INIT is void_type_node, it means do *not* call a constructor for this instance. For types with constructors, the data returned is initialized by the approriate constructor. Whether the type has a constructor or not, if it has a pointer to a virtual function table, then that pointer is set up here. Unless I am mistaken, a call to new () will return initialized data regardless of whether the constructor itself is private or not. Parameter USER_PARMS, if non-null, is passed as a second parameter to a function called "__user_new". This function should behave in a similar fashion to "__builtin_new", except that it may allocate storage in a more user-defined way. */ tree build_new (user_parms, decl, init) tree user_parms; tree decl, init; { extern tree require_complete_type (); /* typecheck.c */ tree type, true_type, size, rval; tree init1 = NULL_TREE, nelts; int has_call = 0, has_array = 0; int use_global_new = 0; tree alignment = NULL_TREE; if (decl == error_mark_node) return error_mark_node; if (user_parms && TREE_PURPOSE (user_parms) == error_mark_node) { use_global_new = 1; user_parms = TREE_VALUE (user_parms); } if (TREE_CODE (decl) == TREE_LIST) { tree absdcl = TREE_VALUE (decl); tree last_absdcl = NULL_TREE; nelts = integer_one_node; if (absdcl && TREE_CODE (absdcl) == CALL_EXPR) { /* probably meant to be a call */ has_call = 1; init1 = TREE_OPERAND (absdcl, 1); absdcl = TREE_OPERAND (absdcl, 0); TREE_VALUE (decl) = absdcl; } while (absdcl && TREE_CODE (absdcl) == INDIRECT_REF) { last_absdcl = absdcl; absdcl = TREE_OPERAND (absdcl, 0); } if (last_absdcl) { tree save_absdecl = TREE_VALUE (decl); TREE_VALUE (decl) = last_absdcl; true_type = groktypename (decl); TREE_VALUE (decl) = save_absdecl; } else true_type = groktypename (decl); while (absdcl && TREE_CODE (absdcl) == ARRAY_REF) { /* probably meant to be a vec new */ tree this_nelts; has_array = 1; this_nelts = save_expr (TREE_OPERAND (absdcl, 1)); absdcl = TREE_OPERAND (absdcl, 0); if (this_nelts == NULL_TREE) error ("new of array type fails to specify size"); else if (this_nelts == integer_zero_node) { warning ("zero size array reserves no space"); nelts = integer_zero_node; } else nelts = build_binary_op (MULT_EXPR, nelts, this_nelts); } if (last_absdcl) TREE_OPERAND (last_absdcl, 0) = absdcl; else TREE_VALUE (decl) = absdcl; type = groktypename (decl); if (! type || type == error_mark_node) return error_mark_node; type = TYPE_MAIN_VARIANT (type); if (type == void_type_node) { error ("invalid type: `void []'"); return error_mark_node; } } else if (TREE_CODE (decl) == IDENTIFIER_NODE) { if (TREE_TYPE (decl)) { /* An aggregate type. */ decl = TREE_TYPE (decl); type = TREE_TYPE (decl); } else { /* A builtin type. */ decl = lookup_name (decl); assert (TREE_CODE (decl) == TYPE_DECL); type = TREE_TYPE (decl); } true_type = type; } else if (TREE_CODE (decl) == TYPE_DECL) { type = TREE_TYPE (decl); true_type = type; } else { type = decl; true_type = type; decl = TYPE_NAME (type); } if (TYPE_SIZE (type) == 0) { if (type == void_type_node) error ("invalid type for new: `void'"); else incomplete_type_error (0, type); return error_mark_node; } if (IS_AGGR_TYPE (type) && CLASSTYPE_ABSTRACT_VIRTUALS (type)) { abstract_virtuals_error (NULL_TREE, type); return error_mark_node; } size = size_in_bytes (type); if (has_array) size = fold (build_binary_op (MULT_EXPR, size, nelts)); /* If this type has special alignment requirements, deal with them here. */ if (TYPE_ALIGN (type) > BITS_PER_WORD) { alignment = fold (build (MINUS_EXPR, integer_type_node, c_alignof (type), integer_one_node)); size = fold (build (PLUS_EXPR, integer_type_node, size, alignment)); } if (has_call) init = init1; if (TREE_CODE (true_type) == ARRAY_TYPE) type = TREE_TYPE (true_type); else type = true_type; #ifdef SOS if (user_parms == void_type_node) { /* Simple "new dynamic" construct. */ if (! IS_AGGR_TYPE (type)) { error ("dynamic new can only allocate objects of aggregate type"); return error_mark_node; } else if (! is_aggr_typedef (DECL_NAME (TYPE_NAME (type)), 1)) return error_mark_node; else rval = build_dynamic_new (type, size, NULL_TREE, init); } else if (user_parms && TREE_CODE (user_parms) == STRING_CST) { /* A "new dynamic" construct with filename argument. */ if (! IS_AGGR_TYPE (type)) { error ("dynamic new can only allocate objects of aggregate type"); return error_mark_node; } else if (! is_aggr_typedef (DECL_NAME (TYPE_NAME (type)), 1)) return error_mark_node; else rval = build_dynamic_new (type, size, user_parms, init); } if (alignment) rval = build (BIT_AND_EXPR, TYPE_POINTER_TO (type), rval, build (BIT_NOT_EXPR, integer_type_node, alignment)); return rval; #endif if (user_parms) { rval = build_user_new (type, size, user_parms); } else if (has_array) { rval = build (CALL_EXPR, build_pointer_type (type), BIN, build_tree_list (NULL_TREE, size), 0); if (alignment) rval = build (BIT_AND_EXPR, TYPE_POINTER_TO (type), rval, build (BIT_NOT_EXPR, integer_type_node, alignment)); TREE_VOLATILE (rval) = 1; } else { if (IS_AGGR_TYPE (type) && (TREE_GETS_NEW (type) && !use_global_new)) rval = build_opfncall (NEW_EXPR, TYPE_POINTER_TO (type), size, 0); else if (flag_this_is_variable && TYPE_HAS_CONSTRUCTOR (type) && init != void_type_node) { if (init == NULL_TREE || TREE_CODE (init) == TREE_LIST) return build_method_call (NULL_TREE, DECL_NAME (TYPE_NAME (type)), init, NULL_TREE, LOOKUP_NORMAL); error ("constructors take parameter lists"); return error_mark_node; } else { rval = build (CALL_EXPR, build_pointer_type (type), BIN, build_tree_list (NULL_TREE, size), 0); if (alignment) rval = build (BIT_AND_EXPR, TYPE_POINTER_TO (type), rval, build (BIT_NOT_EXPR, integer_type_node, alignment)); TREE_VOLATILE (rval) = 1; } } if (rval == error_mark_node) return error_mark_node; rval = save_expr (rval); TREE_HAS_CONSTRUCTOR (rval) = 1; /* Don't call any constructors or do any initialization. */ if (init == void_type_node) return rval; if (TYPE_NEEDS_CONSTRUCTING (type)) { /* Have to wrap this in RTL_EXPR for two cases: in base or member initialization and if we are a branch of a ?: operator. Since we can't easily know the latter, just do it always. */ extern struct rtx_def *get_insns (), *const0_rtx; extern tree static_aggregates; tree xval = rval; xval = make_node (RTL_EXPR); TREE_TYPE (xval) = TREE_TYPE (rval); start_sequence (); if (has_array) rval = expand_vec_init (decl, rval, build_binary_op (MINUS_EXPR, nelts, integer_one_node), init); else if (current_function_decl == NULL_TREE) static_aggregates = perm_tree_cons (init, rval, static_aggregates); else expand_aggr_init (build_indirect_ref (rval, 0), init, 0); TREE_VOLATILE (xval) = 1; emit_insn (gen_sequence ()); RTL_EXPR_SEQUENCE (xval) = get_insns (); end_sequence (); if (TREE_CODE (rval) == SAVE_EXPR) { /* Errors may cause this to not get evaluated. */ if (SAVE_EXPR_RTL (rval) == 0) SAVE_EXPR_RTL (rval) = const0_rtx; RTL_EXPR_RTL (xval) = SAVE_EXPR_RTL (rval); } else { assert (TREE_CODE (rval) == VAR_DECL); RTL_EXPR_RTL (xval) = DECL_RTL (rval); } rval = xval; } else if (has_call || init) { if (IS_AGGR_TYPE (type)) error_with_aggr_type (type, "no constructor for type `%s'"); else error ("no constructor for this type"); rval = error_mark_node; } return rval; } static tree build_user_new (type, size, user_parms) tree type; tree size; tree user_parms; { tree user_new = lookup_name (USR_NEW); tree rval; if (user_new == NULL_TREE) { error ("no declaration of \"__user_new\""); return error_mark_node; } rval = build_x_function_call (user_new, tree_cons (NULL_TREE, size, user_parms), current_class_decl); if (rval == error_mark_node) return error_mark_node; TREE_TYPE (rval) = build_pointer_type (type); return rval; } #ifdef SOS /* Build a "new dynamic" call for type TYPE. The size of the object we are newing is SIZE. If "new dynamic" was given with an argument, that argument is in NAME. PARMS contains the parameters to the constructor. The first parameter must be an `ImportRequest *'. This is slightly hairy, because we must find the correct constructor by hand. */ static tree build_dynamic_new (type, size, name, parms) tree type, size; tree name, parms; { tree import_parms, inner_parms; tree import_ptr = integer_zero_node; /* This variable is supposed to be the address of a "struct ref" object, but how and where should it be defined? */ tree lookup_tmp = integer_zero_node; tree import_tmp = build_unary_op (ADDR_EXPR, get_temp_name (ptr_type_node, 0), 0); if (name) { inner_parms = tree_cons (NULL_TREE, name, build_tree_list (NULL_TREE, integer_zero_node)); inner_parms = tree_cons (NULL_TREE, lookup_tmp, inner_parms); inner_parms = build_function_call (__sosLookup, inner_parms); } else inner_parms = integer_zero_node; import_parms = build_tree_list (NULL_TREE, inner_parms); if (CLASSTYPE_DYNAMIC_FILENAME (type)) { inner_parms = tree_cons (NULL_TREE, CLASSTYPE_DYNAMIC_FILENAME (type), build_tree_list (NULL_TREE, integer_zero_node)); inner_parms = tree_cons (NULL_TREE, lookup_tmp, inner_parms); inner_parms = build_function_call (__sosLookup, inner_parms); } else inner_parms = integer_zero_node; import_parms = tree_cons (NULL_TREE, inner_parms, import_parms); import_parms = tree_cons (NULL_TREE, CLASSTYPE_TYPENAME_AS_STRING (type), import_parms); /* This is one parameter which could be (but should not be) evaluated twice. */ TREE_VALUE (parms) = save_expr (TREE_VALUE (parms)); import_parms = tree_cons (NULL_TREE, TREE_VALUE (parms), import_parms); /* SOS?? Pass the address of a temporary which can hold the pointer to dynamic class table, but how and where is it defined? */ import_parms = tree_cons (NULL_TREE, import_tmp, import_parms); import_ptr = build_function_call (__sosImport, import_parms); /* SOS?? Now, generate call to ctor, but using `import_ptr' as the function table. Return the result of the call to the ctor. */ import_ptr = build1 (NOP_EXPR, TYPE_POINTER_TO (type), import_ptr); return build_method_call (import_ptr, DECL_NAME (TYPE_NAME (type)), tree_cons (NULL_TREE, import_tmp, parms), NULL_TREE, LOOKUP_DYNAMIC); } /* Return the name of the link table (as an IDENTIFIER_NODE) for the given TYPE. */ tree get_linktable_name (type) tree type; { char *buf = (char *)alloca (4 + TYPE_NAME_LENGTH (type) + 1); tree name; assert (TYPE_DYNAMIC (type)); sprintf (buf, "ZN_%s_", TYPE_NAME_STRING (type)); return get_identifier (buf); } /* For a given type TYPE, grovel for a function table which can be used to support dynamic linking. */ tree get_sos_dtable (type, parms) tree type, parms; { tree classname = CLASSTYPE_TYPENAME_AS_STRING (type); tree filename = CLASSTYPE_DYNAMIC_FILENAME (type); tree dyn_vtbl; /* This variable is supposed to be the address of a "struct ref" object, but how and where should it be defined? */ tree lookup_tmp = integer_zero_node; assert (TYPE_DYNAMIC (type)); if (filename) { tree inner_parms = tree_cons (NULL_TREE, filename, build_tree_list (NULL_TREE, integer_zero_node)); inner_parms = tree_cons (NULL_TREE, lookup_tmp, inner_parms); parms = build_tree_list (NULL_TREE, build_function_call (__sosLookup, inner_parms)); } else parms = build_tree_list (NULL_TREE, integer_zero_node); parms = tree_cons (NULL_TREE, classname, parms); dyn_vtbl = build_function_call (__sosFindCode, parms); TREE_TYPE (dyn_vtbl) = build_pointer_type (ptr_type_node); return dyn_vtbl; } #endif \f /* `expand_vec_init' performs initialization of a