DataMuseum.dk

Presents historical artifacts from the history of:

RC4000/8000/9000

This is an automatic "excavation" of a thematic subset of
artifacts from Datamuseum.dk's BitArchive.

See our Wiki for more about RC4000/8000/9000

Excavated with: AutoArchaeologist - Free & Open Source Software.


top - metrics - download

⟦37a4fc11e⟧ TextFile

    Length: 87552 (0x15600)
    Types: TextFile
    Names: »tcgorder031«

Derivation

└─⟦667bb35d6⟧ Bits:30007480 RC8000 Dump tape fra HCØ.
    └─⟦4334b4c0b⟧ 
        └─⟦this⟧ »tcgorder031« 

TextFile

        ;*page:  XXXX   micasm03
*load:  m2903
        ; ----------------------------
        ; skipped  is code 'finalx'
        ; skipped  is code 'rhtest' 
        ; 810810/1710:
        ;             auto load interupt removed.
        ;             skipped by code 'autoin'
        ; 810810/1700:
        ;             fetch 8000 instr: from register repaired.
        ; 810810/1730:
        ;             clearing of last bit in ic removed from jl
        ; HC8000 instr: and inserted in noprefetch module
        ;             now ic can never be negative.
        ;             also corrected in rh2901.
        ; 810817/2000:
        ;             gg 99 introduced, get interupt level
        ;             from amd9511 interupt controler.
        ; 810817/2000:
        ;             gg with address >= 200 defined as
        ;             user programmed instructions. (i.e
        ;             instrcution which can be used from a
        ;             user program and gives a result  which
        ;             is defines by a user.
        ; 810817/2000: 
        ;             gg 200 = reverse bits in register selected.
        ; 810818/0900:
        ;             gg 201 = count register 1 and skip if zero.
        ;             gg 202 = count register 2 and skip if zero.
        ;             the skip is performed when the selected register
        ;             reach or pass zero.
        ;              the count can be both positive
        ;             and negative depending on the sign of the
        ;             contents of the selected working register.
        ; 810819/1100:
        ;             fetch changed so address after jump vector
        ;             is contained in wrk1, and wrk1 is subtracted
        ;             the address register at external interupt.
        ;NEXT.
        ; ------------------------------------------------------------
        ; WHAT SCHOULD BE DONE:
        ; 001: if you define that yuo never double store
        ;      overlabing registers and memory(8)
        ;      or double load some check could be removed.
        ; 002: if you define that registers that contain
        ; HC8000 instr:s, never continue in memory(8)
        ;      some check in module regins can be removed.
        ; 003: if you define that the word which is stored
        ;      by a store 8000 instr: never is used by
        ;      as the absolute next 8000 instr:, then
        ;      some check can be removed in the store module.
        ; 004: the increment of the instruction counter could be 
        ;      much earlyer in most instrcution. fx. in the
        ;      same moment you call get op, if you insure that
        ;      the increment is removed from exeption.
        ; NEXT WHAT.
        ; --------------------------------------------------------------
        ; -------------------------------------------------------------
        ; micro 8000 instr: description.
        ;
        ; only one format.
        ; mir(0) is msb.
        ; mir(47) is lsb.
        ;
        ; mir(0)      = -, cc ccenable.
        ; mir(1:4)    = amd2910 micro program sequencer 8000 instr:.
        ; mir(5)      = -,( ce my)
        ; mir(6)      = -,( ce M)
        ; mir(7:10)   = amd2904 condition select.
        ; mir(11:20)  = amd2903 bitslice 8000 instr:.
        ;               mir(14) is intruction bit 5 for msh.
        ;               mir(15) is 8000 instr: bit 5 for lsh.
        ; mir(21:22)  = amd2904 carry control.
        ; mir(23)     = -,(amd2904 enable)
        ; mir(24)     = -,(ea)
        ; mir(25)     = hc8000 working register select.
        ; mir(26)     = -,(Oeb)
        ; mir(27)     = -,(write hc2901)
        ; mir(28:31)  = source register address ( a address to amd2903).
        ; mir(32:35)  = disitnation register address.
        ; mir(26:27)  = jump address, imidiate operand.
*const: e01inp,23             ; entry get intr. with no prefetc
*const: e01ip,24              ; entry in hc2901 instr. with prefetch.
                              ; -            -- -   -
*const: e01gmw,25             ; entry in hc2901 get memory word. 
*const: e01pmw,26             ; entry in hc2901 put memory word.
*const: e01gdw,27             ; entry in hc2901 get double memory word.
*const: e01pdw,28             ; entry in hc2901 put double memory word.
*const: e01rtc,29             ; gg(100) , generel get real time clock.
*const: e01rtr,30             ; generel get test register ( 64)
*const: e01wtr,31             ; generel put testregister ( 64)
*const: e01rtw,32             ; generel get test register with wait
                              ; (66).
*const: e01dom,13             ; data out memory word.
*const: e01dob,5              ; data out function jump table.
*const: e01dim,22             ; data in memory word.
*const: e01dib,14             ; data in function jumb table.
*const: e01drd,33             ; dynamic registers dump
*const: e01drr,36             ; dynamic registers restore.
*const: e01rin,37             ; return from interupt.
*const: e01aci,38             ; get and clear interupt or exeption.
*const: e01ini,0              ; initialize.
*const: e01sdl,35             ; set interupt disable level.
*const: e01sel,34             ; set interupt enable level.
*const: e01is1,39             ; interupt service entry 1.
*const: e01skn,40             ; entry skip next instr and fetch.
*const: e01cil,41             ; gg (94) get interupt level from
                              ; amd9511 charakter interupt level 
                              ; controler.
*const: montop,256            ; the higest monitor operation is set to
*const: autoin,6              ; cause no of auto load. (interupt 3
*const: disbit,8              ; position of diable bit in
                              ; the status register bit(20).
                              ; system table error).
                              ; a fixed valus of 512.


*origo: 0
        jmp(init)             ; goto init.
*notin: rhtest
        ; entries for mapping proms.
        ; --------------------------
        jmp(ielax3)           ;indirect relative and x3
        jmp(ielax2)           ;  -do.-          and x2.
        jmp(ielax1)           ;  - do. -        and x1.
        jmp(ielati)           ; - do. -          no index reg.
        jmp(relax3)           ; relative and index reg 3.
        jmp(relax2)           ;  - do. -               2
        jmp(relax1)           ;  - do. -               1
        jmp(relati)           ;  - do. -      no index register.
        jmp(inlyx3)           ; indirect and index reg 3.
        jmp(inlyx2)           ;     - do. -            2.
        jmp(inlyx1)           ;     - do. -            1.
        jmp(iomodi)           ;      - do. -  no index reg.
        jmp(onlyx3)           ; direct addressing and index reg 3.
        jmp(onlyx2)           ;    - do. -                      2.
        jmp(onlyx1)           ;    - do. -                      1.
        jmp(nomodi)           ;
        jmp(prgexp)           ; HC8000 instr: 63. xx unass.
        jmp(prgexp)           ; HC8000 instr: 62. unassigned.
        jmp(prgexp)           ; HC8000 instr: 61. unassigned..
        jmp(prgexp)           ; HC8000 instr: 60. unassigned.
        jmp(prgexp)           ; HC8000 instr: 59. unassigned
        jmp(prgexp)           ; HC8000 instr: 58. unassigned.
        jmp(ss)               ; HC8000 instr: 57.    
        jmp(aa)               ; HC8000 instr: 56.     
        jmp(ds)               ; HC8000 instr: 55.            
        jmp(dl)               ; HC8000 instr: 54.    
        jmp(prgexp)           ; HC8000 instr: 53. cf.
        jmp(prgexp)           ; HC8000 instr: 52. fd.
        jmp(prgexp)           ; HC8000 instr: 51. unas.
        jmp(prgexp)           ; HC8000 instr: 50. fm.
        jmp(prgexp)           ; HC8000 instr: 49. prgexp.
        jmp(prgexp)           ; HC8000 instr: 48. fa.
        jmp(gp)               ; HC8000 instr: 47. unas.
        jmp(sx)               ; HC8000 instr: 46.     
        jmp(sz)               ; HC8000 instr: 45.     
        jmp(so)               ; HC8000 instr: 44.    
        jmp(sn)               ; HC8000 instr: 43.     
        jmp(se)               ; HC8000 instr: 42.    
        jmp(sl)               ; HC8000 instr: 41.              
        jmp(sh)               ; HC8000 instr: 40.              
        jmp(ld)               ; HC8000 instr: 39.    
        jmp(ls)               ; HC8000 instr: 38.    
        jmp(ad)               ; HC8000 instr: 37.     
        jmp(as)               ; HC8000 instr: 36.    
        jmp(nd)               ; HC8000 instr: 35.     
        jmp(ns)               ; HC8000 instr: 34.    
        jmp(ac)               ; HC8000 instr: 33.     
        jmp(prgexp)           ; HC8000 instr: 32. ci.
        jmp(prgexp)           ; HC8000 instr: 31. unas.
        jmp(prgexp)           ; HC8000 instr: 30. unas.
        jmp(di)               ; HC8000 instr: 29.     
        jmp(gg)               ; HC8000 instr: 28.    
        jmp(xs)               ; HC8000 instr: 27.    
        jmp(hs)               ; HC8000 instr: 26.                         
        jmp(rx)               ; HC8000 instr: 25.    
        jmp(wd)               ; HC8000 instr: 24.     
        jmp(rs)               ; HC8000 instr: 23.      
        jmp(re)               ; HC8000 instr: 22.     
        jmp(sp)               ; HC8000 instr: 21.    
        jmp(rl)               ; HC8000 instr: 20.    
        jmp(bz)               ; HC8000 instr: 19. zl.
        jmp(ba)               ; HC8000 instr: 18. ea.
        jmp(bs)               ; HC8000 instr: 17. ea.
        jmp(xl)               ; HC8000 instr: 16.     
        jmp(je)               ; HC8000 instr: 15.       
        jmp(jd)               ; HC8000 instr: 14.    
        jmp(jl)               ; HC8000 instr: 13.    
        jmp(ri)               ; HC8000 instr: 12.            
        jmp(al)               ; HC8000 instr: 11.    
        jmp(wm)               ; HC8000 instr: 10.    
        jmp(am)               ; HC8000 instr: 9.     
        jmp(ws)               ; HC8000 instr: 8.      
        jmp(wa)               ; HC8000 instr: 7.     
        jmp(lx)               ; HC8000 instr: 6.     
        jmp(lo)               ; HC8000 instr: 5.      
        jmp(la)               ; HC8000 instr: 4.     
        jmp(hl)               ; HC8000 instr: 3.     
        jmp(bl)               ; HC8000 instr: 2. el.  
        jmp(do)               ; HC8000 instr: 1.     
        jmp(prgexp)           ; HC8000 instr: 00. unas.
        ; entry from vector prom with external interupt.
        jmp(extint)           ; goto external interupt.
*until: rhtest


