|
DataMuseum.dkPresents historical artifacts from the history of: DKUUG/EUUG Conference tapes |
This is an automatic "excavation" of a thematic subset of
See our Wiki for more about DKUUG/EUUG Conference tapes Excavated with: AutoArchaeologist - Free & Open Source Software. |
top - metrics - downloadIndex: T g
Length: 11301 (0x2c25) Types: TextFile Names: »gxpath.c«
└─⟦a05ed705a⟧ Bits:30007078 DKUUG GNU 2/12/89 └─⟦ff23ba0e6⟧ »./ghostscript-1.3.tar.Z« └─⟦a24a58cd3⟧ └─⟦this⟧ »gxpath.c«
/* Copyright (C) 1989 Aladdin Enterprises. All rights reserved. Distributed by Free Software Foundation, Inc. This file is part of Ghostscript. Ghostscript is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY. No author or distributor accepts responsibility to anyone for the consequences of using it or for whether it serves any particular purpose or works at all, unless he says so in writing. Refer to the Ghostscript General Public License for full details. Everyone is granted permission to copy, modify and redistribute Ghostscript, but only under the conditions described in the Ghostscript General Public License. A copy of this license is supposed to have been given to you along with Ghostscript so you can know your rights and responsibilities. It should be in a file named COPYING. Among other things, the copyright notice and this notice must be preserved on all copies. */ /* gxpath.c */ /* Private path routines for GhostScript library */ #include "gx.h" #include "gserrors.h" #include "gxfixed.h" #include "gzpath.h" /* These routines all assume that all points are */ /* already in device coordinates, and in fixed representation. */ /* As usual, they return either 0 or a (negative) error code. */ /* Forward references */ private subpath *path_alloc_copy(P1(gx_path *)); #ifdef DEBUG void gx_print_segment(P2(FILE *, segment *)); #endif /* ------ Initialize/free paths ------ */ /* Initialize a path */ void gx_path_init(register gx_path *ppath, gs_memory_procs *pprocs) { ppath->memory_procs = *pprocs; ppath->box_last = 0; ppath->position_valid = 0; ppath->first_subpath = ppath->current_subpath = 0; ppath->subpath_count = 0; ppath->segment_count = 0; ppath->curve_count = 0; ppath->subpath_open = 0; ppath->shared = 0; } /* Release the contents of a path. We do this in reverse order */ /* so as to maximize LIFO allocator behavior. */ void gx_path_release(gx_path *ppath) { segment *pseg; if ( ppath->first_subpath == 0 ) return; /* empty path */ if ( ppath->shared ) return; /* segments are shared */ pseg = (segment *)ppath->current_subpath->last; while ( pseg ) { segment *prev = pseg->prev; unsigned size; #ifdef DEBUG if ( gs_debug['p'] ) printf("[p]release"), gx_print_segment(stdout, pseg); #endif switch ( pseg->type ) { case s_start: size = sizeof(subpath); break; case s_line: case s_line_close: size = sizeof(line_segment); break; case s_curve: size = sizeof(curve_segment); break; default: printf("Bad type in gx_path_release: %x\n", pseg->type); exit(1); } #ifdef DEBUG if ( gs_debug['a'] ) printf("[p]free %lx<%u>\n", (ulong)pseg, size); #endif (*ppath->memory_procs.free)((char *)pseg, size, "gx_path_release"); pseg = prev; } ppath->first_subpath = 0; /* prevent re-release */ } /* Mark a path as shared */ void gx_path_share(gx_path *ppath) { if ( ppath->first_subpath ) ppath->shared = 1; } /* ------ Incremental path building ------ */ /* Macro for opening the current subpath. */ /* ppath points to the path. */ #define path_open()\ if ( !ppath->subpath_open )\ { int code = gx_path_new_subpath(ppath);\ if ( code < 0 ) return code;\ psub = ppath->current_subpath;\ } /* Macros for allocating path segments. */ /* Note that they assume that ppath points to the path, */ /* and that psub points to the current subpath. */ /* We have to split the macro into two because of limitations */ /* on the size of a single statement (sigh). */ #ifdef DEBUG #define p_alloc(pseg,size)\ if ( gs_debug['a'] ) printf("[p]%lx<%u>\n", (ulong)pseg, size) #else #define p_alloc(pseg,size) 0 #endif #define path_alloc_segment(pseg,ctype,stype,cname)\ if(ppath->shared)\ if(!