DataMuseum.dk

Presents historical artifacts from the history of:

DKUUG/EUUG Conference tapes

This is an automatic "excavation" of a thematic subset of
artifacts from Datamuseum.dk's BitArchive.

See our Wiki for more about DKUUG/EUUG Conference tapes

Excavated with: AutoArchaeologist - Free & Open Source Software.


top - metrics - download
Index: T w

⟦f5c3b6317⟧ TextFile

    Length: 117287 (0x1ca27)
    Types: TextFile
    Names: »weave.web«

Derivation

└─⟦52210d11f⟧ Bits:30007239 EUUGD2: TeX 3 1992-12
    └─⟦c319c2751⟧ »unix3.0/TeX3.0.tar.Z« 
        └─⟦036c765ac⟧ 
            └─⟦this⟧ »TeX3.0/Spiderweb/master/weave.web« 

TextFile

% Copyright 1989 by Norman Ramsey, Odyssey Research Associates
% To be used for research purposes only
% For more information, see file COPYRIGHT in the parent directory

% This file is part of Spidery WEB
% This program by Norman Ramsey is based on programs Silvio Levy
% and D. E. Knuth.  Silvio Levy wrote most of the code.
% It is distributed WITHOUT ANY WARRANTY, express or implied.
% Dec 1987

% Here is TeX material that gets inserted after \input webmac

\message{Entering \string\batchmode...}
\batchmode

\def\hang{\hangindent 3em\indent\ignorespaces}
\font\ninerm=cmr9
\let\mc=\ninerm % medium caps
\def\cee{C}
\def\Pascal{Pascal}
\def\PASCAL{Ada}
\def\pb{$\.|\ldots\.|$} % C brackets (|...|)
\def\v{\.{\char'174}} % vertical (|) in typewriter font
\def\dleft{[\![} \def\dright{]\!]} % double brackets
\mathchardef\RA="3221 % right arrow
\mathchardef\BA="3224 % double arrow
\def\({} % kludge for alphabetizing certain module names

\def\title{Spidery WEAVE}
\def\contentspagenumber{1} % should be odd
\def\topofcontents{\null\vfill
  \titlefalse % include headline on the contents page
  \def\rheader{\hfil}
  \centerline{\titlefont The {\ttitlefont Spidery WEAVE} processor}
  \vfill}
\pageno=\contentspagenumber \advance\pageno by 1
\let\maybe=\iftrue

@* Introduction.
\.{CWEAVE} has a fairly straightforward outline.  It operates in
three phases: first it inputs the source file and stores cross-reference
data, then it inputs the source once again and produces the \TeX\ output
file, and finally it sorts and outputs the index.  It can be compiled
with certain optional flags, |DEBUG| and |STAT|, the latter being used
to keep track of how much of \.{WEAVE}'s resources were actually used.

@u
@<Include files@>@;
@<Common code for \.{WEAVE} and \.{TANGLE}@>@;
@<Typedef declarations@>@;
@<Global variables@>@;

main (ac, av)
char **av;
{
  argc=ac; argv=av;
  program=weave;
  common_init();
  @<Set initial values@>;
  printf(banner); /* print a ``banner line'' */
  @<Store all the reserved words@>;
  phase_one(); /* read all the user's text and store the cross-references */
  phase_two(); /* read all the text again and translate it to \TeX\ form */
  phase_three(); /* output the cross-reference index */
#ifdef STAT
  @<Print statistics about memory usage@>;
#endif STAT
  wrap_up();
}

@ The following parameters were sufficient in the original \.{WEAVE} to
handle \TeX, so they should be sufficient for most applications of \.{CWEAVE}.

@d max_bytes = 90000 /* the number of bytes in identifiers,
  index entries, and module names */
@d max_names = 4000 /* number of identifiers, strings, module names;
  must be less than 10240 */
@d max_modules = 2000 /* greater than the total number of modules */
@d hash_size = 353 /* should be prime */
@d buf_size = 100 /* maximum length of input line, plus one */
@d longest_name = 400 /* module names and strings shouldn't be longer than this */
@d long_buf_size = 500 /* |buf_size+longest_name| */
@d line_length = 80 /* lines of \TeX\ output have at most this many characters;
  should be less than 256 */
@d max_refs = 20000 /* number of cross-references; must be less than 65536 */
@d max_toks = 20000 /* number of symbols in \cee\ texts being parsed;
  must be less than 65536 */
@d max_texts = 2000 /* number of phrases in \cee\ texts being parsed;
  must be less than 10240 */
@d max_scraps = 1000 /* number of tokens in \cee\ texts being parsed */
@d stack_size = 400 /* number of simultaneous output levels */

@i common.h

@ Should include wlang.web but can't because AWK runs out of files.

@* Data structures exclusive to {\tt WEAVE}.
As explained in \.{common.web}, the field of a |name_info| structure
that contains the |rlink| of a module name is used for a completely
different purpose in the case of identifiers.  If is then called the
|ilk| of the identifier, and it is used to
distinguish between various types of identifiers, as follows:

@ Several types of identifiers are distinguished by their |ilk|:

\yskip\hang |normal| identifiers are part of the \PASCAL\ program and
will appear in italic type.
\yskip\hang |roman| identifiers are index entries that appear after
\.{@@\^} in the \.{WEB} file.

\yskip\hang |wildcard| identifiers are index entries that appear after
\.{@@:} in the \.{WEB} file.

\yskip\hang |typewriter| identifiers are index entries that appear after
\.{@@.} in the \.{WEB} file.

\yskip\hang |array_like|, |begin_like|, \dots, |var_like|
identifiers are \PASCAL\ reserved words whose |ilk| explains how they are
to be treated when \PASCAL\ code is being formatted.

\yskip\hang Finally, if |c| is an ASCII code, an |ilk| equal to
|char_like+c| denotes a reserved word that will be converted to character
|c|.

@d normal = 0 /*ordinary identifiers have |normal| ilk */
@d roman = 1 /*normal index entries have |roman| ilk */
@d wildcard = 2 /*user-formatted index entries have |wildcard| ilk */
@d typewriter = 3 /*`typewriter type' entries have |typewriter| ilk */
@d reserved(a) = (a->ilk>typewriter) /* tells if a name is a reserved word */
/* begin with 64 */

/* ilks are generated by spider into file grammar.web */

@ We keep track of the current module number in |module_count|, which
is the total number of modules that have started.  Modules which have
been altered by a change file entry have their |changed_module| flag
turned on during the first phase.

@<Global...@>=
boolean change_exists; /* has any module changed? */

@ The other large memory area in \.{CWEAVE} keeps the cross-reference data.
All uses of the name |p| are recorded in a linked list beginning at
|p->xref|, which points into the |xmem| array. The elements of |xmem|
are structures consisting of an integer, |num|, and a pointer |xlink|
to another element of |xmem|.  If |x=p->xref| is a pointer into |xmem|,
the value of |x->num| is either a module number where |p| is used,
or it is |def_flag| plus a module number where |p| is defined,
or it is |file_flag| plus a module number where the file |p| is defined;
and |x->xlink| points to the next such cross-reference for |p|,
if any. This list of cross-references is in decreasing order by
module number. The next unused slot in |xmem| is |xref_ptr|.

The global variable |xref_switch| is set either to |def_flag|, or to zero, 
depending on whether the next cross-reference to an identifier is to be
underlined or not in the index. This switch is set to |def_flag| when
\.{@@!} or \.{@@d} or \.{@@f} is scanned, and it is cleared to zero when
the next identifier or index entry cross-reference has been made. 
Similarly,
the global variable |mod_xref_switch| is either |def_flag|, 
|file_flag|, or zero, depending
on whether a module name is being defined, defined as a file, or used.

@<Type...@>=
typedef struct xref_info {
  sixteen_bits num; /* module number plus zero,|def_flag|, or |file_flag| */
  struct xref_info *xlink; /* pointer to the previous cross-reference */
} xref_info;
typedef xref_info *xref_pointer;

@ @<Global...@>=
xref_info xmem[max_refs]; /* contains cross-reference information */
xref_pointer xmem_end = xmem+max_refs-1;
xref_pointer xref_ptr; /* the largest occupied position in |xmem| */
sixteen_bits xref_switch,mod_xref_switch; /* either zero or |def_flag| */

@ @d def_flag = 10240 /* must be strictly larger than |max_modules| */
@d file_flag = 2*def_flag
@d xref = equiv_or_xref

@<Set init...@>=
name_dir->xref=(ASCII *)xmem;
xref_ptr=xmem; 
xref_switch=0; 
mod_xref_switch=0;
xmem->num=0; /* cross-references to undefined modules */

@ A new cross-reference for an identifier is formed by calling |new_xref|,
which discards duplicate entries and ignores non-underlined references
to one-letter identifiers or \cee's reserved words.

If the user has sent the |no_xref| flag (the \.{-x} option of the command line),
it is unnecessary to keep track of cross-references for identifers.
If one were careful, one could probably make more changes around module
100 to avoid a lot of identifier looking up.

@d append_xref(c) = if (xref_ptr==xmem_end) stat_overflow("cross-reference");
  else (++xref_ptr)->num=c;

@u new_xref(p)
name_pointer p;
{
  xref_pointer q; /* pointer to previous cross-reference */
  sixteen_bits m, n; /* new and previous cross-reference value */
  if (no_xref) return;
  if ((reserved(p) || length(p)==1) && xref_switch==0) return;
  m=module_count+xref_switch; xref_switch=0; q=(xref_pointer)p->xref;
  if (q != xmem) {
    n=q->num;
    if (n==m || n==m+def_flag) return;
    else if (m==n+def_flag) {
 q->num=m; return;
    }
  }
  append_xref(m); xref_ptr->xlink=q; p->xref=(ASCII *)xref_ptr;
}

@ The cross-reference lists for module names are slightly different. Suppose
that a module name is defined in modules $m_1$, \dots, $m_k$ and used in
modules $n_1$, \dots, $n_l$. Then its list will contain $m_1+|def_flag|{}$,
$m_k+|def_flag|{}$, \dots, $m_2+|def_flag|{}$, $n_l$, \dots, $n_1$, in
this order.
If the module is a file module (\.{@@(}), read |file_flag| for
|def_flag|.
Since no module should ever have both |file_flag| and |def_flag|, we
check that.
  After Phase II, however, the order will be
$m_1+|def_flag|{}$, \dots, $m_k+|def_flag|{}$, $n_1$, \dots, $n_l$.

@u new_mod_xref(p)
name_pointer p;
{
  xref_pointer q,r; /* pointers to previous cross-references */
  q=(xref_pointer)p->xref; r=xmem;
  if (q>xmem) {
    if (mod_xref_switch==0) while (q->num>=def_flag) {
      r=q; q=q->xlink;
    }
    else if (q->num>=def_flag) {
      @<Make sure |mod_xref_switch| is consistent with |q->num|@>
      r=q; q=q->xlink;
    }
  }
  append_xref(module_count+mod_xref_switch);
  xref_ptr->xlink=q; mod_xref_switch=0;
  if (r==xmem) p->xref=(ASCII *)xref_ptr;
  else r->xlink=xref_ptr;
}

@ Consistency check
@<Make sure |mod_xref_switch| is consistent with |q->num|@>=
{
	if ((mod_xref_switch==def_flag && q->num >= file_flag) ||
		(mod_xref_switch==file_flag && q->num < file_flag)) {
      printf("\n! You can't use <"); print_id(p); 
	printf("> both as a file and as a named module"); mark_harmless;
@.{You can't use <section name> both as a file...@>

	}
}


@ A third large area of memory is used for sixteen-bit `tokens', which appear
in short lists similar to the strings of characters in |byte_mem|. Token lists
are used to contain the result of \cee\ code translated into \TeX\ form;
further details about them will be explained later. A |text_pointer| variable
is an index into |tok_start|.

@<Typed...@>=
typedef sixteen_bits token;
typedef token *token_pointer;
typedef token_pointer *text_pointer;

@ The first position of |tok_mem|
that is unoccupied by replacement text is called |tok_ptr|, and the first
unused location of |tok_start| is called |text_ptr|.
Thus, we usually have |*text_ptr=tok_ptr|.

@<Global...@>=
token tok_mem[max_toks]; /* tokens */
token_pointer tok_mem_end = tok_mem+max_toks-1; /* end of |tok_mem| */
token_pointer tok_start[max_texts]; /* directory into |tok_mem| */
token_pointer tok_ptr; /* first unused position in |tok_mem| */
text_pointer text_ptr; /* first unused position in |tok_start| */
text_pointer tok_start_end = tok_start+max_texts-1; /* end of |tok_start| */
#ifdef STAT
token_pointer max_tok_ptr; /* largest value of |tok_ptr| */
text_pointer max_text_ptr; /* largest value of |text_ptr| */
#endif STAT

@ @<Set init...@>=
tok_ptr=tok_mem+1; text_ptr=tok_start+1; tok_start[0]=tok_mem+1;
tok_start[1]=tok_mem+1; /* |tok_start| is the empty token list,
			and |*textptr==tok_mem+1==tok_ptr| */
#ifdef STAT
max_tok_ptr=tok_mem+1; max_text_ptr=tok_start+1;
#endif STAT

@ @u
names_match(p,first,l,t)
name_pointer p; /* points to the proposed match */
ASCII *first; /* position of first character of string */
int l; /* length of identifier */
eight_bits t; /* desired ilk */
{
  if (length(p)!=l) return 0;
  if (p->ilk!=t && !(t==normal && reserved(p))) return 0;
  return !strncmp(first,p->byte_start,l);
}

init_p(p,t)
name_pointer p;
eight_bits t;
{
  p->ilk=t; p->xref=(ASCII*)xmem;
}

init_node(p)
name_pointer p;
{
  p->xref=(ASCII*)xmem;
}

@ We have to get Ada's
reserved words into the hash table, and the simplest way to do this is
to insert them every time \.{CWEAVE} is run.  Since there are relatively
few reserved words, we use an ad hoc function to simplify the code.
@^reserved words@>
There's not enough room to include \.{reserved.web}, since AWK can't open 
enough files.
We make do with \.{scraps.web}.



@* Lexical scanning.
Let us now consider the subroutines that read the \.{WEB} source file
and break it into meaningful units. There are four such procedures:
One simply skips to the next `\.{@@\ }' or `\.{@@*}' that begins a
module; another passes over the \TeX\ text at the beginning of a
module; the third passes over the \TeX\ text in a \cee\ comment;
and the last, which is the most interesting, gets the next token of
a \cee\ text.  They all use the pointers |limit| and |loc| into
the line of input currently being studied.