        ; address calculations.
        ; =====================
nomodi/"0:jmap                ; no modifiers
relati/"8:jmap       add(addrs,ic); relative
relax1/"9:jmp(relati) add(addrs,x1); reletive and x1
relax2/"10:jmp(relati) add(addrs,x2); relative and x2
relax3/"11:jmp(relati) add(addrs,x3); relative and x3
onlyx1/"1:jmap       add(addrs,x1); only x1
onlyx2/"2:jmap       add(addrs,x2); only x2
onlyx3/"3:jmap       add(addrs,x3); only x3
iomodi/"4:jsb(getop)          ; only indirect
        jmap mover(addrs,wrk0); 
inlyx1/"5:jsb(getop) add(addrs,x1); indirect and x1.
        jmap mover(addrs,wrk0);
inlyx2/"6:jsb(getop) add(addrs,x2); indirect and x2.
        jmap mover(addrs,wrk0);
inlyx3/"7:jsb(getop) add(addrs,x3); indirect and x3.
        jmap mover(addrs,wrk0);
ielati/"12:jsb(getop) add(addrs,ic); indirect and relative
        jmap mover(addrs,wrk0);
ielax1/"13:jmp(ielati) add(addrs,x1); indirect and relative and x1
ielax2/"14:jmp(ielati) add(addrs,x2); indirect and relative and x2
ielax3/"15:jmp(ielati) add(addrs,x3); indirect and relative and x3
        ▶01◀



        ; new initialize.
        ; ---------------
init:   mzero(base) nothm csmy shinz; base := 0, reset half word
                              ; move logic, set normal condition
                              ; select logic, set shift in
                              ; zero.
        invr(cpa,base) srgt   ; cpa := max integer.
        invr(status,cpa)      ; status(1:23) := 0,
                              ; status(0) := 1 ( monitor mode).
        mover(uplim,cpa)      ; uppper limit := max  integer 
                              ; schould be memory sixe.
        mover(lowlim,8)       ; lower limit := 8.
        cjvec(neg)            ; if lowerlimit is negative then
                              ; jump vector prom, (this is not
                              ; the case because 8 is put into
                              ; lower limit, so next micro 
                              ; HC8000 instr: is allways performed
                              ; next but it cause the interupt
                              ; bit to be cleared).

        invr(hc2901,'e01ini)  ; clock hc2901 in no address.
init1:  cjmp(re2901,init1) invs(ic,hc2901); wait for hc2901 ready,
                              ; ic := hc2901.
        jmp(nopfic)           ; goto nopfic ( fetch instr with
                              ; no prefetch.

        ; entry get 8000 instr:  with no prefetch
        ; ---------------------------------------
nopfne: inctwo(ic)            ; ic:=ic+2.
nopfic: andinv(ic,1)          ; clear possible last bit
                              ; in 8000 instr: pointer.
        sub(ic,8) noload      ; if ic < 8 then
        cjmp(less,regins) mzero(addrs); goto regins, addrs := 0.
npref2: invr(hc2901,'e01inp)  ;                    
        jsb(chlicp) mover(wrk0,ic); wrk0 := ic, call subroutine
                              ; check limit and cpa.
fetch1: cjmp(re2901,fetch1) clre01; wait until hc2901 is ready.
        jmp(fetch2) invs(hc2901,wrk0); send address of next instr to
                              ; the hc2901, goto fetch2.

        ; entry skip next 8000 instr: and fetch.
        ; --------------------------------------
sknini: inctwo(ic)            ; ic := ic + 2.             
sknins: sub(ic,10) noload     ; if ic < 10 then
        cjmp(less,regins) mzero(addrs); goto regins, addrs := 0.
        invr(hc2901,'e01skn)  ; clock hc2901 in skip next.
        jmp(fetch2)           ; continue in wait instrcution.

        ; entry fetch 8000 instr: with prefetch
        ; --------------------------------------
pfneic: inctwo(ic)            ; ic := ic + 2.
pficin: sub(ic,10) noload     ; if ic < 10 then
        cjmp(less,regins) mzero(addrs); goto regins, addrs := 0.
                              ; if the previous 8000 instr: was
                              ; taken from w3, then the prefetch
                              ; function wil not work, so the next
                              ; is taken without prefetch, 
                              ; this check is ofcource not performed
                              ; in the getting of w3 because
                              ; the 8000 instr: in w3 could be a
                              ; jump to an 8000 instr: in w0.
                              ; hold condition from previous
                              ; HC8000 instr: to next.
ftcam:  invr(hc2901,'e01ip)   ; clock hc2901 in entry get           
                              ; instrcution with no prefetch.
                              ; also entry from 'am' anstruction.
fetch2: mover(wrk2,3)         ; init wrk2 with 3.
fetch3: cjmp(re2901,fetch3) invs(wrk1,hc2901) signex
        mover(q,wrk1) clre01     ; extra clock of read.
        jvec add(addrs,wrk1)▶16◀▶16◀▶16◀▶16◀ clre01 nothm shinz csmy; addrs := addrs + wrk1,
                                      ;  clock the hc2901
                              ; read bit,                 

        ; get instr from register.
        ; if previous 8000 instr: was taken from w3,
        ; then will the prefetch not work so
        ; the next is taken witout prefetch,
        ; this check is of course not performed in 
        ; the getting of w3 bacause the 8000 instr: in w3 could be
        ; a jump to 8000 instr: in w0 ( e.x dummy lowrk0 the monitor).
        ; registers is numbered:
        ; w0 = 0
        ; w1 = 2
        ; w2 = 4
        ; w3 = 6
        ; negative value = program exeption.
        ; 8 = get next from memory with no prefetch.
regins: sub(ic,4) noload      ; if ic < 4 then
        cjmp(less,insw01)  holdmy; goto get w0 or w1 or negative 
                              ; address, hold condition.
        cjmp(equal,regin1) mover(wrk0,w2); if ic =4 then wrk0:=w2,
                              ; goto regin1.
        sub(ic,6) noload      ; if ic = 8 then
        cjmp(equal,regin1) mover(wrk0,w3); wrk0 := w3, goto regin1.
                              ; else
        jmp(npref2)           ; goto noprefetch (location 8).
insw01: sub(ic,0) noload      ; if ic > 0 then
        cjmp(great,regin1) mover(wrk0,w1) holdmy;wrk0 := w1 , 
                              ; hold condition , goto regins.
insw0m: cjmp(notneg,regin1) mover(wrk0,w0); else wrk0 := w0, goto regin1.    
        jmp(prgex0) mzero(cause); else goto program exeption, causec:=.0.
regin1: mover(wrk1,wrk0) signex; wrk1 := signextend ( 8000 instr:)
                              ; ( address field of 8000 instr:).
        add(addrs,wrk1)       ; addrs := addrs + wrk1.
        mover(wrk2,3)         ; init wrk2 to constant 3,
                              ; used in aritmetric instructions to
                              ; speed up calculations).

        invs(q,wrk0)          ; send 8000 instr: through amd2903's
                              ; r bus, and there by out on the the 

                              ; bidirectional db-bus, this will send
                              ; the 8000 instr: out to address the
                              ; vector 8000 instr: prom and the
                              ; map address modifier prom.
        jvec invs(q,wrk0)     ; jump vector, repeat addressing
                              ; of vector prom and map prom.



        ; interupt, exeption and escape control section.
        ; ----------------------------------------------


        ; subroutine perform limit check with wrk0 register
        ; -------------------------------------------------
        ; and return wrk0 register with added base if limit
        ; is not violated else if wrk0 < cpa then just wrk0,
        ; last instr subtract 8 from wrk0 with noload.
        ; ----------------------------------------------
chlicp: add(wrk0,base)        ; wrk0 := wrk0 + base,
                              ; ( wrk0 contains address to be
                              ; be investigated)
chlic1: sub(wrk0,uplim) noload; if wrk0 >= upper limit then 
        cjmp(greq,prgex2) sub(wrk0,lowlim) noload; goto program exeption, with 2
                              ; wait for hc2901.
        crtn(greq)            ; if q >= lower limit then return
                              ;  where wrk0 = wrk0+base.
        sub(addrs,cpa) noload ; if addrs < cpa then
        crtn(less) mover(wrk0,addrs)▶16◀▶16◀; return and wrk0 := addrs with no  
                              ; base.
        jmp(prgex2)           ; else goto program exeption, with 2 
                              ; wait for hc2901.




        ; subroutine dump dynamic registers.
        ; ----------------------------------
dudyre: 
        invr(hc2901,'e01drd)  ; call function dynamic register dump in
                              ; hc2901.
dudyr1: cjmp(re2901,dudyr1) clre01; wait for hc2901 ready.
        invs(hc2901,wrk1)     ; sen regdump addrs to hc2901.
dudyr2: cjmp(re2901,dudyr2) clre01; wait for hc2901 ready.
dudyen: invs(hc2901,w0)       ; send w0 to reg dump.
dudyr3: cjmp(re2901,dudyr3) clre01; wait for hc2901 ready.
        invs(hc2901,w1)       ; send w1 to reg dump.
dudyr4: cjmp(re2901,dudyr4) clre01; wait for hc2901 ready.
        invs(hc2901,w2)       ; send w2 to reg dump.
dudyr5: cjmp(re2901,dudyr5) clre01; wait for hc2901 ready.
        invs(hc2901,w3)       ; send w3 to reg dump.
dudyr6: cjmp(re2901,dudyr6) clre01; wait for hc2901 ready.
        invs(hc2901,status)   ; send status to reg dum.
dudyr7: cjmp(re2901,dudyr7) clre01; wait for hc2901 ready.
        invs(hc2901,ic)       ; sen ic to reg dump.
dudyr8: cjmp(re2901,dudyr8) clre01; wait for hc2901 ready.
        invs(hc2901,cause)    ; send cause to reg dump.
dudyr9: cjmp(re2901,dudyr9) clre01; wait for hc2901 ready.
        invs(hc2901,addrs)    ; send addrs to reg dump.
dudy10: cjmp(re2901,dudy10) clre01; wait for hc2901 ready.
        rtn  add(wrk1,16)     ; return from subroutine,
                              ; wrk1 := wrk1 + 16,  
                              ; ( wrk1 = reg. dump address).

