|
|
DataMuseum.dkPresents historical artifacts from the history of: DKUUG/EUUG Conference tapes |
This is an automatic "excavation" of a thematic subset of
See our Wiki for more about DKUUG/EUUG Conference tapes Excavated with: AutoArchaeologist - Free & Open Source Software. |
top - metrics - downloadIndex: T W
Length: 29715 (0x7413)
Types: TextFile
Names: »Wraphelp.c«
└─⟦276d19d6e⟧ Bits:30007243 EUUGD5_I: X11R5
└─⟦this⟧ »./Wraphelp.c«
/*
* Wraphelp.c - DES for Xdm authentication.
*/
/* Dennis Ferguson, University of Toronto */
#include <X11/Xos.h>
#include <X11/X.h>
#include <X11/Xmd.h>
#include <X11/Xdmcp.h>
#ifdef HASXDMAUTH
/*
* This is a concatentation of several files from an existing library.
* Please ignore funny sounding comments.
*/
#include "Wrap.h"
/*
* Include the following declaration in any code which uses the
* DES_SP_ENCRYPT_ROUND() and DES_SP_DECRYPT_ROUND() macros below.
* This may be declared const if you wish, as long as you change the
* declaration in des_table.c as well.
*
* extern unsigned long _Auth_SP_Table[8][64];
*/
/*
* Use standard shortform to reference the table to save typing
*/
#define SP _Auth_SP_Table
/*
* Code to do a DES round using the tables. Note that the E expansion
* is easy to compute algorithmically, especially if done out-of-order.
* Take a look at its form and compare it to everything involving temp
* below.
*
* Be careful when comparing the results of the inner DES loop to other
* implementations. To save a rotation inside the loop, "left" and "right"
* are kept rotated 11 bits to the right (i.e. by ((x) >> 11) | (x) << 21).
* The SP table is similarly rotated to maintain this. We make it the
* responsibility of the IP code to do the initial rotation, and the FP
* code to undo it, as integrating this can save an instruction or so.
* In any event, if you want to do a step-by-step comparison of the results
* with another DES implementation you will need to rotate the intermediate
* results 11 bits to the left to make them match the standard.
*
* Note too that the SP table has been reordered to match the order of
* the keys (if the original order of SP was 12345678, the reordered
* table is 71354682). This is unnecessary, but was done since some
* compilers seem to like you going through the matrix from beginning
* to end.
*
* There is a difference in the best way to do this depending on whether
* one is encrypting or decrypting. If encrypting we move forward through
* the keys and hence should move forward through the table. If decrypting
* we go back. Part of the need for this comes from trying to emulate
* existing software which generates a single key schedule and uses it
* both for encrypting and decrypting. Generating separate encryption
* and decryption key schedules would allow one to use the same code
* for both.
*
* left, right and temp should be unsigned long values. left and right
* should be the high and low order parts of the cipher block at the
* current stage of processing (this makes sense if you read the spec).
* kp should be an unsigned long pointer which points at the current
* set of subkeys in the key schedule. It is advanced to the next set
* (i.e. by 8 bytes) when this is done.
*
* This occurs in the innermost loop of the DES function. The four
* variables should really be in registers.
*
* When using this, the inner loop of the DES function might look like:
*
* for (i = 0; i < 8; i++) {
* DES_SP_{EN,DE}CRYPT_ROUND(left, right, temp, kp);
* DES_SP_{EN,DE}CRYPT_ROUND(right, left, temp, kp);
* }
*
* Note the trick above. You are supposed to do 16 rounds, swapping
* left and right at the end of each round. By doing two rounds at
* a time and swapping left and right in the code we can avoid the
* swaps altogether.
*/
#define DES_SP_ENCRYPT_ROUND(left, right, temp, kp) \
(temp) = (right) ^ *(kp)++; \
(left) ^= SP[0][((temp) >> 24) & 0x3f] \
| SP[1][((temp) >> 16) & 0x3f] \
| SP[2][((temp) >> 8) & 0x3f] \
| SP[3][((temp) ) & 0x3f]; \
(temp) = (((right) >> 12) | ((right) << 20)) ^ *(kp)++; \
(left) ^= SP[4][((temp) >> 24) & 0x3f] \
| SP[5][((temp) >> 16) & 0x3f] \
| SP[6][((temp) >> 8) & 0x3f] \
| SP[7][((temp) ) & 0x3f]
#define DES_SP_DECRYPT_ROUND(left, right, temp, kp) \
(temp) = (((right) >> 12) | ((right) << 20)) ^ *(--(kp)); \
(left) ^= SP[7][((temp) ) & 0x3f] \
| SP[6][((temp) >> 8) & 0x3f] \
| SP[5][((temp) >> 16) & 0x3f] \
| SP[4][((temp) >> 24) & 0x3f]; \
(temp) = (right) ^ *(--(kp)); \
(left) ^= SP[3][((temp) ) & 0x3f] \
| SP[2][((temp) >> 8) & 0x3f] \
| SP[1][((temp) >> 16) & 0x3f] \
| SP[0][((temp) >> 24) & 0x3f]
/*
* The following implements the initial permutation, followed by
* an 11 bit right rotation of both halves to keep the inner loop
* happy. This sequence was shown to me by Richard Outerbridge.
