|
DataMuseum.dkPresents historical artifacts from the history of: RC4000/8000/9000 |
This is an automatic "excavation" of a thematic subset of
See our Wiki for more about RC4000/8000/9000 Excavated with: AutoArchaeologist - Free & Open Source Software. |
top - metrics - download
Length: 84480 (0x14a00) Types: TextFile Names: »per9«
└─⟦667bb35d6⟧ Bits:30007480 RC8000 Dump tape fra HCØ. └─⟦4334b4c0b⟧ └─⟦this⟧ »per9«
c program 9 c c aahda new version of njsym. a general program to calculate c atomic continuum processes using the r-matrix method. c berrington, k.a., burke, p.g., chang, j.j., chivers, a.t., c robb, w.d., taylor, k.t. c ref. in comp. phys. commun. 8 (1974) 149 C C A PROGRAM TO CALCULATE A GENERAL RECOUPLING COEFFICIENT. C P.G.BURKE, C QUEENS UNIVERSITY BELFAST. C C C DESCRIPTION OF COMMON BLOCKS C C C O M M O N B L O C K C O U P L E C C M THE TOTAL NUMBER OF ANGULAR MOMENTUM VALUES IN THE C INITIAL AND FINAL STATES C N THE NUMBER OF BASIC ANGULAR MOMENTUM VALUES THAT C ARE COUPLED C J1(I),I=1,M THE ANGULAR MOMENTUM VALUES STORED AS 2J+1 C J2(I,J),I=1,(N-1),J=1,3 THE POSITION IN THE J1 ARRAY OF THE C INITIAL STATE TRIADS C J3(I,J),I=1,(N-1),J=1,3 THE POSITION IN THE J1 ARRAY OF THE C FINAL STATE TRIADS C C C C C O M M O N B L O C K D E B U G C C IBUG1 NOT USED C IBUG2 NOT USED C IBUG3 DEBUG PRINTS IN NJSYM AND GENSUM IF IBUG3 EQUALS 1 C IBUG4 NOT USED C IBUG5 NOT USED C IBUG6 NOT USED C C C C C O M M O N B L O C K D E P T H S C C J4(J),J=1,M THE LEVEL OF J IN THE J2 COUPLING TREE EVALUATED C BY SUBROUTINE GENJ45 C J5(J),J=1,M THE LEVEL OF J IN THE J3 COUPLING TREE ELALUATED C BY SUBROUTINE GENJ45 C C C C O M M O N B L O C K D I M E N C C KFL1 NOT USED C KFL2 TEST ON DIMENSIONS OF J2 AND J3 ARRAYS C KFL3 TEST ON DIMENSION OF KW ARRAY C KFL4 TEST ON DIMENSIONS OF K6 AND K8 ARRAYS C KFL5 TEST ON DIMENSIONS OF K7 ARRAY C KFL6 TEST ON DIMENSIONS OF JSUM1,JSUM2 ETC ARRAYS USED C IN GENSUM C KFL7 TEST ON DIMENSION OF J1 ARRAY C C C C O M M O N B L O C K I N F O R M C C IREAD INPUT CHANNEL NUMBER C IWRITE OUTPUT CHANNEL NUMBER C C C C C O M M O N B L O C K W C O M I 9 C C I3 CONTAINS THE COLUMN OF THE J2 ARRAY WHICH CONTAINS C THE FIRST ELEMENT TO BE BROUGHT INTO THE SAME C TRIAD BY RECOUPLING. INPUT TO SUBROUTINE GENI9 C I4 CONTAINS THE COLUMN OF THE J2 ARRAY WHICH CONTAINS C THE SECOND ELEMENT TO BE BROUGHT INTO THE SAME C TRIAD BY RECOUPLING. INPUT TO SUBROUTINE GENI9 C I5 CONTAINS THE ROW OF THE J2 ARRAY WHICH CONTAINS C THE FIRST ELEMENT,INPUT TO SUBROUTINE GENI9 C I6 CONTAINS THE ROW OF THE J2 ARRAY WHICH CONTAINS C THE SECOND ELEMENT,INPUT TO SUBROUTINE GENI9 C I7 CONTAINS THE LEVEL OF THE I5 TRIAD BELOW THE C COMMON TRIAD IN COUPLING SCHEME OF J2,EVALUATED BY C SUBROUTINE GENI9 C I8 CONTAINS THE LEVEL OF THE I6 TRIAD BELOW THE C COMMON TRIAD IN COUPLING SCHEME OF J2,EVALUATED BY C SUBROUTINE GENI9 C I9 CONTAINS THE NUMBER OF RECOUPLINGS PLUS TWO. C EVALUATED BY SUBROUTINE GENI9 C I17 CONTAINS THE ROW OF THE J2 ARRAY CONTAINING THE C HIGHEST ELEMENT,EVALUATED BY SUBROUTINE GENI9 C I18 CONTAINS THE ROW OF THE J2 ARRAY CONTAINING THE C LOWEST ELEMENT,EVALUATED BY SUBROUTINE GENI9 C I19 CONTAINS THE COLUMN OF THE J2 ARRAY CONTAINING THE C HIGHEST ELEMENT,EVALUATED BY SUBROUTINE GENI9 C I20 CONTAINS THE COLUMN OF THE J2 ARRAY CONTAINING C THE LOWEST ELEMENT,EVALUATED BY SUBROUTINE GENI9 C C C C C c c------------------------------------------------------------------------ c t e s t n j s y m c------------------------------------------------------------------------ c program TESTNJSYM C C READS AND WRITES RECOUPLING MATRICES J1,J2,AND J3 C CALLS NJSYM AND GENSUM AND WRITES OUT RESULT C DIMENSION K6(40),K7(80),K8(40),KW(6,20) COMMON/COUPLE/M,N,J1(40),J2(12,3),J3(12,3) COMMON/DEBUG/IBUG1,IBUG2,IBUG3,IBUG4,IBUG5,IBUG6,IBUG7,IBUG8,IBUG9 COMMON/DIMEN/KFL1,KFL2,KFL3,KFL4,KFL5,KFL6,KFL7 COMMON/INFORM/IREAD,IWRITE,IPUNCH C C FORMAT STATEMENTS C 1 FORMAT(12I5) 2 FORMAT(7H RECUP=,E15.7///) 3 FORMAT(3H M=,I3,3H N=,I3//) 4 FORMAT(4H J1=,25I4) 5 FORMAT(19H J2 J3) 6 FORMAT(4X,3I4,4X,3I4) 9 FORMAT(23H1TEST OUTPUT FROM NJSYM////) C C SET INPUT AND OUTPUT CHANNEL NUMBERS C IREAD=1 IWRITE=7 zone readf(250,1,stderror) zone writef(250,1,stderror) call zassign(readf,1) call zassign(writef,7) call open(readf,4,'readfile',0) call open(writef,'writefile',0) C C SET DEBUG PRINTS ZERO C IBUG1 = 0 IBUG2 = 0 IBUG3 = 0 IBUG4 = 0 IBUG5 = 0 IBUG6 = 0 C C READ AND WRITE INPUT DATA C WRITE(IWRITE,9) 8 READ(IREAD,1) M,N K=N-1 READ(IREAD,1) (J1(J),J=1,M) READ(IREAD,1) ((J2(I,J),J=1,3),I=1,K) READ(IREAD,1) ((J3(I,J),J=1,3),I=1,K) WRITE(IWRITE,3) M,N WRITE(IWRITE,4) (J1(J),J=1,M) WRITE(IWRITE,5) DO 7 I=1,K WRITE(IWRITE,6) (J2(I,J),J=1,3),(J3(I,J),J=1,3) 7 CONTINUE C C CALLS NJSYM AND GENSUM AND WRITES OUT RESULT C CALL NJSYM (J6C,J7C,J8C,JWC,K6,K7,K8,KW,RECUP) WRITE(IWRITE,2) RECUP READ(IREAD,1) (J1(J),J=1,M) WRITE(IWRITE,4) (J1(J),J=1,M) CALL GENSUM(J6C,J7C,J8C,JWC,K6,K7,K8,KW,RECUP) WRITE(IWRITE,2) RECUP GO TO 8 END c c---------------------------------------------------------------------- c n j s y m c---------------------------------------------------------------------- SUBROUTINE NJSYM (J6C,J7C,J8C,JWC,K6,K7,K8,KW,RECUP) C C GENERAL RECOUPLING PROGRAMME C EVALUATES THE RECOUPLING COEFFICIENT RECUP BETWEEN TWO COUPLING C SCHEMES C C C J6C THE NUMBER OF ELEMENTS IN THE K6 ARRAY C J7C THE NUMBER OF ELEMENTS IN THE K7 ARRAY C J8C THE NUMBER OF ELEMENTS IN THE K8 ARRAY C JWC THE NUMBER OF COLUMNS IN THE KW ARRAY C K6(I),I=1,J6C. EACH ENTRY CORRESPONDS TO A FACTOR SQRT(2J+1) IN C RECUP. THE VALUE OF K6 GIVES POSITION IN J1 ARRAY C WHERE J VALUE IS FOUND C K7(I),I=1,J7C. EACH ENTRY CORRESPONDS TO A FACTOR (-1)**J IN C RECUP C K8(I),I=1,J8C. EACH ENTRY CORRESPONDS TO A FACTOR (-1)**(-J) IN C RECUP C KW(I,J),I=1,6,J=1,JWC. EACH COLUMN CORRESPONDS TO A RACAH C COEFFICIENT IN RECUP C RECUP THE RESULTANT RECOUPLING COEFFICIENT EVALUATED C AND STORED IN RECUP C C C THE ARRAYS K6,K7,K8 AND KW ARE EVALUATED BY NJSYM. THE ENTRY IN C EACH CASE CORRESPONDS TO A POSITION IN THE J1 ARRAY WHERE THE C 2J+1 VALUE IS FOUND IF LESS THAN OR EQUAL TO M,OR TO A SUMMATION C VARIABLE IF GREATER THAN M C C THE SUMMATION OVER THE VARIABLES IN K6,K7,K8 AND KW AND THE C EVALUATION OF RECUP IS CARRIED OUT IN GENSUM C C GENSUM CAN BE RE-ENTERED DIRECTLY TO EVALUATE DIFFERENT C RECOUPLING COEFFICIENTS WITH THE SAME STRUCTURE BY JUST ALTERING C THE NUMBERS IN THE J1 ARRAY C DIMENSION K6(40),K7(80),K8(40),KW(6,20) COMMON/COUPLE/M,N,J1(40),J2(12,3),J3(12,3) COMMON/DEBUG/IBUG1,IBUG2,IBUG3,IBUG4,IBUG5,IBUG6,IBUG7,IBUG8,IBUG9 COMMON/DEPTHS/J4(40),J5(40) COMMON/DIMEN/KFL1,KFL2,KFL3,KFL4,KFL5,KFL6,KFL7 COMMON/INFORM/IREAD,IWRITE,IPUNCH COMMON/WCOMI9/I3,I4,I5,I6,I7,I8,I9,I17,I18,I19,I20 DATA ZERO/0.0E0/ C C FORMAT STATEMENTS USED IN NJSYM C 50 FORMAT(59H RECOUPLING COEFFICIENT SET ZERO AS TRIANGLE DOES NOT MA 1TCH) 65 FORMAT(29H FAIL IN RECOUPLING PROGRAMME) 107 FORMAT(4H J1=,20I5) 108 FORMAT(23H J2 J3) 110 FORMAT(3I5,I10,2I5) 111 FORMAT(3H KW) 112 FORMAT(6I5) 113 FORMAT(4H K6=,38I3) 114 FORMAT(4H K7=,38I3) 115 FORMAT(4H K8=,38I3) 145 FORMAT(8H JWC = 0,8H J6C = 0,8H J7C = 0,8H J8C = 0) 204 FORMAT(23H KFL2 DIMENSION FAILURE) 207 FORMAT(23H KFL3 DIMENSION FAILURE) 208 FORMAT(23H KFL4 DIMENSION FAILURE) 209 FORMAT(23H KFL5 DIMENSION FAILURE) 221 FORMAT(17H NO KW ARRAYS SET) 226 FORMAT(17H NO K6 ARRAYS SET) 230 FORMAT(17H NO K7 ARRAYS SET) 233 FORMAT(17H NO K8 ARRAYS SET) 1208 FORMAT(23H KFL7 DIMENSION FAILURE) C C SET DIMENSIONVARIABLES AND TEST SOME OF DIMENSIONS C IF(KFL2-12) 200,201,200 200 KFL2=12 KFL3=20 KFL4=40 KFL5=80 KFL6=12 KFL7=40 C C 201 IF(KFL2-N+1) 202,203,203 202 WRITE(IWRITE,204) CALL EXIT 203 IF(KFL7-M)205,206,206 205 WRITE(IWRITE,1208) CALL EXIT C C IP IS THE NUMBER OF INEQUIVALENT TRIADS WHICH HAVE TO BE C RECOUPLED. IT IS SET INITIALLY TO THE TOTAL NUMBER OF TRIADS AND C THEN DECREASED IN SECTION 1 BELOW AS THE RECOUPLING PROCEEDS C UNTIL EVENTUALLY IT REACHES ZERO C 206 IP=N-1 C C DEBUG PRINTS C IF(IBUG3-1)124,123,124 123 WRITE(IWRITE,108) DO 125 I=1,IP WRITE(IWRITE,110) ((J2(I,J),J=1,3),(J3(I,J),J=1,3)) 125 CONTINUE C C SET COUNTS ZERO. MP IS COUNT ON THE J VALUES WHICH ARE SUMMED C OVER. C 124 J6C=0 J7C=0 J8C=0 JWC=0 MP=M C C C C C C S E C T I O N 1 C C THE FOLLOWING SECTION SEARCHES THE J2 AND J3 ARRAYS TO SEE IF C ANY TRIADS ARE EQUIVALENT. IF SO IT PUTS THEM AT END OF J2 AND J3 C ARRAYS AND SETS IP EQUAL TO THE NUMBER OF INEQUIVALENT TRIADS C REMAINING. IF IP=0 THEN THE RECOUPING HAS BEEN COMPLETED AND EXIT C IS