        ; subroutine reestablish dynamic registers.
        ; -----------------------------------------
redyre: 
        invr(hc2901,'e01drr)  ; call function dunamic register reestablish
                              ; in hc2901.
redyaw: cjmp(re2901,redyaw) clre01; wait for hc2901 ready to accept address
                              ; of dump block.
        invs(hc2901,wrk0)     ; send reg dump addrs to hc2901.
redyen:                       ; entry dum dynamic registers.
redyr1: cjmp(re2901,redyr1) clre01 invs(w0,hc2901); wait for hc2901 ready,
                              ; reestablish w0.
        cont clwr01           ; clock ready to hc2901.
redyr2: cjmp(re2901,redyr2) clre01 invs(w1,hc2901); wait for hc2901,
                              ; reestablish w1.
        cont clwr01           ; cont clock write ready to hc2901.
redyr3: cjmp(re2901,redyr3) clre01 invs(w2,hc2901); wair for hc2901 ready,
                              ; reestablish w2.
        cont clwr01           ; cont clock write ready to hc2901.
redyr4: cjmp(re2901,redyr4) clre01 invs(w3,hc2901); wait for hc2901 ready,
                              ; reestablish w3.
        cont clwr01           ; cont clock write ready to hc2901.

redyr5: cjmp(re2901,redyr5) clre01 invs(status,hc2901); wait for hc2901 ready,
                              ; reestablish status.
        cont clwr01           ; cont clock write ready to hc2901.

redyr6: cjmp(re2901,redyr6) clre01 invs(ic,hc2901); wait for hc2901 ready,
                              ; reestablish ic.
        cont clwr01           ; cont clock write ready to hc2901.

redyr7: cjmp(re2901,redyr7) clre01 invs(cause,hc2901); wait for hc2901 ready,
                              ; reestablish cause.
        cont clwr01           ; cont clock write ready to hc2901.
redyr8: cjmp(re2901,redyr8) clre01 invs(addrs,hc2901); wait for hc2901 ready,
                              ; reestablish hc2901.
        rtn                   ; return from subroutine
        ;  



        ; exeption 
        ; ---------
        ; program exeption.
        ; -----------------
        ; ( se also entry prgex1 prgex2 prgex3).
prgexp/:jmp(expt) mzero(cause); goto exeption service, cause := 0.
        ; integer exeption.
        ; -----------------
intexp/:mover(cause,2)        ; cause := 2.
        jmp(expt)             ; goto exeption service.
        ; floating point exeption.
        ; ------------------------
flpexp/:mover(cause,4)        ; cause := 4.
        jmp(expt)             ; goto exeption service.
        ; program exeption whwn  double load is clocked.
prgex3: cjmp(re2901,prgex2) clre01; wait for hc2901 is ready.
        cont clwr01  invr(hc2901,8); clear write ready to hc2901.
        ; entry for program exeption
        ; when read memory word is clocked.
prgex2: cjmp(re2901,prgex2) clre01; wait for hc2901 is ready.
        cont clwr01 invr(hc2901,8); clear write ready to hc2901.
prgex1: cjmp(re2901,prgex1) mzero(cause) clre01; wait for hc201 is  ready.
        ; exeption.
        ; ---------
prgex0:                       ; entry when cause is zero.
expt/:  invr(hc2901,'e01gmw)  ; call get word from memory with
                              ; no limit check in hc2901.
        inctwo(ic)            ; ic := ic + 2.
*onlyin:finalx
        mover(q,status)       ; save status
        mover(wrk0,'naameq)   ; wrk0 := 0 or (14..15) ( after am and
                              ; after escape in status shift 12).
        mover(wrk1,-1)        ; set all bit in wrk1.
        mover(wrk1,wrk0) hmrl ; wrk1 := all bitaddrsut (2..3).
        and(q,wrk1)     nothm csmy shinz; saved status(2..3) := 0.
*until: finalx
        add(inf,4)            ; inf := inf + 4.
expt1:  cjmp(re2901,expt1) clre01; wait for hc2901 is ready.
        invs(hc2901,inf)      ; send address of reg. dump to hc2901.
        sub(inf,4)            ; inf := inf - 4.
expt2:  cjmp(re2901,expt2) clre01 invs(wrk1,hc2901); get reg dump addrs to wrk1.

                              ; wrk1 := register dum address.
        cjmp(zero,intser)     ; if regdump address = 0 then goto
                              ; interupt service.
        ; entry for dump registers from escape routine
        ; after control of register dump address <> 0.
        ; wrk1 = register dump address <> 0.
extp3:  
dmpreg: 
        add(wrk1,base)        ; reg dump addrs := reg dump addrs + base.
        sub(wrk1,lowlim) noload; if reg dump addrs + base <
                              ; lower limit then
        cjmp(less,stbe1)      ; then goto syetm table error.
        add(wrk1,14)          ; reg dump addrs := reg dump addrs + 14.
        sub(wrk1,uplim)  noload; if reg dump addrs >= upper limit then
        cjmp(greq,stbe1)      ; goto system table error.
        sub(wrk1,14)          ; reg dump addrs := reg dump addrs - 14.
        jsb(dudyre)           ; call sub routine to dump dynamic registers.
        mover(w0,ic)          ; w0 := old ic.
                              ; w1 is not initialized acording to
                              ; the the rc8000 family refference 
                              ; manual.

        mover(w2,addrs)       ; w2 := addrs.
        and(cause,63)         ; cause := cause(18..23).
        mover(ic,wrk1)        ; new ic := reg dump addrs + 16,
                              ; ( reg. dump. address is increased
                              ; with 16 in subroutine dump dynamic
                              ; registers).
        jmp(nopfic) mover(w3,cause); w3 := cause, goto next 8000 instr:
                              ; with no prefetch.
stbe1:                        ; system table error from exeption.
        mover(cause,6)        ; cause := 6.
        sub(wrk1,base)        ; reg dump addr := reg dump addr - base.
        jmp(intser) mover(addrs,wrk1); addrs := reg dump addrs ,
                              ; goto interupt service.


        ; external interupt.
        ; ------------------
        ; this address is reached after an 'jvec' micro 8000 instr:
        ; in the fetch next 8000 instr: section and the interupt is
        ; set from the hc2901.
extint/:invr(hc2901,'e01aci)  ; clock hc2901 in address answer
                              ; and clear interupt.
                              ; the answer is given as an exact interupt 
                              ; interupt no.
        mzero(base)           ; base := 0.
        sub(addrs,wrk1)      ; reestablish addrs register as before
                             ; fetch instrcution. (i.e. if after am
                             ; then address register is unchanged).
extin1: cjmp(re2901,extin1) clre01 invs(cause,hc2901); wait for hc2901 to be
                              ; to be ready , cause := interupt no * 2.
        jmp(intse3) mover(cause,cause) slft; cause := cause * 2, continue
                              ; interupt service entry 3.



intser/:                      ; common interupt service routine.
        ; --------------------------------
        invr(hc2901,'e01is1)  ; call function in hc2901 for starting
                              ; interupt service 1.
intse1: mzero(base)           ; base := 0, (disabling memory 
                              ; relocation).
intse2: cjmp(re2901,intse2) clre01; wait for hc2901 ready.
intse3: invs(hc2901,inf)      ; send information register to hc2901.
        mover(lowlim,8)       ; lower limit := 8.
        invr(uplim,base) srgt ; lower limit := max integer ( schould be
                              ; size of memory).
                              ; this diables the limit check.
intse4: cjmp(re2901,intse4) clre01 invs(wrk2,hc2901); wait for hc2901 ready,
                              ; get system table status and interupt 
                              ; initialization.
        mover(lowlim,8) clwr01; lower limit := const(8).
                              ; clear write ready to hc2901.
intse6: cjmp(re2901,intse6) clre01 invs(wrk1,hc2901); wait for hc2901 ready,
                              ; get system table reg dump addrs.
        jsb(dudyen)           ; call subroutine dump dynamic
                              ; registers, in entry 1 with 
                              ; no  init clock of hc2901.      
        mover(w1,wrk1)  clwr01; sync of hc2901 with a clear of the
                              ; sync bit to hc2901,
                              ; w1 := reg dump address + 16,
                              ; ( reg. dump address is increassed
                              ; by 16 in subroutine dump dynamic
                              ; registers).

ints19: cjmp(re2901,ints19) clre01 invs(ic,hc2901); wait for hc2901 ready,
                              ; get new ic address from system table.
        mover(status,wrk2)    ; status := system table status initialistion

        andinv(status,4095)   ; status := system table status and
                              ; intlim initialiation (0..11).
        sub(inf,12)           ; inf := inf - 12.
        or(inf,1)             ; inf(23) :=  1.
        jmp(nopfic) mover(w2,cause); w2 := cause, goto fetch next  
                              ; HC8000 instr: with no prefetch.
*skip:  autoin
        sub(cause,'autoin) noload; if interupt cause = auto load 
                              ; interupt then goto
        cjmp(nequal,nopfic) mover(w2,cause); w2 := cause,
                              ; fetch 8000 instr: with no
                              ; prefetch else
        invr(hc2901,'e01ini)  ; clock hc2901 in init address.
        jmp(init)             ; goto init.
*until: autoin




        ; carry and owerflow control section.
        ; -----------------------------------
ccowc:  cjmp(over,ccowc1) holdmy; if overflow then goto ccowc1,
                              ; hold  control.
        cjmp(ncarry,pfneic)   ; if not carry then goto nexin.
        or(ex,1)              ; ex(carry) := 1.
        jmp(pfneic)           ; ex(carry) := 1, goto pfneic.
ccowc1: or(ex,2) holdmy       ; ex(overflow) := 1, hold condition
                              ; control.
        cjmp(ncarry,ccowc2)   ; ex(overflow) := 1, if not carry         
                              ; then goto ccowc2.
        or(ex,1)              ; ex(carry) := 1.
ccowc2: and(status,16) noload ; if status(integer mask) = 0 then
        cjmp(zero,pfneic)     ; goto pfneic.
        jmp(intexp)           ; goto integer exeption.

        ; subroutine get operand
        ; -----------------------
        ; call: address of operand in reg. 'addrs'.
        ; return: operand in reg. 'wrk0'.
        ; destroyed: none.
        ; condition select is expected to b 'csmy'
getop:  sub(addrs,8) noload   ;
        cjmp(less,regget) mover(wrk0,addrs); wrk0 := addrs.
getop1: invr(hc2901,'e01gmw)  ;  call function in hc2901 get operand
                              ; get opreand without limit control.
        jsb(chlic1) add(wrk0,base); wrk0:= wrk0 + base , call subroutine
                              ; to perform limit check and cpa
                              ; limit check.
getop2: andinv(wrk0,1)            ; remove possible last bit in address.
getop4: cjmp(re2901,getop4) clre01;  wait for hc2901 to accept address.
        invs(hc2901,wrk0)     ;send daddress to hc2901, and clock
                              ; write bit.
getop3: cjmp(re2901,getop3) invs(wrk0,hc2901); wait for hc2901 to sned data,
                               ; inver data into wrk0 from hc2901
                               ; buffer register.
        rtn mover(wrk0,wrk0) shinz nothm csmy; return from subroutine,
                                ; prepere for negative or zero test 
                                ; data.


        ; subroutine load from internal reg.
        ; ----------------------------------
regget: cjmp(neg,prgexp) mover(wrk0,wrk0) srgt; if addres if negative then goto
                              ; program exeption, shift wrk0 rigth 1,
                              ; so wrk0 points to exact register no.
regge1: add(wrk0,'regge2)     ; microsekvens counter := address 

        ldctre(wrk0)          ; shift -1 + mic. instr addres
                              ; regge1.
        cjmrd(neg,prgexp)     ; jump in micro. program to
                              ; to address indexd by regge1 +
                              ; addrs // 2.
regge2: rtn mover(wrk0,w0)    ; wrk0 := w0.
        rtn mover(wrk0,w1)    ; wrk0 := w1.
        rtn mover(wrk0,w2)    ; wrk0 := w2.
        rtn mover(wrk0,w3)    ; wrk0 := w3.

