|
DataMuseum.dkPresents historical artifacts from the history of: RC4000/8000/9000 |
This is an automatic "excavation" of a thematic subset of
See our Wiki for more about RC4000/8000/9000 Excavated with: AutoArchaeologist - Free & Open Source Software. |
top - metrics - download
Length: 9984 (0x2700) Types: TextFile Names: »gorotcpl«
└─⟦621cfb9a2⟧ Bits:30002817 RC8000 Dump tape fra HCØ. Detaljer om "HC8000" projekt. └─⟦0364f57e3⟧ └─⟦1248b0c55⟧ »gobib« └─⟦this⟧
;gosav lines.10000 time.180 goout=set 200 permanent goout.15 o goout clear rotcpl cpltxt=set 50 cpltxt=edit algrotfit g5/rotfit/rotcpl/,g/.no/.yes/,r/yes)/no)/ l-2,r/95/120/,l3,r/CON/AND COUPLING CON/,r/3-3-1975/21-5-1980/ l./Rot/,r/D,/Gcp(4:9), D,/,l15,r/Rot/Rot,Gcp/ l7,r/FIT of 3-3-1975/CPL of 21-5-1980/,l6,r/8/14/,r/15/21/ l6,r/8/14/,r/15/21/,l8,r/7/13/,r/8/14/,l7,r/8/14/ l./oblat:=/,r/;/ == N>=0; N:= abs N;/ l./DR(/,r/3/10/,l4,r/4/10/,l./.dddd>/,d,i/ end else if l<10 then begin so:=Gcp(l); write(res,<:G:>,case l-3 of (<:a:>,<:b:>,<:c:>,<:bc:>,<:ca:>,<:ab:>),<: = :>) /,l3,r/, if/) /,d1,r/d/d; j:=3; k:=0; write(res,string format(j,k,so,s),so)/ l./DR(i)<>0/,r/4/10/,l3,r/r1/Cx1,Cy1,Cz1,Cx2,Cy2,Cz2, r1/,l2,r/;/,hc;/,l./DR(i+3)/,g1/i+3/i+9/,l9,g5/j+3/j+9/ l-4,g28/DR(4)/DR(10)/,l-28,g29/DR(5)/DR(11)/,l-29 g32/DR(6)/DR(12)/,l-32,g32/DR(7)/DR(13)/,l-32,g32/DR(8)/DR(14)/ l./if i>3/,r/3/9/,l./if quartic/,i/ write(res,<: Coupling constants (MHz): :>); j:=j+5; for k:=6,9 do begin for i:=k-2 step 1 until k do begin y:=Gcp(i); write(res,string format(lw(i),exp(i),y,lo(i)),y) end; if ha then begin write(res,<: +-:>); for i:=k-2 step 1 until k do begin j:=j+1; y:=sqrt(col(i,i)*s); if y=0 then write(res,sp,lw(i)-5,<:fixed:>) else write(res,string lo(i),y) end end; if k=6 then write(res,nl,2,sp,2) end; /,g8/for i:=4/for i:=10/,l./Q+1;/,i/ Cx1:= Gcp(xx+3); Cy1:= Gcp(yy+3); Cz1:= Gcp(zz+3); Cx2:= Gcp(xx+6); Cy2:= Gcp(yy+6); Cz2:= Gcp(zz+6); /,l4,r/norm,//,l./k:=-1,1/,i/ j0:= if J1>J2 then J1 else J2; begin integer Nt,i0,i1,i2; array e(1:j0+j0+1,-5:8),Py,Py2(1:j0); /,l3,r/2+1/2+1; hc:= true/,l2,r/2+1/2+1; hc:= J1<>J2/ l5,r/;/; Nt:= j0+j0+1; /,d,i/ if j0>0 then begin array Pdif,S(1:N),a,b(1:Nt),PG(1:21),PS(1:6); if hc then begin /,l6,d1,r/./. They are stored according to (with i<j) reel part: H(i,j) = e(j,j-i), imag. part: H(i,j) = e(j,i-j). /,d1,l3,d./alfa(2)/,i? for