|
DataMuseum.dkPresents historical artifacts from the history of: DKUUG/EUUG Conference tapes |
This is an automatic "excavation" of a thematic subset of
See our Wiki for more about DKUUG/EUUG Conference tapes Excavated with: AutoArchaeologist - Free & Open Source Software. |
top - metrics - downloadIndex: T U
Length: 32603 (0x7f5b) Types: TextFile Notes: Uncompressed file
└─⟦060c9c824⟧ Bits:30007080 DKUUG TeX 2/12/89 └─⟦d16c6a6c1⟧ »./tex82/TeXmacros/amstrip/amstrip.tex.Z« └─⟦this⟧
\input amstex %\syntax % each of these three lines should be enabled separately %\printoptions % for testing %\showallocations \input amstex \documentstyle{amsppt} \documentstyle{amsppt} \outer\def\foo{foo}\let\next=\foo % we do this to check about \futurelet's % and other things \document \topmatter \overlong \title\overlong Sample Sample Sample Sample Sample Sample Sample Sample Sample of \AmSTeX\\Showing \footnote{We can have a footnote here. Let's make it fairly long, just so that we can see about spacing and such things.} Proper Use\footnote[1]{And another with the same number. Let's make it fairly long, just so that we can see about spacing and such things.} Of All \footnote"*"{And this one also. Let's make it fairly long, just so that we can see about spacing and such things.} Constructions\endtitle \author\overlong % also try without \overlong Author Author Author Author Author Author Author Author Author \footnote{Here is a footnote.}, Sr\. \\Author, \footnote{And one more.} Jr\. \footnote"\dag"{Another one.} \endauthor \affil Blah University\\Glub College\endaffil \address{Here is the first address. Let's make it more than one line long, just to see what happens.} \address{Here is the second address.} \address{Here is the third address. Let's make it more than one line long, just to see what happens.} \thanks{ Here is the thanks that we give for whoever supported this garbage. } \mystyle \keywords\mystyle{KEYWORDS. The keywords.} \subjclass{The subject classifications.} \abstract{This abstract has a theorem in it. \proclaim{Theorem} This is the theorem.\endproclaim That's about all.} \endtopmatter \footnote{This footnote is weird, because it begins before a paragraph.} $$x=y\qquad\text{is true\footnotemark}$$ \footnotetext{This is a weird place to have a footnote!} \heading Here is a \\Heading\endheading \heading\overlong Here is a very very very very very very very very very very very very very \\ Long heading\endheading At this point we might cite \cite{JHD} and \cite{HK-L, p.~36}. Also we test the rosters, temporarily adding bullets to the beginning of paragraphs. {\everypar{$\bullet\,$} Here is a paragraph with a roster: \roster \item This is the first item. We will make it long, so that it has to go for more than one line. \item "[2] "This is the second item. \item This is the third item.\endroster Here is the rest of the paragraph, which should have started at the left margin. Here is a paragraph with a roster: \roster \item [3] This is the first item. We will make it long, so that it has to go for more than one line. \item This is the second item. \item [2]This is the third item.\endroster Here is a new paragraph after the end of the roster, so it should have started with an indentation. Here is a paragraph with a roster: \roster \runinitem "[3]"This is the first item. This time it should start run in. \item This is the second item. \item This is the third item.\endroster Here is the rest of the paragraph, which should have started at the left margin. Here is a paragraph with a roster: \roster \runinitem [3] This is the first item. This time it should start run in. \item This is the second item. \item This is the third item.\endroster Here is a new paragraph after the end of the roster, so it should start with an indentation. \Runinitem Here is a paragraph with a roster. We'll say something extra here, so that the first runin item begins on the second, or maybe the third line. That ought to be enough for now, I guess. \roster \runinitem "[2]" This is the first item. This time it should start run in, but continue indented. \item This is the second item. \item This is the third item.