(psub=path_alloc_copy(ppath)))return_error(gs_error_limitcheck);\ if( !(pseg = (ctype *)(*ppath->memory_procs.alloc)(sizeof(ctype), cname)) )\ return_error(gs_error_limitcheck);\ p_alloc((char *)pseg, sizeof(ctype));\ pseg->type = stype, pseg->next = 0 #define path_alloc_link(pseg)\ { segment *prev = psub->last;\ prev->next = (segment *)pseg;\ pseg->prev = prev;\ psub->last = (segment *)pseg;\ } /* Open a new subpath */ int gx_path_new_subpath(gx_path *ppath) { subpath *psub = ppath->current_subpath; register subpath *spp; path_alloc_segment(spp, subpath, s_start, "gx_path_new_subpath"); spp->last = (segment *)spp; spp->line_count = spp->curve_count = 0; spp->closed = 0; spp->pt = ppath->position; ppath->subpath_open = 1; if ( !psub ) /* first subpath */ { ppath->first_subpath = spp; spp->prev = 0; } else { segment *prev = psub->last; prev->next = (segment *)spp; spp->prev = prev; } ppath->current_subpath = spp; ppath->subpath_count++; #ifdef DEBUG if ( gs_debug['p'] ) printf("[p]"), gx_print_segment(stdout, (segment *)spp); #endif return 0; } /* Add a point to the current path (moveto). */ int gx_path_add_point(register gx_path *ppath, fixed x, fixed y) { ppath->subpath_open = 0; ppath->position_valid = 1; ppath->position.x = x; ppath->position.y = y; return 0; } /* Add a relative point to the current path (rmoveto). */ int gx_path_add_relative_point(register gx_path *ppath, fixed dx, fixed dy) { if ( !ppath->position_valid ) return_error(gs_error_nocurrentpoint); ppath->subpath_open = 0; ppath->position.x += dx; ppath->position.y += dy; return 0; } /* Set the segment point and the current point in the path. */ /* Assumes ppath points to the path. */ #define path_set_point(pseg, fx, fy)\ (pseg)->pt.x = ppath->position.x = (fx),\ (pseg)->pt.y = ppath->position.y = (fy) /* Add a line to the current path (lineto). */ int gx_path_add_line(gx_path *ppath, fixed x, fixed y) { subpath *psub = ppath->current_subpath; register line_segment *lp; path_open(); path_alloc_segment(lp, line_segment, s_line, "gx_path_add_line"); path_alloc_link(lp); path_set_point(lp, x, y); psub->line_count++; ppath->segment_count++; #ifdef DEBUG if ( gs_debug['p'] ) printf("[p]"), gx_print_segment(stdout, (segment *)lp); #endif return 0; } /* Add a rectangle to the current path. */ /* This is a special case of adding a parallelogram. */ int gx_path_add_rectangle(gx_path *ppath, fixed x0, fixed y0, fixed x1, fixed y1) { return gx_path_add_pgram(ppath, x0, y0, x0, y1, x1, y1); } /* Add a parallelogram to the current path. */ /* This is equivalent to an add_point, three add_lines, */ /* and a close_subpath. */ int gx_path_add_pgram(gx_path *ppath, fixed x0, fixed y0, fixed x1, fixed y1, fixed x2, fixed y2) { int code; if ( (code = gx_path_add_point(ppath, x0, y0)) < 0 || (code = gx_path_add_line(ppath, x1, y1)) < 0 || (code = gx_path_add_line(ppath, x2, y2)) < 0 || (code = gx_path_add_line(ppath, x0 + x2 - x1, y0 + y2 - y1)) < 0 || (code = gx_path_close_subpath(ppath)) < 0 ) return code; return 0; } /* Add a curve to the current path (curveto). */ int gx_path_add_curve(gx_path *ppath, fixed x1, fixed y1, fixed x2, fixed y2, fixed x3, fixed y3) { subpath *psub = ppath->current_subpath; register curve_segment *lp; path_open(); path_alloc_segment(lp, curve_segment, s_curve, "gx_path_add_curve"); path_alloc_link(lp); lp->p1.x = x1; lp->p1.y = y1; lp->p2.x = x2; lp->p2.y = y2; path_set_point(lp, x3, y3); psub->curve_count++; ppath->segment_count++; ppath->curve_count++; #ifdef DEBUG if ( gs_debug['p'] ) printf("[p]"), gx_print_segment(stdout, (segment *)lp); #endif return 0; } /* Add an approximation of an arc to the current path. */ /* Parameters are the initial and final points of the arc, */ /* and the point at which the extended tangents meet.