*/
#define DES_INITIAL_PERM(left, right, temp) \
(temp) = (((left) >> 4) ^ right) & 0x0f0f0f0f; \
(right) ^= (temp); \
(left) ^= (temp) << 4; \
(temp) = (((left) >> 16) ^ (right)) & 0x0000ffff; \
(right) ^= (temp); \
(left) ^= (temp) << 16; \
(temp) = (((right) >> 2) ^ (left)) & 0x33333333; \
(left) ^= (temp); \
(right) ^= ((temp) << 2); \
(temp) = (((right) >> 8) ^ (left)) & 0x00ff00ff; \
(left) ^= (temp); \
(right) ^= (temp) << 8; \
(temp) = (((left) >> 1) ^ (right)) & 0x55555555; \
(right) ^= (temp); \
(left) ^= ((temp) << 1); \
(left) = (((left) >> 11) | ((left) << 21)); \
(right) = (((right) >> 11) | ((right) << 21))
/*
* Here is the final permutation, which is simply the inverse of
* the initial permuation. Note that there is a tiny trick here.
* We are supposed to swap left and right before doing the final
* permutation. We instead do the swap in the first five lines
* below (compare to the last five lines above), for free.
*/
#define DES_FINAL_PERM(left, right, temp) \
(temp) = (((left) << 11) | ((left) >> 21)); \
(left) = (((right) << 11) | ((right) >> 21)); \
(right) = (((left) >> 1) ^ (temp)) & 0x55555555; \
(left) ^= (right) << 1; \
(right) ^= (temp); \
(temp) = (((right) >> 8) ^ (left)) & 0x00ff00ff; \
(left) ^= (temp); \
(right) ^= (temp) << 8; \
(temp) = (((right) >> 2) ^ (left)) & 0x33333333; \
(left) ^= (temp); \
(right) ^= ((temp) << 2); \
(temp) = (((left) >> 16) ^ (right)) & 0x0000ffff; \
(right) ^= (temp); \
(left) ^= (temp) << 16; \
(temp) = (((left) >> 4) ^ right) & 0x0f0f0f0f; \
(right) ^= (temp); \
(left) ^= ((temp) << 4)
/*
* Finally, as a sample of how all this might be held together, the
* following two macros do in-place encryptions and decryptions. left
* and right are two unsigned long variables which at the beginning
* are expected to hold the clear (encrypted) block in host byte order
* (left the high order four bytes, right the low order). At the end
* they will contain the encrypted (clear) block. temp is an unsigned long
* used as a temporary. kp is an unsigned long pointer pointing at
* the start of the key schedule. All these should be in registers.
*
* You can probably sometimes do better than these by rewriting for
* particular situations. These aren't bad, though.
*/
#define DES_DO_ENCRYPT(left, right, temp, kp) \
do { \
register int i; \
DES_INITIAL_PERM((left), (right), (temp)); \
for (i = 0; i < 8; i++) { \
DES_SP_ENCRYPT_ROUND((left), (right), (temp), (kp)); \
DES_SP_ENCRYPT_ROUND((right), (left), (temp), (kp)); \
} \
DES_FINAL_PERM((left), (right), (temp)); \
(kp) -= (2 * 16); \
} while (0)
#define DES_DO_DECRYPT(left, right, temp, kp) \
do { \
register int i; \
DES_INITIAL_PERM((left), (right), (temp)); \
(kp) += (2 * 16); \
for (i = 0; i < 8; i++) { \
DES_SP_DECRYPT_ROUND((left), (right), (temp), (kp)); \
DES_SP_DECRYPT_ROUND((right), (left), (temp), (kp)); \
} \
DES_FINAL_PERM((left), (right), (temp)); \
} while (0)
/*
* These are handy dandy utility thingies for straightening out bytes.
* Included here because they're used a couple of places.
*/
#define GET_HALF_BLOCK(lr, ip) \
(lr) = ((unsigned long)(*(ip)++)) << 24; \
(lr) |= ((unsigned long)(*(ip)++)) << 16; \
(lr) |= ((unsigned long)(*(ip)++)) << 8; \
(lr) |= (unsigned long)(*(ip)++)
#define PUT_HALF_BLOCK(lr, op) \
*(op)++ = ((lr) >> 24) & 0xff; \
*(op)++ = ((lr) >> 16) & 0xff; \
*(op)++ = ((lr) >> 8) & 0xff; \
*(op)++ = (lr) & 0xff
/*
* These tables may be declared const if you want. Many compilers
* don't support this, though.