\endroster Here is the rest of the paragraph, which should have started at the left margin. \Runinitem Here is a paragraph with a roster. We'll say something extra here, so that the first runin item begins on the second, or maybe the third line. That ought to be enough for now, I guess. \roster \runinitem [5]This is the first item. This time it should start run in, but continue indented. \item This is the second item. \item This is the third item.\endroster Here is a new paragraph after the end of the roster, so it should start with an indentation. \Runinitem Here is a paragraph with a roster. We'll say something extra here, so that the first runin item begins on the second, or maybe the third line. That ought to be enough for now, I guess. \roster \runinitem "[[3]] "This is the first item. This time it should start run in, but continue indented. \item This is the second item. \item This is the third item.\endroster \Runinitem Here is a paragraph with a roster. We'll saying something extra here, so that the first runin item begins on the second, or maybe the third line. That ought to be enough for now, I guess. \roster \runinitem [8]This is the first item. This time it should start run in. We will make it long, so that it has to go for more than one line. This time I hope that the second line {\it will\/} be indented the way the first one is. Hope this works. \item This is the second item. \item This is the third item.\endroster Here is a new paragraph after the end of the roster, so it should start with an indentation. } \define\box{box} \define\box{bbox} \define\Box{Box} \Box \define\Box{BBox} \define\relax{relax} \define\relax{rrelax} \define\undefined{undefined} \define\undefined{uundefined} \define\preloaded{preloaded} \define\preloaded{ppreloaded} \define cs{define-stuff} \define{\cs}{more-define-stuff} \define\b{\beta} \define\proclaim{proclaim} % will also give error message, but different \define\FDoo{\proclaim} % should give an error message because \proclaim outer \predefine\barunder{\b} \redefine\b{\beta} \barunder A $\beta$. \subheading{A subheading} Here is a paragraph of ordinary text, just to show where the margins are normally going to be. Here is just a paragraph of ordinary text, just to show where the margins normally are. So that's about it for this paragraph, now it should be long enough. This will all be in slanted type because of a weird error before. \proclaim{Foo} Here is statement foo. Stuff after the proclaim \proclaim{Goo} Here is statement goo.\endproclaim Stuff after the proclaim \proclaim{HOO} Here is statement hoo. Stuff after the proclaim \demo{Demo} The is the demo. Stuff after the demo. \demo{DDemo} This is the next demo\enddemo Stuff after the demo. \proclaim\mystyle{Proclaim!} This is exciting\endproclaim Stuff after the proclaim \demo\mystyle{Demo?} Isn't it?\qed\enddemo Stuff after the demo. \breveaccent o\acuteaccent o\tildeaccent o\hataccent o\underscore\ \B o \D o {\it correct \/}tion A \tie B. \t oo A~B A ~B A~ B A ~ B \. Mr\. A@. B@; C@: D@? E@, F@! @h \@ @. @; @: @? @, @! \let\next=\foo % this is to check various \futurelet's @- @-- @--- A\thinspace B C\negthinspace D E\medspace F G\negmedspace H I\thickspace J K\negthickspace L $xy+x\,y+x\!y+x\medspace y +x\negmedspace y+x\thickspace y+ x\negthickspace y$ \let\next=\foo ` @" ``immediately followed by `@" `` followed by `@" \lq` and then by `@" \lq\lq\ and then ` @" `\lq. Then we have `` @" `immediately followed by ``@" ` followed by ``@" \lq. Also we have ' @" ''immediately followed by '@" '' followed by '@" \rq' and then by '@" \rq\rq\ and then ' @" '\rq. Then we have '' @" 'immediately followed by ''@" ' followed by ''@" \rq. \flushpar ABCD\slash E. \{ \}\lbrace\rbrace$\{\}\lbrace\rbrace$ \AmSTeX. \linebreak\allowlinebreak\nolinebreak $\linebreak\allowlinebreak \nolinebreak$ $$\linebreak\allowlinebreak\nolinebreak$$ A\linebreak B\allowlinebreak C\nolinebreak D \let\next=\foo \newline $\newline$ $$\newline$$ abcd\newline \newline ef\newline \mathbreak\nomathbreak\allowmathbreak A\mathbreak\nomathbreak\allowmathbreak $$\mathbreak\nomathbreak \allowmathbreak$$ $x\mathbreak y\nomathbreak z\allowmathbreak$ \let\next=\foo $\pagebreak\nopagebreak$ $$x\pagebreak$$ $$y\nopagebreak$$ Here comes a page break. \pagebreak \nopagebreak And here comes a page break \pagebreak right after this line, or so we hope it will happen. Probably this is long enough. Let's put in so more stuff so that we will be on another line and then we \let\next=\foo can say \nopagebreak here. \let\next=\foo We can't say \newpage here. But we can say it here. \newpage And of course, we can say it here: \newpage \let\next=\foo A\smallpagebreak\medpagebreak\bigpagebreak$\smallpagebreak\medpagebreak \bigpagebreak$ $$\smallpagebreak\medpagebreak\bigpagebreak$$ ABC \smallpagebreak DEF \medpagebreak GHI \bigpagebreak abc\smallpagebreak def\medpagebreak ghi\bigpagebreak \NoBlackBoxes \leavevmode\hbox to 6in{s\hfill t} \BlackBoxes\leavevmode\hbox to 6in{s\hfill t} \let\next=\foo \caption\captionwidth{3in}{Illegal caption} Here \midspace {3in} \caption {foo} \topspace {5in} \caption \captionwidth{3pt} {goo} more stuff. Here \midspace{.1in} \caption {really end} And here \topspace {.2in} \caption \captionwidth{1.5in} {x x x x x x x x x x x x x x x x x x x x x x x x x x x x x} \midspace{.25in} \caption{A Very Long Caption That Will Probably Have To Be Split Up Into More Than One Line, Possibly Even More Than Two Lines} \midspace{.25in} \caption \captionwidth{2in} {A Very Long Caption That Will Probably Have To Be Split Up Into More Than One Line, Possibly Even More Than Two Lines} \topspace{.25in}\caption{A Very Long Caption That Will Probably Have To Be Split Up Into More Than One Line, Possibly Even More Than Two Lines} \topspace{.25in}\caption \captionwidth{2in} {A Very Long Caption That Will Probably Have To Be Split Up Into More Than One Line, Possibly Even More Than Two Lines}\let\next=\foo \comment This is all commented out }{\$%^_&&#~ } { \ & # \endcomment \let\next=\foo $f''_2 \dsize A\tsize A\ssize A\sssize A$ $xy+x@,y+x@!y$ $$P\and Q\implies R\impliedby S \iff T$$ $\frac ab+\dfrac ab$ \let\next=\foo $$\frac a{b+1}+\tfrac {a+b}2+\thickfrac ab +\thickness2 \thickfrac\thickness 2{a+b}2$$ $$\fracwithdelims \{\}a{b+1}+\thickfracwithdelims\lceil\rceil {a+1}2+ \thickfracwithdelims \langle \rangle \thickness0 ab$$ $\binom ab+\dbinom ab$ $$\binom ab+\tbinom ab$$ $f\:X\to Y$ $$\overline\sum+\overline{\sum_1^N} +\underline{\sum_1^N}$$ \let\next=\foo $$\overline{\smash{\sum_1^N}}+\underline{\smash{\sum_1^N}}$$ $$\overline{\topsmash{\sum_1^N}}+\underline{\topsmash{\sum_1^N}}$$ $$\overline{\botsmash{\sum_1^N}}+\underline{\botsmash{\sum_1^N}}$$ $\coprod_i +\bigvee_i+ \bigwedge_i + \biguplus_i+\bigcap_i+\bigcup_i$ $\prod_i+\sum_i+\bigotimes_i+\bigoplus_i+\bigodot_i+\bigsqcup_i$ $$\coprod_i +\bigvee_i+ \bigwedge_i + \biguplus_i+\bigcap_i+\bigcup_i$$ $$\prod_i+\sum_i+\bigotimes_i+\bigoplus_i+\bigodot_i+\bigsqcup_i$$ \NoLimitsOnSums $$\overline\sum+\overline{\sum_1^N} +\underline{\sum_1^N}$$ $$\overline{\smash{\sum_1^N}}+\underline{\smash{\sum_1^N}}$$ $$\overline{\topsmash{\sum_1^N}}+\underline{\topsmash{\sum_1^N}}$$ $$\overline{\botsmash{\sum_1^N}}+\underline{\botsmash{\sum_1^N}}$$ $\coprod_i +\bigvee_i+ \bigwedge_i + \biguplus_i+\bigcap_i+\bigcup_i$ $\prod_i+\sum_i+\bigotimes_i+\bigoplus_i+\bigodot_i+\bigsqcup_i$ $$\coprod_i +\bigvee_i+ \bigwedge_i + \biguplus_i+\bigcap_i+\bigcup_i$$ $$\prod_i+\sum_i+\bigotimes_i+\bigoplus_i+\bigodot_i+\bigsqcup_i$$ \let\next=\foo \LimitsOnSums $\int_M+\oint_M+\iint_M+\iiint_M+\idotsint_M$ $\int\nolimits_M+\oint\nolimits_M+\iint\nolimits_M +\iiint\nolimits_M+\idotsint\nolimits_M$ $\int\limits_M+\oint\limits_M+\iint\limits_M +\iiint\limits_M+\idotsint\limits_M$ $$\int_M+\oint_M+\iint_M+\iiint_M+\idotsint_M$$ $$\int\nolimits_M+\oint\nolimits_M+\iint\nolimits_M +\iiint\nolimits_M+\idotsint\nolimits_M$$ $$\int\limits_M+\oint\limits_M+\iint\limits_M +\iiint\limits_M+\idotsint\limits_M$$ \LimitsOnInts $\int_M+\oint_M+\iint_M+\iiint_M+\idotsint_M$ $\int\nolimits_M+\oint\nolimits_M+\iint\nolimits_M +\iiint\nolimits_M+\idotsint\nolimits_M$ $\int\limits_M+\oint\limits_M+\iint\limits_M +\iiint\limits_M+\idotsint\limits_M$ $$\int_M+\oint_M+\iint_M+\iiint_M+\idotsint_M$$ $$\int\nolimits_M+\oint\nolimits_M+\iint\nolimits_M +\iiint\nolimits_M+\idotsint\nolimits_M$$ $$\int\limits_M+\oint\limits_M+\iint\limits_M +\iiint\limits_M+\idotsint\limits_M$$ \NoLimitsOnInts \define\Arccos{\operatorname{``*Arc-cos/sin''}} \define\Max{\operatornamewithlimits{Max, Max. Max: Max}} $\arccos^i+\Arccos^i+\arcsin^i+\arctan^i+\arg^i+\cos^i$ $\cosh^i+\cot^i$ $\coth^i+\csc^i+\deg^i+\dim^i+\exp^i+\gcd^i+\hom^i+\injlim^i$ $\ker^i+\lg^i+\lim^i+\liminf^i+\limsup^i+\ln^i+\log^i+\max^i$ $\Max^i+\min^i+\Pr^i+\projlim^i+\sec^i+\sinh^i$ $\sup^i+\tan^i+\tanh^i$ $\varinjlim^i+\varprojlim^i+\varlimsup^i+\varliminf^i$ $$\arccos^i+\Arccos^i+\arcsin^i+\arctan^i+\arg^i+\cos^i$$ $$\cosh^i+\cot^i$$ $$\coth^i+\csc^i+\deg^i+\dim^i+\exp^i+\gcd^i+\hom^i+\injlim^i$$ $$\ker^i+\lg^i+\lim^i+\liminf^i+\limsup^i+\ln^i+\log^i+\max^i$$ $$\Max^i+\min^i+\Pr^i+\projlim^i+\sec^i+\sinh^i$$ $$\sup^i+\tan^i+\tanh^i$$ $$\varinjlim^i+\varprojlim^i+\varlimsup^i+\varliminf^i$$ $\arccos\limits^i+\Arccos\limits^i+ \arcsin\limits^i+\arctan\limits^i+\arg\limits^i+\cos\limits^i$ $\cosh\limits^i+\cot\limits^i$ $\coth\limits^i+\csc\limits^i+\deg\limits^i+\dim \limits^i+\exp\limits^i+\gcd\limits^i+\hom\limits^i+\injlim\limits^i$ $\ker\limits^i+\lg\limits^i+\lim \limits^i+\liminf\limits^i+\limsup \limits^i+\ln\limits^i+\log\limits^i+\max\limits^i$ $\Max\limits^i+\min\limits^i+\Pr\limits^i+\projlim \limits^i+\sec\limits^i+\sinh\limits^i$ $\sup\limits^i+\tan\limits^i+\tanh\limits^i$ $\varinjlim\limits^i+\varprojlim \limits^i+\varlimsup\limits^i+\varliminf\limits^i$ $$\arccos\limits^i+\Arccos\limits^i+ \arcsin\limits^i+\arctan\limits^i+\arg\limits^i+\cos\limits^i$$ $$\cosh\limits^i+\cot\limits^i$$ $$\coth\limits^i+\csc\limits^i+\deg\limits^i+\dim \limits^i+\exp\limits^i+\gcd\limits^i+\hom\limits^i+\injlim\limits^i$$ $$\ker\limits^i+\lg\limits^i+\lim \limits^i+\liminf\limits^i+\limsup \limits^i+\ln\limits^i+\log\limits^i+\max\limits^i$$ $$\Max\limits^i+\min\limits^i+\Pr\limits^i+\projlim \limits^i+\sec\limits^i+\sinh\limits^i$$ $$\sup\limits^i+\tan\limits^i+\tanh\limits^i$$ $$\varinjlim\limits^i+\varprojlim \limits^i+\varlimsup\limits^i+\varliminf\limits^i$$ $\arccos\nolimits^i+\Arccos\nolimits^i+ \arcsin\nolimits^i+\arctan\nolimits^i+\arg\nolimits^i+\cos\nolimits^i$ $\cosh\nolimits^i+\cot\nolimits^i$ $\coth\nolimits^i+\csc\nolimits^i+\deg\nolimits^i+\dim \nolimits^i+\exp\nolimits^i+\gcd\nolimits^i+\hom\nolimits^i+\injlim\nolimits^i$ $\ker\nolimits^i+\lg\nolimits^i+\lim \nolimits^i+\liminf\nolimits^i+\limsup \nolimits^i+\ln\nolimits^i+\log\nolimits^i+\max\nolimits^i$ $\Max\nolimits^i+\min\nolimits^i+\Pr\nolimits^i+\projlim \nolimits^i+\sec\nolimits^i+\sinh\nolimits^i$ $\sup\nolimits^i+\tan\nolimits^i+\tanh\nolimits^i$ $\varinjlim\nolimits^i+\varprojlim \nolimits^i+\varlimsup\nolimits^i+\varliminf\nolimits^i$ $$\arccos\nolimits^i+\Arccos\nolimits^i+ \arcsin\nolimits^i+\arctan\nolimits^i+\arg\nolimits^i+\cos\nolimits^i$$ $$\cosh\nolimits^i+\cot\nolimits^i$$ $$\coth\nolimits^i+\csc\nolimits^i+\deg\nolimits^i+\dim \nolimits^i+\exp \nolimits^i+\gcd\nolimits^i+\hom\nolimits^i+\injlim\nolimits^i$$ $$\ker\nolimits^i+\lg\nolimits^i+\lim \nolimits^i+\liminf\nolimits^i+\limsup \nolimits^i+\ln\nolimits^i+\log\nolimits^i+\max\nolimits^i$$ $$\Max\nolimits^i+\min\nolimits^i+\Pr\nolimits^i+\projlim \nolimits^i+\sec\nolimits^i+\sinh\nolimits^i$$ $$\sup\nolimits^i+\tan\nolimits^i+\tanh\nolimits^i$$ $$\varinjlim\nolimits^i+\varprojlim \nolimits^i+\varlimsup\nolimits^i+\varliminf\nolimits^i$$ $$\overline{\sum_1^N}+\underline{\sum_1^N}$$ \ChangeBuffer{5pt} $$\overline{\sum_1^N}+\underline{\sum_1^N}$$ $$\overline{\shave{\sum_1^N}}+\underline{\shave{\sum_1^N}}$$ $$\overline{\topshave{\sum_1^N}}+\underline{\topshave{\sum_1^N}}$$ $$\overline{\botshave{\sum_1^N}}+\underline{\botshave{\sum_1^N}}$$ \ResetBuffer $$\overline{\sum_1^N}+\underline{\sum_1^N}$$ $$\sum\Sb a>b\\a'>b'\\\vspace{2pt} c>d\endSb \Sp a<b\\a'<b'\\ \vspace{4pt}c<d\endSp$$ \spreadlines{3pt} $\spreadlines{3pt}$ $$\spreadlines{10pt}\matrix a & b& c\\ aa&bb&cc\\ \vspace{.5in} aaa&bbb&ccc\endmatrix$$ $$\spreadmatrixlines{1in} \matrix a & b& c\\ aa&bb&cc\\ \vspace{-1in} aaa&bbb&ccc\endmatrix$$ $$\matrix a b c\\ aa bb cc\\ aaa bbb & ccc\endmatrix$$ $$\matrix \format \l&\quad\r&\qquad\c\\ a&b&c\\aa&bb&cc\\aaa&bbbb&cccc\endmatrix$$ Here is a $\smallmatrix a&b\\ \vspace{.25in}c&d\endsmallmatrix$ $$\pmatrix a& b& c& d\\ \hdotsfor4\\ a'&\innerhdotsfor3\after\quad\\ \hdotsfor4\\ e&f&g&h\endpmatrix$$ $$\pmatrix a& b& c& d\\ \spacehdots2\for4\\ a'&\spaceinnerhdots2\for3\after\quad\\ \spacehdots3\for4\\ e&f&g&h\endpmatrix$$ \enabletabs \def\mymatrix{\matrix % there are tabs on the next three lines a b c\\ aa bb cc\\ aaa bbb &ccc\endmatrix} \disabletabs $$\mymatrix$$ $$\cases x^2,& x\ge0\\ x^3,& x<0\endcases$$ $$\aligned a &=b\\ \vspace{.5in} c&=d\endaligned$$ \align should give an error message, and so should $\align$. \alignat should give an error message, and so should $\alignat$. \gather should give an error message, and so should $\gather$. $$\spreadlines{10pt}\align \aligned a&=b\\c&=d\endaligned & Z\\ W&\aligned a'&=b'\\c'&=d'\endaligned\endalign$$ $$\alignedat 3 a&=b &\qquad c&=d &\qquad e&=f\\ \vspace{.25in} a'&=b' &\qquad c'&=d'&\qquad e'&=f'\endalignedat$$ $$\gathered x\\x+y\\\vspace{.3in}x+y+z\endgathered$$ \let\next=\foo $$x=y\tag3--1$$ $$x=y\tag"[3--1]"$$ $$x=y\tag"3$_2$"$$ \allowdisplaybreaks $\allowdisplaybreaks$ $$\allowdisplaybreaks\align \endalign$$ \let\next=\foo $$\align a&=b\\ \vspace{.5in}\displaybreak a+1&=b+1\\ \intertext{Here is a lot of text that is going to go between the two lines of this alignment. It will probably take several lines. \endgraf We can have a paragraph within here, I think.}a+a+a&=b+b+b\\ \allowdisplaybreak a+a+a+a&=b+b+b+b \endalign$$ $$\gather X+Y+Z\tag 3\\ XE\tag4\\ {\align x&=y\tag 12\\ &=z\tag45\endalign}\\ U+V+B+G+H\tag 53\\ {\align x+x+x&=y\tag 21\\ &=z\tag 43\endalign} \endgather$$ $$\alignat 3 V_i&=v_i-q_iv_j,&\qquad X_i&=x_i-q_ix_j,&\qquad U_i&=u_i,\qquad\text{for $i\ne j$;}\tag23\\ V_j&=v_j,&\qquad X_j&=x_j,&\qquad U_j&=u_j+\sum_{i\ne j} q_iu_i.\tag24\endalignat$$ $$\xalignat 2 V_i&=v_i-q_iv_j,& X_i&=x_i-q_ix_j,\tag23\\ V_j&=v_j,& X_j&=x_j,\tag24\endalignat$$ $$\align (a+b)(a+b)&=a^2+2ab+b^2,\tag1\\ \split (a+b)(a-b)&=(a+b)a-(a+b)b\\ &=a^2+ab-ab-b^2\\ &=a^2-b^2.\endsplit\tag2\\ (a-b)(a-b)&=a^2-2ab+b^2 \endalign$$ $$\multline XXXXXXXXXXXXXXXXXXXXXXXXXXX\\ \shoveleft{=ZZZZZZZZZZZZZZZZZZZZZZZZ}\\ \shoveright{=WWWWWWWWWWWWWWWWWWWWWW}\\ A+B+C+D+E \\ \aligned &= X+Y+DDDDDDDDDDDDDDDDD\\ &=Z+DDDDDDDDDDDDDDDDDDDD\endaligned \endmultline\tag23$$ \multlinegap{1pt} $\multlinegap{1pt}$ $$\multlinegap{1pt}\multline XXXXXXXXXXXXXXXXXXXXXXXXXXXX\\ \shoveleft{ =ZZZZZZZZZZZZZZZZZZZZZZZZZ}\\ \shoveright{=WWWWWWWWWWWWWWWWWWWW }\\ A+B+C+D+E \\ \aligned &= X+Y+DDDDDDDDDDD\\ &=Z+DDDDDDDDDDDDD\endaligned \endmultline\tag23$$ $$\nomultlinegap\multline XXXXXXXXXXXXXXXXXXXXXXXXXXXXX\\ \shoveleft{=ZZZZZZZZZZZZZZZZZZZZZZZZZZZZ}\\ \shoveright{=WWWWWWWWWWWWWWWWWWWWWWW}\\ A+B+C+D+E \\ \aligned &= X+Y+DDDDDDDDDDDDDDDDDDDD\\ &=Z+DDDDDDDDDDDDDDDD\endaligned \endmultline\tag23$$ \TagsOnRight $$x=y\tag3--1$$ $$x=y\tag"[3--1]"$$ $$x=y\tag"3$_2$"$$ \allowdisplaybreaks $\allowdisplaybreaks$ $$\allowdisplaybreaks\align \endalign$$ $$\align a&=b\\ \vspace{.5in}\displaybreak a+1&=b+1\\ \intertext{Here is a lot of text that is going to go between the two lines of this alignment. It will probably take several lines. \endgraf We can have a paragraph within here, I think.}a+a+a&=b+b+b\\ \allowdisplaybreak a+a+a+a&=b+b+b+b \endalign$$ $$\gather X+Y+Z\tag 3\\ XE\tag4\\ {\align x&=y\tag 12\\ &=z\tag45\endalign}\\ U+V+B+G+H\tag 53\\ {\align x+x+x&=y\tag 21\\ &=z\tag 43\endalign} \endgather$$ $$\alignat 3 V_i&=v_i-q_iv_j,&\qquad X_i&=x_i-q_ix_j,&\qquad U_i&=u_i,\qquad\text{for $i\ne j$;}\tag23\\ V_j&=v_j,&\qquad X_j&=x_j,&\qquad U_j&=u_j+\sum_{i\ne j} q_iu_i.