        ; subroutine get double word from memory with
        ; write protection check.
        ; -------------------------------------------
getdo1: sub(addrs,8) noload   ; if addrs < 8 then
        cjmp(less,regget) mover(wrk0,addrs); wrk0 := address, goto regget.
getdo3: invr(hc2901,'e01gdw)  ; send entry to hc2901.
        add(wrk0,base)        ; wrk0 := addrs + base.
        sub(wrk0,uplim) noload; if wrk0 >= upper limit then        
        cjmp(greq,prgex3) sub(wrk0,lowlim) noload; goto program exeption
                              ; with 3 wait for hc2901.
        cjmp(greq,getop2) sub(addrs,cpa) noload; if wrk0 >= lower limit
                              ; then goto getop2.
        cjmp(less,getop2) mover(wrk0,addrs); if addrs < cpa then goto getop2.
        jmp(prgex3)           ; else goto program exeption

                              ; with 3 wait for hc2901.
        ; second entry in get double word from memory
        ; with protection check.
        ; -------------------------------------------
getdo2: mover(wrk1,addrs)     ; wrk1 := addrs.
        andinv(wrk1,1)        ; wrk1.lsb := 0.
                              ; (remove possible uneven address.)
        sub(wrk1,2)           ; wrk1 := wrk1 - 2.
        cjmp(neg,getdo4) mover(wrk0,w3); if new address < 0 then
                              ; data word in register w3)
                              ; goto getdo4,
        sub(wrk1,6) noload    ; if address < 6 then
        cjmp(less,regge1) mover(wrk0,wrk1) srgt holdmy; wrk0 := address shift -1,
                              ; hold condition, goto regge1.
        cjmp(great,getop3) clwr01; if address > 6 then
                              ; clock write hc2901 and goto
                              ; wait for last operand in
                              ; getop3.
                              ; else
        jmp(regge1)           ; if address = 6 then
                              ; (previus was memory(8))
                              ; goto regget ( clock of
                              ; write ready was done in 
                              ; just previus micro insteuction.
getdo4: rtn mover(addrs,6)    ; addrs := 6 , and return from 
                              ; subroutine.


        ; subroutine putoperand.
        ; ----------------------
        ; call: address in reg. 'addrs'
        ;       operand in reg. 'q'.
        ; destroyed: wrk0.
putop:  sub(addrs,8) noload   ; if addrs < 8 then
        cjmp(less,regput) mover(wrk0,addrs); then goto put register.
        add(wrk0,base)        ; wrk0 := addr+ base.
        sub(wrk0,uplim) noload; if wrk0  >= uppper limit then
        cjmp(greq,prgexp) sub(wrk0,lowlim) noload; goto program exeption
                              ; else if wrk0 < lower limit then
        cjmp(less,prgexp)     ; then goto program exeption.
        invr(hc2901,'e01pmw)  ; call function put operand 
                              ; protected.
        andinv(wrk0,1)        ; remove possible uneven address
                              ; bit in address.
putop1: cjmp(re2901,putop1) clre01;
        invs(hc2901,wrk0)     ; send fysical address to hc2901.
putop2: cjmp(re2901,putop2) clre01;
        invs(hc2901,q)        ; send data word to hc2901.
putop3: cjmp(re2901,putop3) clre01; wait for hc2901 ready.
        inctwo(ic)            ; ic := ic + 2 ( next 8000 instr:).
        sub(ic,wrk0) noload   ; if next ic <> from just used physical
        cjmp(nzero,pficin)    ; then goto prefetch next instr else
        jmp(nopfic)           ; goto get 8000 instr: with no prefetch.
regput: cjmp(neg,intexp) mover(wrk0,wrk0) srgt; if the effective address is
                              ; negative then goto intexp,
                              ; shift wrk1 1 rigth so wrk1
                              ; contains absolute register no.

        add(wrk0,'regpu0)     ;
        ldctre(wrk0)
        cjmrd(neg,intexp)     ;

regpu0: jmp(pfneic) moves(w0, q)
regpu1: jmp(pfneic) moves(w1,q)
regpu2: jmp(pfneic) moves(w2,q)
regpu3: jmp(pfneic) moves(w3,q)

        ;*page:  XXX

        ; address handling
        ; ----------------


        ; HC8000 instr: next address, modify: 'am', numeric code 9.
        ; ------------------------------------------------------
am/'9:  sub(ic,8) noload      ; if ic >= 10 (i.e ic + 2) then
        cjmp(greq,ftcam) inctwo(ic); goto  fetch 8000 instr: after
                              ; address modify (entry in
                              ; prefetch 8000 instr:),   
                              ; ic := ic + 2.
        jmp(regins)           ; else goto regins ( 8000 instr: in 
                              ; register or location 8).

        ; HC8000 instr: address, load: 'al', numeric code 11.
        ; --------------------------------------------------
al/'11: jmp(pfneic) mover(wreg,addrs); w_reg(index) := addrs,
                              ; goto pfneic

        ; HC8000 instr: address complemented, load: 'ac', numeric code 33.
        ; --------------------------------------------------------------
ac/'33: andinv(ex,3)          ; ex(carry) := ex(overflow) := 0.
        jmp(ccowc) invr1(wreg,addrs); w_reg(index) := not(addrs)+1,
                              ; goto ccowc.
        ;*page:  XXX

        ; register transfer.
        ; ------------------


        ; HC8000 instr: half register, load: 'hl', numreic code 3.
        ; -------------------------------------------------------
hl/'3:  jsb(getop)            ; wrk0 := core(addrs),
        and(addrs,1) noload   ; if addrs(23) = 0 ( addrs even) then
        cjmp(zero,hl1)        ; goto hl1,
        mover(wrk0,wrk0) hmrl ; wrk0(0:11) := wrk0(12:23)
hl1:    mover(wreg,wrk0) hmlr ; w_reg(index,12:23) := wrk0(0:11),
        cont nothm csmy       ; reset half word move logic
        jmp(pficin) inctwo(ic) ; goto pfneic, ic := ic +2.

        ; HC8000 instr: half register, store: 'hs', numeric code 26.
        ; --------------------------------------------------------
hs/'26: jsb(getop) moves(q,wreg); wrk0( := core(addrs), q := w_reg(index)
hsnoen: and(addrs,1) noload   ; normalisze single and double entry:
                              ; if addrs(23) = 0 ( addrs even) then
        cjmp(zero,hs1) moves(wrk1,q); goto hs1, wrk1 := q,
        mover(wrk1,wrk1) hmrl ; wrk1(12:23) := wrk1(0:11),
        mover(wrk0,wrk1) hmlr ; wrk0(12:23) := wrk1(0:11).
        mover(q,wrk0) nothm csmy shinz; q:=wrk0, reset half word move
                              ; logic.            
        jmp(putop)            ; goto putop.
hs1:    mover(wrk0,wrk1) hmrl ; wrk0(0:11):= wrk1(12:23)
        mover(q,wrk0) nothm csmy shinz; q:=wrk0, reset half word
                              ; move logic.            
        jmp(putop)            ; goto putop.
        ; HC8000 instr: register, load: 'rl', numeric code 20.
        ; ---------------------------------------------------
rl/'20: jsb(getop)            ; wrk0 := core(addrs)
        jmp(pfneic) mover(wreg,wrk0); w_reg(index) := wrk0, goto pfneic

        ; HC8000 instr: register, store: 'rs', numeric code 23.
        ; ---------------------------------------------------
rs/'23: jmp(putop) moves(q,wreg);q := w_reg(index), goto putop.


        ; HC8000 instr: register and memory word, exchange: 'rx', numeric code 25.
        ; ----------------------------------------------------------------------
rx/'25: jsb(getop) moves(q,wreg); q := w_reg(index) call subroutine get operand from memory
        jmp(putop) mover(wreg,wrk0); w_reg(index) := wrk0,
                              ; goto putop, (addrs(core) := q)
        ; HC8000 instr: double register, load: 'dl', numeric code 54.
        ; ---------------------------------------------------------
dl/'54: jsb(getdo1)           ;
        jsb(getdo2) mover(wreg,wrk0);
        jmp(pfneic) mover(wpre,wrk0);move word previus to address 
                                    ; to register previus to selected
                                    ; register, goto get nest prefetched
                                    ; instruction.

        ; HC8000 instr: double register, store: 'ds', numeric code 55.
        ; -----------------------------------------------------------
ds/'55: sub(addrs,8) noload   ; if addrs >= 8 then 
        cjmp(greq,ds4) mover(wrk1,addrs); goto ds4, wrk1 := addrs.
        cjmp(neg,prgexp)      ; if addrs is negative then goto 
                              ; program exeption.
        andinv(wrk1,1)        ; remove possible last bit in address.
        add(wrk1,'ds7)        ; add mic. address
                              ; of first load sentence to no of reg.
        ldctre(wrk1)          ; load mic sekvens counter with
                              ; counter with addrs + addres of
                              ; first instr. of load reg.
                              ; instr.
        cjmrd(neg,intexp) moves(q,wreg); jump indexed by counter to
                              ; to micro. instr based by ds7,
                              ; q := wreg(index).
ds7:    moves(w0,q)           ; w0 := q.
        jmp(regpu3) moves(q,wpre); q := wreg(index-1) , goto reg put 3.
        moves(w1,q)           ; w1 := q.
        jmp(regpu0) moves(q,wpre); q := wreg(index-1) , goto reg put w0.
        moves(w2,q)           ; w2 := q.
        jmp(regpu1) moves(q,wpre); q := wreg(index-1) , goto reg put w1.
        moves(w3,q)           ; w3 := q.
        jmp(regpu2) moves(q,wpre); q := wreg(index-1) , goto reg put w2.
ds4: andinv(wrk1,1)         ; remove possible last bit in address.
       add(wrk1,base)        ; wrk1 := wrk1 ( addrs) + base.
        sub(wrk1,uplim) noload; if wrk1 => uplim then 
        cjmp(greq,prgexp) mover(wrk2,wrk1) ; goto program exeption.
        sub(wrk2,2)           ; wrk2 := wrk2 - 2.
        sub(wrk2,lowlim) noload; if wrk2 < lowlimt then
        cjmp(less,prgexp)                 ; goto program exeption.
        invr(hc2901,'e01pdw)  ; clock the hc2901 with the
                              ; entry address put double word
                              ; unprotected.
ds1:    cjmp(re2901,ds1) clre01; wait for the hc2901 to be ready
                              ; to recieve first storage address.
        invs(hc2901,wrk1)     ; hc2901 := wrk1.
        moves(q,wreg)         ; move wreg(index) to q register.
ds2:    cjmp(re2901,ds2) clre01; wait for the hc2901 to be ready
                              ; to recieve first data word.
        invs(hc2901,q)        ; hc2901 := q.    
        moves(q,wpre)         ; move wreg(index-1) to q register.
ds3:    cjmp(re2901,ds3) clre01; wait for the hc2901 to be
                              ; ready for recieving the next
                              ; data word.                    
        invs(hc2901,q)        ; hc2901 := q.            
        inctwo(ic)            ; ic := ic + 2.
ds6:    cjmp(re2901,ds6) clre01; wait for hc2901 ready.
        sub(wrk1,ic) noload   ; if wrk1 = next ic then goto
        cjmp(equal,nopfic) sub(wrk2,ic) noload; goto nopfic
                              ; if addrs = next ic then
        cjmp(equal,nopfic)    ; goto nopfic.
        jmp(pficin)           ; else goto nexti2.

        ; HC8000 instr: exeption register, load: 'xl', numeric code 16.
        ; -----------------------------------------------------------
xl/'16: jsb(getop)            ; call getop,
        and(addrs,1) noload   ; if addrs(23) = 1 (addrs odd) then
        cjmp(nzero,xl1)       ; goto xl1.
        mover(wrk0,wrk0) hmlr ; wrk0(12:23) := wrk0(0:11).
xl1:    and(wrk0,7) csmy nothm csmy shinz; wrk0:= wrk0(21:23) reset move
                              ; half word logic.

        jmp(pfneic) or(ex,wrk0); ex := ex or wrk0,
                              ; goto pfneic.