@ Control codes in \.{WEB}, which begin with `\.{@@}', are converted
into a numeric code designed to simplify \.{CWEAVE}'s logic; for example,
larger numbers are given to the control codes that denote more significant
milestones, and the code of |new_module| should be the largest of
all. Some of these numeric control codes take the place of ASCII
control codes that will not otherwise appear in the output of the
scanning routines.
@^ASCII code@>

@d ignore = 0 /* control code of no interest to \.{CWEAVE} */
@d verbatim = @'2 /* extended ASCII alpha will not appear */
		 /* extended ASCII beta will not appear */
@d begin_comment = @'10 /* ASCII tab mark will not appear */
@d octal = @'14 /* ASCII carriage return will not appear */
@d hex = @'15 /* ASCII form feed will not appear */
@d switch_math_flag = @'175 /* this code will be intercepted without confusion */
@d underline = @'176 /* this code will be intercepted without confusion */
@d param = @'177 /* ASCII delete will not appear */
/* identifier =200 or octal @'310 */
@#/* following three must be conseccutive for indexing to work */
@d xref_roman = (identifier+roman) /* control code for `\.{@@\^}' */
@d xref_wildcard = (identifier+wildcard) /* control code for `\.{@@:}' */
@d xref_typewriter = (identifier+typewriter) /* control code for `\.{@@.}' */
@d TeX_string = @'356 /* control code for `\.{@@t}' */
@d ascii_constant = @'357 /* control code for `\.{@@`}' */
@d join = @'360 /* control code for `\.{@@\&}' */
@d thin_space = @'361 /* control code for `\.{@@,}' */
@d math_break = @'362 /* control code for `\.{@@\char'174}' */
@d line_force = @'363 /* control code for `\.{@@/}' */
@d line_break = @'364 /* control code for `\.{@@-}' */
@d big_line_break = @'365 /* control code for `\.{@@\#}' */
@d no_line_break = @'366 /* control code for `\.{@@+}' */
@d pseudo_semi = @'367 /* control code for `\.{@@;}' */
@d vertical_bar = @'370 /* The `\v' used to mark Ada text */
@d trace = @'371 /* control code for `\.{@@0}', `\.{@@1}' and `\.{@@2}' */
@d format = @'373 /* control code for `\.{@@f}' */
@d definition = @'374 /* control code for `\.{@@d}' */
@d begin_unnamed = @'375 /* control code for `\.{@@u}' */
@d module_name = @'376 /* control code for `\.{@@<}' */
@d new_module = @'377 /* control code for `\.{@@\ }' and `\.{@@*}' */

@ Control codes are converted from ASCII to \.{CWEAVE}'s internal
representation by means of the table |ccode|.

@<Global...@>=
eight_bits ccode[128]; /* meaning of a char following \.{@@} */

@ @<Set ini...@>=
{int c; for (c=0; c<=127; c++) ccode[c]=0;}
ccode[' ']=ccode[tab_mark]=ccode['*']=new_module;
ccode['-']=line_break;
ccode['#']=big_line_break;
ccode['=']=verbatim; 
ccode['d']=ccode['D']=definition; 
ccode['f']=ccode['F']=format;
ccode['c']=ccode['C']=begin_unnamed; 
ccode['u']=ccode['U']=begin_unnamed; 
ccode['t']=ccode['T']=TeX_string;
ccode['&']=join; 
ccode['<']=ccode['(']=module_name;
ccode['!']=underline; ccode['^']=xref_roman;
ccode['$']=switch_math_flag;
ccode[':']=xref_wildcard; 
ccode['.']=xref_typewriter; 
ccode[',']=thin_space;
ccode['|']=math_break; 
ccode['/']=line_force;
ccode['+']=no_line_break; 
ccode[';']=pseudo_semi;
ccode['`']=ascii_constant;
ccode['\'']=octal;
ccode['"']=hex;
@t\4@>@<Special control codes allowed only when debugging@>@;
@#
/*Now adjust for |at_sign|... if it is @@, we have no-op followed by quoting */
/* ... but if it is other, say \#, then \#@@ replaces @@\#, and \#\# 
	quotes itself*/
ccode['@@']=ccode[at_sign];
ccode[at_sign]=at_sign;

@ If \.{CWEAVE} is compiled with debugging commands, one can write
\.{@@2}, \.{@@1}, and \.{@@0} to turn tracing fully on, partly on,
and off, respectively.

@<Special control codes...@>=
#ifdef DEBUG
ccode['0']=ccode['1']=ccode['2']=trace;
#endif DEBUG

@ The |skip_limbo| routine is used on the first pass to skip through
portions of the input that are not in any modules, i.e., that precede
the first module. After this procedure has been called, the value of
|input_has_ended| will tell whether or not a module has actually been found.

@u skip_limbo() {
  while(1) {
    if (loc>limit && get_line()==0) return;
    *(limit+1)=at_sign;
    while (*loc!=at_sign) loc++; /* look for |at_sign|, then skip two chars */
    if (loc++ <=limit) if (ccode[*loc++]==new_module) return;
  }
}

@ The |skip_TeX| routine is used on the first pass to skip through
the \TeX\ code at the beginning of a module. It returns the next
control code or `\v' found in the input. A |new_module| is
assumed to exist at the very end of the file.

@u unsigned skip_TeX() /* skip past pure \TeX\ code */
{
  while (1) {
    if (loc>limit && get_line()==0) return(new_module);
    *(limit+1)=at_sign;
    while (*loc!=at_sign && *loc!=vertical_char) loc++;
    if (*loc++ ==vertical_char) return(vertical_bar);
    if (loc<=limit) return(ccode[*(loc++)]);
  }
}

@* Inputting the next token.
As stated above, \.{WEAVE}'s most interesting lexical scanning routine is the
|get_next| function that inputs the next token of \cee\ input. However,
|get_next| is not especially complicated.

The result of |get_next| is either an ASCII code for some special character,
or it is a special code representing a pair of characters (e.g., `\.{!=}'),
or it is the numeric value computed by the |ccode|
table, or it is one of the following special codes:

\yskip\hang |identifier|: In this case the global variables |id_first| and
|id_loc| will have been set to the beginning and ending-plus-one locations
in the buffer, as required by the |id_lookup| routine.

\yskip\hang |string|: The string will have been copied into the array
|mod_text|; |id_first| and |id_loc| are set as above (now they are
pointers into |mod_text|).

\yskip\hang |constant|: The constant is copied into |mod_text|, with
slight modifications; |id_first| and |id_loc| are set.

\yskip\noindent Furthermore, some of the control codes cause
|get_next| to take additional actions:

\yskip\hang |xref_roman|, |xref_wildcard|, |xref_typewriter|, |TeX_string|,
|verbatim|: The values of |id_first| and |id_loc| will have been set to
the beginning and ending-plus-one locations in the buffer.

\yskip\hang |module_name|: In this case the global variable |cur_module| will
point to the |byte_start| entry for the module name that has just been scanned.

\yskip\noindent If |get_next| sees `\.{@@!}'
it sets |xref_switch| to |def_flag| and goes on to the next token.

\yskip\noindent If |get_next| sees `\.{@@\$}'
it sets |math_flag| to |!math_flag| and goes on to the next token.



@<Global...@>=
name_pointer cur_module; /* name of module just scanned */
int math_flag;

@ @<Include...@>=
#include "ctype.h"

@ As one might expect, |get_next| consists mostly of a big switch
that branches to the various special cases that can arise.

Get next takes one argument that determines whether |vertical_char| is a
character or gets translated to a |vertical_bar|.
(Normally, |vertical_char=='|'|.)
If it does get translated, the following rules apply:

\yskip\hang|'|'| as part of a string or as a noninitial character in a
multicharacter token is not a |vertical_bar|.

\yskip\hang An initial |"||"| is treated like a single |'|'|, and
taken to be either a token itself or the initial |'|'| in a
multicharacter token.

@d vertical_char = @`|'
@u eight_bits get_next(see_vertical) /* produces the next input token
*/
	char see_vertical;
{
  eight_bits c; /* the current character */
  while (1) {
    if (loc>limit) {
        if (get_line()==0) return(new_module);
        else { return (@`\n'); }
        }
    c=*(loc++);
    @<See a comment starting at |loc-1| and return |begin_comment|@>@;
    if (see_vertical && c==vertical_char) { 
	if (*loc==vertical_char && loc < limit) {
		loc++;
	} else {
		return vertical_bar;
	}
    }
    if (isdigit(c)) @<Get a constant@>@; /*spider*/
    else if (isalpha(c) || c=='_') @<Get an identifier@>@;/*spider*/
    else if (c=='\'' || c=='"') @<Get a string@>@;/*spider*/
    else if (c==at_sign) @<Get control code and possible module name@>@;
    else if (c==' ' || c==tab_mark) continue; /* ignore spaces and tabs */
    mistake: @<Compress two-symbol operator@>@;
    return(c);
  }
}

@ @<Set |next_control| to the first non-newline token@>=
while ((next_control=get_next(0))==@`\n');

@ @<Get an identifier@>= {/*spider*/
  id_first=--loc;
  while (isalpha(*++loc) || isdigit(*loc) || *loc=='_');
  id_loc=loc; return(identifier);
}

@ Notice that in this section and the next, |id_first| and |id_loc|
are pointers into the array |mod_text|, not into |buffer|.

@<Get a constant@>= {
  id_first=id_loc=mod_text+1;

  if (*(loc-1)=='.' && !isdigit(*loc)) goto mistake; /* not a constant */
  *id_loc++=*(loc-1);
    while (isdigit(*loc)) *id_loc++=*loc++;
    if (*loc=='.') {
	*id_loc++=*loc++;
	while (isdigit(*loc)) *id_loc++=*loc++;
	}
#ifdef C_FLOATING_POINT
/* no floating point --- it depends too much on C */
    if (*loc=='e' || *loc=='E') { /* float constant */
      *id_loc++='_'; loc++;
      if (*loc=='+' || *loc=='-') *id_loc++=*loc++;
      while (isdigit(*loc)) *id_loc++=*loc++;
    }
#endif C_FLOATING_POINT
  return(constant);
}



@ Here we do octals, which I should say more about later...
@<Get an octal constant@>= {
  id_first=id_loc=mod_text+1;
  *id_loc++='~'; /* marks octal constant */
  while ('0'<=*loc && *loc<'8') *id_loc++=*loc++;
  return(constant);
}
@ And hexes are even easier...
@<Get a hex constant@>= {
  id_first=id_loc=mod_text+1;
  *id_loc++='^'; /* marks hex constant */
  while (isxdigit(*loc)) {
	*id_loc++=(islower(*loc)?toupper(*loc):*loc);
	loc++;
	}
  return(constant);
}

@ \cee\ strings and character constants, delimited by double and single
quotes, respectively, can contain newlines or instances of their own
delimiters if they are protected by a backslash.  We follow this
convention, but do not allow the string to be longer than |longest_name|.

@<Get a string@>= {/*spider*/
  ASCII delim = c; /* what started the string */
  id_first = mod_text+1;
  id_loc = mod_text;
  if (delim=='`' && *(loc-2)==at_sign) {
	/* make string begin with |"@@`"| */
	*++id_loc=at_sign; 
	*++id_loc=at_sign;
	}
	/* this is hack for ascii constant */
@#
/* if it's not a single-character literal, it's a tick mark or an |at_sign| */
  if ((delim=='\'' || delim == '`') && 
		(loc+1>=limit || 
			(*loc != '\\' && *loc!=at_sign && loc[1]!='\'')	|| 
			(*loc=='\\' && (loc+2>=limit||loc[2]!='\'')) ||
			(*loc==at_sign && 
			    (loc+2>=limit||loc[1]!=at_sign||loc[2]!='\''))
		)
      ) goto mistake;
  *++id_loc=delim;
  if (delim=='`') delim='\''; /* for |ascii_constant|s */
  while (1) {
    if (loc>=limit) {
      if(*(limit-1)!='\\') {
        err_print("! String didn't end"); loc=limit; break;
@.String didn't end@>
      }
      if(get_line()==0) {
        err_print("! Input ended in middle of string"); loc=buffer; break;
@.Input ended in middle of string@>
      }
    }
    if ((c=*loc++)==delim) {
      if (++id_loc<=mod_text_end) *id_loc=c;
      break;
    }
    if (c=='\\') if (loc>=limit) continue;
      else if (++id_loc<=mod_text_end) {
        *id_loc = '\\'; c=*loc++;
      }
    if (++id_loc<=mod_text_end) *id_loc=c;
  }
  if (id_loc>=mod_text_end) {
    printf("\n! String too long: ");
@.String too long@>
    ASCII_write(mod_text+1,25);
    printf("..."); mark_error;
  }
  id_loc++;
  return(string);
}

@ After an \.{@@} sign has been scanned, the next character tells us
whether there is more work to do.

@<Get control code and possible module name@>= {
  c=*loc++;
  switch(ccode[c]) {
    case underline: xref_switch=def_flag; continue;
    case switch_math_flag: math_flag=!math_flag; continue;
#ifdef DEBUG
    case trace: tracing=c-'0'; continue;
#endif DEBUG
    case xref_roman: case xref_wildcard: case xref_typewriter:
    case TeX_string: 
	@<Scan to the next \.{@@>}@>@;
    case module_name: 
	@<Scan the module name and make |cur_module| point to it@>@;
    case verbatim: @<Scan a verbatim string@>@;
    case ascii_constant: /* fake into looking like quoted char */
		@<Get a string@>;
    case octal: @<Get an octal constant@>;
    case hex: @<Get a hex constant@>;
    default: return(ccode[c]);
  }
}

@ The occurrence of a module name sets |xref_switch| to zero,
because the module name might (for example) follow \&{int}.

@<Scan the module name...@>= {
  ASCII *k; /* pointer into |mod_text| */
  cur_module_char=c; /* remember |'<'| or |'('| */
  @<Put module name into |mod_text|@>;
  if (k-mod_text>3 && strncmp(k-2,"...",3)==0) cur_module=prefix_lookup(mod_text+1,k-3);
  else cur_module=mod_lookup(mod_text+1,k);
  xref_switch=0; return(module_name);
}

@ @<Global...@>=ASCII cur_module_char;

@ Module names are placed into the |mod_text| array with consecutive spaces,
tabs, and carriage-returns replaced by single spaces. There will be no
spaces at the beginning or the end. (We set |mod_text[0]=' '| to facilitate
this, since the |mod_lookup| routine uses |mod_text[1]| as the first
character of the name.)

@<Set init...@>=mod_text[0]=' ';

@ @<Put module name...@>=
k=mod_text;
while (1) {
  if (loc>limit && get_line()==0) {
    err_print("! Input ended in section name");
@.Input ended in section name@>
    loc=buffer+1; break;
  }
  c=*loc;
  @<If end of name, |break|@>;
  loc++; if (k<mod_text_end) k++;
  if (c==' ' || c==tab_mark) {
    c=' '; if (*(k-1)==' ') k--;
  }
*k=c;
}
if (k>=mod_text_end) {
  printf("\n! Section name too long: ");
@.Section name too long@>
  ASCII_write(mod_text+1,25);
  printf("..."); mark_harmless;
}
if (*k==' ' && k>mod_text) k--;

@ @<If end of name,...@>=
if (c==at_sign) {
  c=*(loc+1);
  if (c=='>') {
    loc+=2; break;
  }
  if (ccode[c]==new_module) {
    err_print("! Section name didn't end"); break;
@.Section name didn't end@>
  }
  *(++k)=at_sign; loc++; /* now |c==*loc| again */
}

@ @<Scan to the next...@>= {
  c=ccode[*(loc-1)]; id_first=loc; *(limit+1)=at_sign;
  while (*loc!=at_sign) loc++;
  id_loc=loc;
  if (loc++>limit) {
    err_print("! Control text didn't end"); loc=limit; return(c);
@.Control text didn't end@>
  }
  if (*loc++!='>') err_print("! Control codes are forbidden in control text");
@.Control codes are forbidden...@>
  return(c);
}

@ At the present point in the program we
have |*(loc-1)=verbatim|; we set |id_first| to the beginning
of the string itself, and |id_loc| to its ending-plus-one location in the
buffer.  We also set |loc| to the position just after the ending delimiter.

@<Scan a verbatim string@>= {
  id_first=loc++; *(limit+1)=at_sign; *(limit+2)='>';
  while (*loc!=at_sign || *(loc+1)!='>') loc++;
  if (loc>=limit) err_print("! Verbatim string didn't end");
@.Verbatim string didn't end@>
  id_loc=loc; loc+=2;
  return (verbatim);
}

@* Phase one processing.
We now have accumulated enough subroutines to make it possible to carry out
\.{WEAVE}'s first pass over the source file. If everything works right,
both phase one and phase two of \.{WEAVE} will assign the same numbers to
modules, and these numbers will agree with what \.{TANGLE} does.

