G ) (@)







RC 3803 CPU
Programmer’s Reference Manual

. August 1980
A/S Regnecentralen af 1979 RCSL 42-i 1008




Author: Knud Henningsen
Technical Editor: Knud Erik Hansen

KEY WORDS: RC3803, CPU 720, Revision 0.

ABSTRACT: This paper describes the logical structure of the
RC3803 Central Processor Unit.

Users of this manual are cautioned that the specifications
confained herein are subject to change by RC at any time

without prior notice. RC is not responsible for typographi-
cal or arithmetic errors which may appear in this manual

and shall not be responsible for any damages caused by

reliance on any of the materials presented. '

Copyright © A/S Regnecentralen af 1979
Printed by A/S Regnecentralen af 1979, Copenhagen



Table of contents

1.

2.

3.

-RC3803 SPECIFICA’I'I% ®© 0000000030080 0206000c000000800SCTIDL

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

Central Processor Unit seesescecescecscescsscanss
MEIMOLY ceveccccscovossccnssssossssonsosssssccanssee
INPUL/OULPUL sevesvsscocsescacosssessscocsscscsnce
Interrupt Capability eeeecescecccecoceccssssasses
Data Channel cceececcceccscecscosssscssosssscscnses
Power Fail/AutO RESLArt eecescecccssosccsccsscsss
Real Time ClOCK cecscecssocsssscssasssscascacsnnse
Diagnostic Prontiﬁanel seseccscsrsessssscnessssns

m’mIGJRATIm 00 00 0000000000800 000000000000000

2.1
2.2

2.3

2.4

2.5

INtroduction ececesesescscscscsesssssssscnsscccecs
Program StrucCtuUre eeeeececccecscccsccossssccssccass
2.2.1 Program EXecution e.esescecssccccsccccccse
2.2.2 Program Flow Alteration eceecscscosssscacs
2.2.3 Program SiZ€ eseeeseccscscscscscscscscscccns
2.2.4 Program Flow Interruption eeeecececcccsces
Information FOrmatsS seeeeesessscscescsscsscsssccas
2.3.17 Fundamental CONCEPLS seesecsccoccsssccssese
2.3.2 Bit NUmbering cececsescsescessscccscascncasne
2.3.3 Binary Representation seeeescscccccscccsse
2.3.4 Octal Representation seeeceeccescescsccccee
2.3.5 Hexadecimal NotatioOn .eesecscscessssasscse
Numerical QuantitieS .eeceseccscsscscsscssccccccs
2.4.1 INtEYErS eeeecccccecccsccssccscccscsscscnsne
2.4.2 Iogical QuantitieS seececsccsceccscscecscce
AAAressSing ceececcccsesscsescscsccscassscsscascacs
2.5.1 Word AJAresSSing ceeeescsscseccccsacscaccss
2.5.2 Byte AJAresSSing seeeecccscccescscesssccsos

Immlms 00000600000 000000800000000000000000CRCRNREGOIOGIES

3.1
3.2
3.3

mtrduction 9000000 000000000800000000000000CBCOTSITSTS
mstruction Fbmlats ©0 8000000080000 é00ss00esPRBROOLES
memnic mscription 0000000 0OC0OROSEGCOSINOIOIOIOINOEONINOIOIEOSEPOSEEPOETDNTTES

[~ VS R VR VS I S R N R )

O 00 00 & Ut Lt »n U»m

N b o ed ed 3 ad e e b
i IR B B - S - PV I o i |

23
23
23
23



ii

TABLE OF QONTENTS (continued) PAGE

3.4 Program Flow Control .cececesccccccocsscoesscescss 24
304,17 JUMP teevesosscccsccccssossssssnscacsseses 25
3.4.2 JUMP TO SUBROUTINE eceescsccescoscssccscecs 26
3.4.3 INCREMENT AND SKIP IF ZERO sccesccscsceses 27
3.4.4 TECREMENT AND SKIP IF ZEROD ccccescosccsses 27

3.5 Data Transfer Operation sceececccsscsscecccescsss 28
3.5.1 LOAD ACCUMULATOR ecescescosccsccsscssccssce 29
3.5.2 STORE ACCUMULATOR .eseeccesccscosscesccses 29