*/ /* We assume that the arc is less than a semicircle. */ /* The arc may go either clockwise or counterclockwise. */ /* The approximation is a very simple one: a single curve */ /* whose other two control points are .55 of the way to the */ /* intersection of the tangents. This appears to produce a */ /* very accurate circular arc: I haven't worked out the math */ /* to understand why. */ #define arc_magic 0.55 int gx_path_add_arc(gx_path *ppath, fixed x0, fixed y0, fixed x3, fixed y3, fixed xt, fixed yt) { fixed xm = (fixed)(xt * arc_magic), ym = (fixed)(yt * arc_magic); return gx_path_add_curve(ppath, (fixed)(x0 * (1 - arc_magic)) + xm, (fixed)(y0 * (1 - arc_magic)) + ym, (fixed)(x3 * (1 - arc_magic)) + xm, (fixed)(y3 * (1 - arc_magic)) + ym, x3, y3); } /* Close the current subpath. */ int gx_path_close_subpath(gx_path *ppath) { subpath *psub = ppath->current_subpath; register line_segment *lp; if ( !ppath->subpath_open ) return 0; path_alloc_segment(lp, line_segment, s_line_close, "gx_path_close_subpath"); path_alloc_link(lp); path_set_point(lp, psub->pt.x, psub->pt.y); psub->line_count++; ppath->segment_count++; psub->closed = 1; ppath->subpath_open = 0; #ifdef DEBUG if ( gs_debug['p'] ) printf("[p]"), gx_print_segment(stdout, (segment *)lp); #endif return 0; } /* ------ Internal routines ------ */ /* Copy the current path, because it was shared. */ /* Return a pointer to the current subpath, or 0. */ private subpath * path_alloc_copy(gx_path *ppath) { gx_path path_new; int code; code = gx_path_copy(ppath, &path_new); if ( code < 0 ) return 0; *ppath = path_new; ppath->shared = 0; return ppath->current_subpath; } /* ------ Debugging printout ------ */ #ifdef DEBUG /* Print out a path with a label */ void gx_dump_path(gx_path *ppath, char *tag) { printf("[p]Path %lx %s:\n", (ulong)ppath, tag); gx_path_print(stdout, ppath); } /* Print a path */ void gx_path_print(FILE *file, gx_path *ppath) { segment *pseg = (segment *)ppath->first_subpath; fprintf(file, " subpaths=%d, segments=%d, curves=%d, point=(%f,%f)\n", ppath->subpath_count, ppath->segment_count, ppath->curve_count, fixed2float(ppath->position.x), fixed2float(ppath->position.y)); fprintf(file, " box=(%f,%f),(%f,%f) last=%lx\n", fixed2float(ppath->bbox.xmin), fixed2float(ppath->bbox.ymin), fixed2float(ppath->bbox.xmax), fixed2float(ppath->bbox.ymax), (ulong)ppath->box_last); fprintf(file, " cbox=(%f,%f),(%f,%f)\n", fixed2float(ppath->cbox.xmin), fixed2float(ppath->cbox.ymin), fixed2float(ppath->cbox.xmax), fixed2float(ppath->cbox.ymax)); while ( pseg ) { gx_print_segment(file, pseg); pseg = pseg->next; } } void gx_print_segment(FILE *file, segment *pseg) { char out[80]; sprintf(out, " %lx<%lx,%lx>: %%s (%6g,%6g) ", (ulong)pseg, (ulong)pseg->prev, (ulong)pseg->next, fixed2float(pseg->pt.x), fixed2float(pseg->pt.y)); switch ( pseg->type ) { case s_start: #define psub ((subpath *)pseg) fprintf(file, out, "start"); fprintf(file, "#lines=%d #curves=%d last=%lx", psub->line_count, psub->curve_count, (ulong)psub->last); #undef psub break; case s_curve: fprintf(file, out, "curve"); #define pcur ((curve_segment *)pseg) fprintf(file, "\n\tp1=(%f,%f) p2=(%f,%f)", fixed2float(pcur->p1.x), fixed2float(pcur->p1.y), fixed2float(pcur->p2.x), fixed2float(pcur->p2.y)); #undef pcur break; case s_line: fprintf(file, out, "line"); break; case s_line_close: fprintf(file, out, "close"); break; default: { char t[20]; sprintf(t, "type 0x%x", pseg->type); fprintf(file, out, t); } } fprintf(file, "\n"); } #endif /* DEBUG */