i:=1 step 1 until Nt do for j:=-5 step 1 until 8 do e(i,j):= 0; Py(1):= sqrt(JJ*2); Py2(1):= 0; for j:=j0-1 step -1 until 1 do Py(j+1):= sqrt((j0-j)*(j0+j+1)); for j:=j0 step -1 until 2 do Py2(j):= Py(j)*Py(j-1); e(1,0):= F; for j:=j0 step -1 until 1 do begin i1:= j+j; i2:= i1+1; K2:= j*j; Pz4:= K2; Pz4:= Pz4*K2; e(i1,0):= e(i2,0):= ((G2*K2+G1)*K2+G)*K2+F; e(i2,1):= Cz1*j; p:= Py(j)/2; if j>1 then begin e(i1,1) := e(i2,3) := Cx2*i2*p; e(i1,2) := e(i2,2) := Cy1*p; e(i1,-1):= e(i2,-3):= Cx1*p; e(i1,-2):= e(i2,-2):= Cy2*i2*p; y:= H2*Pz4+H1*K2+H; p:= Py2(j); if j>2 then begin e(i1,-3):= e(i2,-5):= Cz2*p/2; K2:= (j-2)**2; Pz4:= K2; Pz4:= Pz4*K2; e(i1,4) := e(i2,4) := -(H2*Pz4+H1*K2+y)*p; p:= -DW*p*Py2(j-2); if j>4 then e(i1,8):= e(i2,8):= p else if j=4 then e(i1,7):= p else if j=3 then begin y:= e(i1,4); p:= DW*JJ*Py2(j); e(i1,4):= y-p; e(i2,4):= y+p; end end else begin e(i1,3):= -y*p; e(i2,-4):= Cz2*p/2; y:= e(i1,0); p:= (JJ-2)*JJ*DW; e(i1,0):= y-p; e(i2,0):= y+p end end else begin e(i1,1):= Cy1*p; e(i1,-1):= Cy2*p; e(i2,2):= Cx2*p; e(i1,-2):= Cx1*p; y:= e(i1,0); p:= (H+(H1+H2)*2)*JJ; e(i1,0):= y-p; e(i2,0):= y+p; end end end hc; j:= i1:= case matr of (4,5,2,3); i2:= if matr=1 then 2 else 1; if N>2 and DW<>0 then begin comment The pentadiagonal matrix of the uncoupled state is reduced to tridiagonal form by succesive Jacobi rotations, Swartz: Numer. Math. 12, 231 (1968), modified by replacing a(i,j) and b by v(i+j,j) and p; integer k; real c,s,c2,s2,cs,u,u1; array v(1:N,0:2); for i:=i2 step 1 until N do begin for k:=0,1,2 do v(i,k):=e(j,k*4); j:=j+4 end; if matr =1 then begin v(1,0):= e(1,0); v(1,1):= v(1,2):= 0; if N>1 then v(2,1):= e(4,3); if N>2 then v(3,2):= e(8,7); end; comment v(1,1):=v(1,2):=v(2,2):=0; for k:=1 step 1 until N-2 do begin for j:=k+2 step 2 until N do begin if j=k+2 then begin if v(k+2,2)=0 then goto endk; p:=-v(k+1,1)/v(k+2,2); end else begin if G=0 then goto endk; p:=-v(j-1,2)/G; end; s2:=1/(p*p+1); s:=sqrt(s2); c:=p*s; c2:=c*c; cs:=c*s; u:=c2*v(j-1,0)-2*cs*v(j,1)+s2*v(j,0); u1:=s2*v(j-1,0)+2*cs*v(j,1)+c2*v(j,0); v(j,1):=cs*(v(j-1,0)-v(j,0))+(c2-s2)*v(j,1); v(j-1,0):=u; v(j,0):=u1; u:=c*v(j-1,1)-s*v(j,2); v(j,2):=s*v(j-1,1)+c*v(j,2); v(j-1,1):=u; if j<>k+2 then v(j-1,2):=c*v(j-1,2)-s*G; if j<N then begin u:=c*v(j+1,2)-s*v(j+1,1); v(j+1,1):=s*v(j+1,2)+c*v(j+1,1); v(j+1,2):=u end; if