MADE TO GENSUM TO CARRY OUT THE SUMMATIONS C 117 I1=1 16 DO 1 I2=1,IP IF(J2(I2,1)-J3(I1,1)) 2,3,2 2 IF(J2(I2,2)-J3(I1,1))1,4,1 1 CONTINUE C C NO EQUIVALENT TRIADS WITH THIS VALUE OF I1. INCREASE I1 AND TRY C AGAIN C GO TO 5 3 IF(J2(I2,2)-J3(I1,2))5,6,5 4 IF(J2(I2,1)-J3(I1,2))5,6,5 6 IF(I2-IP)7,8,8 C C REARRANGE SO THAT EQUIVALENT TRIADS OCCUR AT THE END OF J2 AND C J3 ARRAYS C 7 I3=J2(I2,1) I4=J2(I2,2) I5=J2(I2,3) I6=I2+1 DO 9 I7=I6,IP DO 10 I8=1,3 J2(I7-1,I8)=J2(I7,I8) 10 CONTINUE 9 CONTINUE J2(IP,1)=I3 J2(IP,2)=I4 J2(IP,3)=I5 8 IF(I1-IP)11,14,14 11 I3=J3(I1,1) I4=J3(I1,2) I5=J3(I1,3) I6=I1+1 DO 12 I7=I6,IP DO 13 I8=1,3 J3(I7-1,I8)=J3(I7,I8) 13 CONTINUE 12 CONTINUE J3(IP,1)=I3 J3(IP,2)=I4 J3(IP,3)=I5 C C IS THE THIRD ELEMENT IN J2 SUMMED OVER. IF SO REPLACE BY THIRD C ELEMENT IN J3 ARRAY C 14 IF(J2(IP,3)-M)47,47,44 44 J=J3(IP,3) JP=J2(IP,3) J2(IP,3)=J IF(IP-2)101,18,18 C C NOW REPLACE ALL OTHER ELEMENTS IN J2,KW,K7,K8 AND K6 WHICH ARE C SUMMED OVER AT THE SAME TIME BY THE SAME QUANTITY J C 18 IQ=IP-1 DO 19 I3=1,IQ DO 20 I4=1,3 IF(J2(I3,I4)-JP) 20,21,20 21 J2(I3,I4)=J 20 CONTINUE 19 CONTINUE 101 IF(JWC)38,38,39 39 DO 23 I=1,6 DO 22 I3=1,JWC IF(KW(I,I3)-JP) 22,25,22 25 KW(I,I3)=J 22 CONTINUE 23 CONTINUE 38 IF(J7C)87,87,41 41 DO 34 I3=1,J7C IF(K7(I3)-JP)34,35,34 35 K7(I3)=J 34 CONTINUE 87 IF(J8C)40,40,86 86 DO 88 I3=1,J8C IF(K8(I3)-JP)88,89,88 89 K8(I3)=J 88 CONTINUE 40 IF(J6C)42,42,43 43 DO 36 I3=1,J6C IF(K6(I3)-JP)36,37,36 37 K6(I3)=J 36 CONTINUE C C SET I1 BACK TO 1 IN ORDER TO START SEARCH FOR EQUIVALENT TRIADS C AGAIN SINCE SOME ELEMENTS MAY HAVE BEEN ALTERED C 42 I1=1 C C TEST WHETHER TRIANGLE MATCHES C 47 JJ2=J2(IP,3) JJ3=J3(IP,3) IF(JJ2-JJ3) 148,49,148 148 IF(J1(JJ2)-J1(JJ3)) 48,44,48 C C RECOUPLING COEFFICIENT SET ZERO WHEN TRIAD IN INITIAL AND FINAL C STATES DO NOT MATCH. IN THIS CASE, GENSUM IS NOT CALLED AND THE C ARRAYS K6,K7,K8,KW ARE NOT SET UP, READY FOR FURTHER DIRECT C ENTRIES TO GENSUM. C 48 IF(IBUG3-1) 150,151,150 151 WRITE(IWRITE,50) 150 RECUP=ZERO RETURN C C IF J2 ANGULAR MOMENTA ARE IN OPPOSITE ORDER TO J3 ANGULAR C MOMENTA INTERCHANGE THEM AND STORE SIGN CHANGES IN K7 AND K8. C CHECK DIMENSIONS C 49 IF(J2(IP,1)-J3(IP,1))100,99,100 100 J=J2(IP,1) J2(IP,1)=J2(IP,2) J2(IP,2)=J K7(J7C+1)=J2(IP,1) K7(J7C+2)=J2(IP,2) J7C=J7C+2 K8(J8C+1)=J2(IP,3) J8C=J8C+1 IF(KFL5-J7C) 210,220,220 220 IF(KFL4-J8C) 212,99,99 C C DECREASE IP AND RETURN TO LOOK FOR FURTHER EQUIVALENT TRIADS C 99 IP=IP-1 GO TO 15 5 I1=I1+1 15 IF(I1-IP)16,16,17 C C IF IP = 0 THIS MEANS THAT ALL TRIADS HAVE BEEN TRANSFORMED TO BE C EQUIVALENT. NOW EXIT TO SUM OVER RACAH COEFFICIENTS C 17 IF(IP)126,126,46 C C C C C C S E C T I O N 2 C C ITEST = 0 DETERMINES THE MIMIMUM RECOUPLING OF J2 ARRAY TO C OBTAIN AN EQUIVALENT TRIAD TO ONE IN J3 ARRAY. STORE ROW OF J3 C ARRAY IN ITEST1. C ITEST = 1 DETERMINE RECOUPLING OF J2 ARRAY TO OBTAIN AN C EQUIVALENT TRIAD OF ITEST1 ROW OF J3 ARRAY. C IN BOTH CASES STORE INFORMATION ON RECOUPLING C 46 I10=9999 ITEST=0 I1=1 C C GENJ45 DETERMINES THE LEVEL OF EACH J IN THE COUPLING TREE OF J2 C AND J3 AND STORES THE RESULT IN THE J4 AND J5 ARRAYS RESPECTIVELY C 96 CALL GENJ45(IP) C C LOOK FOR J IN J2 ARRAY WHICH IS SAME AS FIRST ELEMENT IN J3 ARRAY C 95 DO 52 I2=1,IP IF(J2(I2,1)-J3(I1,1))53,54,53 53 IF(J2(I2,2)-J3(I1,1))52,55,52 52 CONTINUE GO TO 51 C C I3 AND I5 DENOTES POSITION IN J2 ARRAY OF COMMON J C 54 I3=1 GO TO 60 55 I3=2 60 I5=I2 C C NOW LOOK FOR J IN J2 ARRAY WHICH IS SAME AS OTHER ELEMENT IN J3 C ARRAY C DO 56 I2=1,IP IF(J2(I2,1)-J3(I1,2))57,58,57 57 IF(J2(I2,2)-J3(I1,2))56,59,56 56 CONTINUE GO TO 51 C C I4 AND I6 DENOTES POSITION IN J2 ARRAY OF COMMON J C 58 I4=1 GO TO 61 59 I4=2 61 I6=I2 C C I7 AND I8 DENOTE THE POSITION IN THE J1 ARRAY OF THE TWO COMMON J C VALUES IN J2 AND J3 C I7=J2(I5,I3) I8=J2(I6,I4) C C GENI9 DETERMINES THE NUMBER OF RECOUPLINGS OF TWO ELEMENTS OF J2 C NECESSARY TO OBTAIN IDENTICAL TRIADS IN J2 AND J3 ARRAYS. THIS C NUMBER PLUS TWO IS STORED IN I9 C CALL GENI9(IP) IF(I9-I10)62,51,51 C C A SMALLER RECOUPLING PAIR FOUND. STORE LOWEST AS J2(I13,I14) AND C HIGHEST AS J2(I11,I12). I15 AND I16 CONTAIN LEVEL OF THESE BELOW C COMMON TRIADS. FINALLY ITEST1 DENOTES TRIAD IN J3 FOR NEXT ENTRY C TO SECTION 2 AND IS REQUIRED IF MORE THAN ONE RECOUPLING C 62 I10=I9 I11 = I17 I12 = I19 I13 = I18 I14 = I20 I15=I7 I16=I8 ITEST1=I1 51 IF(ITEST) 98,97,98 C C I1 IS ONLY INCREASED IF SEARCHING FOR SMALLEST RECOUPLING PAIR C 97 I1=I1+1 IF(I1-IP)95,95,98 98 IF(I10-9999)63,64,64 C C FAIL BECAUSE NO PAIR IN J2 AND J3 FOUND WHICH COULD BE RECOUPLED C 64 WRITE(IWRITE,65) CALL EXIT C C C C C C S E C T I O N 3 C C THE PAIR OF J VALUES THAT REQUIRE THE SMALLEST NUMBER OF C RECOUPLINGS OF J2 TO BRING INTO THE SAME ORDER AS J3 HAS NOW C BEEN FOUND. THIS SECTION NOW CARRIES OUT ONE RECOUPLING C 63 IF(I15-I16) 67,68,68 C C I1 AND I2 DENOTES THE LEVEL ABOVE THE GIVEN LEVELS OF THE TRIAD C OF ELEMENTS TO BE RECOUPLED C 67 I1=I15-1 I2=I16-2 GO TO 69 68 I1=I16-1 I2=I15-2 69 I3 = I11 I4 = I13 I5 = I12 I6 = I14 IF(I1)70,70,71 C C FIND FIRST ELEMENT TO BE RECOUPLED C 71 DO 72 I=1,I1 DO 73 I7=1,IP IF(J2(I7,1)-J2(I3,3))74,75,74 74 IF(J2(I7,2)-J2(I3,3)) 73,76,73 73 CONTINUE 75 I5=1 GO TO 77 76 I5=2 77 I3=I7 72 CONTINUE C C FIRST ELEMENT TO BE RECOUPLED IS J2(I3,I5) C NOW FIND SECOND ELEMENT TO BE RECOUPLED C 70 IF(I2)78,78,79 79 DO 80 I=1,I2 DO 81 I7=1,IP IF(J2(I7,1)-J2(I4,3))82,83,82 82 IF(J2(I7,2)-J2(I4,3))81,84,81 81 CONTINUE 83 I6=1 GO TO 85 84 I6=2 85 I4=I7 80 CONTINUE C C SECOND ELEMENT TO BE RECOUPLED IS J2(I4,I6) C 78 IF(I6-1)90,90,91 C C INTERCHANGE ELEMENTS OF I4 ROW OF J2 IF NECESSARY AND INCLUDE C SIGNS IN K7 AND K8 ARRAYS C 90 K7(J7C+1)=J2(I4,1) K7(J7C+2)=J2(I4,2) J7C=J7C+2 K8(J8C+1)=J2(I4,3) J8C=J8C+1 I=J2(I4,1) J2(I4,1)=J2(I4,2) J2(I4,2)=I 91 IF(I5-1) 92,92,93 C C INTERCHANGE ELEMENTS OF I3 ROW OF J2 IF NECESSARY AND STORE SIGNS C IN K7 AND K8 ARRAYS C 92 K7(J7C+1)=J2(I3,1) K7(J7C+2)=J2(I3,2) J7C=J7C+2 K8(J8C+1)=J2(I3,3) J8C=J8C+1 I=J2(I3,1) J2(I3,1)=J2(I3,2) J2(I3,2)=I C C NOW RECOUPLE THE TWO ELEMENTS OF J2 AND STORE SQUARE ROOTS IN K6 C AND RACAH COEFFICIENT IN KW ARRAYS. MP DENOTES A J WHICH WILL BE C SUMMED OVER C 93 K6(J6C+1)=J2(I4,3) MP=MP+1 K6(J6C+2)=MP J6C=J6C+2 JWC=JWC+1 KW(1,JWC)=J2(I4,1) KW(2,JWC)=J2(I4,2) KW(3,JWC)=J2(I3,3) KW(4,JWC)=J2(I3,2) KW(5,JWC)=J2(I3,1) KW(6,JWC)=MP J2(I3,1)=J2(I4,1) J2(I4,1)=J2(I4,2) J2(I4,2)=J2(I3,2) J2(I4,3)=MP J2(I3,2)=MP C C TEST DIMENSIONS AND EXIT IF FAILURE C IF(KFL5-J7C)210,211,211 210 WRITE(IWRITE,209) CALL EXIT 211 IF(KFL4-J8C) 212,213,213 212 WRITE(IWRITE,208) CALL EXIT 213 IF(KFL7-MP)212,215,215 215 IF(KFL4-J6C) 212,217,217 217 IF(KFL3-JWC) 218,219,219 218 WRITE(IWRITE,207) CALL EXIT 219 IF(I1+I2) 117,117,94 C C MORE THAN ONE RECOUPLING REQUIRED. RETURN TO SECTION 2 TO DECIDE C WHICH ELEMENTS OF J2 TO RECOUPLE IN NEXT STEP. IF ALL RECOUPLINGS C OF A PARTICULAR PAIR HAVE BEEN CARRIED OUT THEN IDENTICAL PAIRS C ARE NOW PRESENT IN J2 AND J3 ARRAYS. RETURN TO SECTION 1 TO SEE C IF ANY MORE RECOUPLING REQUIRED C 94 ITEST=1 I1=ITEST1 I10=9999 GO TO 96 C C DEBUG PRINTS C 126 IF(IBUG3-1) 105,104,105 104 WRITE(IWRITE,107) (J1(I),I=1,M) WRITE(IWRITE,111) IF(JWC) 127,127,128 128 DO 116 J=1,JWC WRITE(IWRITE,112) (KW(I,J),I=1,6) 116 CONTINUE GO TO 224 127 WRITE(IWRITE,221) 224 IF(J6C) 222,222,223 223 WRITE(IWRITE,113) (K6(J),J=1,J6C) GO TO 225 222 WRITE(IWRITE,226) 225 IF(J7C) 227,227,228 228 WRITE(IWRITE,114) (K7(J),J=1,J7C) GO TO 229 227 WRITE(IWRITE,230) 229 IF(J8C) 231,231,232 232 WRITE(IWRITE,115) (K8(J),J=1,J8C) GO TO 105 231 WRITE(IWRITE,233) C C CARRY OUT SUMMATIONS C 105 CALL GENSUM(J6C,J7C,J8C,JWC,K6,K7,K8,KW,RECUP) RETURN END SUBROUTINE GENJ45(IP) C C FIND THE LEVEL OF EACH J IN THE COUPLING TREES OF J2 AND J3 AND C STORE IN THE J4 AND J5 ARRAYS RESPECTIVELY. IF AN ELEMENT OF J1 C DOES NOT OCCUR IN J2 THE J4 ENTRY IS -1 AND IF AN ELEMENT DOES C NOT OCCUR IN J3 THE J5 ENTRY IS -1 C COMMON/COUPLE/M,N,J1(40),J2(12,3),J3(12,3) COMMON/DEPTHS/J4(40),J5(40) C C C DO 1 I=1,M DO 2 I2=1,IP C C STORE LEVEL OF EACH J IN J2 ARRAY IN J4 C IF (J2(I2,1)-I) 3,4,3 3 IF (J2(I2,2)-I) 2,4,2 2 CONTINUE DO 17 I2 = 1,IP IF (J2(I2,3)-I) 17,18,17 17 CONTINUE J4(I) = -1 GO TO 5 18 J4(I) = 0 GO TO 5 4 I3 = 1 9 DO 6 I4 = 1,IP IF (J2(I4,1)-J2(I2,3)) 7,8,7 7 IF (J2(I4,2)-J2(I2,3)) 6,8,6 6 CONTINUE J4(I) = I3 GO TO 5 8 I3 = I3+1 I2 = I4 GO TO 9 C C STORE LEVEL OF EACH J IN J3 ARRAY IN J5 C 5 DO 10 I2 = 1,IP IF (J3(I2,1)-I) 11,12,11 11 IF (J3(I2,2)-I) 10,12,10 10 CONTINUE DO 19 I2 = 1,IP IF (J3(I2,3)-I) 19,20,19 19 CONTINUE J5(I) = -1 GO