3.6 Integer Arithmetic and Logical Operations ....... 30
3.6.2 SUBTRACT cocecccssccssccsosscossccscascccs 37
3603 NEGATE ceoecesccscssssocscscccscscsccsascee 38
3.6.4 ADD QOMPLEMENT ceccoscoscscccrscsssosscsss 39
3065 MOVE ccececccccscoscasoscsasoscsssscsssccas 39
3.6.6 INCREMENT scecccccossccccccscssascsscacese 40
3.6.7 OOMPLEMENT ceccccvccccsscccscossscsscscese 40
3.6.8 AND cececcococcssescsscscsscscsccsescsscss 41
3.6.9 EXamMPleS seesseossscscsccsscessssscsscosse 41

4. INPUT/OUTPUT ecovoscacsscscescsccssassssssscsscsscssese 45
4.1 INtroduction ececeecesesscccsscecacssssssccscscss 45
4.2 Operation of I/0 DeViCES eecececscccsccccssccsccse 46
4.3 Interrupt SYStEmM cecescesescescscsssscasssescnses 46
4.4 Priority INterruptS ceeecesescsccsccscscesscscssss 48
4.5 Direct Memory Access Data Channel .eeceesecsecses 50
4.6 I/0 INStructionNS seeeecececscccscscssscscsssscass DSl

4.6.17 DATA IN A coecccccscscccscssssensscscsseses D2
4.6.2 DATA IN B socccocccsscocsscccocscsscsceses D3
4.6.3 DATA IN C ceevecccsoscssscsscccscsscscsces D3
4.6.4 DATA QUT A sveceecnoccsccssssscassasscases 54
4.6.5 DATA QUT B ccevsscscccccccscscssscsscccscs 54
4.6.6 DATA OUT C secccsescscsccssscscscssssnsssse D5
4.6.7 I/O SKIP secccsccccsscncsscssssssssscsssss D5
4.6.8 NO I/O TRANSFER ecescccccccessosccssccascss D6



iii

TABLE OF CONTENTS (continued)

PAGE

5.

6.

4.7 Central Processor FUNCLIONS eceececccccccccsnsens
4.7.1 INTERRUPT ENABIE cessssessccscscoccccsscse
4.7.2 INTERRUPT DISABLE ¢cccsocessscccoscsssssssns
4.7.3 READ SWITCHES teeceacscoscssscsssocscsocsces
4.7.4 INTERRUPT ACKNOWIEDGE eecesescscscscscssss
4,7.5 MASK QUT cecevccsccssccccsccossscccsccssss
8.7.6 /O RESET eeeevenseneecescnnnnsssscncnnnns
4.7.8 CPU SKIP sf%cceccsccsscscsscsscossssscsscoss

PROCESSOR FEATURES cecsscceccsscssscscescosssssccscassce
5.1 INtroduCtiOn eesececesscsccescosssssccasccsscsccns
5.2 Power Fail .eeseescsecsccccoccossscccssscssscsscss
5.3 MEMORY EXTENSION ceccccocssccccccsscssssscccccans
5.4 CPU IDENTIFY ceeeocccccsccoossencssscosossccsscsascs
5.5 Byte Manipulation eececescscssccsscscscscscscscse

5.5.17 LOAD BYTE sesevesocecscsasssssssssesssccne

5.5.2 STORE BYTE secececcossessscosssccsscsescse
5.6 BYTE MOVE ceeescccscscscscssssscsassscscsassssssse
5.7 WORD MOVE cevecescocscsscssscccooncssssscccscensanss
5.8 SEARCH TTEM cececcccososascccccsossssssssscccnsons
5.11 PROCESS REMOVE ceceescscscscsasessscscscsccccscoe
5.12 PROCESS LINK PRICRITY ecccccscsscscoscccccoscesces
5.13 INSTRUCTION FETCH (MUSIL) eccccscscccccessocscccs
5.14 TAKE ADDRESS (MUSIL) cecceccccscsscscccccsccccncs
5.15 TAKEVALUE (MUSIL) eccceccoscscccscssscssccscsccas
5.16 COMPARE Byte StringsS eeeecceccscscoccscscscscscsans