*/
/*
* The DES algorithm which uses these is intended to be fairly speedy
* at the expense of some memory. All the standard hacks are used.
* The S boxes and the P permutation are precomputed into one table.
* The E box never actually appears explicitly since it is easy to apply
* this algorithmically as needed. This should run pretty fast on machines
* with 32 bit words and bit field/multiple bit shift instructions which
* are fast.
*
* [There used to be tables used to do the initial and final permutations
* here. These were deleted in favour of algorithmic code (table-free). ]
*/
/*
* The SP table is actually the S boxes and the P permutation
* table combined. This table is actually reordered from the
* spec, to match the order of key application we follow. Each
* entry has also been rotated right by 11 bits, to remove a
* rotation from the inner loop.
*/
static unsigned long _Auth_SP_Table[8][64] = {
0x00000200, 0x00204200, 0x80204000, 0x00000000, /* 7 */
0x80000000, 0x80204000, 0x80200200, 0x80004200,
0x80204200, 0x00000200, 0x00000000, 0x00204000,
0x00200000, 0x00004000, 0x00204200, 0x80200000,
0x80004000, 0x80200200, 0x00200200, 0x80004000,
0x00204000, 0x00004200, 0x80004200, 0x00200200,
0x00004200, 0x80000000, 0x80200000, 0x80204200,
0x80000200, 0x00200000, 0x00004000, 0x80000200,
0x00004000, 0x80000200, 0x00000200, 0x80204000,
0x80204000, 0x00204200, 0x00204200, 0x00200000,
0x00200200, 0x00004000, 0x80004000, 0x00000200,
0x80004200, 0x80200000, 0x80200200, 0x80004200,
0x80200000, 0x00204000, 0x80204200, 0x00004200,
0x80000200, 0x00000000, 0x00200000, 0x80204200,
0x00000000, 0x80200200, 0x00004200, 0x80000000,
0x00204000, 0x80004000, 0x80000000, 0x00200200,
0x40001010, 0x00000000, 0x00000010, 0x40401010, /* 1 */
0x00401010, 0x40400010, 0x00400000, 0x00000010,
0x40000000, 0x40001010, 0x40401010, 0x40000000,
0x40401000, 0x00401010, 0x00001000, 0x00400000,
0x40400000, 0x40001000, 0x40001000, 0x40000010,
0x40000010, 0x00001010, 0x00001010, 0x40401000,
0x00400010, 0x00401000, 0x00401000, 0x00400010,
0x00000000, 0x40400000, 0x40400010, 0x00001000,
0x00000010, 0x40401010, 0x00400000, 0x00001010,
0x40001010, 0x00001000, 0x00001000, 0x40000000,
0x00401010, 0x00000010, 0x40000010, 0x00401000,
0x40000000, 0x00400000, 0x40401000, 0x40400010,
0x40401010, 0x00400010, 0x00001010, 0x40401000,
0x00401000, 0x40400000, 0x40400010, 0x40001010,
0x40400000, 0x40001000, 0x40001000, 0x00000000,
0x00400010, 0x40000010, 0x00000000, 0x00401010,
0x20800000, 0x20008020, 0x00000000, 0x00808020, /* 3 */
0x20008000, 0x00000000, 0x20800020, 0x20008000,
0x00800020, 0x00808000, 0x00808000, 0x00000020,
0x20808020, 0x00800020, 0x00008020, 0x20800000,
0x00008000, 0x00800000, 0x20008020, 0x20000000,
0x20000020, 0x00008020, 0x00808020, 0x20800020,
0x20808000, 0x20000020, 0x00000020, 0x20808000,
0x00800000, 0x20808020, 0x20000000, 0x00008000,
0x20008020, 0x00008000, 0x00800020, 0x20800000,
0x00000020, 0x20008020, 0x20008000, 0x00000000,
0x20000000, 0x00800020, 0x20808020, 0x20008000,
0x00808000, 0x20000000, 0x00000000, 0x00808020,
0x20808000, 0x00000020, 0x00008000, 0x20808020,
0x00800000, 0x20800020, 0x20000020, 0x00808000,
0x00008020, 0x20808000, 0x20800000, 0x00008020,
0x20800020, 0x00800000, 0x00808020, 0x20000020,
0x10000000, 0x10002080, 0x00002080, 0x10042000, /* 5 */
0x00000080, 0x10000000, 0x00040000, 0x00002080,
0x10040080, 0x00000080, 0x10002000, 0x10040080,
0x10042000, 0x00042080, 0x10000080, 0x00040000,
0x00002000, 0x00040080, 0x00040080, 0x00000000,
0x10040000, 0x10042080, 0x10042080, 0x10002000,
0x00042080, 0x10040000, 0x00000000, 0x00042000,
0x10002080, 0x00002000, 0x00042000, 0x10000080,
0x00000080, 0x10042000, 0x10000000, 0x00002000,
0x00040000, 0x00002080, 0x10042000, 0x10040080,
0x10002000, 0x00040000, 0x00042080, 0x10002080,
0x10040080, 0x10000000, 0x00002000, 0x00042080,