TO 1 20 J5(I) = 0 GO TO 1 12 I3 = 1 16 DO 13 I4 = 1,IP IF (J3(I4,1)-J3(I2,3)) 14,15,14 14 IF (J3(I4,2)-J3(I2,3)) 13,15,13 13 CONTINUE J5(I) = I3 GO TO 1 15 I3 = I3+1 I2 = I4 GO TO 16 1 CONTINUE RETURN END SUBROUTINE GENI9(IP) C C DETERMINES THE NUMBER OF RECOUPLING NECESSARY TO BRING J2(I5,I3) C AND J2(I6,I4) INTO THE SAME TRIAD. THIS WILL GIVE A TRIAD C IDENTICAL WITH ONE IN J3. ON EXIT I9 CONTAINS THE NUMBER OF C RECOUPLINGS PLUS TWO,I7 CONTAINS THE LEVEL OF THE I5 TRIAD BELOW C THE COMMON TRIAD AND I8 CONTAINS THE LEVEL OF THE I6 TRIAD BELOW C THE COMMON TRIADS C SEE DESCRIPTION OF COMMON BLOCK WCOMI9 FOR FURTHER DETAILS C COMMON/COUPLE/M,N,J1(40),J2(12,3),J3(12,3) COMMON/DEPTHS/J4(40),J5(40) COMMON/WCOMI9/I3,I4,I5,I6,I7,I8,I9,I17,I18,I19,I20 C C C I1 = J4(I7) I2 = J4(I8) C C DETERMINES WHICH J OF J2(I5,I3) AND J2(I6,I4) LIES LOWEST, STORE C LOWEST AS J2(I18,I20) AND HIGHEST AS J2(I17,I19) C IF (I1-I2) 1,1,3 1 I17 = I5 I18 = I6 I19 = I3 I20 = I4 I3 = I2-I1 I7 = 0 I8 = I3 I4 = I1 IF (I3) 8,8,2 C C I6 DENOTES THE LOWEST TRIAD,SCAN TRIADS TO FIND NEW TRIAD I6 AT C SAME LEVEL AS I5 C 2 DO 4 I = 1,I3 DO 5 J = 1,IP IF (J2(J,1)-J2(I6,3)) 7,6,7 7 IF (J2(J,2)-J2(I6,3)) 5,6,5 5 CONTINUE J=IP 6 I6 = J 4 CONTINUE GO TO 8 3 I17 = I6 I18 = I5 I19 = I4 I20 = I3 I3 = I1-I2 I7 = I3 I8 = 0 C C I5 DENOTES THE LOWEST TRIADS. SCAN TRIADS TO FIND NEW TRIAD I6 AT C SAME LEVEL I5 C DO 9 I = 1,I3 DO 12 J = 1,IP IF (J2(J,1)-J2(I5,3)) 10,11,10 10 IF (J2(J,2)-J2(I5,3)) 12,11,12 12 CONTINUE J=IP 11 I5 = J 9 CONTINUE I4 = I2 C C I5 AND I6 NOW DENOTES TRIADS AT SAME LEVEL. I4 CONTAINS THE C COMMON LEVEL C 8 DO 13 I = 1,I4 I1 = I IF (I5-I6) 14,21,14 C C I5 AND I6 DENOTE DIFFERENT TRIADS SCAN TO FIND TRIADS AT NEXT C LEVEL WHICH REPLACE I5 AND I6 C 14 DO 15 J = 1,IP IF (J2(J,1)-J2(I5,3)) 16,17,16 16 IF (J2(J,2)-J2(I5,3)) 15,17,15 15 CONTINUE J=IP 17 I5 = J DO 18 J = 1,IP IF (J2(J,1)-J2(I6,3)) 19,20,19 19 IF (J2(J,2)-J2(I6,3)) 18,20,18 18 CONTINUE J=IP 20 I6 = J 13 CONTINUE C C I5 AND I6 NOW BOTH DENOTE THE COMMON TRIAD C 21 I9 = I3+2*I1 I8 = I8+I1 I7 = I7+I1 RETURN END SUBROUTINE GENSUM(J6C,J7C,J8C,JWC,J6,J7,J8,JW,RECUP) C C CARRIES OUT THE SUMMATION OVER COEFFICIENTS DEFINED BY THE ARRAYS C J6,J7,J8 AND JW TO GIVE RECUP C THE ENTRY IS EITHER MADE FROM NJSYM OR DIRECTLY ASSUMING THAT THE C ARRAYS J6,J7,J8 AND JW HAVE ALREADY BEEN DETERMINED BY A PREVIOUS C ENTRY TO NJSYM AND THAT THE SUMMATION IS REQUIRED FOR ANOTHER SET C OF J VALUES DEFINED BY THE ARRAY J1 C THE DEFINITION OF THE ARGUMENT LIST IS GIVEN AT BEGINNING OF C NJSYM C DIMENSION IST(6),JWORD(6,20),J6P(40),J7P(80),J8P(40),JSUM1(12), 1JSUM2(12),JSUM4(12,20),JSUM5(12,20),JSUM3(12),JSUM6(12) 2,JSUM7(12),JSUM8(12),JSUM(2,20),JWTEST(20),WSTOR(20),IPAIR(2,2) DIMENSION J6(40),J7(80),J8(40),JW(6,20) COMMON/COUPLE/M,N,J1(40),J2(12,3),J3(12,3) COMMON/DEBUG/IBUG1,IBUG2,IBUG3,IBUG4,IBUG5,IBUG6,IBUG7,IBUG8,IBUG9 COMMON/DIMEN/KFL1,KFL2,KFL3,KFL4,KFL5,KFL6,KFL7 COMMON/INFORM/IREAD,IWRITE,IPUNCH DATA ZERO,ONE /0.0E0,1.0E0/ C C FORMAT STATEMENTS USED IN GENSUM C 35 FORMAT (21H FAIL IN GENSUM AT 35) 36 FORMAT (21H FAIL IN GENSUM AT 36) 42 FORMAT (21H FAIL IN GENSUM AT 42) 63 FORMAT (21H FAIL IN GENSUM AT 63) 169 FORMAT(22H 169... RECUP =,F12.8,7H STOR =,F12.8,8H STOR1 =, 1F12.8) 170 FORMAT(18H 170... IST ,6I4) 190 FORMAT(8H WSTOR =,10F10.6) 308 FORMAT(23H KFL6 DIMENSION FAILURE) 311 FORMAT(22H FAIL IN GENSUM AT 310) C C C C C C S E C T I O N 1 C C EVALUATES ALL TERMS IN J6,J7,J8 AND JW WHICH DO NOT INVOLVE A C SUMMATION AND FORM MODIFIED ARRAYS J6P,J7P,J8P AND JWORD WHICH DO C THE RESULT OF THE EVALUATION IS STORED IN RECUP AND AISTOR C RECUP=ONE MAXJWE=M JWRD = 0 IF(JWC)302,302,185 C C MULTIPLY RECUP BY ALL RACAH COEFFICIENTS WHICH DO NOT INVOLVE A C SUMMATION C 185 DO 1 I=1,JWC DO 2 J=1,6 IF(JW(J,I)-M) 2,2,3 2 CONTINUE DO 4 J=1,6 I1=JW(J,I) IST(J) = J1(I1) - 1 4 CONTINUE CALL DRACAH(IST(1),IST(2),IST(3),IST(4),IST(5),IST(6),X1) RECUP = RECUP*X1 GO TO 1 C C JWRD IS THE NUMBER OF RACAH COEFFICIENTS WHICH INVOLVE A C SUMMATION C JWORD(I,J),I=1,6,J=1,JWRD CONTAINS THE NUMBER WHICH GIVE THE C LOCATION OF THE J VALUES FOR THE RACAH COEFFICIENTS EITHER IN THE C J1 LIST OR IN THE JSUM1 LIST C 3 JWRD = JWRD+1 DO 5 J=1,6 JWORD(J,JWRD)=JW(J,I) C C MAXJWE CONTAINS THE MAXIMUM J IN THE LIST OF VARIABLES TO BE C SUMMED OVER C IF(MAXJWE-JW(J,I)) 215,5,5 215 MAXJWE=JW(J,I) 5 CONTINUE 1 CONTINUE 302 J6CP=0 IF(J6C)300,300,301 C C J6P(I),I=1,J6CP CONTAINS ALL J6 WHICH INVOLVE A SUMMATION C MULTIPLY RECUP BY ALL THOSE WHICH DO NOT C 301 DO 6 I=1,J6C IF(J6(I)-M) 7,7,21 7 I1=J6(I) RECUP = RECUP*SQRT(FLOAT(J1(I1))) GO TO 6 21 J6CP = J6CP+1 J6P(J6CP)=J6(I) 6 CONTINUE 300 IASTOR = 0 J7CP = 0 IF(J7C) 303,303,304 C C J7P(I),I=1,J7CP CONTAINS ALL J7 WHICH INVOLVE A SUMMATION. C MULTIPLY RECUP BY ALL THOSE WHICH DO NOT C 304 DO 8 I=1,J7C IF(J7(I)-M) 9,9,22 9 I1=J7(I) IASTOR = IASTOR + J1(I1) -1 GO TO 8 22 J7CP = J7CP+1 J7P(J7CP)=J7(I) 8 CONTINUE 303 J8CP=0 IF(J8C) 305,305,306 C C J8CP(I),I=1,J8CP CONTAINS ALL J8 WHICH INVOLVE A SUMMATION C MULTIPLY RECUP BY ALL THOSE WHICH DO NOT C 306 DO 10 I=1,J8C IF(J8(I)-M) 11,11,23 11 I1=J8(I) IASTOR = IASTOR - J1(I1) + 1 GO TO 10 23 J8CP=J8CP+1 J8P(J8CP)=J8(I) 10 CONTINUE C C NO RACAH COEFFICIENTS REMAINING AND THUS NO SUMMATIONS TO BE C CARRIED OUT IF JWRD=0. JUMP TO END TO INCLUDE (-1) FACTORS IN C RECUP AND THEN EXIT C 305 IF(JWRD) 12,12,13 C C C C C C S E C T I O N 2 C C SEARCH THROUGH THE JWORD LIST TO FIND ALL THE SUMMATION VARIABLES C NSUM IS THE NUMBER OF SUMMATION VARIABLES C JSUM1(I),I=1,NSUM CONTAINS A LIST OF ALL SUMMATION VARIABLES IN C THE SAME NOTATION AS IN JW LIST C 13 NSUM=0 MAXSUM=MAXJWE-M DO 24 I=1,MAXSUM JSUM6(I)=0 JSUM7(I)=0 24 CONTINUE C C FIND SUMMATION VARIABLES C DO 14 I=1,JWRD DO 15 J=1,6 IF(JWORD(J,I)-M) 15,15,16 16 NSUM=NSUM+1 IF(NSUM-1) 17,17,18 C C HAS THE SUMMATION VARIABLE OCCURED BEFORE. IF NOT INCLUDE IN C JSUM1 LIST C 18 NSUM1 = NSUM-1 DO 19 I1=1,NSUM1 IF(JWORD(J,I)-JSUM1(I1)) 19,20,19 19 CONTINUE 17 JSUM1(NSUM)=JWORD(J,I) I1=NSUM GO TO 25 20 NSUM =NSUM1 C C JSUM6(I),I=1,NSUM IS THE NUMBER OF TIMES EACH SUMMATION VARIABLE C OCCURS IN JWORD C 25 JSUM6(I1)=JSUM6(I1)+1 I2=JSUM6(I1) C C JSUM4(I,J),JSUM5(I,J),I=1,NSUM,J=1,JSUM6(I) IS THE POSITION IN C THE JWORD LIST WHERE THE JSUM1 ELEMENT OCCURS C JSUM4(I1,I2)=J JSUM5(I1,I2)=I C C (JWORD-M) GIVES LOCATION IN JSUM1 LIST IF A SUMMATION VARIABLE C JWORD(J,I)=M+I1 15 CONTINUE 14 CONTINUE IF(KFL6-NSUM) 312,307,307 312 WRITE(IWRITE,308) CALL EXIT 307 IF(J6CP) 26,26,27 C C CHECK THAT NO EXTRA SUMMATION VARIABLES OCCUR IN J6P. SET J6P C EQUAL TO THE LOCATION IN JSUM1 LIST OF SUMMATION VARIABLE C 27 DO 28 I=1,J6CP DO 29 J=1,NSUM IF(J6P(I)-JSUM1(J)) 29,30,29 29 CONTINUE WRITE(IWRITE,35) CALL EXIT 30 J6P(I)=J 28 CONTINUE 26 IF(J7CP) 130,130,31 C C CHECK THAT NO EXTRA SUMMATION VARIABLES OCCUR IN J7P, SET J7P C EQUAL TO THE LOCATION IN JSUM1 LIST OF SUMMATION VARIABLE C 31 DO 32 I=1,J7CP DO 33 J=1,NSUM IF(J7P(I)-JSUM1(J)) 33,34,33 33 CONTINUE WRITE(IWRITE,36) CALL EXIT 34 J7P(I)=J 32 CONTINUE 130 IF(J8CP) 37,37,38 C C CHECK THAT NO EXTRA SUMMATION VARIABLES OCCUR IN J8P. SET J8P C EQUAL TO THE LOCATION IN JSUM1 LIST OF SUMMATION VARIABLE C 38 DO 39 I=1,J8CP DO 40 J=1,NSUM IF(J8P(I)-JSUM1(J)) 40,41,40 40 CONTINUE WRITE(IWRITE,42) CALL EXIT 41 J8P(I)=J 39 CONTINUE C C C C C C S E C T I O N 3 C C ORDERS THE SUMMATION VARIABLES SO THAT THE RANGE OF EACH C SUMMATION HAS BEEN PREVIOUSLY DEFINED C 37 NCT =0 NCT1 = 0 64 DO 43 I=1,JWRD DO 44 J=1,6 I1=JWORD(J,I)-M IF(I1) 44,44,45 C C JSUM7(I),I=1,NSUM IS THE ORDER OF THE SUMMATIONS OVER THE J C VARIABLES. INITIALLY THIS ARRAY IS ZERO C 45 IF(JSUM7(I1)) 46,46,44 46 GO TO (47,48,49,50,51,52),J C C THE ROWS OF THE IPAIR ARRAYS GIVE LIMITS OF SUMMATION IMPOSED C BY THE TRIANGULAR CONDITION C 47 IPAIR(1,1) = JWORD(2,I) IPAIR(1,2) = JWORD(5,I) IPAIR(2,1) = JWORD(3,I) IPAIR(2,2) = JWORD(6,I) GO TO 53 48 IPAIR(1,1) = JWORD(1,I) IPAIR(1,2) = JWORD(5,I) IPAIR(2,1) = JWORD(4,I) IPAIR(2,2) = JWORD(6,I) GO TO 53 49 IPAIR(1,1) = JWORD(1,I) IPAIR(1,2) = JWORD(6,I) IPAIR(2,1) = JWORD(4,I) IPAIR(2,2) = JWORD(5,I) GO TO 53 50 IPAIR(1,1) = JWORD(2,I) IPAIR(1,2) = JWORD(6,I) IPAIR(2,1) = JWORD(3,I) IPAIR(2,2) = JWORD(5,I) GO TO 53 51 IPAIR(1,1)= JWORD(1,I) IPAIR(1,2) = JWORD(2,I) IPAIR(2,1) = JWORD(3,I) IPAIR(2,2) = JWORD(4,I) GO TO 53 52 IPAIR(1,1) = JWORD(1,I) IPAIR(1,2) = JWORD(3,I) IPAIR(2,1) = JWORD(2,I) IPAIR(2,2) = JWORD(4,I) C C TEST WHETHER RANGE OF SUMMATION HAS BEEN DEFINED. WE CHOOSE THE C FIRST PAIR OF J VALUES THAT DEFINE THE RANGE