PROCESSOR OPTIONS sccsesesccscsscsoscsscsccscscsesssone
6.1 Real Time ClOCK seeseesccscscosccccscsssssccscans
6.2 Teletype CONtroller ceceeccccocescscscosccccesccne
6.2.17 INSEIUCLIONS eeveeecsccscsncsccsssnsnnanes
6.2.2 Programming ceeccccccsccescsscesscssccsccss
6.2.3 Programming EXampleS seeceescscscsocccssscs

56
58
58
59
59
60
60
61

61

62
62
63
64
65
65
66
67
68
69
70
73
74
76
78
81

82

86
88
88
89

89

93



TABLE OF CONTENTS (continued)

PAGE

7.

8.

mmm 9600000 6006000000000 0000000000000 0000¢0e
701 mtraiuction €0 2 8 800600000 0C0CCL0DROCEOEOSONONINCESIONINOIEPNNPOITOIOES
7.2 Automtic madirg 9000 0000000000 OO SO POOOENLDSONDONTPSS

SWITCHES AND INDICATORS cccessvesccscccsssessssccssssse
8.1 SWitCheS ceeececescscscecscscsscscssssscsscscscans
8.1.17 ENABLE TCP ceecescsssscssscsscsscscscccanscs
8.1.2 AUTOLOAD DEVICE SELECT ceecsccccscsccecsss
8.1.3 PARITY ERROR ceccccc-scccscssccssnsvsscnss
8.1.4 MEMORY EXTENSION SELECT cocceccocccosccoce
8.2 INJicatOrsS eecesscccsscscesccssossscscoscssscsscs
8.2.1 PARITY ERROR ccccacssscsssccscncsscnconsce
B8.2.2 CPU-BTATUS coecsoscscscssccscscscscsscscscs

APPENDICES:

A.
B.
C.
D.
E.

I/0 DEVICE QODES AND MNEMONIC coccoceccocsccoccsssvoss
ASCIT CHARACTER (ODES cececcvecsccccscscccscoscsasonse
DOUBLE PRECISION ARITHMETIC seeevescccssescccsccscsses
INSTRUCTION USE, EXAMPLES cececeocscosccccoscccccconoe
INSTRUCTION EXECUTION TIMES ecceccoccoccccccocosccance

97
97
98

103
103
103
104
104
105
106
106
106

108
m
117
119
126



1.1.

1.2

RC3803 Specifications

Central Processor Unit

The RC3803 Central Processor Unit is a micro-programmed, general
purpose stored-program compuf:er with four accumulators. The CPU
works on the basis of a unit of information called a word which
consists of 16 bits. Arithmetic and logical cperations are per-
formed on operands held in the accumulators, which consequently
also are 16 bits in length. Two of the accumulators can be used
as index registers for addressing purposes.

Memory

The main memory is available in two alternative modules:

RC3608 is a core memory withra capacity of 32K words and a cycle
time of 750 ns.

RC3609 is a core memory with a capacity of 16K words and a cycle
time of 650 ns.

The CPU can directly address 32K words of core memory and
provides for base page, relative, indexed and multi-level
indirect addressing modes. By the use of a special instruction
the CPU can be switched to a mode which will allow it to work
with up to 64K words of core memory.

Word length in memory is 16 + 2 = 18 bits. The two extra bits are
parity check bits. They are generated during each memory write
cycle and are checked during each memory read cycle. The detect-
ion of a parity error can affect the cperation of the CPU in two
alternative ways: the error can be indicated on the front frame
of the CPU board while processing continues uninterrupted or pro-
cessing can be brought to a halt. The selection of either possi-
bility is left to the operator's choice by means of a switch also
located on the CPU frame.

1.1

1.2



13

1.4

Input/Output 1.3

All peripheral devices are connected to the CPU through the
Input/Output bus. This consists of a six-line device selection
network, interrupt circuitry, cammand circuitry, and sixteen data
transmission lines. Each individual Input/Output device has a
unique six-bit device code ard will only respond to cammands if
its own device ocode is transmitted through the device selection
network of the Input/Output bus.