0x10042080, 0x10000080, 0x00042000, 0x10042080,
0x00002080, 0x00000000, 0x00040080, 0x00042000,
0x10000080, 0x10002000, 0x10040000, 0x00000080,
0x00000000, 0x00040080, 0x10002080, 0x10040000,
0x00100802, 0x08100002, 0x08100002, 0x08000000, /* 4 */
0x08000802, 0x08100800, 0x00100800, 0x00100002,
0x00000000, 0x00000802, 0x00000802, 0x08100802,
0x08100000, 0x00000000, 0x08000800, 0x00100800,
0x00100000, 0x00000002, 0x00000800, 0x00100802,
0x08000000, 0x00000800, 0x00100002, 0x08000002,
0x08100800, 0x00100000, 0x08000002, 0x08000800,
0x00000002, 0x08000802, 0x08100802, 0x08100000,
0x08000800, 0x00100800, 0x00000802, 0x08100802,
0x08100000, 0x00000000, 0x00000000, 0x00000802,
0x08000002, 0x08000800, 0x08100800, 0x00100000,
0x00100802, 0x08100002, 0x08100002, 0x08000000,
0x08100802, 0x08100000, 0x00100000, 0x00000002,
0x00100800, 0x00100002, 0x08000802, 0x08100800,
0x00100002, 0x08000002, 0x00000800, 0x00100802,
0x08000000, 0x00000800, 0x00000002, 0x08000802,
0x01020000, 0x00020400, 0x00000004, 0x01020404, /* 6 */
0x00020400, 0x01000000, 0x01020404, 0x00000400,
0x00020004, 0x01000404, 0x00000400, 0x01020000,
0x01000400, 0x00020004, 0x00020000, 0x01000004,
0x00000000, 0x01000400, 0x01020004, 0x00000004,
0x00000404, 0x01020004, 0x01000000, 0x01020400,
0x01020400, 0x00000000, 0x01000404, 0x00020404,
0x01000004, 0x00000404, 0x00020404, 0x00020000,
0x00020004, 0x01000000, 0x01020400, 0x00000404,
0x01020404, 0x00000400, 0x01000004, 0x01020000,
0x00000400, 0x00020004, 0x00020000, 0x01000004,
0x01020000, 0x01020404, 0x00000404, 0x00020400,
0x01000404, 0x00020404, 0x00000000, 0x01020400,
0x01000000, 0x00000004, 0x00020400, 0x01000404,
0x00000004, 0x01000400, 0x01020004, 0x00000000,
0x00020404, 0x00020000, 0x01000400, 0x01020004,
0x04010001, 0x00000001, 0x00000040, 0x04010041, /* 8 */
0x00010000, 0x04010001, 0x04000000, 0x00010000,
0x04000040, 0x00010040, 0x04010041, 0x00000041,
0x00010041, 0x04000041, 0x00000001, 0x04000000,
0x00010040, 0x04010000, 0x00010001, 0x04000001,
0x00000041, 0x04000040, 0x04010040, 0x00010041,
0x04000001, 0x00000000, 0x00000000, 0x04010040,
0x04010000, 0x00010001, 0x04000041, 0x00000040,
0x04000041, 0x00000040, 0x00010041, 0x00000001,
0x04000000, 0x04010040, 0x00000001, 0x04000041,
0x00010001, 0x04000000, 0x04010000, 0x00010040,
0x04010040, 0x00010000, 0x00000040, 0x04010001,
0x00000000, 0x04010041, 0x04000040, 0x04010000,
0x00010040, 0x00010001, 0x04010001, 0x00000000,
0x04010041, 0x00000041, 0x00000041, 0x04000001,
0x04000001, 0x04000040, 0x00010000, 0x00010041,
0x02080108, 0x00080008, 0x00000008, 0x02000108, /* 2 */
0x00000100, 0x02000000, 0x02080100, 0x02080008,
0x02080000, 0x02080108, 0x00080108, 0x00080000,
0x00080008, 0x00000100, 0x02000000, 0x02080100,
0x00000108, 0x02000100, 0x02080008, 0x00000000,
0x00080000, 0x00000008, 0x02000108, 0x00080100,
0x02000100, 0x02080000, 0x00000000, 0x00000108,
0x02000008, 0x00080108, 0x00080100, 0x02000008,
0x00000000, 0x02000108, 0x02080100, 0x00000100,
0x02080008, 0x00080100, 0x00080108, 0x00000008,
0x00080100, 0x00080008, 0x02000000, 0x02080108,
0x02000108, 0x02000000, 0x00000008, 0x00080000,
0x02000008, 0x00080108, 0x00000100, 0x02080000,
0x02000100, 0x02080008, 0x02080000, 0x02000100,
0x00000108, 0x00000000, 0x00080008, 0x02000008,
0x00080000, 0x02080100, 0x02080108, 0x00000108
};
/*
* XdmcpAuthDoIt - {en,de}crypt a block in ECB mode
*/
void
_XdmcpAuthDoIt(in, out, schedule, encrypt)
auth_cblock *in;
auth_cblock *out;
auth_wrapper_schedule schedule;
int encrypt;
{
register unsigned long left, right;
register unsigned long temp;
register int i;
{
/*
* Need a temporary for copying the data in
*/
register unsigned char *datap;
/*
* Copy the input block into the registers
*/
datap = (unsigned char *)in;
GET_HALF_BLOCK(left, datap);
GET_HALF_BLOCK(right, datap);
}
/*
* Do the initial permutation.