vector of aggregate types. DECL is passed only for error reporting, and provides line number and source file name information. BASE is the space where the vector will be. MAXINDEX is the maximum index of the array (one less than the number of elements). INIT is the (possibly NULL) initializer. */ tree expand_vec_init (decl, base, maxindex, init) tree decl, base, maxindex, init; { tree rval; tree iterator; tree type = TREE_TYPE (TREE_TYPE (base)); tree size; maxindex = convert (integer_type_node, maxindex); if (maxindex == error_mark_node) return error_mark_node; if (current_function_decl == NULL_TREE) { rval = make_tree_vec (3); TREE_VEC_ELT (rval, 0) = base; TREE_VEC_ELT (rval, 1) = maxindex; TREE_VEC_ELT (rval, 2) = init; return rval; } size = size_in_bytes (type); /* Set to zero in case size is <= 0. Optimizer will delete this if it is not needed. */ rval = get_temp_regvar (TYPE_POINTER_TO (type), null_pointer_node); base = default_conversion (base); expand_assignment (rval, base, 0, 0); base = get_temp_regvar (TYPE_POINTER_TO (type), base); if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR && TREE_TYPE (init) == TREE_TYPE (decl)) { /* Initialization of array from {...}. */ tree elts = CONSTRUCTOR_ELTS (init); tree baseref = build1 (INDIRECT_REF, type, base); tree baseinc = build (PLUS_EXPR, TYPE_POINTER_TO (type), base, size); int host_i = TREE_INT_CST_LOW (maxindex); if (IS_AGGR_TYPE (type)) { while (elts) { host_i -= 1; expand_aggr_init (baseref, TREE_VALUE (elts), 0); expand_assignment (base, baseinc, 0, 0); elts = TREE_CHAIN (elts); } /* Initialize any elements by default if possible. */ if (host_i > 0) { iterator = get_temp_regvar (integer_type_node, build_int_2 (host_i, 0)); init = NULL_TREE; goto init_by_default; } } else while (elts) { expand_assignment (baseref, TREE_VALUE (elts), 0, 0); expand_assignment (base, baseinc, 0, 0); elts = TREE_CHAIN (elts); } if (obey_regdecls) use_variable (DECL_RTL (base)); } else { iterator = get_temp_regvar (integer_type_node, maxindex); init_by_default: expand_start_cond (build (GE_EXPR, integer_type_node, iterator, integer_zero_node), 0); expand_start_loop_continue_elsewhere (1); if (TREE_CODE (type) == ARRAY_TYPE) { if (init != 0) sorry ("cannot initialize multi-dimensional array with initializer"); expand_vec_init (decl, build1 (NOP_EXPR, TYPE_POINTER_TO (TREE_TYPE (type)), base), array_type_nelts (type), 0); } else expand_aggr_init (build1 (INDIRECT_REF, type, base), init, 0); expand_assignment (base, build (PLUS_EXPR, TYPE_POINTER_TO (type), base, size), 0, 0); expand_loop_continue_here (); expand_exit_loop_if_false (build (NE_EXPR, integer_type_node, build (PREDECREMENT_EXPR, integer_type_node, iterator, integer_one_node), minus_one)); if (obey_regdecls) use_variable (DECL_RTL (base)); expand_end_loop (); expand_end_cond (); if (obey_regdecls) use_variable (DECL_RTL (iterator)); } if (obey_regdecls) use_variable (DECL_RTL (rval)); return rval; } /* Delete an object at top level. This means we delete both the object and its virtual base classes. */ void expand_delete (type, addr, auto_delete, protect) tree type, addr; tree auto_delete; int protect; { tree rval; if (TREE_CODE (addr) == DELETE_EXPR) { tree decl = TREE_OPERAND (addr, 0); if (TREE_USED (decl) == 0) { warning ("aggregate `%s' initialized, but never used", IDENTIFIER_POINTER (DECL_NAME (decl))); /* Muzzle further error messages in case this type does not rank a destructor. */ TREE_USED (decl) = 1; } } if (TREE_CODE (type) == ARRAY_TYPE) { expand_vec_delete (addr, array_type_nelts (type), c_sizeof (type), NULL_TREE, auto_delete, integer_zero_node, 1); } else { struct rtx_def *get_last_insn (); struct rtx_def *last_insn = get_last_insn (); rval = build_delete (type, addr, auto_delete, protect, 0); expand_expr_stmt (rval); if (TYPE_NEEDS_DESTRUCTOR (type) && TYPE_USES_VIRTUAL_BASECLASSES (type)) expand_expr_stmt (build_vbase_delete (type, addr)); if (get_last_insn () == last_insn) /* Have to emit something, since it might be a cleanup. */ emit_note (0, -1); } } /* Free up storage of type TYPE, at address ADDR. TYPE is a POINTER_TYPE. This does not call any destructors. */ tree build_x_delete (type, addr, use_global_delete) tree type, addr; int use_global_delete; { tree rval; if (TREE_GETS_DELETE (TREE_TYPE (type)) && !use_global_delete) rval = build_opfncall (DELETE_EXPR, addr); else { rval = build (CALL_EXPR, void_type_node, BID, build_tree_list (NULL_TREE, addr), 0); TREE_VOLATILE (rval) = 1; } return rval; } /* Generate a call to a destructor. TYPE is the type to cast ADDR to. ADDR is an expression which yields the store to be destroyed. AUTO_DELETE is nonzero if a call to DELETE should be made or not. PROTECT is nonzero if we protect access to the virtual baseclass members. This function does not delete an object's virtual base classes. Call `expand_delete' for that. */ tree build_delete (type, addr, auto_delete, protect, use_global_delete) tree type, addr; tree auto_delete; int protect; int use_global_delete; { tree function, parms; tree member; tree expr; tree ref; int ptr; if (addr == error_mark_node) return error_mark_node; if (type == error_mark_node) abort (); type = TYPE_MAIN_VARIANT (type); if (TREE_CODE (type) == POINTER_TYPE) { type = TREE_TYPE (type); if (TYPE_SIZE (type) == 0) { incomplete_type_error (0, type); return error_mark_node; } if (! IS_AGGR_TYPE (type)) { if (auto_delete == integer_zero_node) compiler_error ("non-aggregate type to build delete with auto_delete == 0"); expr = build (CALL_EXPR, void_type_node, BID, build_tree_list (NULL_TREE, addr), 0); TREE_VOLATILE (expr) = 1; return expr; } if (TREE_VOLATILE (addr)) addr = save_expr (addr); ref = build_indirect_ref (addr, 0); ptr = 1; } else if (TREE_CODE (type) == ARRAY_TYPE) { return build_vec_delete (addr, array_type_nelts (type), c_sizeof (TREE_TYPE (type)), NULL_TREE, auto_delete, integer_zero_node); } else { addr = (protect ? convert (build_pointer_type (type), build_unary_op (ADDR_EXPR, addr, 0)) : convert_force (build_pointer_type (type), build_unary_op (ADDR_EXPR, addr, 0))); if (TREE_CODE (addr) == NOP_EXPR && TREE_OPERAND (addr, 0) == current_class_decl) ref = C_C_D; else ref = build_indirect_ref (addr, 0); ptr = 0; } if (! IS_AGGR_TYPE (type)) { compiler_error ("non-aggregate type to build_delete"); return error_mark_node; } if (! TYPE_NEEDS_DESTRUCTOR (type)) { if (auto_delete == integer_zero_node) return build1 (NOP_EXPR, void_type_node, integer_zero_node); else if (TREE_GETS_DELETE (type) && !use_global_delete) return build_opfncall (DELETE_EXPR, addr); parms = build_tree_list (NULL_TREE, addr); expr = build (CALL_EXPR, void_type_node, BID, parms, 0); TREE_VOLATILE (expr) = 1; return expr; } parms = build_tree_list (NULL_TREE, addr); /* Below, we will reverse the order in which these calls are made. If we have a destructor, then that destructor will take care of the base classes; otherwise, we must do that here. */ if (TYPE_HAS_DESTRUCTOR (type)) { tree field = TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (type), 0); tree basetypes = CLASSTYPE_AS_LIST (type); if (protect > 0) { enum visibility_type visibility = compute_visibility (basetypes, field); if (visibility == visibility_private) { error_with_aggr_type (type, "destructor for type `%s' is private in this scope"); return error_mark_node; } else if (visibility == visibility_protected) { error_with_aggr_type (type, "destructor for type `%s' is protected in this scope"); return error_mark_node; } } /* Once we are in a destructor, do not try going through the virtual function table to find the