The six bits in the device code allows for 64 separate codes. A
number of these codes are reserved for specific uses, but the re-
maining codes make it possible to obtain an extremely flexible
handling of Input/Output devices.

Interrupt Capability ' 1.4

The interrupt circuitry included in the Input/Output bus provides
the capability for any peripheral device to interrupt normal pro-
gram execution whenever the device is in need of attention. When
a peripheral device has requested an interrupt the processor will
transfer control of operations to the main interrupt service rou-
tine, which will handle the servicing of the device. The inter-
rupt service routine will establish the source of the interrupt
either by polling all Input/Output devices connected to the CPU
or it can use a special instruction to identify the device in
question.

The interrupt system also provides the capability of implementing
up to sixteen levels of priority in connection with interrupts,
so that each individual peripheral device is associated with a
specific priority level. A standard priority assignment is imple-
mented by Regnecentralen, but the programmer can change these as-
signments according to his own choice.




1.6

1.7

Data Channel

Data transfers between peripheral devices and main memory under
program control occupy processor time and retard the rate of in-
formation transfer.

To avoid this restriction the Input/Output bus contains cir-
cuitry allowing high-speed access direct to memory through the
data channel, this permits a peripheral device to transfer data
directly into/out of memory using a minimum of processor time. At
the maximum transfer rate the data channel effectively stops the
processor, but at lower rates processing continues while the data
transfer takes place.

Power Fail/Auto Restart

The RC3803 computer incorporates a feature providing for auto-
matic restart in the event of an unexpected power loss. The delay
between the initial decrease of woltage and the actual automatic
shut-down of the processor is utilized to bring the interrupt
service routine into action. This routine will under these cir-
cumstances use the available interval of time to store the con-
tents of accumulators, the program restart address and other in-
formation that will be necessary for restart and continued cpera-
tion when the power supply again has been restored.

The Power Fail feature is entirely automatic and will restart
operations on its own whenever power is again available.

Real Time Clock

A Real Time Clock can optionally be included in the RC3803 com-

puter. This clock will generate a train of pulses indeperdently

of processor timing, this will allow the interrupt system to be

activated at precisely spaced intervals of time. The pulse train
frequency can be selected by the programmer among the following

four possibilities: 10 Hz, 50 Hz, 100 Hz, and 1000 Hz.

1.5

1.6

1.7




1.8

Diagnostic Front Panel

A Diagnostic Front Panel can be connected to the CPU even during
program execution. This will allow external, manual control of
the CPU and will thus facilitate error detection ard correction.
The Diagpostic Front Panel is not described in detail in this
manual, for further information concerning this consult the
Reference Maruwal for the Diagnostic Front Panel - RCSL 52-AA542.

1.8



2.1

2.2.1

Intemal Configuration 2.

introduction 2.1

This chapter and the following deal in some detail with the basic
concepts underlying the actual modus operandi of the RC3803 CPU.
A more intimate knowledge of this subject is not strictly neces-
sesary for ordinary everyday use of the camputer, because the
high-level programming languages available are designed to allow
synmbolic programs to be written without reference to the more
specific information contained in this manual. Thus the intention
is not to establish guidelines for actual programming, for which
purpose separate manuals are available, but to provide a source
of background information for the programmer and/or cperator.

Program Structure 2.2

Information about the type of cperation - arithmetical or other
- which the camputer at any particular time must perform, is
given to the CPU in the shape of an "instruction". The CPU will
carry out successive instructions in strict sequence according
to the order in which the instructions have been specified. The
camplete set of instructions is called a "program” and this must
at the time of execution reside in main memory in order to be
accessible to the CPU.

Program Execution 2.2.1

Each individual instruction occupies a space in memory called a
"word" and although these words will usually occupy adjacent
physical locations in memory, the program may incorporate in-
structions with the specific purpose of altering the sequence in
which the instructions should be carried aut.




2.2.2

Thus the CPU must be able to locate the correct word at the cor- ’
rect point in the sequence in order to execute the program

properly. The actual physical location of a word is called its

"address" and consequently the establishing of location is called
"addressing".