AND STORE IN JSUM C 53 DO 54 I2=1,2 DO 55 I3=1,2 IF(IPAIR(I2,I3)-M) 55,55,56 56 I4 = IPAIR(I2,I3)-M C C JSUM7 GREATER THAN ZERO MEANS THAT LIMIT IS DEFINED PREVIOUSLY C IF(JSUM7(I4)) 54,54,55 55 CONTINUE GO TO 57 54 CONTINUE GO TO 44 C C NCT IS COUNT ON ORDER OF SUMMATION C 57 NCT = NCT+1 JSUM7(I1)=NCT C C JSUM(I,J),I=1,2,J=1,NSUM CONTAINS THE POSITION OF THE J VALUES C THAT DEFINE THE RANGE OF EACH VARIABLE. THE FIRST ROW CORRESPONDS C TO THE FIRST J AND THE SECOND ROW TO THE SECOND J DEFINING RANGE. C IF VALUE IN RANGE 1 TO M THEN CORRESPONDS TO AN ELEMENT IN J1. C IF VALUE GREATER THAN M THEN CORRESPONDS TO A SUMMATION VARIABLE C IN JSUM1 LIST. NOTE THAT JSUM DOES NOT NECESSARILY CONTAIN THE C MOST RESTRICTIVE RANGES SINCE ONLY ONE OF TWO POSSIBLE PAIRS FROM C THE RACAH COEFFICIENT IS TAKEN C DO 58 I3=1,2 JSUM(I3,I1)=IPAIR(I2,I3) 58 CONTINUE 44 CONTINUE 43 CONTINUE C C CHECK WHETHER THE RANGE OF ALL SUMMATIONS SET. FAIL IF NOT C POSSIBLE TO SET ALL RANGES C IF(NCT-NSUM) 59,60,60 59 IF(NCT-NCT1) 61,61,62 61 WRITE(IWRITE,63) CALL EXIT 62 NCT1=NCT GO TO 64 C C JSUM8(I),I=1,NSUM IS THE POSITION IN THE JSUM7 LIST WHERE THE ITH C SUMMATION IS FOUND C 60 DO 65 J=1,NSUM DO 66 I1=1,NSUM IF(JSUM7(I1)-J) 66,67,66 66 CONTINUE I1=NSUM 67 JSUM8(J)=I1 65 CONTINUE C C C C C C S E C T I O N 4 C C CARRY OUT THE SUMMATIONS. C I6 DENOTES THE FIRST J THAT REQUIRES TO BE SET TO THE LOWEST C VALUE IN THE RANGE C I7 = 0 THE FIRST TIME THE JS ARE SET BUT BUT IS SET EQUAL TO 1 C ON SUBSEQUENT TIMES C I6=1 I7=0 100 IF(I6-NSUM) 105,105,104 C C JSUM2(I),I=1,NSUM CONTAINS CURRENT VALUE OF (2J+1) IN THE SAME C ORDER AS JSUM1 LIST. SET JSUM2 EQUAL TO LOWEST VALUE IN EACH C RANGE C 105 DO 68 J=I6,NSUM I1=JSUM8(J) IF(JSUM(1,I1)-M) 69,69,70 C C FIRST J DEFINING RANGE FIXED C 69 I2=JSUM(1,I1) I3=J1(I2) GO TO 71 C C FIRST J DEFINING RANGE VARIABLE C 70 I2=JSUM(1,I1)-M I3=JSUM2(I2) 71 IF(JSUM(2,I1)-M) 72,72,73 C C SECOND J DEFINING RANGE FIXED C 72 I2=JSUM(2,I1) I4=J1(I2) GO TO 74 C C SECOND J DEFINING RANGE VARIABLE C 73 I2=JSUM(2,I1)-M I4=JSUM2(I2) C C SET LOWER LIMIT OF RANGE IN JSUM2 C 74 JSUM2(I1)=IABS(I3-I4)+1 68 CONTINUE C C JSUM3(I),I=1,NSUM IS 1 IF J HAS ALTERED FROM ITS PREVIOUS VALUE C AND IS 0 IF IT IS STILL THE SAME C DO 77 I=I6,NSUM JSUM3(I)=1 77 CONTINUE IF(I7) 103,103,104 103 I7=1 C C JWTEST(I),I=1,JWRD IS 1 IF REQUIRED TO EVALUATE RACAH COEFFICIENT C AND IS 0 IF VALUE THE SAME AS BEFORE.JWTEST IS SET ZERO THE FIRST C TIME THROUGH AND LATER SET 1 IF NECESSARY C DO 78 I=1,JWRD JWTEST(I)=0 78 CONTINUE C C STOR1 WILL CONTAIN THE PRODUCT OF RACAH COEFFICIENTS TIMES C (2J+1) FACTORS C STOR WILL CONTAIN SUMS OF THE STOR1 C STOR1=ONE STOR=ZERO C C CHECK THE TRIANGULAR RELATION FOR ALL J VALUES IN JWORD LIST. IF C A SUMMATION VARIABLE THEN VALUE TAKEN FROM JSUM2 LIST C 104 DO 79 J=1,JWRD DO 80 I=1,6 IF(JWORD(I,J)-M) 81,81,82 81 I1=JWORD(I,J) IST(I) = J1(I1) - 1 GO TO 80 82 I1=JWORD(I,J)-M IST(I) = JSUM2(I1) - 1 80 CONTINUE IF(IST(1)+IST(2)-IST(5)) 83,84,84 84 IF(IABS(IST(1)-IST(2))-IST(5)) 85,85,83 85 IF(IST(3)+IST(4)-IST(5)) 83,86,86 86 IF(IABS(IST(3)-IST(4))-IST(5)) 87,87,83 87 IF(IST(1)+IST(3)-IST(6)) 83,88,88 90 IF(IABS(IST(2)-IST(4))-IST(6)) 79,79,83 89 IF(IST(2)+IST(4)-IST(6)) 83,90,90 88 IF(IABS(IST(1)-IST(3))-IST(6))89,89,83 79 CONTINUE GO TO 91 C C FAIL ONE OF THE TRIANGULAR RELATIONS. INCREASE THE J VALUES C 83 I2=NSUM 203 I1 = JSUM8(I2) C C INCREASE A SUMMATION J VALUE WHICH IS IN JSUM2 AND SET JSUM3 TO C SHOW VALUE CHANGED C JSUM2(I1)=JSUM2(I1)+2 JSUM3(I1)=1 C C NOW STORE J VALUE DEFINING RANGE OF THIS J IN I3 AND I4. C IF(JSUM(1,I1)-M) 92,92,93 92 I20 = JSUM(1,I1) I3 = J1(I20) GO TO 94 93 I20 = JSUM(1,I1)-M I3 = JSUM2(I20) 94 IF(JSUM(2,I1)-M)95,95,96 95 I20 = JSUM(2,I1) I4 = J1(I20) GO TO 97 96 I20 = JSUM(2,I1)-M I4 = JSUM2(I20) 97 I5=I3+I4-1 98 I6=I2+1 C C NOW TEST J VALUES AGAINST MAXIMUM IN RANGE. IF SATISFIED RETURN C TO SET REMAINING J VALUES WHICH DEPEND ON THIS J TO THEIR C LOWEST VALUES. IF NOT RETURN TO INCREASE PRECEDING J VALUE C IF(JSUM2(I1)-I5) 100,100,101 101 I2=I2-1 IF(I2) 102,102,203 C C NO MORE J VALUES TO SUM OVER. THE SUMMATION IS THEREFORE COMPLETE C MULTIPLY BY COMMON FACTOR AND EXIT C 102 RECUP=RECUP*STOR IF(IBUG3-1) 131,230,131 230 WRITE(IWRITE,169) RECUP,STOR,STOR1 131 RETURN C C SEE TRIANGULAR RELATIONS ARE SATISFIED. NOW PROCEED TO EVALUATE C RACAH COEFFICIENTS C FIRST DETERMINE WHICH RACAH COEFFICIENTS NEED RE-EVALUATING AND C SET JWTEST APPROPRIATELY C 91 DO 106 J=1,NSUM IF(JSUM3(J)) 106,106,107 107 I2=JSUM6(J) DO 108 I1=1,I2 I3=JSUM5(J,I1) JWTEST(I3)=1 108 CONTINUE 106 CONTINUE C C NOW EVALUATE ALL JWRD RACAH COEFFICIENTS WHICH HAVE NOT ALREADY C BEEN EVALUATED C DO 109 I=1,JWRD IF(JWTEST(I)) 109,109,110 110 DO 111 I1=1,6 IF(JWORD(I1,I)-M) 112,112,113 112 I2=JWORD(I1,I) IST(I1) = J1(I2) - 1 GO TO 111 113 I2=JWORD(I1,I)-M IST(I1) = JSUM2(I2) - 1 111 CONTINUE IF(IBUG3-1) 132,133,132 133 WRITE (IWRITE,170) (IST(J), J=1,6) 132 CALL DRACAH(IST(1),IST(2),IST(3),IST(4),IST(5),IST(6),X1) WSTOR(I)=X1 109 CONTINUE C C WSTOR(I),I=1,JWRD CONTAINS THE EVALUATED RACAH COEFFICIENTS C IF(IBUG3-1) 134,135,134 135 WRITE(IWRITE,190) (WSTOR(J),J=1,JWRD) C C SET JSUM3 AND JWTEST TO ZERO TO INDICATE THAT RACAH COEFFICIENTS C NEED NOT BE EVALUATED UNLESS J VALUE CHANGES C 134 DO 114 J=1,NSUM JSUM3(J)=0 114 CONTINUE DO 115 J=1,JWRD JWTEST(J)=0 115 CONTINUE C C FORM PRODUCT OF RACAH COEFFICIENTS,(2J+1) FACTORS AND (-1) C FACTORS IN STOR1 C DO 116 I=1,JWRD STOR1 = STOR1*WSTOR(I) 116 CONTINUE C C IASTOR CONTAINS THE POWER OF (-1)WHICH IS COMMON TO ALL TERMS C IX2 = IASTOR IF(J6CP) 117,117,118 118 DO 119 I=1,J6CP I1=J6P(I) STOR1 = STOR1*SQRT(FLOAT(JSUM2(I1))) 119 CONTINUE 117 IF(J7CP) 120,120,121 121 DO 122 I=1,J7CP I1=J7P(I) IX2 = IX2 + JSUM2(I1) - 1 122 CONTINUE 120 IF(J8CP) 123,123,124 124 DO 125 I=1,J8CP I1=J8P(I) IX2 = IX2 - JSUM2(I1) + 1 125 CONTINUE 123 IX2 = IX2/2 C C ADD TERM INTO STOR AND RESET STOR1 TO 1 READY FOR NEXT TERM C IF (MOD(IX2,2) .EQ. 1) STOR1 = -STOR1 STOR = STOR + STOR1 STOR1=ONE GO TO 83 C C NO SUMMATIONS. CHECK THAT THERE ARE NO INCONSISTENCIES. THEN C MULTIPLY BY (-1) FACTOR AND EXIT C 12 IF(J6CP+J7CP+J8CP) 309,309,310 310 WRITE(IWRITE,311) CALL EXIT 309 IX2 = IASTOR/2 IF (MOD(IX2,2) .EQ. 1) RECUP = -RECUP 186 RETURN END SUBROUTINE DRACAH (J1,J2,L2,L1,J3,L3,D6J) C THIS SUBROUTINE WAS ORIGINALLY WRITTEN BY G.BESSIS TO COMPUTE C 6-J SYMBOLS. THIS VERSION HAS BEEN SLIGHTLY MODIFIED TO GIVE C RACAH COEFFICENTS WITH A CALL COMPATIBLE WITH AAGD C ARGUMENTS ARE DOUBLE THE ACTUAL QUANTUM NUMBERS DIMENSION KC(11),NA(31),MC(23),NC(7),NB(31) COMMON/INFORM/IREAD,IWRITE,IPUNCH DATA KC/2,3,5,7,11,13,17,19,23,29,31/ DATA ZERO,ONE/0.0E0,1.0E0/ D6J=ZERO IF(IABS(L1-J2).GT.L3.OR.IABS(J2-L3).GT.L1.OR.IABS(L1-L3).GT.J2) GO 1TO 99 IF(IABS(J1-J2).GT.J3.OR.IABS(J2-J3).GT.J1.OR.IABS(J1-J3).GT.J2) GO 1TO 99 IF(IABS(L1-L2).GT.J3.OR.IABS(L2-J3).GT.L1.OR.IABS(L1-J3).GT.L2) GO 1TO 99 IF(IABS(J1-L2).GT.L3.OR.IABS(L2-L3).GT.J1.OR.IABS(J1-L3).GT.L2) GO 1TO 99 DO 5 I=1,31 5 NA(I)=0 MC(1)=J1+J2-J3 MC(2)=J1-J2+J3 MC(3)=-J1+J2+J3 MC(4)=J1+L2-L3 MC(5)=J1-L2+L3 MC(6)=-J1+L2+L3 MC(7)=L1+J2-L3 MC(8)=L1-J2+L3 MC(9)=-L1+J2+L3 MC(10)=L1+L2-J3 MC(11)=L1-L2+J3 MC(12)=-L1+L2+J3 MC(13)=J1+J2+J3+2 MC(14)=J1+L2+L3+2 MC(15)=L1+J2+L3+2 MC(16)=L1+L2+J3+2 MC(17)=J1+J2+J3 MC(18)=J1+L2+L3 MC(19)=L1+J2+L3 MC(20)=L1+L2+J3 MC(21)=J1+J2+L1+L2 MC(22)=J2+J3+L2+L3 MC(23)=J3+J1+L3+L1 DO 6 I=1,23 IF (MOD(MC(I),2).NE.0) GO TO 98 MC(I)=MC(I)/2 IF(MC(I).LT.0) GO TO 99 IF(MC(I).GT.31) GO TO 98 6 CONTINUE DO 20 I=1,12 N=MC(I) DO 15 J=1,N 15 NA(J)=NA(J)+1 20 CONTINUE DO 17 I=13,16 N=MC(I) DO 16 J=1,N 16 NA(J)=NA(J)-1 17 CONTINUE DO 26 I=1,31 26 NB(I)=NA(I) IZM=MIN0(MC(21),MC(22),MC(23)) IZD=MAX0(MC(17),MC(18),MC(19),MC(20)) ISIG=1 IF (MOD(IZD,2).NE.0) ISIG=-ISIG DO 60 IZ=IZD,IZM NC(1)=IZ-MC(17) NC(2)=IZ-MC(18) NC(3)=IZ-MC(19) NC(4)=IZ-MC(20) NC(5)=MC(21)-IZ NC(6)=MC(22)-IZ NC(7)=MC(23)-IZ DO 28 I=1,31 28 NA(I)=NB(I) N=IZ+1 DO 29 I=1,N 29 NA(I)=NA(I)+2 DO 40 I=1,7 N=NC(I) DO 35 J=1,N 35 NA(J)=NA(J)-2 40 CONTINUE NA(2)=NA(2)+2*NA(4)+NA(6)+3*NA(8)+NA(10)+2*NA(12)+NA(14)+4*NA(16)+ 1NA(18)+2*NA(20)+NA(22)+3*NA(24)+NA(26)+2*NA(28)+NA(30) NA(3)=NA(3)+NA(6)+2*NA(9)+NA(12)+NA(15)+2*NA(18)+NA(21)+NA(24)+3*N 1A(27)+NA(30) NA(5)=NA(5)+NA(10)+NA(15)+NA(20)+2*NA(25)+NA(30) NA(7)=NA(7)+NA(14)+NA(21)+NA(28) NA(11)=NA(11)+NA(22) NA(13)=NA(13)+NA(26) DRA=ONE DAX=ONE DNR=ONE DO 50 K=1,11 I=KC(K) N=NA(I) IF(N.EQ.0) GO TO 50 IF(MOD(N,2)) 41,42,41 41 N=N-1 DRA=DRA*I 42 N=N/2 IF(N) 43,50,45 43 N=-N DO 44 IN=1,N 44 DNR=DNR*I GO TO 50 45 DO 46 IN=1,N 46 DAX=DAX*I 50 CONTINUE DRA = SQRT(DRA) D6J=D6J+(DAX*DRA*ISIG)/DNR ISIG=-ISIG 60 CONTINUE IF( MOD( (J1+J2+L1+L2)/2,2) .EQ. 0) GO TO 99 D6J = -D6J GO TO 99 98 WRITE (IWRITE,101) J1,J2,L1,L2,J3,L3 101 FORMAT(44H FAILURE IN CALCULATING RACAH COEFFICIENT W(,3(I3,1H,),I 13,1H$,I3,1H,,I3,1H)) CALL EXIT 99 RETURN END FINISH **** IN $SPQU01,$ONE.AH.NJSMD 6 3 5 4 2 2 5 3 1 2 4 4 3 6 2 3 5 1 5 6 5 4 2 2 3 3 16 6 2 1 1 2 2 2 1 2 2 1 1 2 1 2 2 2 1 15 11 2 16 12 11 12 5 5 3 6 6 4 7 1 15 13 2 16 14 13 14 8 8 3 9 9 4 7 2 1 1 2 2 2 1 2 2 1 1 2 1 2 2 2 16 6 2 1 1 2 2 2 1 2 2 1 1 2 1 2 2 2 1 15 11 2 16 12 11 12 5 5 3 6 6 4 7 15 1 13 2 16 14 13 14 8 8 3 9 9 4 7 2 1 1 2 2 2 1 2 2 1 1 2 1 2 2 2 19 7 1 1 3 5 1 3 3 1 3 3 1 3 1 3 3 3 3 3 1 18 19 16 3 15 11 11 16 12 1 2 5 5 12 6 6 4 7 19 15 17 3 17 13 13 18 14 1 2 8 8 14 9 9 4 7 1 1 3 5 1 3 3 1 3 3 1 3 1 3 3 3 3 3 5 **** JOB NJSM,$SPQU01,JD:JT 2MINS,MZ 80000$ DY $ONE.AH TASK FORTRAN,TI 60,*CR/ATLAS/NJSMS,*LP NJSML,=CR0 NJSMD,=LP0 NJSMR,- NOLIST *LP,NOLIST =LP LF NJSML,*LP LF NJSMR,*LP ER NJSMD,NJSML,NJSMR EJ ALL **** ACRZGF VALUES. OSCILLATOR STRENGTHS FROM NUMERICAL MCHF RADIAL 1 FUNCTIONS. C.F. FISCHER, K.M.S. SAXENA. REF. IN COMP. PHYS. COMMUN. 