\tag24\endalignat$$ $$\xalignat 2 V_i&=v_i-q_iv_j,& X_i&=x_i-q_ix_j,\tag23\\ V_j&=v_j,& X_j&=x_j,\tag24\endalignat$$ $$\align (a+b)(a+b)&=a^2+2ab+b^2,\tag1\\ \split (a+b)(a-b)&=(a+b)a-(a+b)b\\ &=a^2+ab-ab-b^2\\ &=a^2-b^2.\endsplit\tag2\\ (a-b)(a-b)&=a^2-2ab+b^2 \endalign$$ $$\multline XXXXXXXXXXXXXXXXXXXXXXXXXXX\\ \shoveleft{=ZZZZZZZZZZZZZZZZZZZZZZZZ}\\ \shoveright{=WWWWWWWWWWWWWWWWWWWWWW}\\ A+B+C+D+E \\ \aligned &= X+Y+DDDDDDDDDDDDD\\ &=Z+DDDDDDDDDDDDDDDD\endaligned \endmultline\tag23$$ $$\multlinegap{1pt}\multline XXXXXXXXXXXXXXXXXXXXXXXXXXXX\\ \shoveleft{ =ZZZZZZZZZZZZZZZZZZZZZZZZZ}\\ \shoveright{=WWWWWWWWWWWWWWWWWWW }\\ A+B+C+D+E \\ \aligned &= X+Y+DDDDDDDDDDDDDDDDDDD\\ &=Z+DDDDDDDDDDDDDDDDDDDDD\endaligned \endmultline\tag23$$ $$\nomultlinegap\multline XXXXXXXXXXXXXXXXXXXXXXXXXXXXX\\ \shoveleft{=ZZZZZZZZZZZZZZZZZZZZZZZZZZZZ}\\ \shoveright{=WWWWWWWWWWWWWWWWWW}\\ A+B+C+D+E \\ \aligned &= X+Y+DDDDDDDDDDDDDDDDDDDd\\ &=Z+DDDDDDDDDDDDDDDD\endaligned \endmultline\tag23$$ \TagsOnLeft $\gcd(m,n)=\gcd(n,m\bmod n)$ $x\equiv y+1\pmod{m^2}$ $x\equiv y+1\mod{m^2}$ $x\equiv y+1\pod{m^2}$ $$\gcd(m,n)=\gcd(n,m\bmod n)$$ $$x\equiv y+1\pmod{m^2}$$ $$x\equiv y+1\mod{m^2}$$ $$x\equiv y+1\pod{m^2}$$ $$\cfrac 1\\ a_1+\lcfrac 1\\ a_2 + \rcfrac 1\\ a_3 +\cfrac 1\\ a_4 \endcfrac$$ $$\align Z&=\cfrac 1\\ a_1+\lcfrac 1\\ a_2 + \rcfrac 1\\ a_3 +\cfrac 1\\ a_4 \endcfrac\\ &=Z'\endalign$$ \define\plusequal{\overset\sssize+\to=} \define\dotplus{\overset.\to+} \define\plusGamma{\overset\sssize+\to\Gamma} $$A\plusequal B\dotplus C -\plusGamma_2^3$$ \let\next=\foo $$\{\undersetbrace\text{$k+l$ elements}\to { \oversetbrace \text{$k$ $a$'s}\to {\mathstrut a,\dots,a}, \oversetbrace\text{$l$ $b$'s}\to {\mathstrut b,\dots,b} }\}$$ $$A+\sum_{i<j}a+B$$ $$A+\sideset \and^*\to\sum _{i<j}a+B$$ $$A+\sideset ^*\and\to\sum_{i<j}a+B$$ $$A+\sideset ^+\and^*\to\sum_{i<j}a+B$$ $$A+\sideset ^*\and ^+\to\sum_{i<j}a+B$$ $$\overrightarrow{x+y}+2^{\overrightarrow{x+y}}+ 2^{2^{\overrightarrow{x+y}}}$$ $$\overleftarrow{x+y}+2^{\overleftarrow{x+y}}+ 2^{2^{\overleftarrow{x+y}}}$$ $$\overleftrightarrow{x+y}+2^{\overleftrightarrow{x+y}}+ 2^{2^{\overleftrightarrow{x+y}}}$$ $$\underrightarrow{x+y}+2^{\underrightarrow{x+y}}+ 2^{2^{\underrightarrow{x+y}}}$$ $$\underleftarrow{x+y}+2^{\underleftarrow{x+y}}+ 2^{2^{\underleftarrow{x+y}}}$$ $$\underleftrightarrow{x+y}+2^{\underleftrightarrow{x+y}}+ 2^{2^{\underleftrightarrow{x+y}}}$$ { First we are going to check that dots gives extra space before right delimiters, etc. We temporarily define a thinspace to be a boldface X, so that we can see for sure.\def\,{{\text{\bf X}}} \let\next=\foo (i) $1\dots)$ \let\next=\foo$2\dotsb)$ \let\next=\foo$3\dotsc)$\let\next=\foo $4\dotso)$\let\next=\foo $5\ldots)$\let\next=\foo $6\cdots)$ \define\1{\DOTSX a}\let\next=\foo (ii) $1\dots\1$ \let\next=\foo $2\dotsb\1$ \let\next=\foo$3\dotsc\1$ \let\next=\foo $4\dotso\1$ \let\next=\foo$5\ldots\1$ \let\next=\foo$6\cdots\1$ (iii)\let\next=\foo $1\dots,$ \let\next=\foo$2\dotsb,$ $3\dotsc,$ $4\dotso,$ $5\ldots,$ $6\cdots,$ (iv) $1\dots.$ $2\dotsb.$ $3\dotsc.$ $4\dotso.$ $5\ldots.$ $6\cdots.$ (v) $1\dots;$ $2\dotsb;$ $3\dotsc;$ $4\dotso;$ $5\ldots;$ $6\cdots;$ (vi) $1\dots, $ $2\dotsb, $ $3\dotsc, $ $4\dotso, $ $5\ldots, $ $6\cdots, $ (vii) $1\dots. $ $2\dotsb. $ $3\dotsc. $ $4\dotso. $ $5\ldots. $ $6\cdots. $ (viii) $1\dots; $ $2\dotsb; $ $3\dotsc; $ $4\dotso; $ $5\ldots; $ $6\cdots; $ \let\next=\foo $1\dots]$ \let\next=\foo$2\dots\rbrack$ $3\dots\}$ $4\dots\rbrace$ $5\dots\rfloor$ $6\dots\rangle$ $7\dots\rceil$ $8\dots\bigr)$ $9\dots\biggr)$ $10\dots\Bigr)$ $11\dots\Biggr)$ $12\left.