Addressing the instructions is arranged by incorporating a count-
ing circuit called the "program counter". The program counter
contains one integer number, which always indicates the memory
address of the instruction currently being carried ocut. When the
operation specified by that particular instruction has been cam-
pleted, the number in the program counter is incremented by one
and the CPU will then retrieve the next instruction to be carried .
out fram the memory location now being indicated by the mumber in
the program counter. Succeeding addresses will thus form a
strictly ascending numerical sequence and this method of oper-
ation is consequently called "sequential cperation”.

Program Flow Alteration 2.2.2

The programmer can however purposely arrange to deviate fram the
strict sequential operation. This is done by using the appropri-
ate program flow control instructions which will make it possible
to achieve two distinctly different types of program flow varia-

tion. .

The "jump" type instruction will cause an arbitrary new number -
either larger or smaller than the current one - to be inserted
in the program counter. Thus when the jump instruction has been
executed, the next instruction to be located can have any of all
the possible addresses.



The "conditional skip" type instruction will first determine
whether a specified test condition is true or not. If true, it
will then cause the program counter to be increased by one, if
false, nothing further will be done. When the corditional skip
instruction has been executed, the program counter will be in-
creased by one as in the usual sequential cperation ard thus the
next instruction to be located will have either of the two fol-
lowing addresses depending on the cutcome of the test. Normal
sequential operation will be resumed after the campletion of
either type of instruction - using the updated value of the pro-
gram counter - and will continue until the next program flow
alteration occurs. An illustration showing the two types of pro-
gram flow alteration gppears in fig. 2.2.2.

SEQUENTIAL

INCREASING
ADDRESSES

SKIP

20 H A O W3 n Z H

Figur 2.2.2




2.2.3

Program Size 2.2.3 .

2.2.4

The integer number oontained in the program counter will have a
magnitude between 0 and 32, 767 (both included) amd will thus
make it possible to address 32,768 separate memory locations
which is then the maximum program size. The program need not
necessarily start in memory location 0, but if the program
counter reaches the value 32,767 the next incrementation will
produce the value 0 and sequential operation will then contirnue
fram here as previously explained. Notice should be taken of the
fact, that no indication whatsoever of this particular situation
will be given.

NOTE : The proceeding outlined above will change if Memory
Extension has been selected (cf. Section 5.3).

Program Flow Interruption 2.2.4

During the normal running of a program a variety of situations

may arise which will make it necessary to interrupt the nommal

program flow, i.e. to stop ordinary processing temporarily. This

may be due to either quite normal occurrences - for instance the

necessity of performing an Input/Output gperation - or it may be

due to exceptional occurrences - external or internal faults or
malfunctions. .

In both cases the address of the next sequential instruction is
saved by the CPU while the interrupt condition lasts. On ter-
mination of the interrupt condition the address saved by the CPU
is placed in the program counter anew and the interrupted program
resumes qaerat.ion at the correct point in the sequence.



23

An illustration showing this variation in program flow appears in
fig. 2.2.4.

SEQUENTIAL
, PROGRAM
FLOW
INCREASING 1/0
ADDRESSES : INTERRUPT
I OCCURS
N
s
T JUMP
R
U <
\/ o
T SKIP
I
o
N CONTINUED
S PROGRAM RETURN
FLOW
\
Figur 2.2.4
information Formats 2.3

In any computer information is basically represented by some
physical quantity - usually electric current or magnetism. The
actual nature of this quantity as well as its magnitude carries
no importance with respect to use of the cdnputer; the important
property is that the relevant quantity can either be present or
not present.



2.3.1

Fundamental Concepts

2.3.2

The two possible - but mutually exclusive - states as mentioned
above form the basis for all considerations of information pro-
cessing. The two states are normally indicated by the numerals 0
(zero) and 1 (one) and the nucleus of information thus represented
is called a "binary digit" - usually shortened to "bit".