9 (1975) 381 C C C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * C * * C * JULY 1974 * C * * C * PROGRAM TO EVALUATE LENGTH AND VELOCITY FORM OF 'GF' VALUES * C * USING NUMERICAL MCHF RADIAL FUNCTIONS. * C * * C * * C * BY * C * * C * * C * C. FROESE FISCHER AND K.M.S. SAXENA * C * * C * DEPARTMENT OF APPLIED MATHEMATICS * C * UNIVERSITY OF WATERLOO, WATERLOO, ONTARIO N2L 3G1 * C * C A N A D A. * C * * C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * C C C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * C * * C * DESCRIPTION OF THE COMMON BLOCKS:- * C * ================================ * C * * C * (1) COMMON BLOCK /PARAM/. * C * -------------------- * C * * C * THIS COMMON BLOCK STORES SEVERAL NUMERICAL CONSTANTS * C * IN DOUBLE PRECISION AND VALUES OF CERTAIN PARAMETERS OF THE * C * CALCULATIONS. * C * * C * THE VARIABLES IN THIS COMMON BLOCK ARE AS FOLLOWS. * C * * C * D0 : DOUBLE PRECISION CONSTANT 0 * C * D1 : DOUBLE PRECISION CONSTANT 1 * C * D2 : DOUBLE PRECISION CONSTANT 2 * C * D3 : DOUBLE PRECISION CONSTANT 3 * C * D4 : DOUBLE PRECISION CONSTANT 4 * C * D5 : DOUBLE PRECISION CONSTANT 1/2 * C * D6 : DOUBLE PRECISION CONSTANT 6 * C * D10: DOUBLE PRECISION CONSTANT 10 * C * H : 0.0625, THE STEP-SIZE DELTA(RHO) * C * H1 : H/3 * C * Z : ATOMIC NUMBER * C * NO : MAXIMUM NUMBER OF POINTS IN THE RANGE OF THE FUNCTIONS * C * =220 * C * ND : NO-2 * C * * C * MOST OF THESE CONSTANTS ARE SET IN THE BLOCK DATA * C * SEGMENT. * C * * C * * C * (2) THE BLANK COMMON //. * C * ------------------- * C * * C * THIS COMMON SECTION STORES THE INFORMATION ABOUT * C * THE NUMERICAL MCHF WAVEFUNCTIONS. * C * * C * THE VARIABLES IN THIS COMMON BLOCK ARE AS FOLLOWS. * C * * C * R(220) : VALUES OF R(J)=EXP(RHO(J))/Z * C * RR(220) : VALUES OF R(J)**2 * C * R2(220) : VALUES OF DSQRT(R(J)) * C * P(50,220) : VALUES OF P(R(J))/R2(J) FOR ORBITALS I=1,50 * C * AZ(50) : A0=LIMIT OF ( P(R)/(R**(L+1)) ) AS R->0 FOR * C * ORBITALS I=1,50 * C * L(50) : L-QUANTUM NUMBERS FOR ORBITALS I=1,50 * C * MAX(50) : NUMBER OF MESH-POINTS IN THE NUMERICAL * C * ORBITALS I=1,50 * C * * C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * C C C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * C * * C * DESCRIPTION OF THE OTHER IMPORTANT VARIABLES:- * C * ============================================ * C * * C * ASTER : AN INTEGER VARIABLE READ IN FORMAT(A1). * C * BLANK : A BLANK CHARACTER ' ', DEFINED AS AN INTEGER * C * AND SET BY A DATA STATEMENT IN THE MAIN PROGRAM. * C * SYMM(5) : AN INTEGER VARIABLE STORING THE SPECTROSCOPIC * C * SYMBOLS 'S','P','D','F', AND 'G' IN FORMAT(A1). * C * SYMM(I) CORRESPONDS TO THE SYMMETRY WITH L=(I-1). * C * JREAD : GENERAL INPUT CHANNEL FOR A SET OF CALCULATIONS. * C * IREAD1 : INPUT CHANNEL FOR THE WAVEFUNCTIONS REQUIRED IN * C * A CASE. * C * IREAD2 : INPUT CHANNEL FOR THE TRANSITION INTEGRALS DATA * C * REQUIRED IN A CASE. * C * IWRITE : OUTPUT CHANNEL REQUIRED TO OUTPUT THE RESULTS OF * C * A CASE. * C * ATOM : ATOMIC SYMBOL/DESIGNATION IN FORMAT(A8). * C * IZ : ATOMIC NUMBER Z. * C * NWF : NUMBER OF ORBITALS INVOLVED. * C * TRMI : TERM SYMBOL FOR THE INITIAL STATE IN FORMAT(A8). * C * TRMF : TERM SYMBOL FOR THE FINAL STATE IN FORMAT(A8). * C * NCFGI : NUMBER OF CONFIGURATIONS IN THE INITIAL STATE. * C * NCFGF : NUMBER OF CONFIGURATIONS IN THE FINAL STATE. * C * MULT : MULTIPLICITY (2S+1) OF THE TWO STATES. * C * EL(50,3) : AN INTEGER VARIABLE STORING THE THREE CHARACTER * C * ALPHANUMERIC SYMBOL OF THE ORBITALS I=1,50 IN * C * FORMAT(3A1) FOR EACH OF THEM. * C * ETI : TOTAL ENERGY (IN A.U.) FOR THE INITIAL STATE. * C * ETF : TOTAL ENERGY (IN A.U.) FOR THE FINAL STATE. * C * CONFAI(30): CHARACTERS 01-08 (IN A8 FORMAT) OF THE ALPHA- * C * NUMERIC SYMBOL (IN TOTAL OF 24 CHARACTERS) OF * C * THE INITIAL STATE CONFIGURATIONS I=1,30. * C * CONFBI(30): CHARACTERS 09-16 (IN A8 FORMAT) OF THE ALPHA- * C * NUMERIC SYMBOL (IN TOTAL OF 24 CHARACTERS) OF * C * THE INITIAL STATE CONFIGURATIONS I=1,30. * C * CONFCI(30): CHARACTERS 17-24 (IN A8 FORMAT) OF THE ALPHA- * C * NUMERIC SYMBOL (IN TOTAL OF 24 CHARACTERS) OF * C * THE INITIAL STATE CONFIGURATIONS I=1,30. * C * CONFAF(30): CHARACTERS 01-08 (IN A8 FORMAT) OF THE ALPHA- * C * NUMERIC SYMBOL (IN TOTAL OF 24 CHARACTERS) OF * C * THE FINAL STATE CONFIGURATIONS I=1,30. * C * CONFBF(30): CHARACTERS 09-16 (IN A8 FORMAT) OF THE ALPHA- * C * NUMERIC SYMBOL (IN TOTAL OF 24 CHARACTERS) OF * C * THE FINAL STATE CONFIGURATIONS I=1,30. * C * CONFCF(30): CHARACTERS 17-24 (IN A8 FORMAT) OF THE ALPHA- * C * NUMERIC SYMBOL (IN TOTAL OF 24 CHARACTERS) OF * C * THE FINAL STATE CONFIGURATIONS I=1,30. * C * WTI(30) : WEIGHTS OF THE INITIAL STATE CONFIGURATIONS I=1,30* C * WTF(30) : WEIGHTS OF THE FINAL STATE CONFIGURATIONS I=1,30* C * COEF : MULTILPYING COEFFICIENT IN A TRANSITION INTEGRAL. * C * KRHO : THE NUMBER INDICATING THE ORBITAL EL(KRHO) FROM * C * THE INITIAL STATE CONFIGURATION APPEARING IN A * C * TRANSITION INTEGRAL. * C * KSIG : THE NUMBER INDICATING THE ORBITAL EL(KSIG) FROM * C * THE FINAL STATE CONFIGURATION APPEARING IN A * C * TRANSITION INTEGRAL. * C * JI,JF : THE NUMBERS INDICATING THE INITIAL AND FINAL * C * STATE CONFIGURATIONS FOR A TRANSITION INTEGRAL. * C * II1,II2, : THE NUMBERS INDICATING THE ORBITALS EL(II1), * C * II3 EL(II2), AND EL(II3) FROM THE INITIAL STATE * C * CONFIGURATION JI APPEARING IN THE THREE OVERLAP * C * INTEGRALS IN A TRANSITION INTEGRAL CONTRIBUTION. * C * IF1,IF2, : THE NUMBERS INDICATING THE ORBITALS EL(IF1), * C * IF3 EL(IF2), AND EL(IF3) FROM THE FINAL STATE * C * CONFIGURATION JF APPEARING IN THE THREE OVERLAP * C * INTEGRALS IN A TRANSITION INTEGRAL CONTRIBUTION. * C * IP1,IP2, : THE NUMBERS INDICATING THE POWERS OF THE THREE * C * IP3 OVERLAP INTEGRALS IN A TRANSITION INTEGRAL * C * CONTRIBUTION. * C * * C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * C C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * C * * C * NON STANDARD FORTRAN:- * C * ==================== * C * * C * THIS PROGRAM IS WRITTEN AS A SYSTEM 360 DOUBLE PRE- * C * CISION PROGRAM. HOWEVER, ON COMPUTERS WITH A WORD LENGTH OF * C * 48 BITS OR MORE IT SHOULD BE USED IN SINGLE PRECISION ONLY. * C * IN ORDER TO CONVERT THIS PROGRAM TO A SINGLE PRECISION PROGRAM * C * THE FOLLOWING SHOULD BE DONE: * C * * C * (1) REMOVE ALL 'IMPLICIT REAL*8(A-H,O-Z)' CARDS. * C * (2) REMOVE '*8' FROM THE FUNCTION DEFINITION CARDS, FOR * C * EXAMPLE, 'REAL FUNCTION GRAD*8(I,J)' WILL BE REPLACED * C * BY 'REAL FUNCTION GRAD(I,J)' * C * (3) CHANGE SYSTEM FUNCTION NAMES 'DSQRT','DABS', ETC. TO * C * 'SQRT','ABS', ETC. * C * (4) CHANGE DOUBLE PRECISION CONSTANTS TO SINGLE PRECISION * C * CONTANTS. * C * (5) CHANGE D-FORMAT CODES TO E-FORMAT CODES. * C * * C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * C C ------------------------------------------------------------------ C *** M A I N C ------------------------------------------------------------------ C IMPLICIT REAL*8(A-H,O-Z) INTEGER ASTER,BLANK,SYMM(5),EL(50,3) COMMON /PARAM/D0,D1,D2,D3,D4,D5,D6,D10,H,H1,Z,NO,ND CCOMMON R(220),RR(220),R2(220),P(50,220),AZ(50),L(50),MAX(50) DIMENSION CONFAI(30),CONFBI(30),CONFCI(30),WTI(30), 1 CONFAF(30),CONFBF(30),CONFCF(30),WTF(30) DATA BLANK/1H / DATA SYMM(1),SYMM(2),SYMM(3),SYMM(4),SYMM(5)/1HS,1HP,1HD,1HF,1HG/ C C *** THE INPUT