\dots\right)$ $13\dots\rgroup$ $14\dots\rmoustache$ } \let\next=\foo $1\dots x$ \let\next=\foo $2\dots\not=$\let\next=\foo $3\dots+$\let\next=\foo $4\dots=$\let\next=\foo $5\dots<$\let\next=\foo $6\dots>$\let\next=\foo $7\dots-$\let\next=\foo $8\dots*$\let\next=\foo $9\dots:$\let\next=\foo $10\dots|$\let\next=\foo $11\dots\alpha$\let\next=\foo \redefine\1{\mathbin{a}} \define\2{\mathrel{a}} \define\3{\mathord{a}}\let\next=\foo $12\dots\1$\let\next=\foo $13\dots\2$\let\next=\foo $14\dots\3$\let\next=\foo $15\dots\neq$\let\next=\foo $16\dots\pm$\let\next=\foo $17\dots\leq$\let\next=\foo $18\dots\longrightarrow$\let\next=\foo $19\dots\Longrightarrow$\let\next=\foo $20\dots\longleftarrow$\let\next=\foo $21\dots\Longleftarrow$\let\next=\foo $22\dots\longleftrightarrow$\let\next=\foo $23\dots\Longleftrightarrow$\let\next=\foo $24\dots\mapsto$\let\next=\foo $25\dots\longmapsto$\let\next=\foo $26\dots\hookrightarrow$\let\next=\foo $27\dots\hookleftarrow$\let\next=\foo $28\dots\models$\let\next=\foo $29\dots\sum$\let\next=\foo $30\dots\doteq$\let\next=\foo $31\dots\le$\let\next=\foo $32\dots\to$\let\next=\foo $33\dots\cdot$\let\next=\foo $$\dddot A+\ddddot A$$ $$(A+B)\sphat +2^{(A+B)\sphat}+ 2^{3^{(A+B)\sphat}}$$ $$(A+B)\spcheck +2^{(A+B)\spcheck}+ 2^{3^{(A+B)\spcheck}}$$ $$(A+B)\sptilde +2^{(A+B)\sptilde}+ 2^{3^{(A+B)\sptilde}}$$ $$(A+B)\spacute +2^{(A+B)\spacute}+ 2^{3^{(A+B)\spacute}}$$ $$(A+B)\spgrave +2^{(A+B)\spgrave}+ 2^{3^{(A+B)\spgrave}}$$ $$(A+B)\spdot +2^{(A+B)\spdot}+ 2^{3^{(A+B)\spdot}}$$ $$(A+B)\spddot +2^{(A+B)\spddot}+ 2^{3^{(A+B)\spddot}}$$ $$(A+B)\spdddot +2^{(A+B)\spdddot}+ 2^{3^{(A+B)\spdddot}}$$ $$(A+B)\spddddot +2^{(A+B)\spddddot}+ 2^{3^{(A+B)\spddddot}}$$ $$(A+B)\spbreve +2^{(A+B)\spbreve}+ 2^{3^{(A+B)\spbreve}}$$ $$(A+B)\spbar +2^{(A+B)\spbar}+ 2^{3^{(A+B)\spbar}}$$ $$(A+B)\spvec +2^{(A+B)\spvec}+ 2^{3^{(A+B)\spvec}}$$ Here is \rm roman and \it italic and \sl slanted and \bf bold face and \smc small caps. \rm $\rm\it\sl\bf\smc$ \let\next=\foo $$x=y\quad\text{f{\it f}\/{\sl f}\/{\smc f}\AmSTeX\ and \t oo $\frac xy>1$}$$ Here is $x=y\quad\text{f{\it f}\/{\sl f}\/{\smc f}\AmSTeX\ and \t oo $\frac xy>1$}.$ $$2^{\text{f{\it f}\/{\sl f}\/{\smc f}\AmSTeX\ and \t oo $\frac xy>1$.}}$$ $$2^{2^{\text{f{\it f}\/{\sl f}\/{\smc f}\AmSTeX\ and \t oo $\frac xy>1$.}}}$$ \it \let\next=\foo $$x=y\quad\text{f{\it f}\/{\sl f}\/{\smc f}\AmSTeX\ and \t oo $\frac xy>1$}$$ Here is $x=y\quad\text{f{\it f}\/{\sl f}\/{\smc f}\AmSTeX\ and \t oo $\frac xy>1$}.$ $$2^{\text{f{\it f}\/{\sl f}\/{\smc f}\AmSTeX\ and \t oo $\frac xy>1$.}}$$ $$2^{2^{\text{f{\it f}\/{\sl f}\/{\smc f}\AmSTeX\ and \t oo $\frac xy>1$.}}}$$ \rm \let\next=\foo $$\foldedwidth{bad width} \foldedtext{Here is some text that will be folded to one third of the size of the page, automatically.}+A$$ $$\topfoldedtext{Here is some text that will be folded to one third of the size of the page, automatically.}+A$$ $$\botfoldedtext{Here is some text that will be folded to one third of the size of the page, automatically.}+A$$ $$\foldedtext\foldedwidth{1in} {Here is some text that will be folded to one third of the size of the page, automatically.}+A$$ $$\topfoldedtext\foldedwidth{2in} {Here is some text that will be folded to one third of the size of the page, automatically.}+A$$ $$\botfoldedtext\foldedwidth{1.5in} {Here is some text that will be folded to one third of the size of the page, automatically.}+A$$ $$f+\bold {9f} + \Cal F + \slanted f +\roman f +\italic f+\bold \Gamma$$ $$\hat a+\check a+\tilde a+\acute a+\grave a$$ $$\dot a+\ddot a+\dddot a+\ddddot a+\breve a+\bar a+\vec a$$ $$\bold{\hat x}$$ \let\next=\foo $$\Hat{\Hat A}+ \Hat{\Check A}+\Hat{\Tilde A}$$ $$\Hat{\Acute{\Hat A}}+\Hat{\Grave{\Hat A}}+ \Hat{\Dot{\Hat A}}+\Hat{\Ddot{\Hat A}}$$ $$\Hat{\Breve{\Hat A}}+\Hat{\Bar{\Hat A}}+\Hat{\Vec{\Hat A}}$$ \newsymbol\Ahathat{\Hat{\Hat A}} \newsymbol\Att{\Tilde{\Tilde A}} $\Ahathat+\Ahathat+\Ahathat+\Ahathat+\Ahathat+\Ahathat+\Ahathat+\Ahathat+ \Ahathat+\Ahathat+\Ahathat+\Ahathat+\Ahathat+\Ahathat+\Ahathat+\Ahathat+ \Ahathat+\Ahathat+\Ahathat+\Ahathat+\Ahathat+\Ahathat+\Ahathat+\Ahathat+ \Ahathat+\Ahathat+\Ahathat+\Ahathat+\Ahathat+\Ahathat+\Ahathat+\Ahathat$ $\Att+\Att+\Att+\Att+\Att+\Att+\Att+\Att+ \Att+\Att+\Att+\Att+\Att+\Att+\Att+\Att+ \Att+\Att+\Att+\Att+\Att+\Att+\Att+\Att+ \Att+\Att+\Att+\Att+\Att+\Att+\Att+\Att+ \Att+\Att+\Att+\Att+\Att+\Att+\Att+\Att+ \Att$ \let\next=\foo $$A+\leftroot{3}\uproot{4}\root 3\of {1\over 2}+B$$ $$A+\root \uproot 5 3\of{1\over 2}+B$$ $$A+\root \leftroot {10} 3\of{1\over 2}+B$$ $$A+\root \uproot 5\leftroot{10} 3\of{1\over 2}+B$$ $$A+\root \leftroot {10} \uproot5 3\of{1\over 2}+B$$ $$\root \leftroot{50} \uproot{30} 3\of {\root 3\of{\displaystyle{1\over2}}+\root\uproot5\leftroot{10}3\of {\displaystyle{1\over2}}}$$ $$\text{Fundamental result:}\qquad\boxed{\boxed{1+1=2.