*/
DES_INITIAL_PERM(left, right, temp);
/*
* Now the rounds. Use different code depending on whether it
* is an encryption or a decryption (gross, should keep both
* sets of keys in the key schedule instead).
*/
if (encrypt) {
register unsigned long *kp;
kp = (unsigned long *)schedule;
for (i = 0; i < 8; i++) {
DES_SP_ENCRYPT_ROUND(left, right, temp, kp);
DES_SP_ENCRYPT_ROUND(right, left, temp, kp);
}
} else {
register unsigned long *kp;
/*
* Point kp past end of schedule
*/
kp = ((unsigned long *)schedule) + (2 * 16);;
for (i = 0; i < 8; i++) {
DES_SP_DECRYPT_ROUND(left, right, temp, kp);
DES_SP_DECRYPT_ROUND(right, left, temp, kp);
}
}
/*
* Do the final permutation
*/
DES_FINAL_PERM(left, right, temp);
/*
* Finally, copy the result out a byte at a time
*/
{
register unsigned char *datap;
datap = (unsigned char *)out;
PUT_HALF_BLOCK(left, datap);
PUT_HALF_BLOCK(right, datap);
}
}
/*
* Permuted choice 1 tables. These are used to extract bits
* from the left and right parts of the key to form Ci and Di.
* The code that uses these tables knows which bits from which
* part of each key are used to form Ci and Di.
*/
static unsigned long PC1_CL[8] = {
0x00000000, 0x00000010, 0x00001000, 0x00001010,
0x00100000, 0x00100010, 0x00101000, 0x00101010
};
static unsigned long PC1_DL[16] = {
0x00000000, 0x00100000, 0x00001000, 0x00101000,
0x00000010, 0x00100010, 0x00001010, 0x00101010,
0x00000001, 0x00100001, 0x00001001, 0x00101001,
0x00000011, 0x00100011, 0x00001011, 0x00101011
};
static unsigned long PC1_CR[16] = {
0x00000000, 0x00000001, 0x00000100, 0x00000101,
0x00010000, 0x00010001, 0x00010100, 0x00010101,
0x01000000, 0x01000001, 0x01000100, 0x01000101,
0x01010000, 0x01010001, 0x01010100, 0x01010101
};
static unsigned long PC1_DR[8] = {
0x00000000, 0x01000000, 0x00010000, 0x01010000,
0x00000100, 0x01000100, 0x00010100, 0x01010100
};
/*
* At the start of some iterations of the key schedule we do
* a circular left shift by one place, while for others we do a shift by
* two places. This has bits set for the iterations where we do 2 bit
* shifts, starting at the low order bit.
*/
#define TWO_BIT_SHIFTS 0x7efc
/*
* Permuted choice 2 tables. The first actually produces the low order
* 24 bits of the subkey Ki from the 28 bit value of Ci. The second produces
* the high order 24 bits from Di. The tables are indexed by six bit
* segments of Ci and Di respectively. The code is handcrafted to compute
* the appropriate 6 bit chunks.
*
* Note that for ease of computation, the 24 bit values are produced with
* six bits going into each byte. Note also that the table has been byte
* rearranged to produce keys which match the order we will apply them
* in in the des code.