The global variable |next_control| often contains the most recent output of
|get_next|; in interesting cases, this will be the control code that
ended a module or part of a module.

@<Global...@>=
eight_bits next_control; /* control code waiting to be acting upon */

@ The overall processing strategy in phase one has the following
straightforward outline.

@u phase_one() {
phase=1; reset_input(); module_count=0;
skip_limbo(); change_exists=0;
while (!input_has_ended)
  @<Store cross-reference data for the current module@>;
changed_module[module_count]=change_exists;
  /* the index changes if anything does */
phase=2; /* prepare for second phase */
@<Print error messages about unused or undefined module names@>;
}

@ @<Store cross-reference data...@>=
{
  if (++module_count==max_modules) stat_overflow("section number");
  changed_module[module_count]=0; /* it will become 1 if any line changes */
  if (*(loc-1)=='*') {
    printf("*%d",module_count);
    update_terminal; /* print a progress report */
  }
  @<Store cross-references in the \TeX\ part of a module@>;
  @<Store cross-references in the definition part of a module@>;
  @<Store cross-references in the \cee\ part of a module@>;
  if (changed_module[module_count]) change_exists=1;
}

@ The |C_xref| subroutine stores references to identifiers in
\cee\ text material beginning with the current value of |next_control|
and continuing until |next_control| is `\.\{' or `\v', or until the next
``milestone'' is passed (i.e., |next_control>=format|). If
|next_control>=format| when |C_xref| is called, nothing will happen;
but if |next_control="|"| upon entry, the procedure assumes that this is
the `\v' preceding \cee\ text that is to be processed.

The program uses the fact that our internal code numbers satisfy
the relations |xref_roman=identifier+roman| and |xref_wildcard=identifier
+wildcard| and |xref_typewriter=identifier+typewriter| and |normal=0|.

@u C_xref(see_v) /* makes cross-references for \cee\ identifiers */
	char see_v;
{
  name_pointer p; /* a referenced name */
  while (next_control<format) {
    if (next_control>=identifier && next_control<=xref_typewriter) {
      p=id_lookup(id_first, id_loc,next_control-identifier); new_xref(p);
    }
    next_control=get_next(see_v);
    if (next_control==vertical_bar || next_control==begin_comment) return;
  }
}

@ The |outer_xref| subroutine is like |C_xref| but it begins
with |next_control!=vertical_bar| and ends with |next_control>=format|. Thus, it
handles \cee\ text with embedded comments.

@u outer_xref() /* extension of |C_xref| */
{
  int bal; /* brace level in comment */
  while (next_control<format)
    if (next_control!=begin_comment) C_xref(0);
    else {
      bal=copy_comment(1); next_control=vertical_bar;
      while (bal>0) {
 C_xref(1);
 if (next_control==vertical_bar) bal=copy_comment(bal);
 else bal=0; /* an error message will occur in phase two */
      }
    }
}

@ In the \TeX\ part of a module, cross-reference entries are made only for
the identifiers in \cee\ texts enclosed in \pb, or for control texts
enclosed in \.{@@\^}$\,\ldots\,$\.{@@>} or \.{@@.}$\,\ldots\,$\.{@@>}
or \.{@@:}$\,\ldots\,$\.{@@>}.

@<Store cross-references in the \T...@>=
while (1) {
  switch (next_control=skip_TeX()) {
    case underline: xref_switch=def_flag; continue;
#ifdef DEBUG
    case trace: tracing=next_control-'0'; continue;
#endif DEBUG
    case vertical_bar: C_xref(1); break;
    case xref_roman: case xref_wildcard: 
    case xref_typewriter: case module_name:
      loc-=2; next_control=get_next(1); /* scan to \.{@@>} */
      if (next_control!=module_name) {
/* |printf ("\nweave debugging: new xref: ");| */
/* |{char *p; for (p=id_first;p<id_loc;p++) putchar(*p);}| */
/* |putchar('\n');|
 */
        new_xref(id_lookup(id_first, id_loc,next_control-identifier));
	}
      break;
  }
  if (next_control>=format) break;
}

@ During the definition and \cee\ parts of a module, cross-references
are made for all identifiers except reserved words; however, the
identifiers in a format definition are referenced even if they are
reserved. The \TeX\ code in comments is, of course, ignored, except for
\cee\ portions enclosed in \pb; the text of a module name is skipped
entirely, even if it contains \pb\ constructions.

The variables |lhs| and |rhs| point to the respective identifiers involved
in a format definition.

@<Global...@>=
name_pointer lhs, rhs; /* pointers to |byte_start| for format identifiers */

@ When we get to the following code we have |next_control>=format|.

@<Store cross-references in the d...@>=
while (next_control<=definition) { /* |format| or |definition| */
  xref_switch=def_flag; /* implied \.{@@!} */
  if (next_control==definition) next_control=get_next(1);
  else @<Process a format definition@>;
  outer_xref();
}

@ Error messages for improper format definitions will be issued in phase
two. Our job in phase one is to define the |ilk| of a properly formatted
identifier, and to fool the |new_xref| routine into thinking that the
identifier on the right-hand side of the format definition is not a
reserved word.

@<Process a form...@>= {
  next_control=get_next(1);
  if (next_control==identifier) {
    lhs=id_lookup(id_first, id_loc,normal); lhs->ilk=normal; new_xref(lhs);
    next_control=get_next(1);
    if (next_control==identifier) {
      rhs=id_lookup(id_first, id_loc,normal);
      lhs->ilk=rhs->ilk; rhs->ilk=normal; new_xref(rhs);
      rhs->ilk=lhs->ilk; next_control=get_next(1);
    }
  }
}

@ Finally, when the \TeX\ and definition parts have been treated, we have
|next_control>=begin_unnamed|.

@<Store cross-references in the \cee...@>=
if (next_control<=module_name) {  /* |begin_unnamed| or |module_name| */
  if (next_control==begin_unnamed) mod_xref_switch=0;
  else mod_xref_switch=(cur_module_char=='<' ? def_flag: file_flag);
  do {
    if (next_control==module_name && cur_module!=NULL) new_mod_xref(cur_module);
    next_control=get_next(1); outer_xref();
  } while ( next_control<=module_name);
}

@ After phase one has looked at everything, we want to check that each
module name was both defined and used.  The variable |cur_xref| will point
to cross-references for the current module name of interest.

@<Global...@>=
xref_pointer cur_xref; /* temporary cross-reference pointer */

@ The following recursive procedure
walks through the tree of module names and prints out anomalies.
@^recursion@>

@u mod_check(p) name_pointer p; /* print anomalies in subtree |p| */
{
  int level; /* 0: use 1: definition 2: file definition */
  if (p) {
    mod_check(p->llink);
    cur_xref=(xref_pointer)p->xref;
    level=(cur_xref->num)/def_flag;
    if (level==0) {
      printf("\n! Never defined: <"); print_id(p); putchar('>'); mark_harmless;
@.Never defined: <section name>@>
    }
    while (cur_xref->num >=def_flag) {
	if ((cur_xref->num)/def_flag != level) {
	      printf("\n! You can't use <"); print_id(p); 
	      printf("> both as a file and as a named module"); mark_harmless;
@.{You can't use <section name> both as a file...@>
	}
	cur_xref=cur_xref->xlink;
    }
    if (cur_xref==xmem && level<2) {
      printf("\n! Never used: <"); print_id(p); putchar('>'); mark_harmless;
@.Never used: <section name>@>
    }
    else if (cur_xref!=xmem && level==2) {
      printf("\n! You can't use file module ("); print_id(p);
	putchar(')'); mark_harmless; 
@.You can't use file module (file name)@>
    }
    mod_check(p->rlink);
  }
}

@ @<Print error messages about un...@>=mod_check(root)

@* Low-level output routines.
The \TeX\ output is supposed to appear in lines at most |line_length|
characters long, so we place it into an output buffer. During the output
process, |out_line| will hold the current line number of the line about to
be output.

@<Global...@>=
ASCII out_buf[line_length+1]; /* assembled characters */
ASCII *out_ptr; /* just after last character in |out_buf| */
ASCII *out_buf_end = out_buf+line_length; /* end of |out_buf| */
int out_line; /* number of next line to be output */

@ The |flush_buffer| routine empties the buffer up to a given breakpoint,
and moves any remaining characters to the beginning of the next line.
If the |per_cent| parameter is 1 a |'%'| is appended to the line
that is being output; in this case the breakpoint |b| should be strictly
less than |out_buf_end|. If the |per_cent| parameter is |0|,
trailing blanks are suppressed.
The characters emptied from the buffer form a new line of output.

The same caveat that applies to |ASCII_write| applies to |c_line_write|.

@d c_line_write(c) = fflush(tex_file),write(fileno(tex_file),out_buf+1,c)@;
@d tex_putxchar(c) = putc(xchr[c],tex_file)@;
@d tex_new_line = putc('\n',tex_file)@;
@d tex_printf(c) = fprintf(tex_file,c)@;

@u flush_buffer(b,per_cent)
ASCII *b;
boolean per_cent; /* outputs from |out_buf+1| to |b|,where |b<=out_ptr| */
{
  ASCII *j; j=b; /* pointer into |out_buffer| */
  if (! per_cent) /* remove trailing blanks */
    while (j>out_buf && *j==' ') j--;
  c_line_write(j-out_buf);
  if (per_cent) tex_putxchar('%');
  tex_new_line; out_line++;
  if (b<out_ptr) strncpy(out_buf+1,b+1,out_ptr-b);
  out_ptr-=b-out_buf;
}

@ When we are copying \TeX\ source material, we retain line breaks
that occur in the input, except that an empty line is not
output when the \TeX\ source line was nonempty. For example, a line
of the \TeX\ file that contains only an index cross-reference entry
will not be copied. The |finish_line| routine is called just before
|get_line| inputs a new line, and just after a line break token has
been emitted during the output of translated \cee\ text.

@u finish_line() /* do this at the end of a line */
{
  ASCII *k; /* pointer into |buffer| */
  if (out_ptr>out_buf) flush_buffer(out_ptr,0);
  else {
    for (k=buffer; k<=limit; k++)
      if (*k!=' ' && *k!=tab_mark) return;
    flush_buffer(out_buf,0);
  }
}

@ In particular, the |finish_line| procedure is called near the very
beginning of phase two. We initialize the output variables in a slightly
tricky way so that the first line of the output file will be a command
to read in the macro file.

@<Set init...@>=
out_ptr=out_buf+1; out_line=1; 
@<Set |out_ptr| and do a |tex_printf| to read the macros@> 

@ When we wish to append one character |c| to the output buffer, we write
`|out(c)|'; this will cause the buffer to be emptied if it was already
full.  If we want to append more than one character at once, we say
|out_str(s)|, where |s| is a string containing the characters,
or |out_str_del(s,t)|, where |s| and |t| point to the same array of
characters; characters from |s| to |t-1|, inclusive, are output.

A line break will occur at a space or after a single-nonletter
\TeX\ control sequence.

@d out(c) = {if (out_ptr>=out_buf_end) break_out(); *(++out_ptr)=c;}

@u out_str_del(s,t) /* output characters from |s| to |t-1| */
ASCII *s, *t;
{
  while (s<t) out(*s++);
}

out_str(s) /* output characters from |s| to end of string */
ASCII *s;
{
  while (*s) out(*s++);
}

@ The |break_out| routine is called just before the output buffer is about
to overflow. To make this routine a little faster, we initialize position
0 of the output buffer to `\.\\'; this character isn't really output.

@<Set init...@>=
out_buf[0]='\\';

@ A long line is broken at a blank space or just before a backslash that isn't
preceded by another backslash. In the latter case, a |'%'| is output at
the break.

@u break_out() /* finds a way to break the output line */
{
  ASCII *k=out_ptr; /* pointer into |out_buf| */
  while (1) {
    if (k==out_buf) @<Print warning message, break the line, |return|@>;
    if (*k==' ') {
      flush_buffer(k,0); return;
    }
    if (*(k--)=='\\' && *k!='\\') { /* we've decreased |k| */
      flush_buffer(k,1); return;
    }
  }
}

@ We get to this module only in unusual cases that the entire output line
consists of a string of backslashes followed by a string of nonblank
non-backslashes. In such cases it is almost always safe to break the
line by putting a |'%'| just before the last character.

@<Print warning message...@>=
{
  printf("\n! Line had to be broken (output l. %d):\n",out_line);
@.Line had to be broken@>
  ASCII_write(out_buf+1, out_ptr-out_buf-1);
  new_line; mark_harmless;
  flush_buffer(out_ptr-1,1); return;
}

@ Here is a macro that outputs a module number in decimal notation.
The number to be converted by |out_mod| is known to be less than
|def_flag|, so it cannot have more than five decimal digits.  If
the module is changed, we output `\.{\\*}' just after the number.

@u out_mod(n) sixteen_bits n;
{
  ASCII s[6];
  sprintf(s,"%d",n); out_str(s);
  if(changed_module[n]) out_str ("\\*");
}

@ The |out_name| procedure is used to output an identifier or index
entry, enclosing it in braces.

@u out_name(p) name_pointer p; {
  ASCII *k, *k_end=(p+1)->byte_start; /* pointers into |byte_mem| */
  out('{');
  for (k=p->byte_start; k<k_end; k++) {
    if (*k=='$') {out('\\'); out('D'); out('O'); out(' ');}
    else if (*k=='&') {out('\\'); out('a'); out('m'); out('p');}
	else {
  if (*k=='_' || *k=='%' || *k=='#' || *k=='^' || *k=='{' || *k=='}') 
		out('\\');
      out(*k);
	}
  }
  out('}');
}

@* Routines that copy \TeX\ material.
During phase two, we use the subroutines |copy_limbo|, |copy_TeX|, and
|copy_comment| in place of the analogous |skip_limbo|, |skip_TeX|, and
|skip_comment| that were used in phase one.

The |copy_limbo| routine, for example, takes \TeX\ material that is not
part of any module and transcribes it almost verbatim to the output file.
No `\.{@@}' signs should occur in such material except in `\.{@@@@}'
pairs; such pairs are replaced by singletons.

@u copy_limbo()
{
  ASCII c;
  while (1) {
    if (loc>limit && (finish_line(), get_line()==0)) return;
    *(limit+1)=at_sign;
    while (*loc!=at_sign) out(*(loc++));
    if (loc++<=limit) {
      c=*loc++;
      if (ccode[c]==new_module) break;
      if (c!='z' && c!='Z') {
        out(at_sign);
        if (c!=at_sign) err_print("! Double @@ required outside of sections");
@.Double \AT! required...@>
      }
    }
  }
}


@ The |copy_TeX| routine processes the \TeX\ code at the beginning of a
module; for example, the words you are now reading were copied in this
way. It returns the next control code or `\v' found in the input.
We don't copy spaces or tab marks into the beginning of a line. This
makes the test for empty lines in |finish_line| work.

@<Global...@>= eight_bits next_control; /* control code found */

@ @u eight_bits copy_TeX()
{
  ASCII c; /* current character being copied */
  while (1) {
    if (loc>limit && (finish_line(), get_line()==0)) return(new_module);
    *(limit+1)=at_sign;
    while ((c=*(loc++))!=vertical_char && c!=at_sign) {
      out(c);
      if (out_ptr==out_buf+1 && (c==' ' || c==tab_mark)) out_ptr--;
    }
    if (c==vertical_char) return(vertical_bar);
    if (loc<=limit) return(ccode[*(loc++)]);
  }
}

@ The |copy_comment| function issues a warning if more braces are opened than
closed, and in the case of a more serious error it supplies enough
braces to keep \TeX\ from complaining about unbalanced braces.
Instead of copying the \TeX\ material
into the output buffer, this function copies it into the token memory.
The abbreviation |app_tok(t)| is used to append token |t| to the current
token list, and it also makes sure that it is possible to append at least
one further token without overflow.

