|
DataMuseum.dkPresents historical artifacts from the history of: RC4000/8000/9000 |
This is an automatic "excavation" of a thematic subset of
See our Wiki for more about RC4000/8000/9000 Excavated with: AutoArchaeologist - Free & Open Source Software. |
top - metrics - download
Length: 6144 (0x1800) Types: TextFile Names: »gotdosc«
└─⟦621cfb9a2⟧ Bits:30002817 RC8000 Dump tape fra HCØ. Detaljer om "HC8000" projekt. └─⟦0364f57e3⟧ └─⟦1248b0c55⟧ »gobib« └─⟦this⟧
;gosav clear tdosc r=edit algtdosc c.50 l1,d./)/,l./set/,r/6/7/,l1, r/no/no/,l./Q2,Q4/,r/Q2,Q4,Q6,//,l2,r/nw/ni,nw/,r/v1/v0,v1/ l./array w/,r/10/16/,r/;/,ev0,px(1:N),x2(1:N,1:N),Qa,Qb(1:3,1:N);/, l./H(1:N/,r/ev/ array ev/,l-1,d,g/m1:m2/1:N/ l3,g8/H(i,/x(i,i-/,l1,i/ for j:=i-m-1 step -1 until 1 do x(i,j):= 0; /,l-9,r/-0//,l2,i/ if i>1 then /,l3,i/ if i>2 then /,l2,r/>2/>2 and i>3/,l2,r/>3/>3 and i>4/,l./banddiag/,d,i/ tridql(N,ev,x); /,l2,r/v/v0/,l2,r/5/2/,l5,r/v+/v0+/,l./Q4/,r/Q4:= //,i/ array Qp,Qv(1:3,1:N); /,l2,r/Q2:= Q6:= //,l3,d,l1,d,l2,d1,l4,i? Qv(1,j):= u*p-sq1*q/2; Qv(2,j):= (u*u*3-t+1)/2*p+(-(u-1)*2*q+sq2*r)*sq1/2; Qv(3,j):= (u*u*5-3*t+7)*u/2*p+(-((u-2)*u*5-t+9)*0.75*q +((u-2)*3*r-sq3*s)*sq2)*sq1/2; if j>1 then begin s:= sq1*p; Qv(1,j-1):= Qv(1,j-1)-s; Qv(2,j-1):= Qv(2,j-1)-(u-1)*2*s; Qv(3,j-1):= Qv(3,j-1)-((u-2)*u*5-t+9)*0.75*s; if j>2 then begin s:= s*sq2; Qv(2,j-2):= Qv(2,j-2)+s; Qv(3,j-2):= Qv(3,j-2)+(u-2)*3*s; if j>3 then Qv(3,j-3):= Qv(3,j-3)-sq3*s; end end; ?,l./case/,r/1/5/,r/case j/case j-4/,i/ w(nw+i,1):= G*ev(i); /,l2,r/P2/ (P2/,l-1,d,l1,r/v+/v0+/,l1,i? comment <v,l! Q**n !v',l> are formed in Qp and stored in Qa for v,l= 2,0 and 3,1 and in Qb for v,l= 2,2 and 3,3; for u:=1,2,3 do for k:=1 step 1 until N do begin p:= Qp(u,k):= sum(Qv(u,j)*x(k,j),j,1,N); if i=2 and l<=1 or i=1 and 2<=l and l<=3 then begin if l<2 then Qa(u,k):= p else Qb(u,k):= p end; end; for u:=1,2,3 do w(nw+i,u+1):= Qp(u,i)*LS**u; ni:= 10; for u:=1,2,3 do for v:=u step 1 until 3 do begin ni:= ni+1; p:= 0; for k:=i-1 step -1 until 1,i+1 step 1 until N do p:= p + Qp(u,k)*Qp(v,k)/(ev(i)-ev(k)); w(nw+i,ni):= p*LS**(u+v)/G end; ?,l./end end;/,d,i? end; ni:= 10; for u:=1,2,3 do for v:=u step 1 until 3 do begin ni:= ni+1; write(res,<<d>,nl,1,<:X:>,u+u,<:.X:>,v+v); for i:=k1 step 1 until k2 do write(res,string lo,w(nw+i,ni)); end; if 2<=l and l<=5 and k1=1 then begin array xx(1:3,1:N),f,ps(1:3),Qc,Qd,Qe(1:3,1:N),a(1:3,1:3); if l<=3 then write(res,nl,2,<:Couplings:>,if l=2 then <: !2,0> - !2,2>::> else <: !3,1> - !3,3>::>,nl,1,<:First order: X2,X4,X6 =:>); for j:=1 step 1 until N do begin for k:=1,2 do xx(k,j):= x2(k,j); xx(3,j):= x(1,j); end; ni:= if l<=3 then 3 else 1; for i:=1,2,3 do begin if i>1 then begin