*/
static unsigned long PC2_C[4][64] = {
0x00000000, 0x00000004, 0x00010000, 0x00010004,
0x00000400, 0x00000404, 0x00010400, 0x00010404,
0x00000020, 0x00000024, 0x00010020, 0x00010024,
0x00000420, 0x00000424, 0x00010420, 0x00010424,
0x01000000, 0x01000004, 0x01010000, 0x01010004,
0x01000400, 0x01000404, 0x01010400, 0x01010404,
0x01000020, 0x01000024, 0x01010020, 0x01010024,
0x01000420, 0x01000424, 0x01010420, 0x01010424,
0x00020000, 0x00020004, 0x00030000, 0x00030004,
0x00020400, 0x00020404, 0x00030400, 0x00030404,
0x00020020, 0x00020024, 0x00030020, 0x00030024,
0x00020420, 0x00020424, 0x00030420, 0x00030424,
0x01020000, 0x01020004, 0x01030000, 0x01030004,
0x01020400, 0x01020404, 0x01030400, 0x01030404,
0x01020020, 0x01020024, 0x01030020, 0x01030024,
0x01020420, 0x01020424, 0x01030420, 0x01030424,
0x00000000, 0x02000000, 0x00000800, 0x02000800,
0x00080000, 0x02080000, 0x00080800, 0x02080800,
0x00000001, 0x02000001, 0x00000801, 0x02000801,
0x00080001, 0x02080001, 0x00080801, 0x02080801,
0x00000100, 0x02000100, 0x00000900, 0x02000900,
0x00080100, 0x02080100, 0x00080900, 0x02080900,
0x00000101, 0x02000101, 0x00000901, 0x02000901,
0x00080101, 0x02080101, 0x00080901, 0x02080901,
0x10000000, 0x12000000, 0x10000800, 0x12000800,
0x10080000, 0x12080000, 0x10080800, 0x12080800,
0x10000001, 0x12000001, 0x10000801, 0x12000801,
0x10080001, 0x12080001, 0x10080801, 0x12080801,
0x10000100, 0x12000100, 0x10000900, 0x12000900,
0x10080100, 0x12080100, 0x10080900, 0x12080900,
0x10000101, 0x12000101, 0x10000901, 0x12000901,
0x10080101, 0x12080101, 0x10080901, 0x12080901,
0x00000000, 0x00040000, 0x00002000, 0x00042000,
0x00100000, 0x00140000, 0x00102000, 0x00142000,
0x20000000, 0x20040000, 0x20002000, 0x20042000,
0x20100000, 0x20140000, 0x20102000, 0x20142000,
0x00000008, 0x00040008, 0x00002008, 0x00042008,
0x00100008, 0x00140008, 0x00102008, 0x00142008,
0x20000008, 0x20040008, 0x20002008, 0x20042008,
0x20100008, 0x20140008, 0x20102008, 0x20142008,
0x00200000, 0x00240000, 0x00202000, 0x00242000,
0x00300000, 0x00340000, 0x00302000, 0x00342000,
0x20200000, 0x20240000, 0x20202000, 0x20242000,
0x20300000, 0x20340000, 0x20302000, 0x20342000,
0x00200008, 0x00240008, 0x00202008, 0x00242008,
0x00300008, 0x00340008, 0x00302008, 0x00342008,
0x20200008, 0x20240008, 0x20202008, 0x20242008,
0x20300008, 0x20340008, 0x20302008, 0x20342008,
0x00000000, 0x00000010, 0x08000000, 0x08000010,
0x00000200, 0x00000210, 0x08000200, 0x08000210,
0x00000002, 0x00000012, 0x08000002, 0x08000012,
0x00000202, 0x00000212, 0x08000202, 0x08000212,
0x04000000, 0x04000010, 0x0c000000, 0x0c000010,
0x04000200, 0x04000210, 0x0c000200, 0x0c000210,
0x04000002, 0x04000012, 0x0c000002, 0x0c000012,
0x04000202, 0x04000212, 0x0c000202, 0x0c000212,
0x00001000, 0x00001010, 0x08001000, 0x08001010,
0x00001200, 0x00001210, 0x08001200, 0x08001210,
0x00001002, 0x00001012, 0x08001002, 0x08001012,
0x00001202, 0x00001212, 0x08001202, 0x08001212,
0x04001000, 0x04001010, 0x0c001000, 0x0c001010,
0x04001200, 0x04001210, 0x0c001200, 0x0c001210,
0x04001002, 0x04001012, 0x0c001002, 0x0c001012,
0x04001202, 0x04001212, 0x0c001202, 0x0c001212
};
static unsigned long PC2_D[4][64] = {
0x00000000, 0x02000000, 0x00020000, 0x02020000,
0x00000100, 0x02000100, 0x00020100, 0x02020100,
0x00000008, 0x02000008, 0x00020008, 0x02020008,
0x00000108, 0x02000108, 0x00020108, 0x02020108,
0x00200000, 0x02200000, 0x00220000, 0x02220000,