Copies to end and then follows end of comment with a right brace.

@d app_tok(c) = {if (tok_ptr+2>tok_mem_end) stat_overflow("token"); *(tok_ptr++)=c;}

@u
copy_comment(bal) /* copies \TeX\ code in comments */
int bal; /* brace balance */
{
  ASCII c; /* current character being copied */
  while (1) {
    if (loc>limit) 
	if (comments_end_with_newline) {
	  loc++; if(bal==1) {if (phase==2) app_tok('}'); return(0);}
	  else {
	    err_print("! Braces don't balance in comment");
@.Braces don't balance in comment@>
	    @<Clear |bal| and |return|@>;
	  }
	} else {
		if (get_line()==0) {
		err_print("! Input ended in mid-comment");
@.Input ended in mid-comment@>
	        loc=buffer+1; @<Clear |bal| and |return|@>;
		}
	}

    c=*(loc++);
    if (c==vertical_char) return(bal);
    @<Check for end of comment@>;
    if (phase==2) app_tok(c);
    @<Copy special things when |c==at_sign, '\\', '{', '}'|; |return| at end@>;
  }
}



@ @<Copy special things when |c==at_sign...@>=
if (c==at_sign) {
  if (*(loc++)!=at_sign) {
    err_print("! Illegal use of @@ in comment");
@.Illegal use of \AT!...@>
    loc-=2; if (phase==2) tok_ptr--; @<Clear |bal|...@>;
  }
}
else if (c=='\\' && *loc!=at_sign && phase==2) app_tok(*(loc++))@;
else if (c=='{') bal++;
else if (c=='}') bal--;

@ When the comment has terminated abruptly due to an error, we output
enough right braces to keep \TeX\ happy.

@<Clear |bal|...@>=
app_tok(' '); /* this is done in case the previous character was `\.\\' */
while (bal-- >0) app_tok('}');
/* |if (see_end_of_line) next_control=end_of_line;| */
return(0);

@* Parsing.
The most intricate part of \.{WEAVE} is its mechanism for converting
\cee-like code into \TeX\ code, and we might as well plunge into this
aspect of the program now. A ``bottom up'' approach is used to parse the
\cee-like material, since \.{WEAVE} must deal with fragmentary
constructions whose overall ``part of speech'' is not known.

At the lowest level, the input is represented as a sequence of entities
that we shall call {\it scraps}, where each scrap of information consists
of two parts, its {\it category} and its {\it translation}. The category
is essentially a syntactic class, and the translation is a token list that
represents \TeX\ code. Rules of syntax and semantics tell us how to
combine adjacent scraps into larger ones, and if we are lucky an entire
\cee\ text that starts out as hundreds of small scraps will join
together into one gigantic scrap whose translation is the desired \TeX\
code. If we are unlucky, we will be left with several scraps that don't
combine; their translations will simply be output, one by one.

The combination rules are given as context-sensitive productions that are
applied from left to right. Suppose that we are currently working on the
sequence of scraps $s_1\,s_2\ldots s_n$. We try first to find the longest
production that applies to an initial substring $s_1\,s_2\ldots\,$; but if
no such productions exist, we find to find the longest production
applicable to the next substring $s_2\,s_3\ldots\,$; and if that fails, we
try to match $s_3\,s_4\ldots\,$, etc.

A production applies if the category codes have a given pattern. For
example, one of the productions is
$$open\ math\ semi\ \RA\ open\ math$$
and it means that three consecutive scraps whose respective categories are
|open|, |math|, and |semi| are con\-verted to two scraps whose categories
are |open| and |math|. This production also has an associated rule that
tells how to combine the translation parts:
$$\eqalign{O_2&=O_1\cr
M_2&=M_1\,S\,\.{\\,}\,\hbox{|opt|\thinspace\tt5}\cr}$$
This means that the |open| scrap has not changed, while the new |math| scrap
has a translation $M_2$ composed of the translation $M_1$ of the original
|math| scrap followed by the translation |S| of the |semi| scrap followed
by `\.{\\,}' followed by `|opt|' followed by `\.5'. (In the \TeX\ file,
this will specify an additional thin space after the semicolon, followed
by an optional line break with penalty 50.) Translation rules use subscripts
to distinguish between translations of scraps whose categories have the
same initial letter; these subscripts are assigned from left to right.

$\.{WEAVE}$ also has the production rule
$$\hbox{|semi|$\;\RA\;$|terminator|}$$
(meaning that a semicolon can terminate a \cee\ statement). Since
productions are applied from left to right, this rule will be activated
only if the |semi| is not preceded by scraps that match other productions;
in particular, a |semi| that is preceded by `|open| |math|' will have
disappeared because of the production above, and such semicolons do not
act as statement terminators.

The translation rule corresponding to $\hbox{|semi|$\;\RA\;$|terminator|}$ is
$$T=S$$
but we shall not mention translation rules in the common case that the
translation of the new scrap on the right-hand side is simply the
concatenation of the disappearing scraps on the left-hand side.



@ The token lists for translated \TeX\ output contain some special control
symbols as well as ordinary characters. These control symbols are
interpreted by \.{WEAVE} before they are written to the output file.

\yskip\hang |break_space| denotes an optional line break or an en space;

\yskip\hang |force| denotes a line break;

\yskip\hang |big_force| denotes a line break with additional vertical space;

\yskip\hang |opt| denotes an optional line break (with the continuation
line indented two ems with respect to the normal starting position)---this
code is followed by an integer |n|, and the break will occur with penalty
$10n$;

\yskip\hang |backup| denotes a backspace of one em;

\yskip\hang |cancel| obliterates any |break_space| or |force| or |big_force|
tokens that immediately precede or follow it and also cancels any
|backup| tokens that follow it;

\yskip\hang |indent| causes future lines to be indented one more em;

\yskip\hang |outdent| causes future lines to be indented one less em.

\yskip\noindent All of these tokens are removed from the \TeX\ output that
comes from \cee\ text between \pb\ signs; |break_space| and |force| and
|big_force| become single spaces in this mode. The translation of other
\cee\ texts results in \TeX\ control sequences \.{\\1}, \.{\\2},
\.{\\3}, \.{\\4}, \.{\\5}, \.{\\6}, \.{\\7} corresponding respectively to
|indent|, |outdent|, |opt|, |backup|, |break_space|, |force|, and
|big_force|. However, a sequence of consecutive `\.\ ', |break_space|,
|force|, and/or |big_force| tokens is first replaced by a single token
(the maximum of the given ones).

The tokens |math_rel| and |math_bin| will be translated into
\.{\\mathrel\{} and \.{\\mathbin\{}, respectively.
Also |math_op| to \.{\\mathop\{}.
Other control sequences in the \TeX\ output will be `\.{\\\\\{}$\,\ldots\,$\.\}'
surrounding identifiers, `\.{\\\&\{}$\,\ldots\,$\.\}' surrounding
reserved words, `\.{\\.\{}$\,\ldots\,$\.\}' surrounding strings,
`\.{\\cee\{}$\,\ldots\,$\.\}$\,$|force|' surrounding comments, and
`\.{\\X$n$:}$\,\ldots\,$\.{\\X}' surrounding module names, where
|n| is the module number.

@d math_bin = @'205  /* should these be octal or decimal? */
@d math_rel = @'206
@d math_op = @'207
@d big_cancel = @'210 /* like |cancel|, also overrides spaces */
@d cancel = @'211 /* overrides |backup|, |break_space|, |force|, |big_force| */
@d indent = cancel+1 /* one more tab (\.{\\1}) */
@d outdent = cancel+2 /* one less tab (\.{\\2}) */
@d opt = cancel+3 /* optional break in mid-statement (\.{\\3}) */
@d backup = cancel+4 /* stick out one unit to the left (\.{\\4}) */
@d break_space = cancel+5 /* optional break between statements (\.{\\5}) */
@d force = cancel+6 /* forced break between statements (\.{\\6}) */
@d big_force = cancel+7 /* forced break with additional space (\.{\\7}) */
@d end_translation = big_force+1 /* special sentinel token at end of list */

@ Here is a table of all the productions. The reader can best get a feel for
@^productions, table of@>
how they work by trying them out by hand on small examples; no amount of
explanation will be as effective as watching the rules in action.
Parsing can also be watched by debugging with `\.{@@2}'.

@i grammar.web

@* Implementing the productions.
More specifically, a scrap is a structure consisting of a category
|cat| and a |text_pointer| |trans|, which points to the translation in
|tok_start|.  When \cee\ text is to be processed with the grammar above,
we form an array |scrap_info| containing the initial scraps.
Our production rules have the nice property that the right-hand side is never
longer than the left-hand side. Therefore it is convenient to use sequential
allocation for the current sequence of scraps. Five pointers are used to
manage the parsing:

\yskip\hang |pp| is a pointer into |scrap_info|.  We will try to match
the category codes |pp->cat@,(pp+1)->cat|$\,\ldots\,$ to the left-hand sides
of productions.

\yskip\hang |scrap_base|, |lo_ptr|, |hi_ptr|, and |scrap_ptr| are such that
the current sequence of scraps appears in positions |scrap_base| through
|lo_ptr| and |hi_ptr| through |scrap_ptr|, inclusive, in the |cat| and
|trans| arrays. Scraps located between |scrap_base| and |lo_ptr| have
been examined, while those in positions |>=hi_ptr| have not yet been
looked at by the parsing process.

\yskip\noindent Initially |scrap_ptr| is set to the position of the final
scrap to be parsed, and it doesn't change its value. The parsing process
makes sure that |lo_ptr>=pp+3|, since productions have as many as four terms,
by moving scraps from |hi_ptr| to |lo_ptr|. If there are
fewer than |pp+3| scraps left, the positions up to |pp+3| are filled with
blanks that will not match in any productions. Parsing stops when
|pp=lo_ptr+1| and |hi_ptr=scrap_ptr+1|.

Since the |scrap| structure will later be used for other purposes, we
declare its second element as unions.

@<Type...@>=
typedef struct {
  eight_bits cat;
  eight_bits mathness;
  union {
    text_pointer Trans;
    ===> @<Rest of |trans_plus| union@>@;
  } trans_plus;
} scrap;
typedef scrap *scrap_pointer;

@ @d trans = trans_plus.Trans /* translation texts of scraps */
@d no_math = 2
@d yes_math = 1
@d maybe_math = 0
@d left_math(A) = ((A)->mathness %4)
@d right_math(A) = (((A)->mathness/4)%4)
@d make_math(LM,RM) = ((eight_bits) (LM+4*(RM)))


@<Global...@>=
scrap scrap_info[max_scraps]; /* memory array for scraps */
scrap_pointer scrap_info_end=scrap_info+max_scraps -1; /* end of |scrap_info| */
scrap_pointer pp; /* current position for reducing productions */
scrap_pointer scrap_base; /* beginning of the current scrap sequence */
scrap_pointer scrap_ptr; /* ending of the current scrap sequence */
scrap_pointer lo_ptr; /* last scrap that has been examined */
scrap_pointer hi_ptr; /* first scrap that has not been examined */
#ifdef STAT
scrap_pointer max_scr_ptr; /* largest value assumed by |scrap_ptr| */
#endif STAT

@ @<Set init...@>=
scrap_base=scrap_info+1;
#ifdef STAT
max_scr_ptr=
#endif STAT
scrap_ptr=scrap_info;

@ Token lists in |@!tok_mem| are composed of the following kinds of
items for \TeX\ output.

\yskip\item{$\bullet$}ASCII codes and special codes like |force| and
|math_rel| represent themselves;

\item{$\bullet$}|id_flag+p| represents \.{\\\\\{{\rm identifier $p$}\}};

\item{$\bullet$}|res_flag+p| represents \.{\\\&\{{\rm identifier $p$}\}};

\item{$\bullet$}|mod_flag+p| represents module name |p|;

\item{$\bullet$}|tok_flag+p| represents token list number |p|;

\item{$\bullet$}|inner_tok_flag+p| represents token list number |p|, to be
translated without line-break controls.

@d id_flag = 10240 /* signifies an identifier */
@d res_flag = 2*id_flag /* signifies a reserved word */
@d mod_flag = 3*id_flag /* signifies a module name */
@d tok_flag = 4*id_flag /* signifies a token list */
@d inner_tok_flag = 5*id_flag /* signifies a token list in `\pb' */

@u
#ifdef DEBUG
print_text(p) /* prints a token list */
text_pointer p;
{
  token_pointer j; /* index into |tok_mem| */
  sixteen_bits r; /* remainder of token after the flag has been stripped off */
  if (p>=text_ptr) printf("BAD");
  else for (j=*p; j<*(p+1); j++) {
    r=*j%id_flag;
    switch (*j/id_flag) {
      case 1: printf("\\{"); print_id((name_dir+r)); printf("}"); break;
 /* |id_flag| */
      case 2: printf("\&{"); print_id((name_dir+r)); printf("}"); break;
 /* |res_flag| */
      case 3: printf("<"); print_id((name_dir+r)); printf(">"); break;
        /* |mod_flag| */
      case 4: printf("[[%d]]",r); break; /* |tok_flag| */
      case 5: printf("|[[%d]]|",r); break; /* |inner_tok_flag| */
      default: @<Print token |r| in symbolic form@>;
    }
  }
}
#endif DEBUG

@ @<Print token |r|...@>=
switch (r) {
  case math_bin: printf("\\mathbin{"); break;
  case math_op: printf("\\mathop{"); break;
  case math_rel: printf("\\mathrel{"); break;
  case big_cancel: printf("[ccancel]"); break;
  case cancel: printf("[cancel]"); break;
  case indent: printf("[indent]"); break;
  case outdent: printf("[outdent]"); break;
  case backup: printf("[backup]"); break;
  case opt: printf("[opt]"); break;
  case break_space: printf("[break]"); break;
  case force: printf("[force]"); break;
  case big_force: printf("[fforce]"); break;
  case end_translation: printf("[quit]"); break;
  default: putxchar(r);
}

@ The production rules listed above are embedded directly into the \.{WEAVE}
program, since it is easier to do this than to write an interpretive system
that would handle production systems in general. Several macros are defined
here so that the program for each production is fairly short.

All of our productions conform to the general notion that some |k|
consecutive scraps starting at some position |j| are to be replaced by a
single scrap of some category |c| whose translations is composed from the
translations of the disappearing scraps. After this production has been
applied, the production pointer |pp| should change by an amount |d|. Such
a production can be represented by the quadruple |(j,k,c,d)|. For example,
the production `|simp@,math| $\RA$ |math|' would be represented by
`|(pp,2,math,-1)|'; in this case the pointer |pp| should decrease by 1
after the production has been applied, because some productions with
|math| in their second positions might now match, but no productions have
|math| in the third or fourth position of their left-hand sides. Note that
the value of |d| is determined by the whole collection of productions, not
by an individual one. Consider the further example
`|var_head@,math@,colon| $\RA$ |var_head@,intro|', which is represented by
`|(pp+1,2,intro,+1)|'; the $+1$ here is deduced by looking at the
grammar and seeing that no matches could possibly occur at positions |<=pp|
after this production has been applied. The determination of |d| has been
done by hand in each case, based on the full set of productions but not on
the grammar of \cee\ or on the rules for constructing the initial
scraps.

We also attach a serial number of each production, so that additional
information is available when debugging. For example, the program below
contains the statement `|reduce(pp+1,2,intro,+1,52)|' when it implements
the production just mentioned.