        ; HC8000 instr: exeption register, store: 'xs', numeric code 27.
        ; ------------------------------------------------------------
xs/'27: and(q,ex,7)           ; q:= ex, (i.e. status(21:23)).
        jsb(getop)            ;          call getop.
        and(addrs,1) noload   ; if addrs(23) = 1 ( addrs odd ) then
        cjmp(zero,xs1) moves(wrk1,q); goto xs1, wrk1 := q.
        mover(wrk1,wrk1) hmrl ; wrk1(0:11) := wrk1(12:23).
        mover(wrk0,wrk1) hmlr ; wrk0(12:23) := wrk(0:11).
        jmp(putop) mover(q,wrk0); q:=wrk0, goto putop.
xs1:    mover(wrk0,wrk1) hmrl ; wrk0(0:11) := wrk1(wrk1(12:23)
        cont csmy nothm shinz ; clear half word move logic.
        jmp(putop) mover(q,wrk0); q:=wrk0, reset half word move
                              ; logic, goto putop.
        ; integer halfword arithmetic
        ; ---------------------------

        ; HC8000 instr: integer byte, load (zero extension): 'bz', numeric code 19.
        ; ------------------------------------------------------------------------
bz/'19: jsb(getop)            ; call getop.                  
        and(addrs,1) noload   ; if addrs(23) = 0 (addrs even) then
        cjmp(zero,bz1)mzero(wreg); goto bz1, reset selected working
                              ; register.
        mover(wrk0,wrk0) hmlr ; wrk0(0:11) := wrk0(12:23).
bz1:    mover(wreg,wrk0) hmrl ; w_regg(index,12:23):=wrk0(0:11).
        cont csmy nothm csmy shinz; reset half word move control
        jmp(pficin) inctwo(ic) ; goto pfneic, ic := ic + 2.


        ; HC8000 instr: integer byte, load (sign extension): 'bl', numeric code 2.
        ; ----------------------------------------------------------------------
bl/'2:  jsb(getop)            ; call getop.
        and(addrs,1) noload   ; if addrs(23) = 1 (addrs odd) then
        cjmp(nzero,bl1) inctwo(ic) ; goto bl1, ic := ic + 2.
        mover(wrk0,wrk0) hmlr ; wrk0(12:23) := wrk0(0:11).
        cont csmy nothm csmy shinz; reset half word move control
bl1:    jmp(pficin) mover(wreg,wrk0) signex; w_reg(index) 
                                            ; := signextend(wrk0(12:23)),
                              ; goto pfneic.

        ; HC8000 instr: integer byte, add: 'ba', numeric code 18.
        ; -----------------------------------------------------
ba/'18:                       ; ex(carry):=ex(overflow):=0.
        jsb(getop) andinv(ex,wrk2); call getop
        and(addrs,1) noload   ; if addrs(23) = 1 (addrs odd) the
        cjmp(nzero,ba1)       ; goto ba1.
        mover(wrk0,wrk0) hmlr ; wrk0(12:23) := wrk0(0:11).
        cont csmy nothm csmy shinz; reset half word move control
ba1:    mover(wrk0,wrk0) signex; signextend(wrk0(12:23)).
        jmp(ccowc) add(wreg,wrk0); w_reg(index) := w_reg(index)
                              ; + wrk0, goto ccowc.

        ; HC8000 instr: integer byte subtract: 'bs', numeric code 17.
        ; ---------------------------------------------------------
bs/'17:                       ; ex(carry):=ex(overflow):=0.
        jsb(getop) andinv(ex,wrk2); call getop.
        and(addrs,1) noload   ; if addrs(23) = 1 (addrs odd) then  
        cjmp(nzero,bs1)       ; goto bs1.
        mover(wrk0,wrk0) hmlr ; wrk0(12:23) := wrk0(0:11).
        cont csmy nothm csmy shinz; reset half word mov control
bs1:    mover(wrk0,wrk0) signex; signextend(wrk0(12:23)).
        jmp(ccowc) sub(wreg,wrk0); w_reg(index):=w_reg(index)
                              ; - wrk0, goto ccowc.



        ; integer word arithmetic
        ; ------------------------

        ; HC8000 instr: integer word, add: 'wa', numeric code 7.
        ; ----------------------------------------------------
wa/'7:                        ; ex(carry):=ex(overflow):=0.
        jsb(getop) andinv(ex,wrk2); call subroutine get operand from memory.
        jmp(ccowc) add(wreg,wrk0); w_reg(index) := w_reg(index) +
                              ; wrk0, goto ccowc.

        ; HC8000 instr: integer word, subtract: 'ws', numeric code 8.
        ; ---------------------------------------------------------
ws/'8:                        ; ex(carry):=ex(overflow):=0.
        jsb(getop) andinv(ex,wrk2); call subroutine get operand from memory.
        jmp(ccowc) sub(wreg,wrk0); w_reg(index) := w_reg(index) -
                              ; wrk0, goto ccowc.

        ; HC8000 instr: integer word, multiply: 'wm', numeric code 10.
        ; ----------------------------------------------------------
wm/'10: jsb(getop) moves(q,wreg); call getop, q := wreg(index).
        lcpu(22) mzero(wrk2)  ; push next micro instr to stack
                              ; mic. sekv. counter := 23,
                              ; wrk2 := 0.
        rep mult2c(wrk2,wrk0)  dshinz; 
        mult2l(wrk2,wrk0)     ;
        mover(wpre,wrk2)  nothm csmy shinz; wreg(index) := wrk2.
        jmp(pfneic) moves(wreg,q); goto pfneic, wreg(index-1) := q.
                              ; ========
                              ; division
                              ; ========
        ; division moved to en program until final version.





        ; integer double word arithmetic.
        ; -------------------------------
        ; removed until final
        ;*onlyin: final

        ; HC8000 instr: integer double word, add: 'aa', numeric code 56.
        ; ------------------------------------------------------------
aa/'56:                       ; ex(carry):=ex(overflow):=0.
        jsb(getdo1) andinv(ex,wrk2); call subroutine get operand from memory.
        add(wreg,wrk0)        ; w_reg(index) := w_reg(index) +
                              ; wrk0.
        cjmp(carry,aa1)       ; if carry then goto aa1.
        jsb(getdo2)           ; call(getd2o).
        jmp(ccowc) add(wpre,wrk0); w_reg(index-1):=w_reg(index-1)
                              ; + wrk0, goto ccowc.
aa1:    jsb(getdo2)           ; call(getdo2).

        jmp(ccowc) add1(wpre,wrk0); w_reg(index-1):=w_reg(index-1)
                              ; + wrk0 + 1, goto ccowc.

        ; HC8000 instr: integer double word, subtract: 'ss', numeric code 57.
        ; -----------------------------------------------------------------
ss/'57:                       ; ex(carry):=ex(overflow):=.
        jsb(getdo1)  andinv(ex,wrk2); call(getdo1).
        sub(wreg,wrk0)        ; w_reg(index) := w_reg(index) -
                              ; wrk0.
        cjmp(carry,ss1)       ; if carry then goto ss1.
        jsb(getdo2)           ; call(getdo2).
        jmp(ccowc) sub(wpre,wrk0); w_reg(index-1):=w_reg(index-1)
                              ; - wrk0, goto ccowc.
ss1:    jsb(getdo2)           ; call(getdo2).
        jmp(ccowc) sub1(wpre,wrk0); w_reg(index-1):=w_reg(index-1)
                              ; - wrk0 + 1, goto ccowc.
        ;*until: final


        ; logical operation.
        ; ------------------

        ; HC8000 instr: logical and: 'la', numeric code 4.
        ; ----------------------------------------------
la/'4:  jsb(getop)            ; call subroutine get operand from memory.
        jmp(pfneic) and(wreg,wrk0); w_reg(index):=w_reg(index) 
                              ; and wrk0, goto pfneic.

        ; HC8000 instr: logical or: 'lo', numeric code 5.
        ; ---------------------------------------------
lo/'5:  jsb(getop)            ; call subroutine get operand from memory.
        jmp(pfneic) or(wreg,wrk0); w_reg(index) := w_reg(index) or
                              ; wrk0, goto pfneic.

        ; HC8000 instr: logical exclusive or: 'lx', numeric code 6.
        ; -------------------------------------------------------
lx/'6:  jsb(getop)            ; call subroutine get operand from memory.
        jmp(pfneic) exor(wreg,wrk0); w_reg(index) := w_reg(index) exor
                              ; wrk0, goto pfneic.
        ;*page:  XXX


        ; shift operations.
        ; -----------------

        ; 
        ;*skip: ashift .
        ; HC8000 instr: aritmetically shift single: 'as', numeric code 36.
        ; --------------------------------------------------------------
as/'36: andinv(ex,3)          ; ex(carry):=ex(overflow):=0.
        sub(addrs,0) noload   ; if addrs > 0 then
        cjmp(great,as1) moves(q,wreg) holdmy; goto as2, q:=w_reg(index), hold condition.
        cjmp(less,as2) moves(wrk1,q); if addrs < 0 then goto as2, wrk1:=q.
        jmp(pfneic)           ; if addrs = 0 then goto pfneic..
as1:    sub(addrs,24) noload  ; if addrs < 24 then
        cjmp(less,as4) moves(wrk1,q); goto as4, wrk1:=q.
        mover(addrs,24)       ; addrs := 24.
as4:    sub(addrs,1)          ; addrs := addrs - 1.
        pushre(addrs)         ; counter := addrs,
        twb(over,as5) mover(wrk1,wrk1) slft; wrk1:= leftshift_1(wrk1),wrk1(0):=0.
as6:    rpct(as6) mover(wrk1,wrk1) slft; repeat this while counter <> 0 
                              ; (wrk := left_shift_1(wrk1) ,wrk(0):=0,

                              ; decrease (counter) ).
        mover(wreg,wrk1)      ; w_reg(index):=wrk1.
        or(ex,2)              ; ex(overflow) := 1.