0x00200100, 0x02200100, 0x00220100, 0x02220100,
0x00200008, 0x02200008, 0x00220008, 0x02220008,
0x00200108, 0x02200108, 0x00220108, 0x02220108,
0x00000200, 0x02000200, 0x00020200, 0x02020200,
0x00000300, 0x02000300, 0x00020300, 0x02020300,
0x00000208, 0x02000208, 0x00020208, 0x02020208,
0x00000308, 0x02000308, 0x00020308, 0x02020308,
0x00200200, 0x02200200, 0x00220200, 0x02220200,
0x00200300, 0x02200300, 0x00220300, 0x02220300,
0x00200208, 0x02200208, 0x00220208, 0x02220208,
0x00200308, 0x02200308, 0x00220308, 0x02220308,
0x00000000, 0x00001000, 0x00000020, 0x00001020,
0x00100000, 0x00101000, 0x00100020, 0x00101020,
0x08000000, 0x08001000, 0x08000020, 0x08001020,
0x08100000, 0x08101000, 0x08100020, 0x08101020,
0x00000004, 0x00001004, 0x00000024, 0x00001024,
0x00100004, 0x00101004, 0x00100024, 0x00101024,
0x08000004, 0x08001004, 0x08000024, 0x08001024,
0x08100004, 0x08101004, 0x08100024, 0x08101024,
0x00000400, 0x00001400, 0x00000420, 0x00001420,
0x00100400, 0x00101400, 0x00100420, 0x00101420,
0x08000400, 0x08001400, 0x08000420, 0x08001420,
0x08100400, 0x08101400, 0x08100420, 0x08101420,
0x00000404, 0x00001404, 0x00000424, 0x00001424,
0x00100404, 0x00101404, 0x00100424, 0x00101424,
0x08000404, 0x08001404, 0x08000424, 0x08001424,
0x08100404, 0x08101404, 0x08100424, 0x08101424,
0x00000000, 0x10000000, 0x00010000, 0x10010000,
0x00000002, 0x10000002, 0x00010002, 0x10010002,
0x00002000, 0x10002000, 0x00012000, 0x10012000,
0x00002002, 0x10002002, 0x00012002, 0x10012002,
0x00040000, 0x10040000, 0x00050000, 0x10050000,
0x00040002, 0x10040002, 0x00050002, 0x10050002,
0x00042000, 0x10042000, 0x00052000, 0x10052000,
0x00042002, 0x10042002, 0x00052002, 0x10052002,
0x20000000, 0x30000000, 0x20010000, 0x30010000,
0x20000002, 0x30000002, 0x20010002, 0x30010002,
0x20002000, 0x30002000, 0x20012000, 0x30012000,
0x20002002, 0x30002002, 0x20012002, 0x30012002,
0x20040000, 0x30040000, 0x20050000, 0x30050000,
0x20040002, 0x30040002, 0x20050002, 0x30050002,
0x20042000, 0x30042000, 0x20052000, 0x30052000,
0x20042002, 0x30042002, 0x20052002, 0x30052002,
0x00000000, 0x04000000, 0x00000001, 0x04000001,
0x01000000, 0x05000000, 0x01000001, 0x05000001,
0x00000010, 0x04000010, 0x00000011, 0x04000011,
0x01000010, 0x05000010, 0x01000011, 0x05000011,
0x00080000, 0x04080000, 0x00080001, 0x04080001,
0x01080000, 0x05080000, 0x01080001, 0x05080001,
0x00080010, 0x04080010, 0x00080011, 0x04080011,
0x01080010, 0x05080010, 0x01080011, 0x05080011,
0x00000800, 0x04000800, 0x00000801, 0x04000801,
0x01000800, 0x05000800, 0x01000801, 0x05000801,
0x00000810, 0x04000810, 0x00000811, 0x04000811,
0x01000810, 0x05000810, 0x01000811, 0x05000811,
0x00080800, 0x04080800, 0x00080801, 0x04080801,
0x01080800, 0x05080800, 0x01080801, 0x05080801,
0x00080810, 0x04080810, 0x00080811, 0x04080811,
0x01080810, 0x05080810, 0x01080811, 0x05080811
};
/*
* Permute the key to give us our key schedule.
*/
void
_XdmcpAuthSetup(key, schedule)
auth_cblock *key;
auth_wrapper_schedule schedule;
{
register unsigned long c, d;
{
/*
* Need a pointer for the keys and a temporary long
*/
register unsigned char *k;
register unsigned long tmp;
/*
* Fetch the key into something we can work with
*/
k = (unsigned char *)key;
/*
* The first permutted choice gives us the 28 bits for C0 and
* 28 for D0. C0 gets 12 bits from the left key and 16 from
* the right, while D0 gets 16 from the left and 12 from the
* right. The code knows which bits go where.