Before calling |reduce|, the program should have appended the tokens of
the new translation to the |tok_mem| array. We commonly want to append
copies of several existing translations, and macros are defined to
simplify these common cases. For example, |small_app2(pp)| will append the
translations of two consecutive scraps, |trans[pp]| and |trans[pp+1]|, to
the current token list. If the entire new translation is formed in this
way, we write `|squash(j,k,c,d)|' instead of `|reduce(j,k,c,d)|'. For
example, `|squash(pp,2,math,-1)|' is an abbreviation for `|small_app2(pp);
reduce(pp,2,math,-1)|'.

The code below is an exact translation of the production rules into
\cee, using such macros, and the reader should have no difficulty
understanding the format by comparing the code with the symbolic
productions as they were listed earlier.

@d app2(a) = app1(a);app1(a+1)@;
@d app3(a) = app2(a);app1(a+2)@;
@d app4(a) = app3(a);app1(a+3)@;
@d small_app(a) = *(tok_ptr++)=a@;
@d small_app1(a) = *(tok_ptr++)=tok_flag+(a)->trans-tok_start@;

@<Global...@>=
int init_mathness, last_mathness;

@ @u app_str(s)
ASCII *s;
{
  while (*s) small_app(*(s++));
}

app(a)
token a;
{
 if (a==' ' || a>=big_cancel && a<=big_force) /* non-math token */ {
  if (last_mathness==maybe_math) init_mathness=no_math;
  else if (last_mathness==yes_math) small_app('$');
  last_mathness=no_math;
 }
 else {
  if (last_mathness==maybe_math) init_mathness=yes_math;
  else if (last_mathness==no_math) small_app('$');
  last_mathness=last_mathness=yes_math;
 }
 small_app(a);
}
app1(a)
scrap_pointer a;
{
  switch (left_math(a)) { /* left boundary */
  case (no_math):
    if (last_mathness==maybe_math) init_mathness=no_math;
    if (last_mathness==yes_math) small_app('$');
    last_mathness = right_math(a); /* right boundary */
    break;
  case (yes_math):
    if (last_mathness==maybe_math) init_mathness=yes_math;
    else if (last_mathness==no_math) small_app('$');
    last_mathness = right_math(a); /* right boundary */
    break;
  case (maybe_math): /* no changes */
    break;
  }
  small_app(tok_flag+(a)->trans-tok_start);
}

@ Let us consider the big switch for productions now, before looking
at its context. We want to design the program so that this switch
works, so we might as well not keep ourselves in suspense about exactly what
code needs to be provided with a proper environment.

@<Match a production at |pp|, or increase |pp| if there is no match@>= {
	/* |ignore_scrap| becomes part of the grammar */
  @<Test for all of the productions@>@;
  pp++; /* if no match was found, we move to the right */
}

@ It may be that during phase two we discover from some arrangement
of the scraps that an identifier should be treated as a defining instance,
meaning its index entry should be underlined.
Since we're in phase two, the identifier is buried inside some scrap,
which may contain other things as well.
Using Spider to {\em star} a scrap causes the first identifier in that 
scrap's translation to get an underlined index entry.
The starring generates a call to |make_underlined|, which
finds the first identifier with |first_id| and then underlines it
with |underline_xref|.
@u
@<Definition of |first_id|@>@;
make_underlined(p) 
	/* underline the entry for the first identifier in |p->trans| */
scrap_pointer p;
{
  sixteen_bits tok_value; /* a token: 
			the name of this identifier, plus its flag */
  /* Assume |p->trans < text_ptr| */

  /* attempt to set |tok_value| to the first identifier in |p->trans| */
  tok_value = first_id(p->trans);
  if (tok_value==0) {
#ifdef DEBUG
    if (tracing>0) {
	printf("\n! I couldn't find an identifier to underline.");
	mark_harmless;
    }
#endif DEBUG
    return;
  }
  if (tok_value<id_flag || tok_value>=res_flag)
    fatal("", "! Internal error in first_id");
@.Internal error in first_id@>
  /* don't underline identifiers of length 1, even if starred --- force
     the user to use |"@@!"| */
  if (length(tok_value-id_flag+name_dir)>1)
    underline_xref(tok_value-id_flag+name_dir);
}

@ |first_id| finds the first identifier in a translation.
It is indefatigable.
It returns a |token| value, or zero if it can't find an identifier.
@<Definition of |first_id|@>=

sixteen_bits first_id(p)
	text_pointer p;
{
  token_pointer tp; /* used to search for the first identifier */
  sixteen_bits r; /* remainder after modding out by |id_flag| */
  sixteen_bits the_id; /* the id we find, or zero otherwise */

  for (tp=*p; tp<*(p+1); tp++) {	
    r=*tp%id_flag;
    switch (*tp/id_flag) {
      case 1:  /* |id_flag| --- found it */
	return *tp;
	break;
      case 2: /* |res_flag| */
      case 3: /* |mod_flag| */
        goto next;
	break;
      case 4: /* |tok_flag| */
      case 5: /* |inner_tok_flag| */
	/* search the inner list */
        if ((the_id = first_id(tok_start+r))!=0) return the_id;
        goto next;
	break;
      default: 
   	goto next;
	break;
    }
    next: continue;
  }
  return 0;
}
 
@ We cannot use |new_xref| to underline a cross-reference at this point
because this would just make a new cross-reference at the end of the list.
We actually have to search through the list for the existing
cross-reference.

@u underline_xref(p)
name_pointer p;
{
  xref_pointer q=(xref_pointer)p->xref; 
		  /* pointer to cross-reference being examined */
  xref_pointer r; /* temporary pointer for permuting cross-references */
  sixteen_bits m; /* cross-reference value to be installed */
  sixteen_bits n; /* cross-reference value being examined */
  if (no_xref) return;
  xref_switch=def_flag;
  m=module_count+xref_switch;
  while (q != xmem) {
    n=q->num;
    if (n==m) return;
    else if (m==n+def_flag) {
 q->num=m; return;
    }
    else if (n>=def_flag && n<m) break;
    q=q->xlink;
  }
  @<Insert new cross-reference at |q|, not at beginning of list@>;
}

@ We get to this module only when the identifier is one letter long,
so it didn't get a non-underlined entry during phase one.  But it may
have got some explicitly underlined entries in later modules, so in order
to preserve the numerical order of the entries in the index, we have
to insert the new cross-reference not at the beginning of the list
(namely, at |p->xref|), but rather right before |q|.

@<Insert new cross-reference at |q|...@>=
  append_xref(0); /* this number doesn't matter */
  xref_ptr->xlink=(xref_pointer)p->xref; 
  p->xref=(ASCII*)xref_ptr;
  r=xref_ptr;
  while (r->xlink!=q) {r->num=r->xlink->num; r=r->xlink;}
  r->num=m; /* everything from |q| on is left undisturbed */



@ The `|freeze_text|' macro is used to give official status to a token list.
Before saying |freeze_text|, items are appended to the current token list,
and we know that the eventual number of this token list will be the current
value of |text_ptr|. But no list of that number really exists as yet,
because no ending point for the current list has been
stored in the |tok_start| array. After saying |freeze_text|, the
old current token list becomes legitimate, and its number is the current
value of |text_ptr-1| since |text_ptr| has been increased. The new
current token list is empty and ready to be appended to.
Note that |freeze_text| does not check to see that |text_ptr| hasn't gotten
too large, since it is assumed that this test was done beforehand.

@d freeze_text = *(++text_ptr)=tok_ptr@;

@ @u reduce(j,k,c,d,n)
scrap_pointer j;
eight_bits c;
short k, d, n;
{
  scrap_pointer i, i1; /* pointers into scrap memory */
  j->cat=c; j->trans=text_ptr;
  j->mathness=make_math(init_mathness,last_mathness);
  freeze_text;
  if (k>1) {
    for (i=j+k, i1=j+1; i<=lo_ptr; i++, i1++) {
      i1->cat=i->cat; i1->trans=i->trans;
      i1->mathness=i->mathness;
    }
    lo_ptr=lo_ptr-k+1;
  }
  @<Change |pp| to $\max(|scrap_base|,|pp+d|)$@>;
#ifdef DEBUG
  @<Print a snapshot of the scrap list if debugging @>;
#endif DEBUG
  pp--; /* we next say |pp++| */
}

@ @<Change |pp| to $\max...@>=
if (pp+d>=scrap_base) pp=pp+d;
else pp=scrap_base;

@ The `|squash|' 
procedure takes advantage of the simplification that occurs when |k=1|.
{\bf `|squash|' isn't used in Spidery \.{WEB}.}
@u squash(j,k,c,d,n)
scrap_pointer j;
eight_bits c;
short k, d, n;
{
  scrap_pointer i; /* pointers into scrap memory */
  if (k==1) {
    j->cat=c; @<Change |pp|...@>;
#ifdef DEBUG
    @<Print a snapshot...@>;
#endif DEBUG
    pp--; /* we next say |pp++| */
    return;
  }
  for (i=j; i<j+k; i++) app1(i);
  reduce(j,k,c,d,n);
}

@ Here now is the code that applies productions as long as possible. It
requires two local labels (|found| and |done|), as well as a local
variable (|i|).

@<Reduce the scraps using the productions until no more rules apply@>=
while (1) {
  @<Make sure the entries |pp| through |pp+highestposoverall-1| 
		of |cat| are defined@>;
  if (tok_ptr+8>tok_mem_end || text_ptr+4>tok_start_end) {
#ifdef STAT
    if (tok_ptr>max_tok_ptr) max_tok_ptr=tok_ptr;
    if (text_ptr>max_text_ptr) max_text_ptr=text_ptr;
#endif STAT
    stat_overflow("token/text");
  }
  if (pp>lo_ptr) break;
  init_mathness=last_mathness=maybe_math;
  @<Match a production...@>;
}

@ If we get to the end of the scrap list, category codes equal to zero are
stored, since zero does not match anything in a production.

@<Make sure the entries...@>=
if (lo_ptr<pp+highestposoverall-1) {
  while (hi_ptr<=scrap_ptr && lo_ptr!=pp+highestposoverall-1) {
    (++lo_ptr)->cat=hi_ptr->cat; lo_ptr->mathness=(hi_ptr)->mathness;
    lo_ptr->trans=(hi_ptr++)->trans;
  }
  for (i=lo_ptr+1;i<=pp+highestposoverall-1;i++) i->cat=0;
}

@ If \.{WEAVE} is being run in debugging mode, the production numbers and
current stack categories will be printed out when |tracing| is set to 2;
a sequence of two or more irreducible scraps will be printed out when
|tracing| is set to 1.

@<Global...@>=
#ifdef DEBUG
int tracing; /* can be used to show parsing details */
#endif DEBUG

@ @<Print a snapshot...@>= {
  scrap_pointer k; /* pointer into |scrap_info| */
  if (tracing==2) {
    printf("\n%d:",n);
    for (k=scrap_base; k<=lo_ptr; k++) {
      if (k==pp) putxchar('*'); else putxchar(' ');
      if (left_math(k) ==  yes_math) putchar('+');
      else if (left_math(k) ==  no_math) putchar('-');
      print_cat(k->cat);
      if (right_math(k)==  yes_math) putchar('+');
      else if (right_math(k) ==  no_math) putchar('-');
    }
    if (hi_ptr<=scrap_ptr) printf("..."); /* indicate that more is coming */
  }
}

@ The |translate| function assumes that scraps have been stored in
positions |scrap_base| through |scrap_ptr| of |cat| and |trans|. It
appends a |terminator| scrap and begins to apply productions as much as
possible. The result is a token list containing the translation of
the given sequence of scraps.

After calling |translate|, we will have |text_ptr+3<=max_texts| and
|tok_ptr+6<=max_toks|, so it will be possible to create up to three token
lists with up to six tokens without checking for overflow. Before calling
|translate|, we should have |text_ptr<max_texts| and |scrap_ptr<max_scraps|,
since |translate| might add a new text and a new scrap before it checks
for overflow.

@u text_pointer translate() /* converts a sequence of scraps */
{
  scrap_pointer i, /* index into |cat| */
  j; /* runs through final scraps */
  pp=scrap_base; lo_ptr=pp-1; hi_ptr=pp;
  @<If tracing, print an indication of where we are@>;
  @<Reduce the scraps...@>;
  @<Combine the irreducible scraps that remain@>;
}

@ If the initial sequence of scraps does not reduce to a single scrap,
we concatenate the translations of all remaining scraps, separated by
blank spaces, with dollar signs
placed according to the |mathness| of the scraps.

@<Combine the irreducible...@>= {
  @<If semi-tracing, show the irreducible scraps@>;
  for (j=scrap_base; j<=lo_ptr; j++) {
    if (j!=scrap_base) small_app(' ');
    if ((left_math(j) == yes_math) && math_flag==0) small_app('$');
    if ((left_math(j) == no_math) && math_flag==1) {
    small_app(' '); small_app('$');}
    small_app1(j);
    if ((right_math(j) == yes_math) && math_flag==0) small_app('$');
    if ((right_math(j) == no_math) && math_flag==1) {small_app('$');
    small_app(' ');}
    if (tok_ptr+6>tok_mem_end) stat_overflow("token");
  }
  freeze_text; return(text_ptr-1);
}

@ @<If semi-tracing, show the irreducible scraps@>=
#ifdef DEBUG
if (lo_ptr>scrap_base && tracing==1) {
  printf("\nIrreducible scrap sequence in section %d:",module_count);
  mark_harmless;
  for (j=scrap_base; j<=lo_ptr; j++) {
    printf(" "); print_cat(j->cat);
  }
}
#endif DEBUG

@ @<If tracing,...@>=
#ifdef DEBUG
if (tracing==2) {
  printf("\nTracing after l. %d:\n",cur_line); mark_harmless;
  if (loc>buffer+50) {
    printf("...");
    ASCII_write(loc-51,51);
  }
  else ASCII_write(buffer+1,loc-buffer);
}
#endif DEBUG

@* Initializing the scraps.
If we are going to use the powerful production mechanism just developed, we
must get the scraps set up in the first place, given a \cee\ text.
The raw input is converted into scraps according to the following table,
which gives category codes followed by the translations. Sometimes a single
item of input produces more than one scrap.
\def\stars {\.{---}}%

A comment in the input will be combined with the preceding
|omega| or |semi| scrap, or with the following |terminator| scrap, if
possible; otherwise it will be inserted as a separate |terminator| scrap.
An additional ``comment'' is effectively appended at the end of the
\PASCAL\ text, just before translation begins; this consists of a |cancel|
token in the case of \PASCAL\ text in \pb, otherwise it consists of a
|force| token.

From this table it is evident that \.{WEAVE} will parse a lot of non-\PASCAL\
programs. For example, the reserved words `\.{for}' and `\.{array}' are
treated in an identical way by \.{WEAVE} from a syntactic standpoint,
and semantically they are equivalent except that a forced line break occurs
just before `\&{for}'; \PASCAL\ programmers may well be surprised at this
similarity. The idea is to keep \.{WEAVE}'s rules as simple as possible,
consistent with doing a reasonable job on syntactically correct \PASCAL\
programs. The production rules below have been formulated in the same
spirit of ``almost anything goes.''

A table
of the initial scraps corresponding to \cee\ tokens appeared above in the
section on parsing; our goal now is to implement that table. We shall do this
by implementing a subroutine called |C_parse| that is analogous to the
|C_xref| routine used during phase one.

Like |C_xref|, the |C_parse| procedure starts with the current
value of |next_control| and it uses the operation |next_control=get_next|
repeatedly to read \cee\ text until encountering the next `\v' or
`\.\{' (begin comment symbol) , or until |next_control>=format|. The
scraps corresponding to what
it reads are appended into the |cat| and |trans| arrays, and |scrap_ptr|
is advanced.

|C_parse| should never be called with |next_control| equal to
|begin_comment|, because the
upper routines should be screening those out.