        and(status,16) noload ; if integer mask = 1 then
        cjmp(zero,pfneic)     ; goto pfneic.                 
        jmp(intexp)           ; goto integer exeption.
as2:    cjmp(neg,as3) invr(wrk2,addrs); if q (i.e wreg) < 0 then
                              ; goto as3, wrk2 :=  abs(addrs).
        sub(wrk2,23) noload   ; if wrk2 > 23 then

        cjmp(great,pfneic) mzero(wreg); goto pfneic, w_reg(index) :=0.
        sub(wrk1,1)           ; wrk2 := wrk2 - 1.
        pushre(wrk2)          ; counter := wrk2.
                              ; push  next mic.instr addres.
        rep mover(wrk1,wrk1) slft shinz; 
        jmp(pfneic) mover(wreg,wrk1); w_reg(index) := wrk1, goto nein
as3:    sub(addrs,23)  noload ; if addrs > 23 then
        cjmp(great,pfneic)    ;
        sub(addrs,1)          ; addrs := addrs - 1.
        pushre(addrs)         ; counter := addrs.
                              ; push next mic. instr. address.
        rep mover(wrk1,wrk1) shin1 srgt;
as5:    jmp(pfneic) mover(wreg,wrk1);
        ; HC8000 instr: arithmetically shift double: 'ad', numeric code 37.
        ; ---------------------------------------------------------------
ad/'37: andinv(ex,3)          ; ex(carry) := ex(overflow):=0.
        sub(addrs,0) noload   ; if addrs > 0 then

        cjmp(great,ad1) holdmy moves(q,wpre); goto ad2, q:= wreg(index-1).
        cjmp(less,ad2) moves(wrk1,q); else if addrs < 0 then goto ad2,
                              ; wrk1 := q.
        jmp(pficin) inctwo(ic); goto pficin, ic := ic + 2.
ad1:    sub(addrs,48) noload
        cjmp(less,ad4) moves(wrk1,q); goto ad4, wrk1 := q.
        mover(addrs,48)       ; addrs := 48.
ad4:    moves(q,wreg) dshinz  ; q := wreg(index).
        sub(addrs,1)          ; addrs :=  addrs - 1.
        pushre(addrs)         ; micro sekvens counter := addrs.
                              ; push next micro instr. addrs.
                              ; to micro sekvenser stack.
        twb(over,ad3) mover(wrk1,wrk1) lftaql; repeat
                              ; double shift wrk1 and q
                              ; with zero input,
                              ; mic. sekvens counter :=
                              ; mic. sekvens counter -1.
                              ; if mi. sekvens counter = 0 then
                              ; goto ad5.
                              ; until overflow.
        push                  ; if owerflow then
        rep mover(wrk1,wrk1) lftaql; repeat double shift wrk1 and q
                              ; with zero input, 
                              ; mic. secvens counter:=
                              ; mic. sekvens counter - 1.
                              ; until mic. sekvens counter = 0.
        mover(wreg,wrk1)      ; wreg(index)
        mover(wpre,wrk1)      ; wreg(index -1) := wrk1.
        moves(wreg,q)         ; wreg(index) := q.
        or(ex,2)              ; exeption(owerflow) := 1.
        and(status,16) noload ; if integer mask = 1 then
        cjmp(zero,pfneic)     ; goto pfneic.                   
        jmp(intexp)           ; goto intger exeption.
ad3:    moves(wreg,q)         ; wreg(index) :=q.
        mover(wpre,wrk1)      ; wreg(index-1) := wrk1.
        jmp(pfneic)           ; goto pfneic.
ad2:    cjmp(neg,ad5) invr(wrk2,addrs); if q < 0 (i.e. wreg(index-1)) then
                              ; goto ad5, wrk2 := abs(addrs).
        sub(wrk2,47) noload   ; if wrk2 (i.e. abs(addrs)) > 47 then
        cjmp(great,ad6) mzero(wpre); goto ad6, wreg(index-1) := 0.
        moves(q,wreg) dshinz  ; q := wreg(index)
ad7:    sub(wrk2,1)           ; wrk2 := wrk2 - 1.
        pushre(wrk2)          ; mic. sekvens counter := wrk2.
                              ; push next mic. instr. address to
                              ; to sekvens stack, set shift

                              ; shift to double shift in zero.
        rep mover(wrk1,wrk1)        rgtaql; repeat
                              ; shift wrk1 and q rigth double 
                              ; with zero input from rigth.
                              ; counter := counter - 1.
                              ; until counter = 0.
        mover(wpre,wrk1)         nothm csmy; wreg(index - 1) := wrk1,
                              ; 
        jmp(pfneic) moves(wreg,q); wreg(index) := q, goto pfneic.

ad5:    sub(wrk2,47) noload   ; if q < 47 then
        cjmp(great,ad8)       ; goto ad8.
        moves(q,wreg)  dshin1 ; q := wreg, set shift logic
                              ; to doubble shift with 1 input.
        jmp(ad7)
ad6:    jmp(pfneic) mzero(wreg); goto pfneic, wreg(index) := 0.
ad8:    invr(wpre,0)          ;
        invr(wreg,0)          ;
        jmp(pfneic)

        ;*until: ashift .



        ; HC8000 instr: logically shift single: 'ls', numeric code 38.
        ; ----------------------------------------------------------
ls/'38: sub(addrs,0) noload   ; if addrs > 0 then
        cjmp(great,ls1) moves(q,wreg) holdmy; goto ls1, q:=w_reg(index), hold
                              ; condition bits.
        cjmp(less,ls2)  moves(wrk1,q); if addrs < 0 then goto ls2, wrk1:=q.
        jmp(pficin) inctwo(ic); <* if addrs = 0 *> then goto 
                              ; goto pficin, ic := ic + 2.
ls1:    sub(addrs,23) noload  ; if addrs > 23 then
        cjmp(great,pfneic) mzero(wreg); goto pfneic, w_reg(index):=0.
        sub(addrs,1)          ; addrs := addrs - 1.
        pushre(addrs)         ; counter := 0.
                              ; push next mic. instr.
        rep mover(wrk1,wrk1) lftqil; q_reg := q_reg shift left 1
                              ; the opration with the
                              ; wrk1 reg is dummy.
        jmp(pfneic) moves(wreg,q); w_reg(index):=q, goto pfneic.
ls2:    invr1(wrk2,addrs)     ; wrk2:=abs(addrs)
        sub(wrk2,23) noload   ; if addrs > 23 then
        cjmp(great,pfneic) mzero(wreg); goto pfneic, w_reg(index):=0.
        sub(wrk2,1)           ; wrk2 := wrk2 - 1.
        pushre(wrk2)          ; counter := wrk2.
                              ; push next mic. instr. address.
        rep mover(wrk1,wrk1) srgt shinz; shift rigth zero input
        jmp(pfneic) mover(wreg,wrk1); w_reg(index):= wrk1, goto prefn.

        ; HC8000 instr: logically shift double: 'ld', numeric code 39.
        ; ----------------------------------------------------------
        ;*onlyin: final
ld/'39: sub(addrs,0) noload   ; if addrs > 0 then
        cjmp(great,ld1) holdmy moves(q,wpre); goto ls1, hold condition bits,
                              ; q := wreg(index - 1).
        cjmp(less,ld2) moves(wrk1,q); if addrs < 0 then goto ld2,
                              ; wrk1 := q.
        jmp(pficin) inctwo(ic); ic := ic + 2, goto pficin.
ld1:    sub(addrs,47) noload  ; if addrs > 47 then
        cjmp(great,ld3) mzero(wpre); goto ld3, wreg(index-1) := 0.

        moves(wrk1,q)         ; wrk1 := q.

        moves(q,wreg)         ; q := wreg(index).
        sub(addrs,1)          ; addrs := addrs - 1.
        pushre(addrs)         ; micro sekvenser counter := addrs.
                              ; pusch next micro. instr addrs.
                              ; to stack,              
        rep mover(wrk1,wrk1) lftaql dshinz; shift wrk1 and q left with conection
                              ; until counter = 0.
        mover(wpre,wrk1) nothm csmy shinz; wreg(index-1) := wrk1.
        jmp(pfneic) moves(wreg,q); w(index) := q, goto pficin.
ld2:    invr1(addrs,addrs)    ; addrs := - addrs.
        sub(addrs,47) noload  ; if addrs > 47 then
        cjmp(great,ld3) mzero(wpre); goto ld3, wreg(index-1) :=0.
        moves(q,wreg)
        sub(addrs,1)          ; addrs := addrs -1 .
        pushre(addrs)         ; micro sekvenser counter := 0.
                              ; push address of the next
                              ; micro instr into the stack,
        rep mover(wrk1,wrk1) rgtaql dshinz; repeat
                              ;   counter := counter -1,
                              ;   double shift wrk1 and q 
                              ;   rigth with zero input,
                              ; until counter = 0.
        mover(wpre,wrk1) nothm csmy shinz; wreg(index - 1) := wrk1.
        jmp(pfneic) moves(wreg,q); wreg(index) := q, goto pficin.

ld3:    jmp(pfneic) mzero(wreg); wreg(index) := 0, goto pfneic.
        ;*until: final
        ;*skip: norm

        ; HC8000 instr: normalize single: 'ns', numeric code 34.
        ; ----------------------------------------------------
ns/'34: moves(q,wreg)         ; q := wreg(index).
        cjmp(zero,ns2) mzero(wrk1); if wreg(index) = 0 then
                              ; goto ns2, wrk1 := 0.
ns1:    cjmp(nover,ns1) slnorm(wrk1);
        moves(wreg,q)         ; wreg(index) := q.
        jsb(getop) mover(q,wrk1); q := wrk1, call getop.
        jmp(hsnoen)           ; goto hsnoen. (i.e. normalize
                              ; entry in instr. half word
                              ; store ).
ns2:    mover(q,-2048)        ; q := -2048
        jsb(getop)            ;
        jmp(hsnoen)           ; 

        ; HC8000 instr: normalize double: 'nd', numeric code 35.
        ; ------------------------------------------------------
nd/'35: moves(q,wpre) dshinz  ; q := wreg(index-1), set shift control
                              ; to shift double with zero input.
        moves(wrk1,q)         ; wrk1 := q.
        cjmp(zero,nd2) moves(q,wreg); if wrk1 (i.e. wreg(index-1)) = 0 then
                              ; goto nd2, q := wreg(index).
        mzero(wrk2)           ; wrk2 := 0.
nd1:    dlnorm(wrk1)          ; double normalize wrk1 and q.
        cjmp(ncarry,nd1) incone(wrk2); if not carry then goto nd1,
                              ; wrk2 := wrk2 + 1.
        moves(wpre,wrk1)      ; wreg(index-1) := wrk1.
        jsb(getop) moves(wreg,q); wreg(index) := q, call getop.
        jmp(hsnoen) mover(q,wrk2); goto hsnoen ( i.e. entry inhalf
                              ; word store) , q := wrk2.
nd2:    cjmp(nzero,nd1) mzero(wrk2); if q <(i.e. wreg(index)) <> 0 then
                              ; goto nd1, wrk2 := 0.
        jsb(getop)            ; call getop.
        mover(q,8.4000)       ; q := -2048.
        jmp(hsnoen)           ; goto hsnoen.
        ;*until: norm
        ;*page:  XXX



        ; sequencing .
        ; -----------
        ; HC8000 instr: jump and select enable level: 'je', numeric code 15.
        ;-----------------------------------------------------------------
je/'15: 
        invr(hc2901,'e01sel)  ; closk hc2901 in function set enable level.
        andinv(status,'disbit) ; clear disable bit in status register.
        jmp(jd2)              ; continue in jump disable 2.

        ; HC8000 instr: jump and select diable level: 'jd', numeric code 14.
        ;------------------------------------------------------------------
jd/'14: add(addrs,'montop)  noload; if addrs >= -montop then
        cjmp(notneg,jd1)      ; then goto jd1. 
        mover(wrk0,-2048) signex; wrk0 := -2048.
        sub(addrs,wrk0)  noload; if addrs < -2048 then
        cjmp(less,jd1)        ; then goto jd1.
        mover(cause,addrs)    ; cause := addrs.
        add(cause,2048)       ; cause := cause + 2048.
        sub(inf,1)            ; inf := inf -1.
        jmp(intser) inctwo(ic); ic := ic + 2, goto service interupt.
jd1:    invr(hc2901,'e01sdl)  ; closk hc2901 in set diable level.
        or(status,'disbit)    ; set disable bit in status register.
jd2:    cjmp(re2901,jd2) clre01; wait until hc2901 ready.