next destructor. */ if (DECL_VIRTUAL_P (field) && (! DESTRUCTOR_NAME_P (DECL_NAME (current_function_decl)) || TREE_CODE (auto_delete) != PARM_DECL) && auto_delete != integer_zero_node && (ptr == 1 || ! resolves_to_fixed_type_p (ref))) { function = build_vfn_ref (&TREE_VALUE (parms), ref, DECL_VINDEX (field)); if (function == error_mark_node) return error_mark_node; TREE_TYPE (function) = build_pointer_type (TREE_TYPE (field)); TREE_CHAIN (parms) = build_tree_list (NULL_TREE, auto_delete); expr = build_function_call (function, parms); if (ptr) { /* Handle the case where a virtual destructor is being called on an item that is 0. @@ Does this really need to be done? */ tree ifexp = build_binary_op (NE_EXPR, addr, integer_zero_node); expr = build (COND_EXPR, void_type_node, ifexp, expr, build1 (NOP_EXPR, void_type_node, integer_zero_node)); } } else { /* Handle the case where a non-virtual destructor is being called on an item that is 0. */ tree ifexp = build_binary_op (NE_EXPR, addr, integer_zero_node); function = field; assert (DECL_INITIAL (function) != void_type_node); if (DECL_INITIAL (function) == void_type_node) if (auto_delete == integer_zero_node) expr = build1 (NOP_EXPR, void_type_node, integer_zero_node); else if (TREE_GETS_DELETE (type) && !use_global_delete) expr = build_opfncall (DELETE_EXPR, addr); else { expr = build (CALL_EXPR, void_type_node, BID, parms, 0); TREE_VOLATILE (expr) = 1; } else { TREE_CHAIN (parms) = build_tree_list (NULL_TREE, auto_delete); expr = build_function_call (function, parms); } expr = build (COND_EXPR, void_type_node, ifexp, expr, build1 (NOP_EXPR, void_type_node, integer_zero_node)); } return expr; } else { int i, n_baseclasses = CLASSTYPE_N_BASECLASSES (type); tree basetype = n_baseclasses > 0 ? CLASSTYPE_BASECLASS (type, 1) : NULL_TREE; tree exprstmt = NULL_TREE; tree parent_auto_delete = auto_delete; tree cond; /* If this type does not have a destructor, but does have operator delete, call the parent parent destructor (if any), but let this node do the deleting. Otherwise, it is ok to let the parent destructor do the deleting. */ if (TREE_GETS_DELETE (type) && !use_global_delete) { parent_auto_delete = integer_zero_node; if (auto_delete == integer_zero_node) cond = NULL_TREE; else { expr = build_opfncall (DELETE_EXPR, addr); if (expr == error_mark_node) return error_mark_node; if (auto_delete != integer_one_node) cond = build (COND_EXPR, void_type_node, build (NE_EXPR, integer_type_node, auto_delete, integer_zero_node), expr, build1 (NOP_EXPR, void_type_node, integer_zero_node)); else cond = expr; } } else if (basetype == NULL_TREE || (CLASSTYPE_VIA_VIRTUAL (type, 1) == 0 && ! TYPE_NEEDS_DESTRUCTOR (basetype))) { cond = build (COND_EXPR, void_type_node, build (NE_EXPR, integer_type_node, auto_delete, integer_zero_node), build_function_call (BID, build_tree_list (NULL_TREE, addr)), build1 (NOP_EXPR, void_type_node, integer_zero_node)); } else cond = NULL_TREE; if (cond) exprstmt = build_tree_list (NULL_TREE, cond); if (basetype && ! CLASSTYPE_VIA_VIRTUAL (type, 1) && TYPE_NEEDS_DESTRUCTOR (basetype)) { expr = build_delete (basetype, ref, parent_auto_delete, protect, 0); exprstmt = tree_cons (NULL_TREE, expr, exprstmt); } for (i = 2; i <= n_baseclasses; i++) { basetype = CLASSTYPE_BASECLASS (type, i); if (! TYPE_NEEDS_DESTRUCTOR (basetype) || CLASSTYPE_VIA_VIRTUAL (type, i)) continue; expr = build_delete (TYPE_POINTER_TO (basetype), convert_to_nonzero_pointer (TYPE_POINTER_TO (basetype), addr), integer_zero_node, protect, 0); exprstmt = tree_cons (NULL_TREE, expr, exprstmt); } for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member)) { if (TREE_CODE (member) != FIELD_DECL) continue; if (TYPE_NEEDS_DESTRUCTOR (TREE_TYPE (member))) { tree this_member = build_component_ref (ref, DECL_NAME (member), 0, 0); tree this_type = TREE_TYPE (member); expr = build_delete (this_type, this_member, integer_zero_node, 1, 0); exprstmt = tree_cons (NULL_TREE, expr, exprstmt); while (TREE_CODE (this_type) == ARRAY_TYPE) this_type = TREE_TYPE (this_type); if (TYPE_USES_VIRTUAL_BASECLASSES (this_type)) { if (TREE_CODE (TREE_TYPE (member)) == ARRAY_TYPE) sorry ("delete of arrays with virtual baseclasses"); else { expr = build_vbase_delete (TREE_TYPE (member), this_member); exprstmt = tree_cons (NULL_TREE, expr, exprstmt); } } } } if (exprstmt) return build_compound_expr (exprstmt); /* Virtual base classes make this function do nothing. */ return build1 (NOP_EXPR, void_type_node, integer_zero_node); } } /* For type TYPE, delete the virtual baseclass objects of DECL. */ tree build_vbase_delete (type, decl) tree type, decl; { tree vbases = CLASSTYPE_VBASECLASSES (type); tree result = NULL_TREE; tree addr = build_unary_op (ADDR_EXPR, decl, 0); assert (addr != error_mark_node); while (vbases) { result = tree_cons (NULL_TREE, build_delete (TYPE_POINTER_TO (TREE_VALUE (vbases)), addr, integer_zero_node, 1, 0), result); vbases = TREE_CHAIN (vbases); } return build_compound_expr (nreverse (result)); } /* Expand a C++ vector delete expression. MAXINDEX is the number of elements to be deleted. ELT_SIZE is the nominal size of each element in the vector. BASE is the expression that should yield the store to be deleted. DTOR_DUMMY is a placeholder for a destructor. The library function __builtin_vec_delete has a pointer to function in this position. This function expands (or synthesizes) these calls itself. AUTO_DELETE_VEC says whether the container (vector) should be deallocated. AUTO_DELETE say whether each item in the container should be deallocated. This also calls delete for virtual baseclasses of elements of the vector. */ void expand_vec_delete (base, maxindex, elt_size, dtor_dummy, auto_delete_vec, auto_delete) tree base, maxindex, elt_size; tree dtor_dummy; tree auto_delete_vec, auto_delete; { tree ptype = TREE_TYPE (base); tree type; tree rval; tree iterator, tbase; tree size_exp; if (TREE_CODE (ptype) == POINTER_TYPE) { if (maxindex == 0) { error ("must specify size for non array type"); return; } maxindex = convert (integer_type_node, maxindex); if (maxindex == error_mark_node) return; } else if (TREE_CODE (ptype) == ARRAY_TYPE) { tree amaxindex = array_type_nelts (ptype); maxindex = fold (convert (integer_type_node, maxindex)); if (maxindex == error_mark_node || integer_zerop (maxindex)) return; if (amaxindex != 0 && (TREE_CODE (maxindex) == INTEGER_CST || TREE_CODE (amaxindex) == INTEGER_CST) && ! tree_int_cst_equal (maxindex, amaxindex)) warning ("argument to vector delete disagrees with declared type of array"); base = default_conversion (base); ptype = TREE_TYPE (base); } else { error ("type to vector delete is neither pointer or array type"); return; } type = TREE_TYPE (ptype); if (! IS_AGGR_TYPE (type) || ! TYPE_NEEDS_DESTRUCTOR (type)) { if (extra_warnings && auto_delete == integer_zero_node) warning ("array size expression for delete ignored"); rval = build (CALL_EXPR, void_type_node, BID, build_tree_list (NULL_TREE, base), 0); TREE_VOLATILE (rval) = 1; expand_expr_stmt (rval); return; } iterator = get_temp_regvar (integer_type_node, maxindex); size_exp = size_in_bytes (type); expand_start_cond (build (GE_EXPR, integer_type_node, iterator, integer_zero_node), 0); tbase = get_temp_regvar (ptype, build (PLUS_EXPR, ptype, base, build (MULT_EXPR, integer_type_node, size_exp, build (PLUS_EXPR, integer_type_node, maxindex, integer_one_node)))); expand_start_loop_continue_elsewhere (1); expand_assignment (tbase, build (MINUS_EXPR, ptype, tbase, size_exp), 0, 0); assert (dtor_dummy == NULL_TREE); expand_delete (ptype, tbase, auto_delete); expand_loop_continue_here (); expand_exit_loop_if_false (build (NE_EXPR, integer_type_node, build (PREDECREMENT_EXPR, integer_type_node, iterator, integer_one_node), minus_one)); expand_end_loop (); if (obey_regdecls) use_variable (DECL_RTL (tbase)); expand_end_cond (); if (auto_delete != integer_zero_node) { rval = build (CALL_EXPR, void_type_node, BID, build_tree_list (NULL_TREE, base), 0); TREE_VOLATILE (rval) = 1; expand_expr_stmt (rval); } if (obey_regdecls) use_variable (DECL_RTL (iterator)); } /* Build a C++ vector delete expression. NELTS is the number of elements to be deleted. BASE is the expression that should yield the store to be deleted. This does not call delete on the elements' virtual baseclasses. */ tree build_vec_delete (base, maxindex, elt_size, dtor_dummy, auto_delete_vec, auto_delete) tree base, maxindex, elt_size; tree dtor_dummy; tree auto_delete_vec, auto_delete; { tree ptype = TREE_TYPE (base); tree type; tree rval; maxindex = fold (convert (integer_type_node, maxindex)); if (maxindex == error_mark_node) return error_mark_node; if (TREE_CODE (ptype) == POINTER_TYPE) { if (maxindex == 0) { error ("must specify size for non array type"); return error_mark_node; } } else if (TREE_CODE (ptype) == ARRAY_TYPE) { tree amaxindex = array_type_nelts (ptype); if ((TREE_CODE (maxindex) == INTEGER_CST || (amaxindex && TREE_CODE (amaxindex) == INTEGER_CST)) && ! tree_int_cst_equal (maxindex, amaxindex)) warning ("argument to vector delete disagrees with declared type of array"); base = default_conversion (base); ptype = TREE_TYPE (base); } else { error ("type to vector delete is neither pointer or array type"); return error_mark_node; } type = TREE_TYPE (ptype); if (TYPE_NEEDS_DESTRUCTOR (type)) { struct rtx_def *start_sequence (), *get_insns (); if (integer_zerop (maxindex)) return build1 (NOP_EXPR, void_type_node, integer_zero_node); rval = make_node (RTL_EXPR); TREE_TYPE (rval) = void_type_node; start_sequence (); expand_vec_delete (base, maxindex, elt_size, dtor_dummy, auto_delete_vec, auto_delete); TREE_VOLATILE (rval) = 1; emit_insn (gen_sequence ()); RTL_EXPR_SEQUENCE (rval) = get_insns (); end_sequence (); return rval; } if (auto_delete_vec != integer_zero_node) { build (CALL_EXPR, void_type_node, BID, build_tree_list (NULL_TREE, base)); TREE_VOLATILE (rval) = 1; } return build1 (NOP_EXPR, void_type_node, integer_zero_node); } \f /* Expand a C++ expression at the statement level. This is needed to ferret out nodes which have UNKNOWN_TYPE. The C++ type checker should get all of these out when expressions are combined with other, type-providing, expressions, leaving only orphan expressions, such as: &class::bar; / / takes its address, but do nothing with it. */ void expand_cplus_expr_stmt (exp) tree exp; { if (TREE_TYPE (exp) == unknown_type_node) { if (TREE_CODE (exp) == ADDR_EXPR) { if (TREE_CODE (TREE_OPERAND (exp, 0)) == OP_IDENTIFIER) error ("unresolved reference to user-defined operator"); else error ("address of overloaded function with no contextual type information"); } else if (TREE_CODE (exp) == TREE_LIST) error ("address of overloaded function with no contextual type information"); else if (TREE_CODE (exp) == OP_IDENTIFIER) error ("unresolved reference to user-defined operator"); else if (TREE_CODE (exp) == COMPONENT_REF) warning ("useless reference to a member function name, did you forget the ()?"); } else { if (TREE_CODE (exp) == CALL_EXPR && TYPE_NEEDS_DESTRUCTOR (TREE_TYPE (exp))) exp = cleanup_after_call (exp); else if (TREE_CODE (exp) == FUNCTION_DECL) warning_with_decl (exp, "reference, not call, to function `%s'"); expand_expr_stmt (exp); } /* Clean up any pending cleanups. This happens when a function call returns a cleanup-needing value that nobody uses. */ expand_cleanups_to (NULL_TREE); }