@u C_parse(see_v) /* creates scraps from \cee\ tokens */
	char see_v;
{
  name_pointer p; /* identifier designator */
  while (next_control<format) {
    @<Append the scrap appropriate to |next_control|@>;
    next_control=get_next(see_v);
    if (next_control==vertical_bar || next_control==begin_comment) return;
  }
}

@ The following macro is used to append a scrap whose tokens have just
been appended:

@d app_scrap(c,M) = (++scrap_ptr)->cat=c; scrap_ptr->trans=text_ptr;
scrap_ptr->mathness=make_math(M,M);
freeze_text;

@ @<Append the scr...@>=
@<Make sure that there is room for at least four more scraps, six more
tokens, and four more texts@>;
switch (next_control) {
	@<Cases for ordinary tokens@>@;
  case string: case constant: case verbatim: @<Append a string or constant@>;
    break;
  case @`\n': @<Append a newline scrap@>; break;
  case identifier: @<Append an identifier scrap@>; break;
  case TeX_string: @<Append a \TeX\ string scrap@>; break;
  case ignore: case vertical_bar: 
	break;
case xref_roman: case xref_wildcard: case xref_typewriter: 
	break;
  case thin_space: app_str("\\,"); app_scrap(SP_ignore_scrap,yes_math); break;
  case math_break:
 small_app(opt); app_str("0"); app_scrap(SP_ignore_scrap,yes_math); break;
  case line_break:
     app_str("\\0"); app_scrap(SP_ignore_scrap,yes_math); break;
  case line_force:
 small_app(force); app_scrap(SP_ignore_scrap,no_math); break;
  case big_line_break:
 small_app(big_force); app_scrap(SP_ignore_scrap,no_math); break;
  case no_line_break:
 small_app(big_cancel); small_app(' '); small_app(big_cancel);
    app_scrap(SP_ignore_scrap,no_math); break;
  case pseudo_semi: 
@<Append a |pseudo_semi| scrap@>
break; 
  case join: app_str("\\J"); app_scrap(SP_ignore_scrap,no_math); break;
  default: small_app(next_control); app_scrap(SP_ignore_scrap,no_math); break;
}

@ Since we haven't yet figured out how to compute the room required
by looking at the productions, let's be paranoid.
@d SCRAP_SLACK = 50
@d TOK_SLACK = 50
@d TEXT_SLACK = 50
@<Make sure that there is room for at least four...@>=
if (scrap_ptr+SCRAP_SLACK>scrap_info_end || tok_ptr+TOK_SLACK>tok_mem_end ||
  text_ptr+TEXT_SLACK>tok_start_end) {
#ifdef STAT
  if (scrap_ptr>max_scr_ptr) max_scr_ptr=scrap_ptr;
  if (tok_ptr>max_tok_ptr) max_tok_ptr=tok_ptr;
  if (text_ptr>max_text_ptr) max_text_ptr=text_ptr;
#endif STAT
  stat_overflow("scrap/token/text");
}

@ Some nonstandard ASCII characters may have entered \.{WEAVE} by means of
standard ones. They are converted to \TeX\ control sequences so that it is
possible to keep \.{WEAVE} from stepping beyond standard ASCII.

@ The following code must use |app_tok| instead of |small_app| in order to
protect against overflow. Note that |tok_ptr+1<=max_toks| after |app_tok|
has been used, so another |small_app| is legitimate before testing again.

Many of the special characters in a string must be prefixed by `\.\\' so that
\TeX\ will print them properly.
@^special string characters@>

@<Append a string or...@>=
if (next_control==constant) app_str("\\O{");
@.\\O@>
else if (next_control==string) app_str("\\.{");
@.\\.@>
else app_str("\\={");
@.\\=@>
while (id_first<id_loc) {
  if (*id_first==at_sign) {
    if (*(id_first+1)==at_sign) id_first++;
    else err_print("! Double at_sign should be used in strings");
  }
@.Double at_sign should be used...@>
  @<Cause \TeX's special characters to be preceded with |'\\'|@>@;
  app_tok(*id_first++);
}
small_app('}'); 
@<Do the |app_scrap| for a string or constant@>@;

@ @<Cause \TeX's special characters to be preceded with |'\\'|@>=
switch (*id_first) {
    case ' ':case '\\':
    case '%':case '$': case '^':case '`':
    case '#':
    case '{': case '}':  case '~': case '&': case '_': 
	small_app('\\'); break;

  }

@ @<Append a \TeX\ string scrap@>=
app_str("\\hbox{"); while (id_first<id_loc) app_tok(*id_first++);
small_app('}');
@<Do the |app_scrap| for a string or constant@>@;


@ When the `\v' that introduces \cee\ text is sensed, a call on
|C_translate| will return a pointer to the \TeX\ translation of
that text. If scraps exist in |scrap_info|, they are
unaffected by this translation process.

@u text_pointer C_translate()
{
  text_pointer p; /* points to the translation */
  scrap_pointer save_base; /* holds original value of |scrap_base| */
  save_base=scrap_base; scrap_base=scrap_ptr+1;
  C_parse(1); /* get the scraps together */
  if (next_control!=vertical_bar) err_print("! Missing vertical_bar after C text");
@.Missing vertical_bar...@>
  app_tok(cancel); app_scrap(SP_ignore_scrap,no_math);
 /* place a |cancel| token as a final ``comment'' */
  p=translate(); /* make the translation */
#ifdef STAT
 if (scrap_ptr>max_scr_ptr) max_scr_ptr=scrap_ptr;
#endif STAT
  scrap_ptr=scrap_base-1; scrap_base=save_base; /* scrap the scraps */
  return(p);
}

@ The |outer_parse| routine is to |C_parse| as |outer_xref|
is to |C_xref|: it constructs a sequence of scraps for \cee\ text
until |next_control>=format|. Thus, it takes care of embedded comments.
It will also do annotation duty.


@u outer_parse() /* makes scraps from \cee\ tokens and comments */
{
  int bal; /* brace level in comment */
  text_pointer p, q; /* partial comments */
  while (next_control<format) {
    if (next_control==begin_comment) {
      @<Make sure that there is room for at least seven more
        tokens, three more texts, and one more scrap@>; /* spider */
      @<Copy comment, including embedded program text@>;
    }
    else {
       C_parse(0);
    }
}
}

@ @<Copy comment, including embedded program text@>=
      small_app(break_space); app_str("\\C{");
@.\\cee@>
      bal=copy_comment(1); next_control=vertical_bar;
      while (bal>0) {
 p=text_ptr; freeze_text; q=C_translate();
         /* at this point we have |tok_ptr+6<=max_toks| */ /* spider */
        small_app(tok_flag+p-tok_start); small_app(inner_tok_flag+q-tok_start);
        if (next_control==vertical_bar) bal=copy_comment(bal);
        else bal=0; /* an error has been reported */
      }
      small_app(force); 
      app_scrap(SP_ignore_scrap,no_math);
		 /* the full comment becomes a scrap */


@ @<Make sure that there is room for at least seven more...@>=
if (tok_ptr+TOK_SLACK>tok_mem_end || text_ptr+TEXT_SLACK>tok_start_end
  || scrap_ptr+SCRAP_SLACK>scrap_info_end) {
#ifdef STAT
  if (scrap_ptr>max_scr_ptr) max_scr_ptr=scrap_ptr;
  if (tok_ptr>max_tok_ptr) max_tok_ptr=tok_ptr;
  if (text_ptr>max_text_ptr) max_text_ptr=text_ptr;
#endif STAT
  stat_overflow("token/text/scrap");
}

@i scraps.web

@* Output of tokens.
So far our programs have only built up multi-layered token lists in
\.{WEAVE}'s internal memory; we have to figure out how to get them into
the desired final form. The job of converting token lists to characters in
the \TeX\ output file is not difficult, although it is an implicitly
recursive process. Three main considerations had to be kept in mind when
this part of \.{WEAVE} was designed:  (a) There are two modes of output,
|outer| mode that translates tokens like |force| into line-breaking
control sequences, and |inner| mode that ignores them except that blank
spaces take the place of line breaks. (b) The |cancel| instruction applies
to adjacent token or tokens that are output, and this cuts across levels
of recursion since `|cancel|' occurs at the beginning or end of a token
list on one level. (c) The \TeX\ output file will be semi-readable if line
breaks are inserted after the result of tokens like |break_space| and
|force|.  (d) The final line break should be suppressed, and there should
be no |force| token output immediately after `\.{\\Y\\P}'.

@ The output process uses a stack to keep track of what is going on at
different ``levels'' as the token lists are being written out. Entries on
this stack have three parts:

\yskip\hang |end_field| is the |tok_mem| location where the token list of a
particular level will end;

\yskip\hang |tok_field| is the |tok_mem| location from which the next token
on a particular level will be read;

\yskip\hang |mode_field| is the current mode, either |inner| or |outer|.

\yskip\noindent The current values of these quantities are referred to
quite frequently, so they are stored in a separate place instead of in the
|stack| array. We call the current values |cur_end|, |cur_tok|, and
|cur_mode|.

The global variable |stack_ptr| tells how many levels of output are
currently in progress. The end of output occurs when an |end_translation|
token is found, so the stack is never empty except when we first begin the
output process.

@d inner = 0 /* value of |mode| for \cee\ texts within \TeX\ texts */
@d outer = 1 /* value of |mode| for \cee\ texts in modules */

@<Typed...@>= typedef int mode;
typedef struct {
  token_pointer end_field; /* ending location of token list */
  token_pointer tok_field; /* present location within token list */
  boolean mode_field; /* interpretation of control tokens */
} output_state;
typedef output_state *stack_pointer;

@ @d cur_end = cur_state.end_field /* current ending location in |tok_mem| */
@d cur_tok = cur_state.tok_field /* location of next output token in |tok_mem| */
@d cur_mode = cur_state.mode_field /* current mode of interpretation */
@d init_stack = stack_ptr=stack;cur_mode=outer /* initialize the stack */

@<Global...@>=
output_state cur_state; /* |cur_end|, |cur_tok|, |cur_mode| */
output_state stack[stack_size]; /* info for non-current levels */
stack_pointer stack_ptr; /* first unused location in the output state stack */
stack_pointer stack_end=stack+stack_size-1; /* end of |stack| */
#ifdef STAT
stack_pointer max_stack_ptr; /* largest value assumed by |stack_ptr| */
#endif STAT

@ @<Set init...@>=
#ifdef STAT
max_stack_ptr=stack;
#endif STAT

@ To insert token-list |p| into the output, the |push_level| subroutine
is called; it saves the old level of output and gets a new one going.
The value of |cur_mode| is not changed.

@u push_level(p) /* suspends the current level */
text_pointer p;
{
  if (stack_ptr==stack_end) stat_overflow("stack");
  if (stack_ptr>stack) { /* save current state */
    stack_ptr->end_field=cur_end;
    stack_ptr->tok_field=cur_tok;
    stack_ptr->mode_field=cur_mode;
  }
  stack_ptr++;
#ifdef STAT
  if (stack_ptr>max_stack_ptr) max_stack_ptr=stack_ptr;
#endif STAT
  cur_tok=*p; cur_end=*(p+1);
}

@ Conversely, the |pop_level| routine restores the conditions that were in
force when the current level was begun. This subroutine will never be
called when |stack_ptr=1|.

@u pop_level()
{
  cur_end=(--stack_ptr)->end_field;
  cur_tok=stack_ptr->tok_field; cur_mode=stack_ptr->mode_field;
}

@ The |get_output| function returns the next byte of output that is not a
reference to a token list. It returns the values |identifier| or |res_word|
or |mod_name| if the next token is to be an identifier (typeset in
italics), a reserved word (typeset in boldface) or a module name (typeset
by a complex routine that might generate additional levels of output).
In these cases |cur_name| points to the identifier or module name in
question.

@<Global...@>=
name_pointer cur_name;

@ @d res_word = 0201 /* returned by |get_output| for reserved words */
@d mod_name = 0200 /* returned by |get_output| for module names */

@u eight_bits get_output() /* returns the next token of output */
{
  sixteen_bits a; /* current item read from |tok_mem| */
  restart: while (cur_tok==cur_end) pop_level();
  a=*(cur_tok++);
  if (a>=0400) {
    cur_name=a % id_flag + name_dir;
    switch (a / id_flag) {
      case 2: return(res_word); /* |a==res_flag+cur_name| */
      case 3: return(mod_name); /* |a==mod_flag+cur_name| */
      case 4: push_level(a % id_flag + tok_start); goto restart;
 /* |a==tok_flag+cur_name| */
      case 5: push_level(a % id_flag + tok_start); cur_mode=inner; goto restart;
   /* |a==inner_tok_flag+cur_name| */
      default: return(identifier); /* |a==id_flag+cur_name| */
    }
  }
  return(a);
}

@ The real work associated with token output is done by |make_output|.
This procedure appends an |end_translation| token to the current token list,
and then it repeatedly calls |get_output| and feeds characters to the output
buffer until reaching the |end_translation| sentinel. It is possible for
|make_output| to be called recursively, since a module name may include
embedded \cee\ text; however, the depth of recursion never exceeds one
level, since module names cannot be inside of module names.

A procedure called |output_C| does the scanning, translation, and
output of \cee\ text within `\pb' brackets, and this procedure uses
|make_output| to output the current token list. Thus, the recursive call
of |make_output| actually occurs when |make_output| calls |output_C|
while outputting the name of a module.
@^recursion@>

@u
output_C() /* outputs the current token list */
{
  token_pointer save_tok_ptr;
  text_pointer save_text_ptr;
  sixteen_bits save_next_control; /* values to be restored */
  text_pointer p; /* translation of the \cee\ text */
  save_tok_ptr=tok_ptr; save_text_ptr=text_ptr;
  save_next_control=next_control; next_control=vertical_bar; p=C_translate();
  small_app(p-tok_start+inner_tok_flag);
  make_output(); /* output the list */
#ifdef STAT
  if (text_ptr>max_text_ptr) max_text_ptr=text_ptr;
  if (tok_ptr>max_tok_ptr) max_tok_ptr=tok_ptr;
#endif STAT
  text_ptr=save_text_ptr; tok_ptr=save_tok_ptr; /* forget the tokens */
  next_control=save_next_control; /* restore |next_control| to original state */
}

@ Here is \.{WEAVE}'s major output handler.

@u make_output() /* outputs the equivalents of tokens */
{
  eight_bits a, /* current output byte */
  b; /* next output byte */
  int c; /* count of |indent| and |outdent| tokens */
  ASCII *k, *k_limit; /* indices into |byte_mem| */
  ASCII *j; /* index into |buffer| */
  ASCII delim; /* first and last character of string being copied */
  ASCII *save_loc, *save_limit; /* |loc| and |limit| to be restored */
  name_pointer cur_mod_name; /* name of module being output */
  boolean save_mode; /* value of |cur_mode| before a sequence of breaks */
  small_app(end_translation); /* append a sentinel */
  freeze_text; push_level(text_ptr-1);
  while (1) {
    a=get_output();
    reswitch: switch(a) {
      case end_translation: return;
      case identifier: case res_word: @<Output an identifier@>; break;
      case mod_name: @<Output a module name@>; break;
      case math_bin: case math_rel: case math_op:
 @<Output a \.{\\math} operator@>; break;
      case cancel: c=0; while ((a=get_output())>=indent && a<=big_force) {
   if (a==indent) c++; if (a==outdent) c--;
        }
        @<Output saved |indent| or |outdent| tokens@>;
        goto reswitch;
      case big_cancel: c=0;
 while (((a=get_output())>=indent || a==' ') && a<=big_force) {
   if (a==indent) c++; if (a==outdent) c--;
        }
 @<Output saved...@>;
 goto reswitch;
      case indent: case outdent: case opt: case backup: case break_space:
      case force: case big_force: @<Output a control,
        look ahead in case of line breaks, possibly |goto reswitch|@>; break;
      default: out(a); /* otherwise |a| is an ASCII character */
    }
  }
}

@ An identifier of length one does not have to be enclosed in braces, and it
looks slightly better if set in a math-italic font instead of a (slightly
narrower) text-italic font. Thus we output `\.{\\\char'174a}' but
`\.{\\\\\{aa\}}'.