j+2<=N then begin G:=-s*v(j+2,2); v(j+2,2):=c*v(j+2,2) end end j; endk: end k; for i:=1 step 1 until N do begin a(i):=v(i,0); b(i):=v(i,1) end end else begin for i:=i2 step 1 until N do begin a(i):= e(j,0); b(i):= e(j,4); j:= j+4; end; if matr=1 then begin a(1):= e(1,0); b(1):= 0; if N>1 then b(2):= e(4,3); end end; for i:=2 step 1 until N do Pdif(i):= -Py2(k0+i+i); Pdif(1):= (case matr of (0,0,-1,1))*JJ//2; k0:=k0+N+N; K2:= k0*k0; ?,l./sqrt/,g1/sqrt(beta/abs b/,l-1,g1/) else/ else/ l2,g/alfa/a/,l1,i/ for i:=2 step 1 until N do b(i):= b(i)*b(i); /,l4,r/alfa/a/,r/beta/b/,l7,d./N:= N+1;/,i? begin integer k; array d(-8:7),u(1:Nt-1,1:8); k:= if matr>1 then i1-4 else if j=1 then -3 else -4; i0:= k+j*4; G:=e(i0,0); for i:=1 step 1 until 8 do begin d(-i):= if i0-i>0 then e(i0,i) else 0; d(i-1):= if i0+i<=Nt then e(i0+i,i) else 0 end i; it:=0; Nt:=Nt-1; y:=lambda; repeat: for i:=Nt step -1 until 1 do b(i):=0; for i:=-8 step 1 until 7 do if d(i)<>0 then b(i0+i):=-d(i); for i:=Nt step -1 until 1 do begin for j:=0,j+1 while i-j>0 and j<=8 do begin p:= if i<i0 then e(i,j) else if j-1<i-i0 then e(i+1,j) else if j<8 then e(i+1,j+1) else 0; k:= i; for k:=k+1 while k<=Nt and k-i+j<=8 do p:=p-a(k)*u(k,k-i)*u(k,k-i+j); if j=0 then a(i):=p-lambda else u(i,j):=p/a(i) end j; p:=b(i); k:=i; for k:=k+1 while k<=Nt and k-i<=8 do p:=p-u(k,k-i)*b(k); b(i):=p end i; qd:=1; for i:=1 step 1 until Nt do begin p:=if b(i)=0 then 0 else b(i)/a(i); k:=i; for k:=k-1 while k>0 and i-k<=8 do p:=p-u(i,i-k)*b(k); b(i):=p; qd:=qd+p*p end i; if Nt>0 then begin H:=G-lambda; for i:=-8 step 1 until 7 do if d(i)<>0 then H:= H+d(i)*b(i0+i); H:=H/qd; if it<2 or (abs H<abs y and lambda+H<>lambda) then begin lambda:=lambda+H; it:=it+1; y:=H; goto repeat end end; qd:= 1/sqrt(qd); for i:=Nt step -1 until i0 do b(i+1):=b(i)*qd; for i:=i0-1 step -1 until 1 do b(i):=b(i)*qd; b(i0):=qd; Nt:=Nt+1 end; for i:=i2 step 1 until N do begin S(i):= b(i1); i1:= i1+4 end; if matr=1 then S(1):= b(1); ?,l./norm/,g3/)*norm//,l-3,g3/(//,l1,r/:= Pz*norm//,l3,d,i/ for i:=4 step 1 until 9 do PG(i):= 0; if j0<6 and -,ha then begin writecr; if k=-1 then writecr; for i:=1 step 1 until Nt do begin write(res,<< -d.dddddddd'-d>,b(i)); if i mod 4 = 0 then writecr end; write(res,<< dd>,it); writecr; write(res,<< -d.dddddddd'-d>,lambda,Pz,Pz4,Pz6,nl,1, Pxy,Pzxy,Pxyxy,Pzzd); linecount:= linecount+1; writecr