FORMATS. IT IS TO BE NOTED HERE THAT THE '102 FORMAT' C *** USED TO INPUT THE NUMERICAL MCHF RADIAL FUNCTION DATA IS NOT THE C *** SAME AS ACTUALLY USED IN THE MCHF PROGRAM TO PUNCH THESE RADIAL C *** FUNCTIONS. THIS HAS BEEN DONE IN ORDER TO KEEP THE DATA-FIELD C *** LIMITED TO COLUMNS 1-72 AND USE COLUMNS 73-80 OF THE CARDS FOR C *** IDENTIFICATION AND SEQUENCE NUMBERS ONLY. HOWEVER, ONE CAN USE C *** THE MCHF RADIAL FUNCTION DATA AS IT IS PUNCHED OUT IN THE MCHF C *** PROGRAM BY CHANGING THE '102 FORMAT' TO: C102 FORMAT(32X,3A1,I6,22X,D16.8/(7F11.7)) C 101 FORMAT(A1,3I4,A8,2I4,2A8,4I4) 102 FORMAT( 3A1,I6,22X,D16.8/(6F11.7)) 103 FORMAT(F16.8) 104 FORMAT(3A8,F12.8) 105 FORMAT(A1,F12.8,3HRI(,2I2,1H,,2I2,1H),9I4) C C *** THE OUTPUT FORMATS. C 200 FORMAT(5H1SET ,I3/5H CASE,I3/8H *******//) 201 FORMAT(23X37HOSCILLATOR STRENGTHS CALCULATION FOR , A8,4H (Z=,I3,2 1H) ,A8,2H->,A8,12H TRANSITION ) 202 FORMAT(1H ,22X,83(1H*)/) 203 FORMAT(/9H JREAD =,I3,38H (GENERAL DATA INPUT UNIT FOR THE SET) / 19H IREAD1 =,I3,45H (WAVEFUNCTION DATA INPUT UNIT FOR THIS CASE) / 29H IREAD2 =,I3,53H (TRANSITION INTEGRALS DATA INPUT UNIT FOR THIS 2CASE) / 39H IWRITE =,I3,36H (PRINTED OUTPUT UNIT FOR THIS CASE) / 49H NWF =,I3,35H (NUMBER OF WAVEFUNCTIONS INVOLVED) / 59H NCFGI =,I3,48H (NUMBER OF CONFIGURATIONS IN THE INITIAL STATE) 6/9H NCFGF =,I3,46H (NUMBER OF CONFIGURATIONS IN THE FINAL STATE)/ 79H MULT =,I3,40H (MULTIPLICITY (2S+1) OF THE TWO STATES) ) 204 FORMAT(//5H THE ,I2,28H ORBITALS ARE THE FOLLOWING:/) 205 FORMAT(2X,9(I1,3X),21(I2,2X)) 206 FORMAT(/2X,30(3A1,1X)/) 207 FORMAT(2X,30(I2,2X)) 208 FORMAT(//38H CONFIGURATIONS/WEIGHTS OF THE INITIAL,A8, 124HSTATE WITH TOTAL ENERGY= ,F16.8) 209 FORMAT( 86H ----------------------------------------------------- 1--------------------------------/) 210 FORMAT(I7,1H.,3A8,F12.7) 211 FORMAT(//38H CONFIGURATIONS/WEIGHTS OF THE FINAL,A8, 124HSTATE WITH TOTAL ENERGY= ,F16.8) 212 FORMAT(64H1TERM INITIAL STATE CONFIGURATION FINAL STATE CONFI 1GURATION11X12HCONTRIBUTION18X6HLENGTH8X8HVELOCITY) 213 FORMAT(128H ---- --------------------------- ---------------- 1--------- ------------------------- ---------- --- 2-------//) 214 FORMAT(//91H ERROR ( L(KRHO)-L(KSIG).NE.+1/-1 ) FOUND IN THE TRAN 1SITION INTEGRAL PART OF THE FOLLOWING,I4,32H-TH INPUT CARD FROM IR 2EAD2 FILE./) 215 FORMAT(//70H ERROR (DIFFERENT L VALUES) FOUND IN THE OVERLAP PART 1OF THE FOLLOWING,I4,32H-TH INPUT CARD FROM IREAD2 FILE./) 216 FORMAT( 2H (,I2,2H) ,I4,1H.,3A8,4H -> ,I2,1H.,3A8,4H : <,3A1,3H/O/ 1,3A1,1H>,17X,1H:,2X,F13.8,2X,F13.8) 217 FORMAT(1H+,79X,3H* <,3A1,1H/,3A1,3H>**,I1) 218 FORMAT(1H ,79X,3H* <,3A1,1H/,3A1,3H>**,I1) 219 FORMAT(/35X40HFINAL OSCILLATOR STRENGTHS (LENGTH) =,F14.8/ 1 63X12H(VELOCITY) =, F14.8) 220 FORMAT(/42X35HENERGY DIFFERENCE OF THE STATES = ,D16.8,5H CM-1/ 174X3H= ,D16.8,10H ANGSTROMS/74X3H= ,D16.8,6H A. U.) C C *** SET JREAD EQUAL TO THE CARD INPUT CHANNEL OF YOUR INSTALLATION C *** & NSET=0, AND START THE DATA READING FOR THE FISRT SET OF THE C *** CALCULATIONS. C JREAD=5 NSET=0 C C C *** START THE DATA READING FOR A NEW SET OF CALCULATIONS. C 1 READ(JREAD,101) ASTER, JREAD C C *** IF 'ASTER' IS NOT A BLANK CHARACTER, ALL SETS OF CALCULATIONS ARE C *** FINISHED AND THE PROGRAM STOPS. C *** IF 'ASTER' IS A BLANK CHARACTER, SET NSET=NSET+1 & NCASE=0, C *** AND START THE DATA READING FOR THE FIRST CASE OF THIS SET. C IF(ASTER.NE.BLANK) GO TO 15 NSET=NSET+1 NCASE=0 C C *** START THE DATA READING FOR A NEW CASE OF THE NSET-TH SET. C 2 READ(JREAD,101) ASTER,IREAD1,IREAD2,IWRITE,ATOM,IZ,NWF,TRMI,TRMF, 1 NCFGI,NCFGF,MULT,ISO C C *** IF 'ASTER' IS NOT A BLANK CHARACTER, ALL CASES OF CALCULATIONS ARE C *** FINISHED AND THE PROGRAM PROCEEDS TO TAKE THE NEXT SET OF CASES. C *** IF 'ASTER' IS A BLANK CHARACTER, SET NCASE=NCASE+1, AND PROCEED C *** FOR READING ADDITIONAL DATA, AND CALCULATIONS ETC. FOR THIS CASE. C IF(ASTER.NE.BLANK) GO TO 1 NCASE=NCASE+1 READ(JREAD,103) ETI READ(JREAD,104) (CONFAI(NC),CONFBI(NC), 1 CONFCI(NC),WTI(NC),NC=1,NCFGI) READ(JREAD,103) ETF READ(JREAD,104) (CONFAF(NC),CONFBF(NC), 1 CONFCF(NC),WTF(NC),NC=1,NCFGF) WRITE(IWRITE,200) NSET,NCASE Z=IZ WRITE(IWRITE,201) ATOM,IZ,TRMI,TRMF WRITE(IWRITE,202) WRITE(IWRITE,203) JREAD,IREAD1,IREAD2,IWRITE,NWF,NCFGI,NCFGF,MULT C C *** CALCULATE THE 'R' VARIABLE-MESH FOR THE NUMERICAL RADIAL ORBITALS C *** P(R). C RHO=-4.0 DO 3 J=1,NO R(J)=DEXP(RHO)/Z RR(J)=R(J)*R(J) R2(J)=DSQRT(R(J)) 3 RHO=RHO+H C C *** READ THE RADIAL ORBITALS AND CALCULATE THEIR L-QUANTUM NUMBERS. C DO 5 I=1,NWF READ(IREAD1,102) (EL(I,J),J=1,3),M,AZ(I),(P(I,J),J=1,M) J=3 IF(EL(I,1).NE.BLANK) J=2 IF(EL(I,J).EQ.SYMM(1)) L(I)=0 IF(EL(I,J).EQ.SYMM(2)) L(I)=1 IF(EL(I,J).EQ.SYMM(3)) L(I)=2 IF(EL(I,J).EQ.SYMM(4)) L(I)=3 IF(EL(I,J).EQ.SYMM(5)) L(I)=4 MAX(I)=M IF(M.EQ.NO) GO TO 5 M=M+1 DO 4 J=M,NO 4 P(I,J)=D0 5 CONTINUE WRITE(IWRITE,204) NWF N30=MIN0(NWF,30) WRITE(IWRITE,205) (I,I=1,N30) WRITE(IWRITE,206) ((EL(I,J),J=1,3),I=1,N30) IF(NWF.LE.30) GO TO 6 WRITE(IWRITE,207) (I,I=31,NWF) WRITE(IWRITE,206) ((EL(I,J),J=1,3),I=31,NWF) 6 WRITE(IWRITE,208) TRMI,ETI WRITE(IWRITE,209) WRITE(IWRITE,210) (NC,CONFAI(NC),CONFBI(NC), 1 CONFCI(NC),WTI(NC),NC=1,NCFGI) WRITE(IWRITE,211) TRMF,ETF WRITE(IWRITE,209) WRITE(IWRITE,210) (NC,CONFAF(NC),CONFBF(NC), 1 CONFCF(NC),WTF(NC),NC=1,NCFGF) WRITE(IWRITE,212) WRITE(IWRITE,213) C C *** INITIALIZE THE TOTAL LENGTH (SL) AND THE TOTAL VELOCITY (SV) C *** 'GF' VALUES TO ZERO, SET NTERM=0, AND START READING THE TRANSITION C *** INTEGRALS DATA FOR THE CASE IN QUESTION. C SL = D0 SV = D0 NTERM=0 C C *** READ DATA FOR THE NEXT TRANSITION INTEGRAL TERM. C 7 READ(IREAD2,105) ASTER,COEF,KRHO,JI,KSIG,JF,II1,IF1,IP1, 1 II2,IF2,IP2, 2 II3,IF3,IP3 C C *** IF 'ASTER' IS NOT A BLANK CHARACTER, ALL TRANSITION INTEGRAL C *** TERMS HAVE BEEN READ AND USED. THEN THE PROGRAM PROCEEDS TO DO C *** THE CALCULATIONS OF THE FINAL RESULTS OF OSCILLATOR STRENGTHS C *** FOR THE CASE IN QUESTION. C *** IF 'ASTER' IS A BLANK CHARACTER, SET NTERM=NTERM+1, AND PROCEED C *** TO EVALUATE THE CONTRIBUTIONS TL AND TV OF THIS TERM TO THE C *** TOTAL 'GF' VALUES SL AND SV. C IF(ASTER.NE.BLANK) GO TO 14 NTERM=NTERM+1 C C *** BEFORE PROCEEDING TO USE THIS TRANSITION INTEGRAL INPUT DATA, C *** CHECK FOR ANY OBVIOUS ERROR IN IT. IF ERROR IS FOUND, IT IS C *** PRINTED AND THE PROGRAM STOPS. C IF(IABS(L(KRHO)-L(KSIG)).EQ.1) GO TO 8 C C *** ERROR FOUND IN AN INPUT DATA FROM FILE IREAD2. C WRITE(IWRITE,214) NTERM GO TO 12 8 IF(IP1.EQ.0) GO TO 9 IF(L(II1).EQ.L(IF1)) GO TO 9 C C *** ERROR FOUND IN AN INPUT DATA FROM FILE IREAD2. C GO TO 11 9 IF(IP2.EQ.0) GO TO 10 IF(L(II2).EQ.L(IF2)) GO TO 10 C C *** ERROR FOUND IN AN INPUT DATA FROM FILE IREAD2. C GO TO 11 10 IF(IP3.EQ.0) GO TO 13 IF(L(II3).EQ.L(IF3)) GO TO 13 C C *** ERROR FOUND IN AN INPUT DATA FROM FILE IREAD2. C 11 WRITE(IWRITE,215) NTERM 12 WRITE(IWRITE,105) ASTER,COEF,KRHO,JI,KSIG,JF,II1,IF1,IP1, 1 II2,IF2,IP2, 2 II3,IF3,IP3 CALL EXIT C C *** NO ERROR IN THE TRANSITION INTEGRAL DATA IS FOUND AND HENCE C *** PROCEED TO USE IT FOR EVALUATING TL AND TV VALUES. C 13 L1 = L(KRHO) L2 = L(KSIG) LL = MAX0(L1,L2) K = LL - L1 D = (-1)**K*DSQRT(LL*D1)*WTI(JI)*WTF(JF)*COEF C C *** MULTIPLY BY THE OVERLAPS INTEGRALS, IF ANY. C IF (IP1 .NE. 0) D = D*QUADR(II1,IF1,0)**IP1 IF (IP2 .NE. 0) D = D*QUADR(II2,IF2,0)**IP2 IF (IP3 .NE. 0) D = D*QUADR(II3,IF3,0)**IP3 TL = D*QUADR(KRHO,KSIG,1) TV = D*GRAD(KRHO,KSIG) C C *** OUTPUT THE CALCULATED TERM CONTRIBUTIONS TL AND TV. C WRITE(IWRITE,216) NTERM,JI,CONFAI(JI),CONFBI(JI),CONFCI(JI), 1 JF,CONFAF(JF),CONFBF(JF),CONFCF(JF), 2 (EL(KRHO,J),J=1,3),(EL(KSIG,J),J=1,3),TL,TV IF(IP1.NE.0) WRITE(IWRITE,217) (EL(II1,J),J=1,3),(EL(IF1,J),J=1,3) 1 ,IP1 IF(IP2.NE.0) WRITE(IWRITE,218) (EL(II2,J),J=1,3),(EL(IF2,J),J=1,3) 1 ,IP2 IF(IP3.NE.0) WRITE(IWRITE,218) (EL(II3,J),J=1,3),(EL(IF3,J),J=1,3) 1 ,IP3 C C *** ADD THE EVALUATED TERM CONTRIBUTIONS TL AND TV TO THE TOTAL C *** 'GF' VALUES SL AND SV. C SL = SL + TL SV = SV + TV C C *** PROCEED TO TAKE THE NEXT TRANSITION INTEGRAL DATA. C GO TO 7 C C *** ALL TRANSITION INTEGRALS DATA HAVE BEEN USED AND HENCE PROCEED C *** TO DO THE FINAL CALCULATIONS AND OUTPUT THEM. C 14 D = DABS(ETI-ETF) CL = D2*D*DABS(DFLOAT(MULT))/D3 CV = D2*DABS(DFLOAT(MULT))/(D*D3) GL = CL*SL**2 GV = CV*SV**2 WRITE(IWRITE,219) GL,GV DD = D*D2*109737.3D0 ANGS = D10**8/DD WRITE(IWRITE,220) DD,ANGS,D C C *** CALCULATIONS FOR THE PRESENT CASE ARE FINISHED AND THE FINAL C *** RESULTS HAVE ALSO BEEN OUTPUT. C *** IF THE NEXT CASE TO BE DONE IS A CASE ISO-ELECTRONIC TO THE ONE C *** JUST