|
DataMuseum.dkPresents historical artifacts from the history of: DKUUG/EUUG Conference tapes |
This is an automatic "excavation" of a thematic subset of
See our Wiki for more about DKUUG/EUUG Conference tapes Excavated with: AutoArchaeologist - Free & Open Source Software. |
top - metrics - downloadIndex: T l
Length: 6546 (0x1992) Types: TextFile Names: »l.spider«
└─⟦52210d11f⟧ Bits:30007239 EUUGD2: TeX 3 1992-12 └─⟦c319c2751⟧ »unix3.0/TeX3.0.tar.Z« └─⟦036c765ac⟧ └─⟦this⟧ »TeX3.0/Spiderweb/larch/l.spider«
# Copyright 1989 by Norman Ramsey, Odyssey Research Associates # To be used for research purposes only # For more information, see file COPYRIGHT in the parent directory language Larch extension larch comment begin % end newline line begin %line at_sign @ default mathness yes ilk all_like category all ilk by_like category by ilk constrains_like category constrains ilk converts_like category gclause ilk div_like category binop ilk fi_like category fi ilk for_like category for ilk gen_like category gen ilk if_like category if ilk implies_like translation <*-indent> ilk imports_like category imports ilk intro_like category intro translation <*-indent> ilk is_like category is ilk then_like category then ilk trait_like category trait ilk with_like category with reserved all reserved assumes ilk imports_like reserved by reserved constrains reserved converts ilk converts_like reserved div ilk div_like reserved else ilk then_like reserved exempts reserved fi reserved for reserved generated ilk gen_like reserved if reserved implies reserved imports reserved includes ilk imports_like reserved introduces ilk intro_like reserved is reserved mod ilk div_like reserved partitioned ilk gen_like reserved rem ilk div_like reserved so reserved that reserved then reserved trait reserved with ilk and_like category binop translation <"\\wedge"> mathness yes ilk or_like category binop translation <"\\vee"> mathness yes ilk not_like category unop translation <"\\neg"> mathness yes reserved and reserved or reserved not ilk forall_like category unop translation <"\\forall"> mathness yes reserved forall simp colon trait <indent> --> tbegin tbegin ? <outdent-force> tbegin --> tbegin tbegin <force> decl --> tbegin [ intro <outdent-force> ] constrains --> decl constrains intro <force> decl --> intro math colon --> mcolon mcolon (simp|comma) --> mcolon mcolon arrow simp --> decl imports simp with open --> sublist # following special for David imports simp open --> imbrace imbrace (math|comma) --> imbrace imbrace close with open --> sublist imbrace close --> decl # end David imports simp --> decl sublist for --> subfor sublist ? --> sublist subfor comma --> sublist subfor close --> decl subfor ? --> subfor constrains open --> conslist conslist math comma <opt-5> --> conslist conslist math close so that <indent> --> consintro consintro <force> decl --> consintro [ consintro ] (implies|tbegin) --> decl (implies|tbegin) simp is gen by --> gclause gclause open --> glist glist math comma --> glist glist math close comma <opt-5> --> gclause # do the following because converts is also a gclause glist math close <indent-force> exempts --> exemptions glist math close --> decl exemptions math comma <opt-7> --> exemptions exemptions math <outdent> --> decl for all open --> forlist forlist (simp|comma|colon) --> forlist forlist semi <opt-3> --> forlist forlist close <indent> --> forintro [ forintro <outdent-force> ] (implies|tbegin|gclause) --> decl (implies|tbegin|gclause) [ forintro <outdent> ] simp is gen by --> decl simp is gen by forintro <force> (relation|decl) --> forintro forintro <outdent-force> forintro --> forintro consintro <force> forintro --> consfor consfor <outdent-force> forintro --> consfor [ consfor <outdent-outdent-force> ] (implies|tbegin|gclause) --> decl (implies|tbegin|gclause) [ consfor <outdent> ] simp is gen by --> consintro simp is gen by consfor <force> (relation|decl) --> consfor implies <force> (decl|relation) --> implies [ implies ] tbegin --> decl tbegin math rel --> mathrel mathrel math (binop|rel) --> mathrel mathrel [ math open ] --> mathrel open [ mathrel open math close ] open --> relation open mathrel math --> relation math open --> open math binop math --> math unop math --> math open math comma --> open open math close --> math open [ relation ] --> open math open [ math <"\\&{WEAVE\\_ERROR!}"> math ] --> open math [ math ] math --> relation math if (math|relation) then --> if if (math|relation) fi --> math decl <force> (decl|relation) --> decl relation <force> relation --> relation relation <force> decl --> decl module definition decl use math token identifier category simp mathness yes token number category math mathness yes token newline category ignore_scrap mathness maybe translation <> token pseudo_semi category ignore_scrap mathness maybe translation <> default mathness yes translation <*> # use backslash for subscripts token \ category backslash translation <"_"> tangleto <"_"> mathness yes math backslash <"{"> math <"}"> --> math token + category binop token - category binop token * category binop token / category binop token ** category binop translation <"\\mathbin{{*}{*}}"> token . category binop token & category binop translation <"\\wedge"> token | category binop translation <"\\vee"> token ~ category unop translation <"\\neg"> token < category rel token > category rel token = category rel token != translation <"\\I"> category rel token <= translation <"\\L"> category rel token >= translation <"\\G"> category rel token => translation <"\\Rightarrow"> category rel token # translation <"\\#"> category simp token ( category open token [ category open token [[ category open translation <"\\dsl"> token {[ category open translation <"\\dcl"> token { category open translation <"\\{"> token << category open translation <"\\LN"> token ) category close token ] category close token ]] category close translation <"\\dsr"> token ]} category close translation <"\\dcr"> token } category close translation <"\\}"> token >> category close translation <"\\RN"> macros begin \let\LN\langle \let\RN\rangle \def\dsl{[\![} \def\dsr{]\!]} \def\dcl{\{\![} \def\dcr{]\!\}} macros end token , category comma mathness yes translation <",\\,"> token ; category semi token : category colon token -> translation <"\\MG"> category arrow macros begin \let\MG\rightarrow macros end ### Hacks for David: is, when default mathness yes token <- category binop translation <"\\leftarrow"> token .. category binop translation <".."> token ... category ignore_scrap translation <"\\ldots"> token /= translation <"\\I"> category rel token ^ category hat translation <> mathness maybe token :: category binop translation <":"> mathness maybe hat <"\\"-space> (simp|is) <"\\"-space> hat --> binop simp <"\\"-space> hat hat --> unop open close --> math ########################## # the following must be last simp --> math # if semi is not in a for list, treat it as a binary operator semi --> binop ? ignore_scrap --> #1