}}$$ \minCDarrowwidth{3pt} $\minCDarrowwidth{5pt}$ In text we have strange spacing (?) if we use constructed arrows; it seems that the spacing is not too big above, even if there is nothing above the arrow, $@>>x>$, but it seems that when you use an arrow where there is nothing below, then the spacing is no good, because there is really extra space left there below, $@>x>>$; anyway I think that's what happens, let's take a look though, to be sure. This should be fixable, I think, with a little finagling. \let\next=\foo $$\minCDarrowwidth{1pc}\CD G @>>> H\\ @VVV @VVV\\G' @>>> H'\endCD$$ $$\define\widebeta{\pretend\beta\haswidth{\text WIDE BETA}} \CD G @>\text{WIDE BETA}>> H @>>> J @>>g> K @>{f>0}>{g>0}> L\\ @VVV @V{V}VV @VV{V}V @V{V}V{V}V @|\\ \vspace{2in} A @= B @<{f<g}<< C @<<{f<g}< D @<{<}<{<}< E\\ @\vert @. @AAA @A{A}AA @AA{A}A\\ G @<\widebeta<< H @<<< J @<<g< K @<{f<0}<{g<0}< L \endCD\tag3$$ $$\define\theCD{\CD G@>>>H\\G'@>>>H'\endCD} \align \theCD &Z\\ W&\theCD\tag4\endalign$$ \pmb{fuzzy} $$Z\pmb\times W\pmb \subset \Gamma +\pmb\alpha+2^{\pmb\alpha}+2^{2^{\pmb\alpha}}$$ \Refs \Refs\mystyle{Bibliography} \ref\no9\pages947--055\by S. S. Chern \paper Integral formulas for hypersurfaces in Euclidean space and their applications to uniqueness theorems \jour J. Math. Mech. \yr 1959 \paperinfo (Some paper info) \finalinfo Final info. \vol 8\endref \ref\key [C1]\page947 \manyby S. S. Chern \paper Integral formulas for hypersurfaces in Euclidean space and their applications to uniqueness theorems \jour J. Math. Mech. \toappear \vol 8\endref \ref\key [C1]\pages947--055\bysame \paper Integral formulas for hypersurfaces in Euclidean space and their applications to uniqueness theorems \jour J. Math. Mech. \yr 1959 \vol 8\endref \ref\no9\pages947--055\by S. S. Chern \paperinfo (Some paper info) \jour J. Math. Mech. \yr 1959 \vol 8\endref \ref\no4\by L. Auslander \paper On the Eurler characteristic of compact locally affine spaces \jour Comment. Math. Helv. \vol 35\yr1961\issue (issue 3) \pages25--27\moreref \paper II\jour Bull. Amer. Math. Soc. \vol67\issue 4 \yr1961\pages405--406\endref \ref\no4\by L. Auslander \paper On the Eurler characteristic of compact locally affine spaces \jour Comment. Math. Helv. \vol 35\yr1961\issue 6 \pages25--27\moreref \paper II \vol67\issue 5 \yr1961\pages405--406\endref \ref\no9\pages947--055\by S. S. Chern \paper Integral formulas for hypersurfaces in Euclidean space and their applications to uniqueness theorems \yr 1959 \issue 3 \toappear \vol 8\endref \ref\no7\by H. Bass\book Algebraic $K$-theory\publ W. A. Benjamin \bookinfo Some book info \publaddr New York\yr 1968\pages 15--19\endref \ref\no7\by H. Bass\paper A special paper\inbook Colloquium on Blah\publ W. A. Benjamin \publaddr New York \yr 1968\pages 15--19\endref \ref\no7\by H. Bass\paper A special paper\inbook Colloquium on Blah\publ W. A. Benjamin \publaddr New York \yr 1968\pages 15--19\moreref \paper A special paper, II\inbook 2nd Colloquium\publ W. A. Benjamin \publaddr New York\yr 1969\page15\endref \ref\no7\by H. Bass\paper A special paper\inbook Colloquium on Blah\publ W. A. Benjamin \publaddr New York \yr 1968\pages 15--19\moreref Another paper \pages 13--45\endref \ref\no1\by Author\paper Too short\linebreak \jour Journal\yr 1989\endref \ref\no1\by Author\paper MCW \nolinebreak MCW \nolinebreak MCW \nolinebreak MCW \nolinebreak MCW \nolinebreak MCW \nolinebreak MCW \nolinebreak MCW \nolinebreak MCW \nolinebreak MCW \nolinebreak MCW \nolinebreak MCW \nolinebreak MCW \nolinebreak \jour Journal\endref \enddocument