FINISHED, REWIND THE DEVICE 'IREAD2'. C *** THIS WILL ENABLE US TO REUSE THE TRANSITION INTEGRALS DATA. C *** PROCEED TO TAKE THE NEXT CASE. C IF(ISO.EQ.1) REWIND IREAD2 GO TO 2 15 STOP END C C ------------------------------------------------------------------ C *** B L O C K D A T A C ------------------------------------------------------------------ C BLOCK DATA IMPLICIT REAL*8(A-H,O-Z) COMMON /PARAM/D0,D1,D2,D3,D4,D5,D6,D10,H,H1,Z,NO,ND DATA D0,D1,D2,D3,D4,D5/0.D0,1.D0,2.D0,3.D0,4.D0,.5D0/ DATA D6,D10/6.D0,10.D0/ DATA H,H1/.0625D0,.4166666666666667D-01/ DATA NO,ND/220,218/ END C C ------------------------------------------------------------------ C *** Q U A D R C ------------------------------------------------------------------ C C *** QUADR INTEGRATES P(I)*P(J)*R**KK BY SIMPSON'S RULE C REAL FUNCTION QUADR*8(I,J,KK) IMPLICIT REAL*8(A-H,O-Z) COMMON /PARAM/D0,D1,D2,D3,D4,D5,D6,D10,H,H1,Z,NO,ND COMMON R(220),RR(220),R2(220),P(50,220),AZ(50),L(50),MAX(50) K = KK + 2 LI = L(I) LJ = L(J) DEN = LI + LJ + 1 + K ZR = Z*R(4) BI = (P(I,4)/(AZ(I)*R2(4)*R(4)**LI) - D1+ZR/(LI+1) )/ZR**2 BJ = (P(J,4)/(AZ(J)*R2(4)*R(4)**LJ) - D1+ZR/(LJ+1) )/ZR**2 ALPHA= (D1/(LI + 1) + D1/(LJ + 1))/(DEN + D1) ZR = Z*R(1) BETA = (DEN+D1)*ALPHA**2 - D2*(BI+BJ+D1/((LI+1)*(LJ+1)))/(DEN+D2) D = P(I,1)*P(J,1)*R(1)**K*(((BETA*ZR+ALPHA)*ZR+D1)/(DEN*H1)+D5) M = MIN0(MAX(I),MAX(J)) - 1 DO 1 JJ = 2,M,2 JP = JJ + 1 1 D = D + D2*P(I,JJ)*P(J,JJ)*R(JJ)**K+P(I,JP)*P(J,JP)*R(JP)**K QUADR = D*H1 RETURN END C C ------------------------------------------------------------------ C *** G R A D C ------------------------------------------------------------------ C C *** THE GRAD FUNCTION SUBPROGRAM COMPUTES THE FOLLOWING DIRECTLY C *** <P(J)!D + L(I)/R !P(I)> WITH L(I) > L(J) C REAL FUNCTION GRAD*8(I,J) IMPLICIT REAL*8(A-H,O-Z) COMMON /PARAM/D0,D1,D2,D3,D4,D5,D6,D10,H,H1,Z,NO,ND COMMON R(220),RR(220),R2(220),P(50,220),AZ(50),L(50),MAX(50) LL = MAX0(L(I),L(J)) II = I JJ = J IF ( L(I) .GT. L(J) ) GO TO 1 II = J JJ = I 1 A1 = (LL+D5)/(LL*(LL+1)*(2*LL+1)) GRAD = R(1)*P(I,1)*P(J,1)*(D1 + A1*Z*R(1)) DL = D5*P(I,1)*P(J,1)*R(1) MM = MIN0(MAX(I)+1,MAX(J)+1,ND) K = 2 F1 = D5*(P(II,K+1) - P(II,K-1)) F2 = P(II,K+1) - D2*P(II,K) + P(II,K-1) G0 = P(JJ,K)*R(K) G1 = D5*(P(JJ,K+1)*R(K+1) - P(JJ,K-1)*R(K-1)) G2 = P(JJ,K+1)*R(K+1) - D2*P(JJ,K)*R(K) + P(JJ,K-1)*R(K-1) GRAD = GRAD + D2*F1*G0 +(D2*F2*G1 + F1*G2)/D3 DL = DL + D2*P(II,K)*P(JJ,K)*R(K) + P(II,K+1)*P(JJ,K+1)*R(K+1) DO 2 K = 4,MM,2 F1 = D5*(P(II,K+1) - P(II,K-1)) F2 = P(II,K+1) - D2*P(II,K) + P(II,K-1) F3 = D5*(P(II,K+2) - P(II,K-2)) - D2*F1 F4 = P(II,K+2) + P(II,K-2) - D4*(P(II,K+1) + P(II,K-1)) 1 + D6*P(II,K) G0 = P(JJ,K)*R(K) G1 = D5*(P(JJ,K+1)*R(K+1) - P(JJ,K-1)*R(K-1)) G2 = P(JJ,K+1)*R(K+1) - D2*P(JJ,K)*R(K) + P(JJ,K-1)*R(K-1) G3 = D5*(P(JJ,K+2)*R(K+2) - P(JJ,K-2)*R(K-2)) -D2*G1 G4 = P(JJ,K+2)*R(K+2) + P(JJ,K-2)*R(K-2) - D4*(P(JJ,K+1)*R(K+1) 1 + P(JJ,K-1)*R(K-1)) + D6*P(JJ,K)*R(K) GRAD = GRAD + D2*F1*G0 +(D2*F2*G1 + F1*G2)/D3 1 - (F1*G4-F4*G1 + D4*(F2*G3-F3*G2))/90.D0 2 DL = DL + D2*P(II,K)*P(JJ,K)*R(K) + P(II,K+1)*P(JJ,K+1)*R(K+1) GRAD = GRAD + (LL+D5)*DL*H1 IF (II .EQ. I) GRAD = - GRAD RETURN END FINISH SAMPLE DATA 5 5 5 6 HE+00 2 3 1P 1D 2 2 1 0 -2.12245410 1S(1)2P(1) 0.9999984 2P(1)3D(1) 0.0017745 -2.05555120 1S(1)3D(1) 0.9999981 2P(2) -0.0019432 1S 128 0.56569028D+01 0.5315209 0.5477458 0.5644230 0.5815607 0.5991671 0.6172497 0.6358159 0.6548724 0.6744253 0.6944799 0.7150412 0.7361127 0.7576973 0.7797967 0.8024113 0.8255399 0.8491800 0.8733271 0.8979749 0.9231148 0.9487358 0.9748244 1.0013641 1.0283352 1.0557147 1.0834755 1.1115867 1.1400129 1.1687137 1.1976437 1.2267519 1.2559813 1.2852685 1.3145433 1.3437282 1.3727382 1.4014802 1.4298528 1.4577458 1.4850397 1.5116061 1.5373068 1.5619941 1.5855107 1.6076895 1.6283547 1.6473211 1.6643957 1.6793778 1.6920608 1.7022328 1.7096787 1.7141823 1.7155284 1.7135055 1.7079090 1.6985449 1.6852333 1.6678130 1.6461460 1.6201221 1.5896647 1.5547351 1.5153386 1.4715287 1.4234125 1.3711543 1.3149793 1.2551755 1.1920953 1.1261543 1.0578295 0.9876544 0.9162128 0.8441299 0.7720611 0.7006788 0.6306576 0.5626570 0.4973049 0.4351789 0.3767902 0.3225673 0.2728432 0.2278456 0.1876911 0.1523842 0.1218209 0.0957978 0.0740251 0.0561435 0.0417439 0.0303877 0.0216279 0.0150281 0.0101784 0.0067081 0.0042939 0.0026641 0.0015985 0.0009250 0.0005146 0.0002740 0.0001388 0.0000661 0.0000290 0.0000111 0.0000031 -0.0000002 -0.0000013 -0.0000014 -0.0000013 -0.0000011 -0.0000009 -0.0000007 -0.0000005 -0.0000004 -0.0000003 -0.0000002 -0.0000001 -0.0000001 -0.0000001 -.0 -.0 -.0 -.0 -.0 -.0 2P 138 0.20138234D+00 0.0001749 0.0001920 0.0002107 0.0002313 0.0002538 0.0002785 0.0003057 0.0003354 0.0003681 0.0004039 0.0004431 0.0004861 0.0005333 0.0005850 0.0006417 0.0007038 0.0007718 0.0008464 0.0009280 0.0010174 0.0011153 0.0012226 0.0013399 0.0014683 0.0016088 0.0017625 0.0019306 0.0021144 0.0023153 0.0025348 0.0027746 0.0030365 0.0033224 0.0036345 0.0039749 0.0043462 0.0047509 0.0051919 0.0056723 0.0061953 0.0067645 0.0073836 0.0080566 0.0087880 0.0095824 0.0104446 0.0113800 0.0123943 0.0134934 0.0146837 0.0159721 0.0173658 0.0188725 0.0205002 0.0222578 0.0241543 0.0261995 0.0284036 0.0307774 0.0333324 0.0360804 0.0390341 0.0422064 0.0456108 0.0492611 0.0531715 0.0573560 0.0618284 0.0666021 0.0716894 0.0771011 0.0828461 0.0889303 0.0953561 0.1021212 0.1092179 0.1166318 0.1243408 0.1323140 0.1405106 0.1488794 0.1573574 0.1658702 0.1743312 0.1826423 0.1906942 0.1983677 0.2055351 0.2120625 0.2178120 0.2226449 0.2264251 0.2290231 0.2303202 0.2302131 0.2286183 0.2254777 0.2207623 0.2144767 0.2066624 0.1974000 0.1868103 0.1750531 0.1623247 0.1488531 0.1348910 0.1207070 0.1065758 0.0927662 0.0795298 0.0670900 0.0556318 0.0452949 0.0361680 0.0282884 0.0216432 0.0161752 0.0117906 0.0083692 0.0057750 0.0038668 0.0025074 0.0015715 0.0009498 0.0005523 0.0003082 0.0001646 0.0000839 0.0000407 0.0000187 0.0000082 0.0000033 0.0000013 0.0000005 0.0000002 0.0 0.0 0.0 3D 145 0.96975504D-02 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000002 0.0000002 0.0000002 0.0000003 0.0000003 0.0000004 0.0000004 0.0000005 0.0000006 0.0000007 0.0000008 0.0000009 0.0000011 0.0000013 0.0000015 0.0000017 0.0000020 0.0000024 0.0000028 0.0000032 0.0000038 0.0000044 0.0000051 0.0000060 0.0000070 0.0000081 0.0000095 0.0000111 0.0000129 0.0000150 0.0000175 0.0000204 0.0000238 0.0000277 0.0000323 0.0000376 0.0000438 0.0000510 0.0000593 0.0000690 0.0000803 0.0000934 0.0001085 0.0001261 0.0001466 0.0001702 0.0001977 0.0002294 0.0002663 0.0003089 0.0003581 0.0004151 0.0004810 0.0005572 0.0006452 0.0007467 0.0008639 0.0009990 0.0011547 0.0013341 0.0015407 0.0017783 0.0020514 0.0023651 0.0027250 0.0031376 0.0036101 0.0041505 0.0047676 0.0054713 0.0062724 0.0071826 0.0082148 0.0093825 0.0107005 0.0121841 0.0138494 0.0157127 0.0177907 0.0200999 0.0226560 0.0254739 0.0285664 0.0319442 0.0356145 0.0395801 0.0438388 0.0483818 0.0531924 0.0582453 0.0635049 0.0689243 0.0744444 0.0799935 0.0854866 0.0908263 0.0959035 0.1005992 0.1047873 0.1083383 0.1111235 0.1130211 0.1139216 0.1137351 0.1123977 0.1098776 0.1061809 0.1013552 0.0954914 0.0887227 0.0812209 0.0731894 0.0648536 0.0564488 0.0482071 0.0403429 0.0330414 0.0264472 0.0206580 0.0157217 0.0116382 0.0083651 0.0058268 0.0039254 0.0025521 0.0015976 0.0009606 0.0005533 0.0003045 0.0001596 0.0000795 0.0000374 0.0000166 0.0000069 0.0000027 0.0000010 0.0000003 0.0000001 0.0 0.0 1.00000000RI( 2 1, 3 1) 1.82574186RI( 1 1, 2 2) 1.00000000RI( 2 2, 1 1) 0.18257419RI( 3 2, 2 2) * 5 5 6 LI+01 3 3 1P 1D 2 2 1 0 -4.99009630 1S(1)2P(1) 0.9999948 2P(1)3D(1) 0.0032164 -4.72219710 1S(1)3D(1) 0.9999934 2P(2) -0.0036470 1S 126 0.10392566D+02 0.7972946 0.8216323 0.8466485 0.8723555 0.8987655 0.9258900 0.9537397 0.9823249 1.0116546 1.0417372 1.0725795 1.1041874 1.1365649 1.1697145 1.2036369 1.2383304 1.2737911 1.3100124 1.3469846 1.3846951 1.4231273 1.4622609 1.5020711 1.5425284 1.5835982 1.6252401 1.6674077 1.7100476 1.7530995 1.7964953 1.8401584 1.8840032 1.9279347 1.9718475 2.0156256 2.0591413 2.1022551 2.1448147 2.1866547 2.2275963 2.2674466 2.3059982 2.3430298 2.3783051 2.4115739 2.4425721 2.4710221 2.4966343 2.5191078 2.5381325 2.5533906 2.5645596 2.5713150 2.5733339 2.5702993 2.5619042 2.5478576 2.5278896 2.5017584 2.4692569 2.4302201 2.3845328 2.3321371 2.2730407 2.2073242 2.1351480 2.0567587 1.9724938 1.8827858 1.7881629 1.6892488 1.5867587 1.4814930 1.3743275 1.2661999 1.1580934 1.0510167 0.9459815 0.8439773 0.7459458 0.6527537 0.5651676 0.4838305 0.4092418 