@<Output an identifier@>=
out('\\');
if (a==identifier)
  if (length(cur_name)==1) out('|')@;
@.\\|@>
  else out('\\')@;
@.\\\\@>
else out('&')@; /* |a==res_word| */
@.\\\&@>
if (length(cur_name)==1) out((cur_name->byte_start)[0])@;
else out_name(cur_name);

@ @<Output a \....@>=
if (a==math_bin) out_str("\\mathbin{");
else if (a==math_rel) out_str("\\mathrel{");
else out_str("\\mathop{");

@ The current mode does not affect the behavior of \.{WEAVE}'s output routine
except when we are outputting control tokens.

@<Output a control...@>=
if (a<break_space) {
  if (cur_mode==outer) {
    out('\\'); out(a-cancel+'0');
    if (a==opt) out(get_output()); /* |opt| is followed by a digit */
    }
  else if (a==opt) b=get_output(); /* ignore digit following |opt| */
  }
else @<Look ahead for strongest line break, |goto reswitch|@>@;

@ If several of the tokens |break_space|, |force|, |big_force| occur in a
row, possibly mixed with blank spaces (which are ignored),
the largest one is used. A line break also occurs in the output file,
except at the very end of the translation. The very first line break
is suppressed (i.e., a line break that follows `\.{\\Y\\P}').

@<Look ahead for st...@>= {
  b=a; save_mode=cur_mode; c=0;
  while (1) {
    a=get_output();
    if (a==cancel || a==big_cancel) {
      @<Output saved |indent| or |outdent| tokens@>;
      goto reswitch; /* |cancel| overrides everything */
    }
    if ((a!=' ' && a<indent) || a==backup || a>big_force) {
      if (save_mode==outer) {
 if (out_ptr>out_buf+3 && strncmp(out_ptr-3,"\\Y\\P",4)==0)
   goto reswitch;
        @<Output saved |indent| or |outdent| tokens@>;
        out('\\'); out(b-cancel+'0');
        if (a!=end_translation) finish_line();
      }
      else if (a!=end_translation && cur_mode==inner) out(' ');
      goto reswitch;
    }
    if (a==indent) c++;
    else if (a==outdent) c--;
    else if (a>b) b=a; /* if |a==' '| we have |a<b| */
  }
}

@ @<Output saved...@>=
  for (;c>0;c--) out_str("\\1");
  for (;c<0;c++) out_str("\\2");

@ The remaining part of |make_output| is somewhat more complicated. When we
output a module name, we may need to enter the parsing and translation
routines, since the name may contain \cee\ code embedded in
\pb\ constructions. This \cee\ code is placed at the end of the active
input buffer and the translation process uses the end of the active
|tok_mem| area.

@<Output a module name@>= {
  boolean is_file;
  cur_xref=(xref_pointer)cur_name->xref;
  is_file = cur_xref->num >= file_flag;

  out_str((is_file? "\\XF":"\\X"));
@.\\X@>
  if (cur_xref->num>=def_flag) {
    out_mod(cur_xref->num-(is_file ? file_flag : def_flag));
    if (phase==3) {
      cur_xref=cur_xref->xlink;
      while (cur_xref->num>=def_flag) {
 out_str(", ");
        out_mod(cur_xref->num-(is_file ? file_flag : def_flag));
      cur_xref=cur_xref->xlink;
      }
    }
  }
  else out('0'); /* output the module number, or zero if it was undefined */
  out(':'); @<Output the text of the module name@>;
  out_str((is_file? "\\XF":"\\X"));
}

@ @<Output the text...@>=
k=cur_name->byte_start; k_limit=(cur_name+1)->byte_start;
cur_mod_name=cur_name;
while (k<k_limit) {
  b=*(k++);
  if (b==at_sign) @<Skip next character, give error if not `\.{@@}'@>@;
  if (b!=vertical_char) out(b)@;
  else {
    @<Copy the \cee\ text into the |buffer| array@>@;
    save_loc=loc; save_limit=limit; loc=limit+2; limit=j+1;
    *limit=vertical_char; output_C();
    loc=save_loc; limit=save_limit;
  }
}

@ @<Skip next char...@>=
if (*k++!=at_sign) {
  printf("\n! Illegal control code in section name: <");
@.Illegal control code...@>
  print_id(cur_mod_name); printf("> "); mark_error;
}

@ The \cee\ text enclosed in \pb\ should not contain `\v' characters,
except within strings. We put a `\v' at the front of the buffer, so that an
error message that displays the whole buffer will look a little bit sensible.
The variable |delim| is zero outside of strings, otherwise it
equals the delimiter that began the string being copied.

@<Copy the \cee\ text into...@>=
j=limit+1; *j=vertical_char; delim=0;
while (1) {
  if (k>=k_limit) {
    printf("\n! C text in section name didn't end: <");
@.C text...didn't end@>
    print_id(cur_mod_name); printf("> "); mark_error; break;
  }
  b=*(k++);
  if (b==at_sign) @<Copy a control code into the buffer@>@;
  else {
    if (b=='\'' || b=='"')
      if (delim==0) delim=b;
      else if (delim==b) delim=0;
    if (b!=vertical_char || delim!=0) {
      if (j>buffer+long_buf_size-3) stat_overflow("buffer");
      *(++j)=b;
    }
    else break;
  }
}

@ @<Copy a control code into the buffer@>= {
  if (j>buffer+long_buf_size-4) stat_overflow("buffer");
  *(++j)=at_sign; *(++j)=*(k++);
}

@* Phase two processing.
We have assembled enough pieces of the puzzle in order to be ready to specify
the processing in \.{WEAVE}'s main pass over the source file. Phase two
is analogous to phase one, except that more work is involved because we must
actually output the \TeX\ material instead of merely looking at the
\.{WEB} specifications.

@u phase_two() {
reset_input(); printf("\nWriting the output file...");
module_count=0; copy_limbo();
math_flag=0;
finish_line(); flush_buffer(out_buf,0); /* insert a blank line, it looks nice */
while (!input_has_ended) @<Translate the current module@>;
}

@ The output file will contain the control sequence \.{\\Y} between non-null
sections of a module, e.g., between the \TeX\ and definition parts if both
are nonempty. This puts a little white space between the parts when they are
printed. However, we don't want \.{\\Y} to occur between two definitions
within a single module. The variables |out_line| or |out_ptr| will
change if a section is non-null, so the following macros `|save_position|'
and `|emit_space_if_needed|' are able to handle the situation:

@d save_position = save_line=out_line; save_place=out_ptr@;
@d emit_space_if_needed = if (save_line!=out_line || save_place!=out_ptr)
  out_str("\\Y");
@.\\Y@>

@<Global...@>=
int save_line; /* former value of |out_line| */
ASCII *save_place; /* former value of |out_ptr| */

@ @<Translate the current module@>= {
  module_count++;
  @<Output the code for the beginning of a new module@>;
  save_position;
  @<Translate the \TeX\ part of the current module@>;
  @<Translate the definition part of the current module@>;
  @<Translate the \cee\ part of the current module@>;
  @<Show cross-references to this module@>;
  @<Output the code for the end of a module@>;
}

@ Modules beginning with the \.{WEB} control sequence `\.{@@\ }' start in the
output with the \TeX\ control sequence `\.{\\M}', followed by the module
number. Similarly, `\.{@@*}' modules lead to the control sequence `\.{\\N}'.
If this is a changed module, we put \.{*} just before the module number.

@<Output the code for the beginning...@>=
if (*(loc-1)!='*') out_str("\\M");
@.\\M@>
else {
  out_str("\\N");
@.\\N@>
  printf("*%d",module_count); update_terminal; /* print a progress report */
}
out_mod(module_count); out_str(". ");

@ In the \TeX\ part of a module, we simply copy the source text, except that
index entries are not copied and \cee\ text within \pb\ is translated.

@<Translate the \T...@>= do {
  next_control=copy_TeX();
  switch (next_control) {
    case vertical_bar: /* surround vertical bar with \.{\\CD...\\DC} */
	out_str("\\CD{}"); 
	init_stack; output_C(); 
	out_str("\\DC{}"); 
	break;
    case at_sign: out(at_sign); break;
    case octal: @<Translate an octal constant appearing in \TeX\ text@>; break;
    case hex: @<Translate a hex constant appearing in \TeX\ text@>; break;
    case TeX_string: case xref_roman: case xref_wildcard: case xref_typewriter:
    case module_name: loc-=2; next_control=get_next(1); /* skip to \.{@@>} */
      if (next_control==TeX_string)
        err_print("! TeX string should be in C text only"); break;
@.TeX string should be...@>
    case thin_space: case math_break:
    case line_break: case big_line_break: case no_line_break: case join:
    case pseudo_semi: err_print("! You can't do that in TeX text"); break;
@.You can't do that...@>
  }
} while (next_control<format);

@ @<Translate an octal constant appearing in \TeX\ text@>= {
out_str("\\O{\\~");
  while ('0'<=*loc && *loc<'8') out(*loc++);
out('}');
}

@ @<Translate a hex constant appearing in \TeX\ text@>= {
out_str("\\O{\\^");
  while (isxdigit(*loc)) {
	out(islower(*loc) ? toupper(*loc):*loc);
	loc++;
	}
out('}');
}



@ When we get to the following code we have |next_control>=format|, and
the token memory is in its initial empty state.

@<Translate the d...@>=
if (next_control<=definition) { /* definition part non-empty */
  emit_space_if_needed; save_position;
}
while (next_control<=definition) { /* |format| or |definition| */
  init_stack;
  if (next_control==definition) @<Start a macro definition@>@;
  else @<Start a format definition@>;
  outer_parse(); finish_C();
}

@ The |finish_C| procedure outputs the translation of the current
scraps, preceded by the control sequence `\.{\\P}' and followed by the
control sequence `\.{\\par}'. It also restores the token and scrap
memories to their initial empty state.

A |force| token is appended to the current scraps before translation
takes place, so that the translation will normally end with \.{\\6} or
\.{\\7} (the \TeX\ macros for |force| and |big_force|). This \.{\\6} or
\.{\\7} is replaced by the concluding \.{\\par} or by \.{\\Y\\par}.

@u finish_C() /* finishes a definition or a \cee\ part */
{
  text_pointer p; /* translation of the scraps */
  out_str("\\P"); app_tok(force); app_scrap(SP_ignore_scrap,no_math);
  p=translate();
@.\\P@>
  small_app(p-tok_start+tok_flag); make_output(); /* output the list */
  if (out_ptr>out_buf+1)
    if (*(out_ptr-1)=='\\')
@.\\6@>
@.\\7@>
@.\\Y@>
      if (*out_ptr=='6') out_ptr-=2; /* suppress ordinary force?! */
      else if (*out_ptr=='7') *out_ptr='Y';
  out_str("\\par"); finish_line();
#ifdef STAT
  if (text_ptr>max_text_ptr) max_text_ptr=text_ptr;
  if (tok_ptr>max_tok_ptr) max_tok_ptr=tok_ptr;
  if (scrap_ptr>max_scr_ptr) max_scr_ptr=scrap_ptr;
#endif STAT
  tok_ptr=tok_mem+1; text_ptr=tok_start+1; scrap_ptr=scrap_info;
    /* forget the tokens and the scraps */
}

@ 
@<Start a macro...@>= {
  small_app(backup); app_str("\\D"); /* this will produce `\&{define}' */
@.\\D@>
@<Set |next_control| to the first non-newline token@>@;
  if (next_control!=identifier)
    err_print("! Improper macro definition");
@.Improper macro definition@>
  else {
    small_app('$'); 
    small_app(id_flag+id_lookup(id_first, id_loc,normal)-name_dir);
    @<Scan the parameter list (if any), 
	and set |next_control| to the non-newline 
	token following the parameter list@>;
    if (next_control==@`=') {
        small_app('\\'); small_app('S'); /* equivalence sign */
	@<Set |next_control| to the first non-newline token@>@;
    } else {
	err_print ("! Equals sign required in macro definition");
@.Equals sign required...@>
    }
punt_the_definition:
    small_app('$'); small_app(break_space);
    app_scrap(SP_ignore_scrap,no_math); 
		/* scrap won't take part in the parsing */
  }
}

@ @<Quit scanning the macro definition@>=goto punt_the_definition;

@ @<Scan the parameter list (if any), 
	and set |next_control| to the non-newline 
	token following the parameter list@>=
@<Set |next_control| to the first non-newline token@>@;
if (next_control==@`(') {
	small_app(@`(');
	do {
	    @<Set |next_control| to the first non-newline token@>@;
	    if (next_control==identifier) {
                small_app(id_flag+id_lookup(id_first, id_loc,normal)-name_dir);
		@<Set |next_control| to the first non-newline token@>@;
	    } else {
		err_print("! Improper macro definition"); 
		@<Quit scanning the macro definition@>;
	    }
	    if (next_control==@`,' || next_control==@`)') 
		small_app(next_control);
	} while (next_control==@`,');
	if (next_control != @`)') {
	  err_print("! Macro parameter list must end with )");
	  @<Quit scanning the macro definition@>;
	}
	@<Set |next_control| to the first non-newline token@>@;
		 /* first token following parameter list */
}




@ @<Start a format...@>= {
  app_str("\\F"); app_scrap(SP_ignore_scrap,no_math);
      /* this will produce `\&{format}' */
@.\\F@>
@<Set |next_control| to the first non-newline token@>@;
/* claim at this point |scrap_ptr==scrap_info+1| */
  if (scrap_ptr!=scrap_info+1) {
    err_print("! This can't happen -- bad scrap_ptr in format definition");
    printf("\n\tscrap_ptr-scrap_info==%d\n",scrap_ptr-scrap_info);
  }
  if (next_control==identifier) {
    small_app(id_flag+id_lookup(id_first, id_loc,normal)-name_dir);
    app_str(" ");
    app_scrap(SP_ignore_scrap,no_math); /*spider*/
 /* this is syntactically separate from what follows */
    @<Set |next_control| to the first non-newline token@>@;
    if (next_control==identifier) {
      small_app(id_flag+id_lookup(id_first, id_loc,normal)-name_dir);
      small_app(@`\n');
      app_scrap(SP_ignore_scrap,no_math);
      @<Set |next_control| to the first non-newline token@>@;
    }
  }
  /* if everything went well, we appended two scraps */
  if (scrap_ptr!=scrap_info+3) err_print("! Improper format definition");
@.Improper format definition@>
}

@ Finally, when the \TeX\ and definition parts have been treated, we have
|next_control>=begin_unnamed|. We will make the global variable |this_module|
point to the current module name, if it has a name.