        ; HC8000 instr: jump with register link: 'jl', numeric code 13.
        ; -----------------------------------------------------------
jl/'13: mover(wrk1,w0)        ; save    w_reg(0)  in wrk1.
        mover(wreg,ic)        ; move old ic to wreg(index).
        inctwo(wreg)          ; w_reg(index) := wreg(index) + 2.
        mover(ic,addrs)       ; get new ic form address.
        jmp(nopfic) mover(w0,wrk1); goto nopfne, w0 := originaaly w0.
        ; HC8000 instr: skip if register high: 'sh', numeric code 40.
        ;---------------------------------------------------------
sh/'40: sub(wreg,addrs) noload; if w_reg(index) <= addrs then
        cjmp(lseq,pficin) inctwo(ic); ic := ic + 2,goto pfnicin
        jmp(sknins) inctwo(ic); ic := ic + 2, goto sknins.

        ; HC8000 instr: skip if register low: 'sl', numeric code 41.
        ;----------------------------------------------------------
sl/'41: sub(wreg,addrs) noload; if w_reg(index) >= addrs then
sl1:    cjmp(greq,pficin) inctwo(ic); entry skip limit violation,
                              ; ic := ic + 2, goto pficin.
        jmp(sknins) inctwo(ic); ic := ic + 2, goto sknins.

        ; HC8000 instr: skip if register equal: 'se', numeric code 42.
        ;----------------------------------------------------------
se/'42: sub(wreg,addrs) noload; if w_reg(index) <> addrs then
se1:    cjmp(nequal,pficin) inctwo(ic); ( entry from skip one),               
                              ; ic := ic + 2, goto pficin.
        jmp(sknins) inctwo(ic); ic := ic + 2, goto sknins.

        ; HC8000 instr: skip if register not equal: 'sn', numeric code 43.
        ;----------------------------------------------------------------
sn/'43: sub(wreg,addrs) noload; if w_reg(index) = addrs then
        cjmp(equal,pficin) inctwo(ic); ic := ic+2, goto pficin.
        jmp(sknins) inctwo(ic); ic := ic + 2, goto sknins,

        ; HC8000 instr: skip if register bits one: 'so', numeric code 44.
        ; -------------------------------------------------------------
so/'44: and(q,wreg,addrs)     ; q := w_reg(index) and addrs.
        jmp(se1) sub(q,addrs) noload;  if addrs <> q then
                              ; condition test performed in skip equal.

        ; HC8000 instr: skip if register bits zero: 'sz', numeric code 45.
        ;----------------------------------------------------------------
sz/'45: and(wreg,addrs) noload; if w_reg(index) and addrs <> 0 then
sz1:    cjmp(nzero,pficin) inctwo(ic);  ( entry from skip exeption)
                              ; ic := ic + 2, goto pficin.
        jmp(sknins) inctwo(ic); ic := ic + 2, goto sknins.
        ; HC8000 instr: skip if no exeption: 'sx', numeric code 46.
        ; -------------------------------------------------------
sx/'46: and(addrs,7)          ; addrs := addrs and 7.
        jmp(sz1) and(addrs,ex) noload; if (ex and addrs) <> 0 then
                              ; skip test performed in skip zero.
        ; HC8000 instr: skip if no write protection: 'sp', numeric code 21.
        ; ---------------------------------------------------------
sp/'21: sub(addrs,8) noload   ; if sp < 8 then
        cjmp(less,sp1) add(q,addrs,base); goto sp1, q := addrs + base.
        sub(q,lowlim) noload  ; if addrs + base < lower_limit then
        cjmp(less,pfneic)     ; goto pfneic.
        jmp(sl1) sub(q,uplim) noload; if addrs+base >=
                              ; skip action performed in skil low.
sp1:    sub(addrs,0) noload   ; if addrs < 0 then
        cjmp(less,pficin) inctwo(ic); ic := ic + 1, goto pficin.
        jmp(sknins) inctwo(ic); ic := ic + 2 , goto skins.

        ; escape and interupt sequencing.
        ; -------------------------------
        ; HC8000 instr: return from excape: 're', numeric code 22.
        ; ------------------------------------------------------
        ; escape pattern /.11.1./
re/'22: mover(wrk0,addrs)     ; wrk0 ( reg dump addrs) := addrs.
        add(wrk0,base)        ; reg dump addrs := reg dump addrs + base.
        add(q,wrk0,14)        ; q := addrs of last reg to be 
                              ; reestablished.
        sub(lowlim,wrk0) noload; if lower limit > reg dump addrs then
        cjmp(great,re5) sub(q,uplim) noload; goto re5, if reg dump addrs
        cjmp(greq,re5) mover(wrk2,status); save monitor mode bit for
                              ; preventing illegal setting of
                              ; monitor mode in werk2.
re7:    jsb(redyre) mover(wrk1,ic); call reestablish dynamic registers,
                              ; save old ic.
re3:    mover(wrk2,wrk2)      ; if process previus was in monitor
        cjmp(neg,re4) mover(wrk2,status) slft; then goto re4 , else
        mover(status,wrk2) srgt; clear monitor mode bit in status reg.
re4:    
        jmp(nopfic)           ; goto get next 8000 instr:.

re5:    mover(wrk0,addrs)     ; wrk0 := reg dump addrs.
        sub(q,base)           ; q := reg dump addrs + 14.
        mover(wrk2,status)    ; save monitor mode bit.
        sub(wrk0,8) noload    ; if reg dump addrs <  8 then
        cjmp(less,expt) sub(q,cpa) noload; goto re6, else if reg dumpadd + 14 
        cjmp(less,re7)        ; < cpa then goto re7 ( reestablish
                              ; registers) else
        jmp(expt)             ; goto exeption.






        ; HC8000 instr: return from interupt: 'ri', numeric code 12.
        ; --------------------------------------------------------
        ; escape pattern /111.1./
ri/'12: mover(status,status)  ; if not in monitor mode then
        cjmp(notneg,prgexp)   ; then goto program exeption.
        invr(hc2901,'e01rin)  ; clok hc2901 in entry 
                              ; return from interupt.
        add(inf,12)           ; select new system table 
                              ; inf := inf + 12.
        add(q,inf,2)          ; q := inf+2, calculate register dump
                              ; address in new system table.
ri1:    cjmp(re2901,ri1) clre01; wait for hc2901 is ready.
        invs(hc2901,q)        ; move addrs of system table regdump
                              ; addrs to hc2901
        mover(wrk2,addrs)     ; save old address in wrk2.
        mover(wrk1,ic)        ; save old address in wrk1.
ri2:    cjmp(re2901,ri2) clre01 invs(wrk0,hc2901); wait for hc2901 is ready,
                              ; get regdump addrs to wrk0.
        jsb(redyen)   clwr01  ; call subroutine for reestablishing
                              ; the dynamic registers from hc2901,
                              ; clear write hc2901.
        add(wrk0,wrk2)        ; reg dump addr := reg dump addr 
                              ; + old addrs
                              ; ( reg dump addr is now addr of static 
                              ; registers, old addrs is the
                              ; effective address of ri intruction).

        invs(hc2901,wrk0)     ; send address of dynamic register dump to
                              ; to hc2901.
ri12:   cjmp(re2901,ri12) clre01 invs(cpa,hc2901); wait for hc2901 ready,
                              ; reestablish spa register.
        cont clwr01           ; clock hc2901 ready to accept next
                              ; data word.
ri14:   cjmp(re2901,ri14) clre01 invs(base,hc2901); wait for hc2901 ready,
                              ; reestablish base register.
        cont clwr01           ; clock hc2901 ready to accept next
                              ; data word.
ri15:   cjmp(re2901,ri15) clre01 invs(lowlim,hc2901); wait for hc2901 ready,
                              ; reestablish lower limit register.
        cont clwr01           ; clock hc2901 ready to accept next data
                              ; word.
ri16:   cjmp(re2901,ri16) clre01 invs(uplim,hc2901); wait for hc2901 ready,
                              ; reestablish upper limit register.
                              ; set dump error count to 0.
        and(status,'disbit) noload; if disable bit not set then
        cjmp(zero,nopfic)     ; fetch next instr wih no prefetch.
        invr(hc2901,'e01sdl)  ; else clock entry set disable level.
ri17:   cjmp(re2901,ri17) clre01; wait for hc2901 ready.
        jmp(nopfic)           ; go to fetch next 8000 instr: with 
                              ; prefecth.
        ; monitor control
        ; ---------------
        ; HC8000 instr: general register, put: 'gp', numeric code 47.
        ; ---------------------------------------------------------
        ; escape pattern 2.1000001
gp/'47: mover(status,status)  ; if not in monitor mode 
        cjmp(notneg,prgexp) moves(q,wreg); then goto program exeption,
                              ; q := wreg(index).
        sub(addrs,26) noload ; if address = 26 then
        cjmp(equal,gp26) inctwo(ic) ; then goto generel put 26, ic := ic+2.
        sub(addrs,64) noload  ; if addrs = 64 then
        cjmp(equal,gp64)      ; goto generel put 64.               
                              ; else if no legal address then
        jmp(pficin)             ; goto get next prefetched instruction.
*skip:  gp
        mover(wrk1,addrs) rgtaoa; wrk1 := addrs shift (-1) .
        cjmp(neg,pfneic)      ; if shifted value is nagative
                              ; goto interupt 0.
        add(q,wrk1,'gp1)      ; q:= wrk1 + address of gp1.
        ldctre(q)             ; counter in secvens controller := q.
        moves(q,wreg)         ; q := w_reg(index).
        sub(wrk1,15) noload   ; if wrk1 > 15 then
        cjmrd(great,gp2)      ; goto gp2 else to contents of eckens counter.
gp1:    jmp(pfneic) moves(w0,q); w0 := q, goto pfneic.
        jmp(pfneic) moves(w1,q); w1 := q, goto pfneic.
        jmp(pfneic) moves(w2,q); w2 := q, goto pfneic.
        jmp(pfneic) moves(w3,q); w3 := q, goto pfneic.
        jmp(pfneic) moves(ic,q); ic := wreg(index), goto pfneic.
        jmp(pfneic) moves(addrs,q); addrs := q. goto pfneic.
        jmp(pfneic) moves(r6,q); r6 := q, goto pfneic.
        jmp(pfneic) moves(r7,q); r7 := q, goto pfneic.
        jmp(pfneic) moves(r8,q); r8 := q, goto pfneic.
        jmp(pfneic) moves(r9,q); r9 := q, goto pfneic.
        jmp(pfneic) moves(r10,q); r10 := q, goto pfneic.
        jmp(pfneic) moves(r11,q); r11 := q, goto pfneic.
        jmp(pfneic) moves(r12,q); r12 := q, goto pfneic.
        jmp(pfneic) moves(r13,q); r13 := q, goto pfneic.
        jmp(pfneic) moves(r14,q); r14 := q, goto pfneic.
        jmp(pfneic) moves(r15,q); r15 := q, goto pfneic.
gp2:    mover(addrs,addrs) slft; addrs := addrs*2.
        add(q,addrs,e01p01)   ; q := addrs + entry get reg 0 in hc2901.
        invs(hc2901,q)        ; hc2901 := clock and set etry to q.
*until: gp
gp64:   invr(hc2901,'e01wtr)  ; clock hc2901 in write test
                              ; register.             
gp3:    cjmp(re2901,gp3)  clre01;  loop while hc2901 is not ready
        invs(hc2901,q)        ; hc2901 := q and clock
gp4:    cjmp(re2901,gp4) clre01; loop until hc2901 is ready.
        jmp(pficin)           ; goto pfneic.
gp26:   jmp(pficin) moves(inf,q) ; information register := q (
                                 ; selected working register), goto
                                 ; get next prefetched instrcution.


