|
DataMuseum.dkPresents historical artifacts from the history of: DKUUG/EUUG Conference tapes |
This is an automatic "excavation" of a thematic subset of
See our Wiki for more about DKUUG/EUUG Conference tapes Excavated with: AutoArchaeologist - Free & Open Source Software. |
top - metrics - downloadIndex: T s
Length: 695 (0x2b7) Types: TextFile Names: »sp.web«
└─⟦52210d11f⟧ Bits:30007239 EUUGD2: TeX 3 1992-12 └─⟦c319c2751⟧ »unix3.0/TeX3.0.tar.Z« └─⟦036c765ac⟧ └─⟦this⟧ »TeX3.0/Spiderweb/dijkstra/sp.web« └─⟦52210d11f⟧ Bits:30007239 EUUGD2: TeX 3 1992-12 └─⟦63303ae94⟧ »unix3.14/TeX3.14.tar.Z« └─⟦c58930e5c⟧ └─⟦this⟧ »TeX3.14/Spiderweb/dijkstra/sp.web«
@*Dijkstra's shortest path. Obviously the way to prove Dijkstra's algorithm is the way Dijsktra would do it himself. Consider @u @<Set |d[u]| to all $\infty$ for all |u| in |V| @>@; d[v] := 0; W := {v}; @<For each |u| in |V-W| and $(v,u) \in E$ let |d[u]| be the weight of $(v,u)$@>@; {@tinvariant: $\forall u \in W$, $d[u]$ is the shortest distance from $v$ to $u$@> & @t$\forall u \in V-W$, $d[u] } do |W| != |V| --> @<Let |u| be a vertex in |V-W| with |d[u]| as small as possible@>@; @<For each |w| in |V-W| and $(u,w) \in E$@>@; if d[w] <= d[u] + c(u,w) --> skip [] d [w] >= d[u] + c(u,w) --> d[w] := d[u] + c(u,w) fi; W := W @t$\cup$@> {u} od @*Index.