*/
tmp = ((unsigned long)(*(k)++)) << 24;
tmp |= ((unsigned long)(*(k)++)) << 16;
tmp |= ((unsigned long)(*(k)++)) << 8;
tmp |= (unsigned long)(*(k)++); /* left part of key */
c = PC1_CL[(tmp >> 29) & 0x7]
| (PC1_CL[(tmp >> 21) & 0x7] << 1)
| (PC1_CL[(tmp >> 13) & 0x7] << 2)
| (PC1_CL[(tmp >> 5) & 0x7] << 3);
d = PC1_DL[(tmp >> 25) & 0xf]
| (PC1_DL[(tmp >> 17) & 0xf] << 1)
| (PC1_DL[(tmp >> 9) & 0xf] << 2)
| (PC1_DL[(tmp >> 1) & 0xf] << 3);
tmp = ((unsigned long)(*(k)++)) << 24;
tmp |= ((unsigned long)(*(k)++)) << 16;
tmp |= ((unsigned long)(*(k)++)) << 8;
tmp |= (unsigned long)(*(k)++); /* right part of key */
c |= PC1_CR[(tmp >> 28) & 0xf]
| (PC1_CR[(tmp >> 20) & 0xf] << 1)
| (PC1_CR[(tmp >> 12) & 0xf] << 2)
| (PC1_CR[(tmp >> 4) & 0xf] << 3);
d |= PC1_DR[(tmp >> 25) & 0x7]
| (PC1_DR[(tmp >> 17) & 0x7] << 1)
| (PC1_DR[(tmp >> 9) & 0x7] << 2)
| (PC1_DR[(tmp >> 1) & 0x7] << 3);
}
{
/*
* Need several temporaries in here
*/
register unsigned long ltmp, rtmp;
register unsigned long *k;
register int two_bit_shifts;
register int i;
/*
* Now iterate to compute the key schedule. Note that we
* record the entire set of subkeys in 6 bit chunks since
* they are used that way. At 6 bits/char, we need
* 48/6 char's/subkey * 16 subkeys/encryption == 128 bytes.
* The schedule must be this big.
*/
k = (unsigned long *)schedule;
two_bit_shifts = TWO_BIT_SHIFTS;
for (i = 16; i > 0; i--) {
/*
* Do the rotation. One bit and two bit rotations
* are done separately. Note C and D are 28 bits.
*/
if (two_bit_shifts & 0x1) {
c = ((c << 2) & 0xffffffc) | (c >> 26);
d = ((d << 2) & 0xffffffc) | (d >> 26);
} else {
c = ((c << 1) & 0xffffffe) | (c >> 27);
d = ((d << 1) & 0xffffffe) | (d >> 27);
}
two_bit_shifts >>= 1;
/*
* Apply permutted choice 2 to C to get the first
* 24 bits worth of keys. Note that bits 9, 18, 22
* and 25 (using DES numbering) in C are unused. The
* shift-mask stuff is done to delete these bits from
* the indices, since this cuts the table size in half.
*
* The table is torqued, by the way. If the standard
* byte order for this (high to low order) is 1234,
* the table actually gives us 4132.
*/
ltmp = PC2_C[0][((c >> 22) & 0x3f)]
| PC2_C[1][((c >> 15) & 0xf) | ((c >> 16) & 0x30)]
| PC2_C[2][((c >> 4) & 0x3) | ((c >> 9) & 0x3c)]
| PC2_C[3][((c ) & 0x7) | ((c >> 4) & 0x38)];
/*
* Apply permutted choice 2 to D to get the other half.
* Here, bits 7, 10, 15 and 26 go unused. The sqeezing
* actually turns out to be cheaper here.
*
* This table is similarly torqued. If the standard
* byte order is 5678, the table has the bytes permuted
* to give us 7685.
*/
rtmp = PC2_D[0][((d >> 22) & 0x3f)]
| PC2_D[1][((d >> 14) & 0xf) | ((d >> 15) & 0x30)]
| PC2_D[2][((d >> 7) & 0x3f)]
| PC2_D[3][((d ) & 0x3) | ((d >> 1) & 0x3c)];
/*
* Make up two words of the key schedule, with a
* byte order which is convenient for the DES
* inner loop. The high order (first) word will
* hold bytes 7135 (high to low order) while the
* second holds bytes 4682.
*/
*k++ = (ltmp & 0x00ffff00) | (rtmp & 0xff0000ff);
*k++ = (ltmp & 0xff0000ff) | (rtmp & 0x00ffff00);
}
}
}
#endif /* HASXDMAUTH */