end; /,l./PG(4)/,g15/*norm//,l-15,g25/PG(4/PG(10/,l-25,g26/PG(5/PG(11/,l-25 g26/PG(6/PG(12/,l-26,g27/PG(7/PG(13/,l-26,g27/PG(8/PG(14/ l1,r/8/14/,r/4/10/,l-28,r/12/18/,l1,r/15/21/,l1,r/7,8/13,14/ l1,r/4,5,6/10,11,12/,l7,r/9/15/,r/10/16/ l1,r/11/17/,r/12/18/,l1,r/13/19/,r/14/20/,l1,r/15/21/ l./end k;/,r/;/ end e;/,l./for j:=4/,r/4/10/,l17,r/-1/5/ l./if k>3/,r/3/9/,l./DR(i)-AO/,r/4/10/ f i cpltxt o c edit goout l b,l-21,p20,f ;gosav time.300 rotcpl <15-N 2H-triazole, 26-1-76.> 8003 4 9320.226100 9266.540991 4645.1344 -62 0 0 0 0 0 0 -9.6719 -0.00638 -3.273080 -2 4 5 6 7 8 9 13 14 9 8 2 9 8 1 1 12752.99 8 7 2 8 7 1 1 12988.59 34 32 3 34 32 2 1 13421.52 5 4 2 5 4 1 1 13543.85 33 31 3 33 31 2 1 14095.37 4 2 2 4 4 1 1 14220.69 5 3 2 5 5 1 1 14364.88 6 4 2 6 6 1 1 14543.33 7 5 2 7 7 1 1 14758.96 32 30 3 32 30 2 1 14760.65 10 8 2 10 10 1 1 15663.32 30 28 3 30 28 2 1 16054.21 12 10 2 12 12 1 1 16520.59 28 26 3 28 26 2 1 17280.40 49 46 4 49 46 3 1 17603.52 14 12 2 14 14 1 1 17620.62 26 24 3 26 24 2 1 18419.16 25 23 3 25 23 2 1 18949.995 16 14 2 16 16 1 1 18995.04 47 44 4 47 44 3 1 19325.83 24 22 3 24 22 2 1 19452.37 23 21 3 23 21 2 1 19924.37 22 20 3 22 20 2 1 20364.41 18 16 2 18 18 1 1 20669.43 45 42 4 45 42 3 1 21013.37 20 18 3 20 18 2 1 21143.53 19 17 3 19 17 2 1 21480.94 18 16 3 18 16 2 1 21783.22 17 15 3 17 15 2 1 22050.685 16 14 3 16 14 2 1 22284.15 15 13 3 15 13 2 1 22484.99 43 40 4 43 40 3 1 22640.27 14 12 3 14 12 2 1 22654.95 20 18 2 20 20 1 1 22660.43 13 11 3 13 11 2 1 22796.30 12 10 3 12 10 2 1 22911.62 11 9 3 11 9 2 1 23003.67 10 8 3 10 8 2 1 23075.34 1 1 1 2 1 2 1 23201.91 6 3 3 6 5 2 1 23249.32 1 0 1 2 0 2 1 23255.135 7 4 3 7 6 2 1 23256.62 8 5 3 8 7 2 1 23267.78 9 6 3 9 8 2 1 23283.98 10 7 3 10 9 2 1 23306.61 11 8 3 11 10 2 1 23337.20 12 9 3 12 11 2 1 23377.47 13 10 3 13 12 2 1 23429.37 14 11 3 14 13 2 1 23495.08 15 12 3 15 14 2 1 23576.98 17 14 3 17 16 2 1 23800.11 18 15 3 18 17 2 1 23947.34 19 16 3 19 18 2 1 24122.79 41 38 4 41 38 3 1 24181.85 20 17 3 20 19 2 1 24330.01 21 18 3 21 20 2 1 24572.93 22 19 3 22 21 2 1 24855.55 22 20 2 22 22 1 1 24974.62 23 20 3 23 22 2 1 25182.17 24 21 3 24 23 2 1 25557.15 25 22 3 25 24 2 1 25984.89 26 23 3 26 25 2 1 26469.85 21 20 2 21 20 1 1 33 20 19 2 20 19 1 1 22 19 18 2 19 18 1 1 39 18 17 2 18 17 1 1 25 17 16 2 17 16 1 1 44 -1 ▶EOF◀