In the RC3603 camputer the standard unit of information is how-
ever the "word", which is a string of 16 individual bits. As each
bit can attain either of two different states, the string of 16
bits can represent 216 = 65,536 different pieces of information,
for instance the integer nunbers fram 0 up to 65,535. It should
here be noted, that although the wellknown mathematical symbolism
- i.e. numbers -~ is often used to describe the information con-
tent of a word (or a part of a word), this is in reality only a
matter of convenience and does not restrict the actual meaning of
the information to this particular subject; nor does it restrict
the use to which it may be put. Although the word is the stamdard
unit of information handled by the RC3803 camputer it can at
times be convenient to subdivide a word into two parts of 8 bits
each. Such a half-word is called a "byte" and is capable of re-

presenting 28 = 256 different pieces of information.

Bit Numbering

When considering the information contained in bytes or words it
is convenient to establish a definite method of referencing the
individual bits of the byte or word. This is done simply by ordi-
nary numbering of the bits within the word or byte.

The numbering always proceeds fram left to right, i.e. the left-
most bit in a word is bit 0 while the rightmost bit in a word is
bit 15. Similarly the leftmost bit in a byte is bit 0 while the

rightmost bit in a byte is bit 7. Notice that the numbering al-

ways starts with bit 0.

2.3.1 @

- 2.3.2 .



11
' The convention adopted here is illustrated in fig. 2.3.2.

WORD WORD

N\ VL N

BYTE BYTE BYTE BYTE
0,1,2/3,4,5,6,7|0,1,2,3,4,5,6,7/0,1,2,3,4,5/6,7/10,1,2,3 ,4,5,6 ,7

012345678910 11 12 13 14 5012345678910 11 1213 1415
Figur 2.3.2
It should also be noted that the adoption of this convention

‘ means, that if for instance the word contains a number then the

highest-order digit will have the lowest bit mnumber while the
lowest-order digit will have the highest bit number.

2.3.3 Binary Representation 2.3.3

If the conventional mathematical notation is adopted by usirg
the numerical values 0 and 1 to indicate the two possible states
of the bit, then a word will be read simply as an ordinary 16-
digit number - although the number will be written in somewhat
unusual manner which in mathematics is called "binary notation".

. From our everyday lives we are accustomed to use of rumbers in
very many contexts; take for instance an arbitrary number like
315. The important feature of a number like this is that the
actual value of the individual digit depends on its position in
the written runber. In effect the way the nunber is written is
just a convenient short-hand way of indicating the magnitude:

3x100+1x10+5x1=3x102+1x 10" +5x 100,
This is called "decimal notation" or "base 10" representation

because successive digit positions in the number form a sequence
of increasing powers of 10.



12

To indicate that a rumber is written in base 10 representation a
subscript is used whenever there exists a possibility of confu-
sion:

31540~

It is obvious that decimal notation will require ten different
symbols to indicate the possible values of the individual digits,
namely the symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.

Binary notation - or base 2 representation - is in exactly the
same way a positional system, the only difference being that in
this case successive positions in the rnumber form a sequence of
powers of 2. Whereas base 10 representation required ten different
symbols for the individual digits base 2 vepresentation will only
require two different symbols, namely 0 and 1; this is of course
the reason for its dominant position in all aspects of camputer
technology.

A binary rimber can of course be used to indicate any magnitude
just as well as a decimal rumber; consequently a binary nunber can
always be converted to the equivalent decimal rumber and vice

versa. Thus:

100111011, =
1x28+0x27+0x2%+1x22+1x2¥+1x23+
0x22+1x2+1x20 =

1x25610+0x12810+OXG410+1x3210+1x1610+

13810+0X410+1X210+1X110=



@:2.:.4

13

Octal Representation

Internally the CPU will only recognize information given in base
2 representation, but from the example given above it will be
clear that the simplicity of binary numbers, owing to the limited
number of different symbols used, is counteracted by the neces-
sity of using more digit positions to indicate any given magni-
tude, i.e. binary numbers tend to became rather long ard un-
wieldy.

Extensive application of binary notation in a manual like this can
therefore be somewhat awkward and might even lead to confusion. It
cannot be completely avoided, but very often rumerical representa-
tion to yet another base is used instead.

