|
|
DataMuseum.dkPresents historical artifacts from the history of: DKUUG/EUUG Conference tapes |
This is an automatic "excavation" of a thematic subset of
See our Wiki for more about DKUUG/EUUG Conference tapes Excavated with: AutoArchaeologist - Free & Open Source Software. |
top - metrics - downloadIndex: T s
Length: 695 (0x2b7)
Types: TextFile
Names: »sp.web«
└─⟦52210d11f⟧ Bits:30007239 EUUGD2: TeX 3 1992-12
└─⟦c319c2751⟧ »unix3.0/TeX3.0.tar.Z«
└─⟦036c765ac⟧
└─⟦this⟧ »TeX3.0/Spiderweb/dijkstra/sp.web«
└─⟦52210d11f⟧ Bits:30007239 EUUGD2: TeX 3 1992-12
└─⟦63303ae94⟧ »unix3.14/TeX3.14.tar.Z«
└─⟦c58930e5c⟧
└─⟦this⟧ »TeX3.14/Spiderweb/dijkstra/sp.web«
@*Dijkstra's shortest path.
Obviously the way to prove Dijkstra's algorithm is the way Dijsktra
would do it himself.
Consider
@u
@<Set |d[u]| to all $\infty$ for all |u| in |V| @>@;
d[v] := 0;
W := {v};
@<For each |u| in |V-W| and $(v,u) \in E$
let |d[u]| be the weight of $(v,u)$@>@;
{@tinvariant: $\forall u \in W$,
$d[u]$ is the shortest distance from $v$ to $u$@> &
@t$\forall u \in V-W$, $d[u] }
do |W| != |V| -->
@<Let |u| be a vertex in |V-W| with |d[u]| as small as possible@>@;
@<For each |w| in |V-W| and $(u,w) \in E$@>@;
if d[w] <= d[u] + c(u,w) --> skip
[] d [w] >= d[u] + c(u,w) --> d[w] := d[u] + c(u,w)
fi;
W := W @t$\cup$@> {u}
od
@*Index.