        ; HC8000 instr: general register, get: 'gg', numeric code 28.
        ; -----------------------------------------------------
        ; escape pattern: 2.000001
gg/'28: moves(q,wreg)         ; save wreg(index).
        sub(addrs,94) noload  ; if address = 94 then
        cjmp(equal,gg94)      ; then goto generel get 94 else
        sub(addrs,26) noload  ; if addrs = 26 then
        cjmp(equal,pfneic) mover(wreg,inf); wreg(index) := infromation
                              ; register, goto pfneic.
                              ; else 
        sub(addrs,100) noload ; if address = 100 then
        cjmp(equal,gg100)     ; then goto generel get 100 else
        sub(addrs,200) noload ; if address > 200 then
        cjmp(greq,ggm200)    ; then goto generel get more than 200
                              ; else
        sub(addrs,64) noload  ; if addres = 64 then
        cjmp(equal,gg64)      ; then goto generel get 64 else
        sub(addrs,66) noload  ; if addrs = 66 then 
        cjmp(equal,gg66)      ; then goto generel get 66
                              ; else
ggnle:  jmp(pfneic) mover(wreg,q); if not legal then reestablish
                              ; w reg(index) and goto pfneic
gg100:  invr(hc2901,'e01rtc)  ; send addrs of real time clock to
                              ; hc2901.
        jmp(gg4)              ; goto gg4.
gg64:   invr(hc2901,'e01rtr)  ; send0address of read test register
                              ; with no wait to hc2901.
        jmp(gg4)              ; goto gg4.
gg66:   invr(hc2901,'e01rtw)  ; clock hc2901 in read test register
                              ; with wait.
        jmp(gg4)             ; goto wait word from hc2901.
gg94: ; generel get chrakter interupt level from
      ; amd9511 interupt controler.
      mover(status,status)    ; if not in monitor mode then
      cjmp(notneg,ggnle)     ; goto generel get no legal entry.
      invr(hc2901,'e01cil)   ; else clock hc2901 in entry
                             ; get charakter interupt level.
gg4:    cjmp(re2901,gg4) clre01; loop while hc2901 is not redy
        jmp(pfneic) invs(wreg,hc2901); w_reg(index) := hc2901, gpfneic.



ggm200: ; entry for generel get with addres greather and equal 200.
        sub(addrs,200) noload ; if address > 200 then
        cjmp(great,ggm202)    ; then goto generel get more 202
                              ; else
                              ; generel get 200.
                              ; reverse bit in word.
        moves(wrk0,q) dshinz  ; wrk0 := q( selected working register),
                              ; set shift condition in amd2904 to
                              ; double shift with zero input.
        lcpu(23)              ; load counter with length or word.
                              ; for 0 to 23 do
                               ; begin
        mover(wrk0,wrk0) rgtaql ;   q.msb := wrk0.lsb, shift wrk0 rigth.
        rep mover(wrk1,wrk1) lftaql ; wrk1.lsb := q.msb ; shift wrk1 left.
        mover(wreg,wrk1) shinz; wreg(index) := wrk1 ( reversed word),
                              ; set shift condition to singleshift
                              ; and zero input.
        jmp(pficin) inctwo(ic) ; goto get next prefetched
                              ; instrcution.

ggm202: ; entry for instruction greather than 200.
        sub(addrs,202) noload ; if address > 202 then
        cjmp(great,ggm204)    ;   goto continue with generel get instructions
                              ; with address greather than 202.
                              ; else gg 202 and 201.
        moves(wrk0,q)          ; wrk0 := C(selected w register).
        cjmp(neg,gg2021) inctwo(ic) ; if c(wreg) negative then
                                    ; goto gg201 else
        sub(addrs,201) noload       ; if address = 201 then
        cjmp(equal,gg2024)          ; goto one decrement of wrk0.
        sub(wrk0,1)                 ; decrement wrk0 by 1.
gg2024: sub(wrk0,1)                 ; decrement wrk0 by 1.
        cjmp(greq,pficin) moves(wreg,wrk0) ; if wrk0 >= 1 then goto
                                     ; get next instruction prefetched
                                   ; selected working register := wrk0.
       jmp(sknini) mzero(wreg)     ; else goto get next instrcution
                                   ; with skip, reset seleted working
                                   ; register.
gg2021: sub(addrs,202) noload      ; if address = 202 then 
        cjmp(equal,gg2023) inctwo(wrk0) ; goto gg2023 wrk0 := 
                                   ; wrk0 + 2.
       sub(wrk0,1)                ; else wrk0 := wrk0+1.
gg2023: cjmp(neg,pficin) mover(wreg,wrk0) ; if wrk0 < 0 then goto
                                  ; get next prefetched instruction
                                  ; selected working register := wrk0
       jmp(sknini) mzero(wreg)    ; else goto get next skipped prefetched
                                  ; instruction, reset selected 
                                  ; working register.
        ; HC8000 instr: data out: 'do', numeric code 1.
        ; -------------------------------------------
do/'1:  mover(wrk0,'e01dob)   ; wrk0 := address of data out base block
                              ;         in hc2901.
        jmp(dioent)           ; goto common data in data out entry.



        ; HC8000 instr: data in: 'di', numeric code 0.
        ; --------------------------------------------
di/'29: mover(wrk0,'e01dib)   ; wrk0 := entry in hc2901 for address
                              ;         block for data in.
dioent:                       ; common entry for data in and data out.
        andinv(ex,7)          ; ex(21,23) := 0, clear bit 21 to
                              ; 23 in ex register (i.e. status 
                              ; register.)
        cjmp(notneg,prgexp) mover(wrk1,addrs) slft; if status 
                              ; (same as ex) is not
                              ; negative ( not monitor mode) 
                              ; then goto program exeption,
                              ; wrk1 := addrs * 2 ( delete possible
                              ; sign bit).
        cjmp(notneg,dimemo) mover(wrk1,wrk1) srgt; if addrs is not negative
                              ; then goto dimemo ( memory word fetch),

        and(q,addrs,7)        ; q := last 3 bits of 
                              ; effective address.
        add1(wrk0,q,wrk0)     ; wrk0 := wrk0 + address of first
                              ;      data in function, in hc2901 + 1,
                              ;      ( add 1 because the first entry in
                              ;        hc2901 is used to direct memory 
                              ;        access).
        andinv(wrk1,7)        ; clear last 3 bits of device number.
                              ; data in jump table.
dimemo: invs(hc2901,wrk0)     ; clock hc2901 in address e01gmw.
diw1:   cjmp(re2901,diw1) clre01; wait for ready.
        invs(hc2901,wrk1)     ; hc2901 := divice number.
        moves(q,wreg)         ; q := wreg(index).
diw2:   cjmp(re2901,diw2) clre01; wait for hc2901 ready.
        invs(hc2901,q)        ; send contents of w reg to hc2901.
diw3:   cjmp(re2901,diw3) invs(wreg,hc2901); wait for hc2901,
                              ; wreg(index) := hc2901.
        cont clwr01           ; clear write ready from hc2901.

diw4:   cjmp(re2901,diw4) invs(wrk1,hc2901); wait for hc2901, wrk1 := hc2901.
        and(wrk1,7)           ; wrk1 := wrk1(21.23).
        jmp(pfneic) or(ex,wrk1); ex := wrk1.
                              ; goto pfneic.

        ; jumptable to not finished 8000 instr:
        ; schould not be prommed.
wd/'24: jmp(dowd)             ; word divide.
cf/'53: jmp(docf)             ; convert floating to integer.
ci/'32: jmp(doci)             ; convert integer to floating.
fa/'48: jmp(dofa)             ; floating point add.
fd/'52: jmp(dofd)             ; floating point divide.
fm/'50: jmp(dofm)             ; floating point multiply.
fs/'49: jmp(dofs)             ; floating point subtract.
ggm204:                       ; entry next generel get instruction
                              ; .
dowd:   
docf:   
doci:   
dofa:   
dofd:   
dofm:   
dofs:   
        jmp(prgexp)           ; goto program exeption.

*notin: rhtest
        ; division removed in rhtest

        ; HC8000 instr: integer word, divide: 'wd', numeric code 24.
        ; --------------------------------------------------------
        ;.wd/'24:       . entry notused.
        andinv(ex,wrk2)       ; ex(carry) := ex(owerflow) := 0.
        jsb(getop) moves(q,wpre); wrk0 := getop(addrs),
                              ; q := wreg(index-1), ( most
                              ; significant word of dividend).
        cjmp(zero,wd1)  moves(wrk2,q); if wrk0 = 0 then goto wd1,
                              ; wrk2 := q (most significant word
                              ; of dividend).
        mover(wrk1,wrk0)      ; wrk1 := wrk0 ( divisor).
        sgnmgn(wrk2)          ; wrk2 := sign magnitude(wrk2).
        cjmp(over,wd2) sgnmgn(wrk1); wrk1 := sign magnitude(wrk1)
                              ; if overflow then goto wd2.
        cjmp(over,wd3) mover(wrk1,wrk1) slft; if overflow then goto wd3,
                              ; wrk1 := wrk1 shift 1.
        mover(wrk2,wrk2) slft ; wrk2 := wrk2 shift 1.
        sub(wrk1,wrk2) dshln  ; wrk1 := wrk1 - wrk2.
                              ; set shift double with link logic
wd3:    cjmp(carry,wd4) moves(wrk2,q); if carry then goto wd4,
                              ; wrk2 := q ( most significant
                              ; word of dividend.)
        moves(q,wreg)         ; q := wreg(index).
        lcpu(22) div1st(wrk2,wrk0); push micro program counter to stack
                              ; load micro sekvens counter with 23,
                              ; 
        rep div2c(wrk2,wrk0)  ;
        div2cr(wrk2,wrk0) shin1;  set shift single with one input
        mover(wpre,wrk2)      ; wreg(index -1) := wrk2,
                              ; wreg(index-1) := remainder.

        moves(wreg,q)         ; wreg(index) := q,
                              ; wreg(index) := quotient.
        jmp(pficin) inctwo(ic); goto prefetch next instr,
                              ; ic := ic + 2.
wd1:    or(ex,2)              ; ex(overflow) := 1.
        and(status,16) noload ; if status(integer overflow) = 1

        cjmp(zero,pfneic)     ; goto pfneic
        jmp(intexp)           ; goto integer exeption.
wd2:    mover(wrk1,wrk1) srgt ; not finishd entry for scaling
wd4:    cont

        jmp(pfneic)           ; dummy end.
*until: rhtest
        ; end of micro program
*end:   
▶EOF◀