0.3417431 0.2815095 0.2285475 0.1827014 0.1436660 0.1110067 0.0841845 0.0625855 0.0455521 0.0324137 0.0225155 0.0152427 0.0100391 0.0064199 0.0039773 0.0023810 0.0013730 0.0007594 0.0004005 0.0001995 0.0000922 0.0000380 0.0000125 0.0000015 -0.0000025 -0.0000035 -0.0000032 -0.0000026 -0.0000020 -0.0000015 -0.0000010 -0.0000007 -0.0000005 -0.0000003 -0.0000002 -0.0000001 -0.0000001 -0.0000001 -.0 -.0 -.0 -.0 2P 133 0.11627005D+01 0.0005496 0.0006033 0.0006622 0.0007268 0.0007976 0.0008754 0.0009606 0.0010541 0.0011567 0.0012692 0.0013925 0.0015277 0.0016759 0.0018383 0.0020164 0.0022115 0.0024252 0.0026594 0.0029159 0.0031968 0.0035044 0.0038411 0.0042097 0.0046129 0.0050541 0.0055367 0.0060644 0.0066412 0.0072716 0.0079604 0.0087126 0.0095339 0.0104303 0.0114083 0.0124749 0.0136376 0.0149044 0.0162842 0.0177862 0.0194203 0.0211974 0.0231286 0.0252261 0.0275028 0.0299724 0.0326493 0.0355487 0.0386868 0.0420805 0.0457475 0.0497064 0.0539764 0.0585775 0.0635306 0.0688568 0.0745780 0.0807165 0.0872947 0.0943352 0.1018604 0.1098923 0.1184521 0.1275600 0.1372343 0.1474913 0.1583444 0.1698031 0.1818724 0.1945514 0.2078319 0.2216974 0.2361212 0.2510646 0.2664751 0.2822846 0.2984073 0.3147383 0.3311517 0.3474995 0.3636111 0.3792933 0.3943312 0.4084899 0.4215177 0.4331500 0.4431150 0.4511401 0.4569598 0.4603242 0.4610090 0.4588252 0.4536292 0.4453331 0.4339131 0.4194175 0.4019724 0.3817841 0.3591390 0.3343998 0.3079971 0.2804169 0.2521851 0.2238474 0.1959473 0.1690032 0.1434853 0.1197950 0.0982476 0.0790605 0.0623480 0.0481224 0.0363022 0.0267264 0.0191730 0.0133799 0.0090670 0.0059552 0.0037834 0.0023200 0.0013700 0.0007772 0.0004224 0.0002194 0.0001086 0.0000510 0.0000227 0.0000095 0.0000038 0.0000014 0.0000005 0.0000002 0.0 0.0 3D 141 0.10719878D+00 0.0000003 0.0000004 0.0000004 0.0000005 0.0000006 0.0000007 0.0000008 0.0000009 0.0000011 0.0000013 0.0000015 0.0000017 0.0000020 0.0000024 0.0000027 0.0000032 0.0000037 0.0000044 0.0000051 0.0000060 0.0000070 0.0000081 0.0000095 0.0000111 0.0000129 0.0000151 0.0000176 0.0000206 0.0000240 0.0000280 0.0000326 0.0000381 0.0000444 0.0000518 0.0000603 0.0000703 0.0000819 0.0000955 0.0001112 0.0001295 0.0001508 0.0001755 0.0002042 0.0002376 0.0002763 0.0003213 0.0003735 0.0004340 0.0005041 0.0005854 0.0006795 0.0007884 0.0009144 0.0010600 0.0012283 0.0014227 0.0016470 0.0019058 0.0022039 0.0025473 0.0029424 0.0033967 0.0039186 0.0045176 0.0052044 0.0059910 0.0068910 0.0079193 0.0090928 0.0104300 0.0119515 0.0136796 0.0156388 0.0178557 0.0203585 0.0231776 0.0263446 0.0298925 0.0338548 0.0382654 0.0431571 0.0485611 0.0545057 0.0610148 0.0681063 0.0757902 0.0840665 0.0929232 0.1023335 0.1122538 0.1226209 0.1333498 0.1443321 0.1554338 0.1664954 0.1773316 0.1877327 0.1974680 0.2062900 0.2139413 0.2201625 0.2247030 0.2273323 0.2278534 0.2261159 0.2220291 0.2155739 0.2068117 0.1958895 0.1830405 0.1685788 0.1528882 0.1364047 0.1195942 0.1029267 0.0868487 0.0717567 0.0579745 0.0457360 0.0351772 0.0263349 0.0191565 0.0135148 0.0092290 0.0060874 0.0038697 0.0023652 0.0013864 0.0007772 0.0004156 0.0002113 0.0001018 0.0000463 0.0000198 0.0000080 0.0000030 0.0000010 0.0000003 0.0000001 0.0 0.0 1.00000000RI( 2 1, 3 1) 1.82574186RI( 1 1, 2 2) 1.00000000RI( 2 2, 1 1) 0.18257419RI( 3 2, 2 2) * * 5 5 5 6 HE+00 2 7 1P 1D 2 2 1 0 -2.12355450 1S1(1)2P1(1) 0.9997838 2P2(1)3D1(1) 0.0207920 -2.05557630 1S2(1)3D2(1) 0.9999900 2P3(2) -0.0044660 1S1 129 0.56614304D+01 0.5319463 0.5481842 0.5648747 0.5820261 0.5996466 0.6177437 0.6363248 0.6553965 0.6749650 0.6950357 0.7156134 0.7367017 0.7583036 0.7804207 0.8030533 0.8262004 0.8498594 0.8740258 0.8986933 0.9238532 0.9494947 0.9756041 1.0021650 1.0291576 1.0565588 1.0843417 1.1124753 1.1409240 1.1696476 1.1986005 1.2277317 1.2569842 1.2862944 1.3155922 1.3447999 1.3738326 1.4025969 1.4309914 1.4589058 1.4862205 1.5128069 1.5385268 1.5632322 1.5867657 1.6089601 1.6296393 1.6486181 1.6657030 1.6806934 1.6933823 1.7035575 1.7110039 1.7155048 1.7168448 1.7148121 1.7092021 1.6998202 1.6864864 1.6690393 1.6473404 1.6212797 1.5907801 1.5558030 1.5163534 1.4724849 1.4243044 1.3719766 1.3157266 1.2558429 1.1926780 1.1266482 1.0582309 0.9879602 0.9164209 0.8442387 0.7720702 0.7005887 0.6304696 0.5623737 0.4969297 0.4347165 0.3762459 0.3219475 0.2721552 0.2270973 0.1868912 0.1515419 0.1209461 0.0949007 0.0731163 0.0552338 0.0408439 0.0295082 0.0207791 0.0142194 0.0094181 0.0060032 0.0036499 0.0020845 0.0010849 0.0004771 0.0001302 -0.0000505 -0.0001307 -0.0001540 -0.0001479 -0.0001287 -0.0001056 -0.0000833 -0.0000637 -0.0000476 -0.0000348 -0.0000249 -0.0000175 -0.0000120 -0.0000081 -0.0000053 -0.0000034 -0.0000021 -0.0000013 -0.0000007 -0.0000004 -0.0000002 -0.0000001 -0.0000001 -.0 -.0 -.0 -.0 2P1 138 0.21035480D+00 0.0001827 0.0002005 0.0002201 0.0002416 0.0002651 0.0002910 0.0003193 0.0003504 0.0003845 0.0004219 0.0004629 0.0005078 0.0005571 0.0006111 0.0006703 0.0007351 0.0008062 0.0008841 0.0009693 0.0010628 0.0011650 0.0012770 0.0013996 0.0015337 0.0016805 0.0018411 0.0020166 0.0022086 0.0024184 0.0026477 0.0028982 0.0031718 0.0034705 0.0037964 0.0041520 0.0045398 0.0049625 0.0054232 0.0059250 0.0064713 0.0070658 0.0077124 0.0084154 0.0091794 0.0100090 0.0109096 0.0118866 0.0129460 0.0140939 0.0153371 0.0166826 0.0181381 0.0197114 0.0214112 0.0232463 0.0252264 0.0273614 0.0296621 0.0321395 0.0348054 0.0376721 0.0407525 0.0440597 0.0476074 0.0514095 0.0554801 0.0598329 0.0644813 0.0694381 0.0747146 0.0803204 0.0862625 0.0925450 0.0991677 0.1061254 0.1134072 0.1209950 0.1288628 0.1369755 0.1452884 0.1537460 0.1622818 0.1708178 0.1792646 0.1875219 0.1954789 0.2030158 0.2100052 0.2163142 0.2218069 0.2263475 0.2298034 0.2320495 0.2329723 0.2324740 0.2304778 0.2269322 0.2218154 0.2151394 0.2069531 0.1973442 0.1864399 0.1744061 0.1614436 0.1477840 0.1336819 0.1194064 0.1052304 0.0914198 0.0782216 0.0658531 0.0544925 0.0442719 0.0352725 0.0275244 0.0210083 0.0156616 0.0113867 0.0080607 0.0055464 0.0037028 0.0023937 0.0014953 0.0009007 0.0005219 0.0002901 0.0001544 0.0000784 0.0000379 0.0000173 0.0000075 0.0000031 0.0000012 0.0000004 0.0000001 0.0 0.0 0.0 2P2 131 0.31968754D+01 0.0027760 0.0030470 0.0033443 0.0036705 0.0040284 0.0044209 0.0048515 0.0053236 0.0058414 0.0064092 0.0070317 0.0077141 0.0084621 0.0092819 0.0101803 0.0111647 0.0122430 0.0134241 0.0147175 0.0161336 0.0176838 0.0193803 0.0212366 0.0232671 0.0254875 0.0279150 0.0305679 0.0334663 0.0366316 0.0400871 0.0438577 0.0479704 0.0524539 0.0573390 0.0626588 0.0684483 0.0747448 0.0815878 0.0890189 0.0970820 0.1058228 0.1152891 0.1255300 0.1365964 0.1485396 0.1614118 0.1752647 0.1901490 0.2061135 0.2232039 0.2414613 0.2609209 0.2816098 0.3035450 0.3267311 0.3511576 0.3767955 0.4035944 0.4314786 0.4603436 0.4900520 0.5204296 0.5512614 0.5822886 0.6132049 0.6436549 0.6732333 0.7014852 0.7279092 0.7519628 0.7730708 0.7906374 0.8040618 0.8127581 0.8161793 0.8138441 0.8053667 0.7904876 0.7691034 0.7412934 0.7073395 0.6677377 0.6231966 0.5746229 0.5230910 0.4697982 0.4160067 0.3629777 0.3119009 0.2638284 0.2196173 0.1798890 0.1450082 0.1150844 0.0899945 0.0694230 0.0529139 0.0399269 0.0298920 0.0222546 0.0165100 0.0122233 0.0090376 0.0066720 0.0049129 0.0036021 0.0026240 0.0018950 0.0013537 0.0009547 0.0006635 0.0004536 0.0003047 0.0002008 0.0001296 0.0000819 0.0000505 0.0000304 0.0000178 0.0000101 0.0000056 0.0000030 0.0000016 0.0000008 0.0000004 0.0000002 0.0000001 0.0 0.0 0.0 0.0 3D1 135 0.17836844D+01 0.0000142 0.0000166 0.0000194 0.0000227 0.0000265 0.0000310 0.0000362 0.0000423 0.0000495 0.0000578 0.0000675 0.0000788 0.0000921 0.0001076 0.0001257 0.0001468 0.0001714 0.0002001 0.0002337 0.0002729 0.0003185 0.0003718 0.0004340 0.0005065 0.0005910 0.0006896 0.0008044 0.0009383 0.0010942 0.0012758 0.0014872 0.0017332 0.0020195 0.0023525 0.0027395 0.0031893 0.0037118 0.0043182 0.0050218 0.0058375 0.0067825 0.0078767 0.0091423 0.0106049 0.0122936 0.0142411 0.0164843 0.0190649 0.0220293 0.0254293 0.0293220 0.0337706 0.0388438 0.0446162 0.0511679 0.0585837 0.0669525 0.0763655 0.0869150 0.0986913 0.1117797 0.1262568 0.1421856 0.1596101 0.1785489 0.1989884 0.2208756 0.2441100 0.2685374 0.2939428 0.3200458 0.3464988 0.3728869 0.3987329 0.4235064 0.4466381 0.4675384 0.4856216 0.5003332 0.5111786 0.5177531 0.5197680 0.5170727 0.5096682 0.4977120 0.4815120 0.4615099 0.4382556 0.4123749 0.3845335 0.3554013 0.3256204 0.2957791 0.2663942 0.2379016 0.2106536 0.1849225 0.1609079 0.1387443 0.1185107 0.1002381 0.0839160 0.0694989 0.0569113 0.0460524 0.0368018 0.0290239 0.0225734 ▶EOF◀