comment we form Q**2 !xx(k,j>; v:= l; sq1:= sqrt((v+l+2)*(v-l+2))/2; for k:=1 step 1 until ni do f(k):= (v+1)*xx(k,1)-sq1*xx(k,2); for j:=2 step 1 until N-1 do begin v:= v+2; sq2:= sq1; sq1:= sqrt((v+l+2)*(v-l+2))/2; for k:=1 step 1 until ni do begin q:= f(k); f(k):= (v+1)*xx(k,j)-sq2*xx(k,j-1)-sq1*xx(k,j+1); xx(k,j-1):= q; end end; for k:=1 step 1 until ni do begin xx(k,N):= (v+4)*xx(k,N)-sq1*xx(k,N-1); xx(k,N-1):= f(k); end end; comment we form Qc(n/2,j) = <v,2! Q**n !2,0> , Qd(n/2,j) = <2,2! Q**n !v,0> with v<>2, Qe(n/2,j) = <v,2! Q**n !0,0> with v<>0, and write <2,2! Q**n !2,0> . Corresponding terms are evaluated for levels with l=1 and 3; if l<=3 then begin write(res,string lo, sum(xx(2,j)*x(1,j),j,1,N)*LS**i); ps(i):= sum(xx(3,j)*px(j),j,1,N); for v:=2 step 1 until N do Qc(i,v):= sum(x(v,j)*xx(2,j),j,1,N); for v:=1,3 step 1 until N do Qd(i,v):= sum(x2(v,j)*xx(3,j),j,1,N); end l<=3; for v:=1 step 1 until N do Qe(i,v):= sum(x(v,j)*xx(1,j),j,1,N); end i; if l<=3 then begin write(res,nl,1,sp,9,<:P2,P2X2,P2X4 =:>, string lo,ps(1)/LS,ps(2),ps(3)*LS); for u:=1,2,3 do for v:= 1,2,3 do begin p:= 0; for k:=1,3 step 1 until N do p:= p+Qa(u,k)*Qd(v,k)*(1/(ev0(2)-ev0(k))+1/(ev(1)-ev0(k))); for k:=2 step 1 until N do p:= p+Qb(u,k)*Qc(v,k)*(1/(ev0(2)-ev(k))+1/(ev(1)-ev(k))); a(u,v):= p/2*LS**(u+v)/G; end; write(res,<: Second order: X2 X4 X6 (non-diagonal):>); for u:=1,2,3 do begin write(res,nl,1,<: X:>,<<d>,u+u); for v:=1,2,3 do write(res,string lo,a(u,v)); end; end l<=3; ni:= if l<=3 then 3 else 1; write(res,nl,2,<:Additional Pert. Sums: :>); for k:=1 step 1 until ni do write(res,<<d>,<:!:>,l-(if k=1 then 2 else 0),<:,:>, l-(if k=3 then 0 else 2),<:>:>,sp,if k=ni then 0 else 11); for u:=1,2,3 do for v:=u step 1 until 3 do begin p:= q:= r:= 0; s:= LS**(u+v)/G; for j:=1 step 1 until N do p:= p+Qe(u,j)*Qe(v,j)/(ev0(1)-ev(j)); write(res,nl,1,sp,13,<<d>,<:X:>,u+u,<:.X:>,v+v, string lo,p*s); if l<=3 then begin for j:=2 step 1 until N do q:= q+Qc(u,j)*Qc(v,j)/(ev0(2)-ev(j)); for j:=1,3 step 1 until N do r:= r+Qd(u,j)*Qd(v,j)/(ev(1)-ev0(j)); write(res,string lo,q*s,r*s); end end; end 2<= l <=5; if l<=3 and k1=1 then begin comment we form in x2(i,j) and px(j) the vectors !x2(i)> = X**2*cos(2v) !x(i)> and ! px > = 2*p**2*cos(2v) !x(1)>; k:= if l<=1 then N else 1; for i:=1 step 1 until k do begin ev0(i):= ev(i); v:= l; for j:=2 step 1 until N do begin v:= v+2; p:= sqrt((v-l)*(v+l+2))*x(i,j); q:= sqrt((v+l)*(v+l+2))*x(i,j-1)/2; r:= if j=N then 0 else sqrt((v-l)*(v-l+2))*x(i,j+1)/2; x2(i,j-1):= (p-q-r)/2; if l<=1 and i=1 then px(j-1):= -p-q-r; end; x2(i,N):= -sqrt((v+l+2)*(v+l+4))*x(i,N)/4; end i; if l<=1 then px(N):= x2(1,N)*2 end l<=3 end dv>=0; ?,f i r ▶EOF◀