@<Global...@>=
name_pointer this_module; /* the current module name, or zero */

@ @<Translate the \cee...@>=
this_module=name_dir;
if (next_control<=module_name) {
  emit_space_if_needed; init_stack;
  if (next_control==begin_unnamed) next_control=get_next(0);
  else {
    this_module=cur_module;
    @<Check that |=| follows this module name, and
      emit the scraps to start the module definition@>;
  }
  while  (next_control<=module_name) {
    outer_parse();
    @<Emit the scrap for a module name if present@>;
  }
  finish_C();
}

@ @<Check that |=|...@>=
do next_control=get_next(0);
  while (next_control=='+'); /* allow optional `\.{+=}' */
if (next_control!='=')
  err_print("! You need an = sign after the section name");
@.You need an = sign...@>
  else next_control=get_next(0);
if (out_ptr>out_buf+1 && *out_ptr=='Y' && *(out_ptr-1)=='\\') small_app(backup);
    /* the module name will be flush left */
@.\\Y@>
small_app(mod_flag+this_module-name_dir);
cur_xref=(xref_pointer)this_module->xref;
app_str("${}");
if (cur_xref->num%def_flag!=module_count) {
  app_str("+"); /*module name is multiply defined*/
  this_module=name_dir; /*so we won't give cross-reference info here*/
}
app_str("\\S"); /* output an equivalence sign */
@.\\S@>
app_str("{}$");
small_app(force); 
@<Call |app_scrap| for a module definition@>
/* this forces a line break unless `\.{@@+}' follows */

@ @<Emit the scrap...@>=
if (next_control<module_name) {
  err_print("! You can't do that in C text");
@.You can"t do that...@>
  next_control=get_next(1);
}
else if (next_control==module_name) {
  if (cur_module_char!='<') {
  err_print("! You can't use a file like a module");
@.You can't use a file like a module@>
  next_control=get_next(1);
  } else {
    small_app(mod_flag+cur_module-name_dir); 
    @<Call |app_scrap| for a module use@>
    next_control=get_next(1);
  }
}

@ Cross references relating to a named module are given after the module ends.

@<Show cross...@>=
if (this_module>name_dir) {
  @<Rearrange the list pointed to by |cur_xref|@>;
  footnote(((((xref_pointer)this_module->xref)->num >= file_flag) 
		? file_flag : def_flag)); 
  footnote(0);
}

@ To rearrange the order of the linked list of cross-references, we need
four more variables that point to cross-reference entries.  We'll end up
with a list pointed to by |cur_xref|.

@<Global...@>=
xref_pointer next_xref, this_xref, first_xref, mid_xref;
  /* pointer variables for rearranging a list */

@ We want to rearrange the cross-reference list so that all the entries with
|def_flag| come first, in ascending order; then come all the other
entries, in ascending order.  There may be no entries in either one or both
of these categories.

@<Rearrange the list...@>=
  first_xref=(xref_pointer)this_module->xref;
  this_xref=first_xref->xlink; /* bypass current module number */
  if (this_xref->num>def_flag) {
    mid_xref=this_xref; cur_xref=0; /* this value doesn't matter */
  do {
    next_xref=this_xref->xlink; this_xref->xlink=cur_xref;
    cur_xref=this_xref; this_xref=next_xref;
  } while (this_xref->num>def_flag);
  first_xref->xlink=cur_xref;
}
else mid_xref=xmem; /* first list null */
cur_xref=xmem;
while (this_xref!=xmem) {
  next_xref=this_xref->xlink; this_xref->xlink=cur_xref;
  cur_xref=this_xref; this_xref=next_xref;
}
if (mid_xref>xmem) mid_xref->xlink=cur_xref;
else first_xref->xlink=cur_xref;
cur_xref=first_xref->xlink;

@ The |footnote| procedure gives cross-reference information about
multiply defined module names (if the |flag| parameter is |def_flag|), or about
the uses of a module name (if the |flag| parameter is zero). It assumes that
|cur_xref| points to the first cross-reference entry of interest, and it
leaves |cur_xref| pointing to the first element not printed.  Typical outputs:
`\.{\\A\ section 101.}'; `\.{\\U\ sections 370 and 1009.}';
`\.{\\A\ sections 8, 27\\*, and 64.}'.

@u footnote(flag) /* outputs module cross-references */
sixteen_bits flag;
{
  xref_pointer q; /* cross-reference pointer variable */
  if (cur_xref->num<=flag) return;
  finish_line(); out('\\');
@.\\A@>
@.\\U@>
  if (flag==0) out('U')@;@+else out('A');
  out_str(" section");
  @<Output all the module numbers on the reference list |cur_xref|@>;
  out('.');
}

@ The following code distinguishes three cases, according as the number
of cross-references is one, two, or more than two. Variable |q| points
to the first cross-reference, and the last link is a zero.

@<Output all the module numbers...@>=
q=cur_xref; if (q->xlink->num>flag) out('s'); /* plural */
out('~');
while (1) {
  out_mod(cur_xref->num-flag);
  cur_xref=cur_xref->xlink; /* point to the next cross-reference to output */
  if (cur_xref->num<=flag) break;
  if (cur_xref->xlink->num>flag || cur_xref!=q->xlink) out(',');
    /* not the last of two */
  out(' ');
  if (cur_xref->xlink->num<=flag) out_str("and~"); /* the last */
}

@ @<Output the code for the end of a module@>=
out_str("\\fi"); finish_line();
@.\\fi@>
flush_buffer(out_buf,0); /* insert a blank line, it looks nice */

@* Phase three processing.
We are nearly finished! \.{WEAVE}'s only remaining task is to write out the
index, after sorting the identifiers and index entries.

If the user has set the |no_xref| flag (the |-x| option on the command line),
just finish off the page, omitting the index, module name list, and table of
contents.

@<Glob...@>=
extern int no_xref;

@ @u phase_three() {
if (no_xref) {
  finish_line();
  out_str("\\vfill\\end");
  finish_line();
}
else {
  phase=3; printf("\nWriting the index...");
  if (change_exists) {
    finish_line(); @<Tell about changed modules@>;
  }
  finish_line(); out_str("\\inx"); finish_line();
@.\\inx@>
  @<Do the first pass of sorting@>;
  @<Sort and output the index@>;
  out_str("\\fin"); finish_line();
@.\\fin@>
  @<Output all the module names@>;
  out_str("\\con"); finish_line();
@.\\con@>
}
printf("Done.");
check_complete(); /* was all of the change file used? */
}

@ Just before the index comes a list of all the changed modules, including
the index module itself.

@<Global...@>=
sixteen_bits k_module; /* runs through the modules */

@ @<Tell about changed modules@>= {
  /* remember that the index is already marked as changed */
  k_module=0;
  while (!changed_module[++k_module]);
  out_str("\\ch ");
  out_mod(k_module);
  while (1) {
    while (!changed_module[++k_module]);
    out_str(", "); out_mod(k_module);
    if (k_module==module_count) break;
  }
  out('.');
}

@ A left-to-right radix sorting method is used, since this makes it easy to
adjust the collating sequence and since the running time will be at worst
proportional to the total length of all entries in the index. We put the
identifiers into 102 different lists based on their first characters.
(Uppercase letters are put into the same list as the corresponding lowercase
letters, since we want to have `$t<\\{TeX}<\&{to}$'.) The
list for character |c| begins at location |bucket[c]| and continues through
the |blink| array.

@<Global...@>=
name_pointer bucket[128];
name_pointer next_name; /* successor of |cur_name| when sorting */
hash_pointer h; /* index into |hash| */
name_pointer blink[max_names]; /* links in the buckets */

@ To begin the sorting, we go through all the hash lists and put each entry
having a nonempty cross-reference list into the proper bucket.

@<Do the first pass...@>= {
int c;
for (c=0; c<=127; c++) bucket[c]=NULL;
for (h=hash; h<=hash_end; h++) {
  next_name=*h;
  while (next_name) {
    cur_name=next_name; next_name=cur_name->link;
    if (((xref_pointer)cur_name->xref)!=xmem) {
      c=(cur_name->byte_start)[0];
      if (c<='Z' && c>='A') c=c+040;
      blink[cur_name-name_dir]=bucket[c]; bucket[c]=cur_name;
    }
  }
}
}

@ During the sorting phase we shall use the |cat| and |trans| arrays from
\.{WEAVE}'s parsing algorithm and rename them |depth| and |head|. They now
represent a stack of identifier lists for all the index entries that have
not yet been output. The variable |sort_ptr| tells how many such lists are
present; the lists are output in reverse order (first |sort_ptr|, then
|sort_ptr-1|, etc.). The |j|th list starts at |head[j]|, and if the first
|k| characters of all entries on this list are known to be equal we have
|depth[j]=k|.

@ @<Rest of |trans_plus| union@>=
name_pointer Head;

@
@d depth = cat /* reclaims memory that is no longer needed for parsing */
@d head = trans_plus.Head /* ditto */
@d sort_pointer = scrap_pointer /* ditto */
@d sort_ptr = scrap_ptr /* ditto */
@d max_sorts = max_scraps /* ditto */

@<Global...@>=
eight_bits cur_depth; /* depth of current buckets */
ASCII *cur_byte; /* index into |byte_mem| */
sixteen_bits cur_val; /* current cross-reference number */
#ifdef STAT
sort_pointer max_sort_ptr; /* largest value of |sort_ptr| */
#endif STAT

@ @<Set init...@>=
#ifdef STAT
max_sort_ptr=scrap_info;
#endif STAT


@ The desired alphabetic order is specified by the |collate| array; namely,
|collate[0]<collate[1]<@t$\cdots$@><collate[100]|.

@<Global...@>=
ASCII collate[102]; /* collation order */

@ We use the order $\hbox{null}<\.\ <\hbox{other characters}<\.\_<
\.A=\.a<\cdots<\.Z=\.z<\.0<\cdots<\.9.$

@<Set init...@>=
collate[0]=0; strcpy(collate+1," \1\2\3\4\5\6\7\10\11\12\13\14\15\16\17\
\20\21\22\23\24\25\26\27\30\31\32\33\34\35\36\37\
!\42#$%&'()*+,-./:;<=>?@@[\\]^`{|}~_\
abcdefghijklmnopqrstuvwxyz0123456789");

@ Procedure |unbucket| goes through the buckets and adds nonempty lists
to the stack, using the collating sequence specified in the |collate| array.
The parameter to |unbucket| tells the current depth in the buckets.
Any two sequences that agree in their first 255 character positions are
regarded as identical.

@d infinity = 255 /* $\infty$ (approximately) */

@u unbucket(d) /* empties buckets having depth |d| */
eight_bits d;
{
  ASCII c;  /* index into |bucket| */
  for (c=100; c>= 0; c--) if (bucket[collate[c]]) {
    if (sort_ptr>=scrap_info_end) stat_overflow("sorting");
    sort_ptr++;
#ifdef STAT
    if (sort_ptr>max_sort_ptr) max_sort_ptr=sort_ptr;
#endif STAT
    if (c==0) sort_ptr->depth=infinity;
    else sort_ptr->depth=d;
    sort_ptr->head=bucket[collate[c]]; bucket[collate[c]]=NULL;
  }
}

@ @<Sort and output...@>=
sort_ptr=scrap_info; unbucket(1);
while (sort_ptr>scrap_info) {
  cur_depth=sort_ptr->depth;
  if (blink[sort_ptr->head-name_dir]==0 || cur_depth==infinity)
    @<Output index entries for the list at |sort_ptr|@>@;
  else @<Split the list at |sort_ptr| into further lists@>;
}

@ @<Split the list...@>= {
  ASCII c;
  next_name=sort_ptr->head;
  do {
    cur_name=next_name; next_name=blink[cur_name-name_dir];
    cur_byte=cur_name->byte_start+cur_depth;
    if (cur_byte==(cur_name+1)->byte_start) c=0; /* hit end of the name */
    else {
      c=*cur_byte;
      if (c<='Z' && c>='A') c=c+040;
    }
  blink[cur_name-name_dir]=bucket[c]; bucket[c]=cur_name;
  } while (next_name);
  --sort_ptr; unbucket(cur_depth+1);
}

@ @<Output index...@>= {
  cur_name=sort_ptr->head;
  do {
    out_str("\\:");
@.\\:@>
    @<Output the name at |cur_name|@>;
    @<Output the cross-references at |cur_name|@>;
    cur_name=blink[cur_name-name_dir];
  } while (cur_name);
  --sort_ptr;
}

@ @<Output the name...@>=
switch (cur_name->ilk) {
  case normal: if (length(cur_name)==1) out_str("\\|");
    else out_str("\\\\"); break;
@.\\|@>
@.\\\\@>
  case roman: break;
  case wildcard: out_str("\\9"); break;
@.\\9@>
  case typewriter: out_str("\\."); break;
@.\\.@>
  default: out_str("\\&");
@.\\\&@>
}
out_name(cur_name);

@ Section numbers that are to be underlined are enclosed in
`\.{\\[}$\,\ldots\,$\.]'.

@<Output the cross-references...@>=
@<Invert the cross-reference list at |cur_name|, making |cur_xref| the head@>;
do {
  out_str(", "); cur_val=cur_xref->num;
  if (cur_val<def_flag) out_mod(cur_val);
  else {out_str("\\["); out_mod(cur_val%def_flag); out(']');}
@.\\[@>
  cur_xref=cur_xref->xlink;
} while (cur_xref!=xmem);
out('.'); finish_line();

@ List inversion is best thought of as popping elements off one stack and
pushing them onto another. In this case |cur_xref| will be the head of
the stack that we push things onto.

@<Invert the cross-reference list at |cur_name|, making |cur_xref| the head@>=
this_xref=(xref_pointer)cur_name->xref; cur_xref=xmem;
do {
  next_xref=this_xref->xlink; this_xref->xlink=cur_xref;
  cur_xref=this_xref; this_xref=next_xref;
} while (this_xref!=xmem);

@ The following recursive procedure walks through the tree of module names and
prints them.
@^recursion@>

@u mod_print(p) /* print all module names in subtree |p| */
name_pointer p;
{
  boolean is_file;
  if (p) {
    mod_print(p->llink); 
    cur_xref=(xref_pointer)p->xref;
    is_file=((cur_xref->num)>=file_flag);
    if ((is_file && do_file)||(!is_file && !do_file)) { /* C has no xor */
        out_str("\\:");
@.\\:@>
        tok_ptr=tok_mem+1; text_ptr=tok_start+1; scrap_ptr=scrap_info; init_stack;
        small_app(p-name_dir+mod_flag); make_output();
        footnote(0); /* |cur_xref| was set by |make_output| */
        finish_line();
    }
    mod_print(p->rlink);
  }
}

@ Here we list files, then modules.
@<Global...@>=boolean do_file;
@ @<Output all the module names@>=
do_file=(1==1);
mod_print(root);
do_file=(1==0);
mod_print(root);



@ @<Print statistics about memory usage@>=
printf(
"\nMemory usage statistics: %d of %d names, %d of %d cross-references,\n",
  name_ptr-name_dir, name_dir_end-name_dir,
  xref_ptr-xmem, xmem_end-xmem);
printf("\t %d of %d bytes;",byte_ptr-byte_mem,byte_mem_end-byte_mem);
printf("\nParsing required %d of %d(%d) scraps, %d of %d(%d) texts,\n",
  max_scr_ptr-scrap_info, max_scraps, max_scraps-SCRAP_SLACK,
  max_text_ptr-tok_start, max_texts, max_texts-TEXT_SLACK
  );
printf("\t %d of %d(%d) tokens, %d of %d levels;\n",
  max_tok_ptr-tok_mem, max_toks, max_toks-TOK_SLACK,
  max_stack_ptr-stack, stack_end-stack
  );
printf("\nSorting required %d levels\n", max_sort_ptr-scrap_info);

@ @u
stat_overflow(s)
   char *s;
{
  printf("\n! Sorry, capacity exceeded: %s",s);
#ifdef STAT
  @<Print statistics about memory usage@>;
#endif STAT
  history=fatal_message; wrap_up();
}

@* Index.
If you have read and understood the code for Phase III above, you know what
is in this index and how it got here. All modules in which an identifier is
used are listed with that identifier, except that reserved words are
indexed only when they appear in format definitions, and the appearances
of identifiers in module names are not indexed. Underlined entries
correspond to where the identifier was declared. Error messages, control
sequences put into the output, and a few
other things like ``recursion'' are indexed here too.