Noting that a three-digit binary number can represent mumerical
values from 000, = 0;( to 111, = 749 it is easily realised,
that each group of three bits can be uniquely represented by the
eight digits 0, 1, 2,....6 and 7. Therefore the use of a repre-
sentation to base 8 - so-called octal notation - will retain the
basic structure of the binary format, but it will on the other
hand only require one third of the positional places needed in
pure binary notation.

Expressing the example used on the preceding page in octal
notation will yield:

315, = 100111011, = 473,

Thus by dividing any string of bits into groups of three amd
using octal notation a fairly campact and convenient represen-
tation is achieved. The subdivision of the string alway starts
with the rightmost group of three bits and proceeds towards the
left. If the number of places in the binary runber is not divis-
ible by three the leftmost group will contain only one or two
bits. This is however of no particular consequence: conversion to
octal notation will take place as outlined above on the addition-
al assumption that the leftmost group is filled-up to three
digits by prefixing the necessary one or two zeroes.

2.3.4




2.3.5

24

2.4.1

Hexadecimal Notation 2.3.5 ‘

In some cases still another base is used to represent binary in-
formation, namely base 16 - also called hexadecimal notation
("hex"). Just as in the case of octal notation the binary number
is formed into groups, but each group will consist of four bits.
These four bits can express the numerical values fram 0000, = 04
to 1111, = 1510, @and in "hex" it will consequently be necessary
to use sixteen individually different symbols for the digits. The
numerals from 0 to 9 are of course still used to represent their
usual values, whereas the values fram 1045 to 1554 will be repre-
sented by the initial six letters of the alphabet: A to F. The
example previously used will then yield:

31599 = 100111011, = 473g = 13By¢.

Numerical Quantities 2.4

The CPU does not intrinsically recognize one type of information
as being different fram ancther, but it is quite obwious that in
terms of application of the camputer mumerical quantities do ap-
pear in the majority of situations. Nmnerical quantities basical-
ly accepted by the CPU can be either integers or logical quanti-
ties.

Integers 2.4.1

Operations on integer quantities can be performed on signed or un-
signed binary numbers, which may be carried by the CPU in either
single or multiple precision. Single precision integers are two
bytes long (16 bits), while multiple precision integers are four
or more bytes long.



15

Unsigned integers use all available bits to represent the magni-
tude of the number; thus an unsigned, single precision integer can
range in value fram 040 to 65,5359 (216 - 1) correspording to
the sixteen bits available. Similarly two words taken together as
an unsigned, double precision integer can range in value fram

019 to 4,294,967,295;o (232 - 1) corresponding to the thirtytwo
bits available.

Signed integers use bits 1 to 15 to represent the magnitude of the
number while bit 0 is reserved for use as sign bit. The aforesaid
assumes single precision; if multiple precision is employed the
first (leftmost) word will be structured in this same way while
the following word(s) will use all available bits to represent
numerical information.

For positive numbers the sign bit is 0 and the remaining bits re-
present the magnitude of the number in standard binary notation as
explained above.

For negative numbers the sign bit is 1 and the remaining bits re-
present the magnitude of the number in camplemented binary nota-
tion (also called two's complement form).

Complementing a rumber - whether in decimal, binary, or any other
notation - simply means writing the negative number as the sum of
two numbers: a large negative number which is a power of the base
plus that positive number which will yield the original number
when added to the large negative one. For instance in decimal
notation:

- 315 = - 1,000,000,000 + 999,999, 685.
The advantage of this form is that when working within a set mum-
ber of digit positions, the large negative number will "vanish" -
leaving simply a row of zeroes.

To produce the complement - "mechanically" speaking - of a decimal
number just subtract the individual digit fram 9 to give the digit
value of the camplement - and then finally add 1 to the last digit.




16

Thus:
31510 = 0 000 000 100 111 OM1
1 111 111 011 000 100 - camplementation
+ 1
- 31510 =1 111 111 011 000 101

Note that the camplementation of a negative mumber will of
course produce the positive of that number.

Complementing zero will produce a ceiry out of the leftmost bit
and leave the number again as zero:

0 000 000 000 000 000 - zero

T 111 111 111 111 - camplementation
+ 1

0 000 000 000 000 000 - zero

Note that zero is a positive number!

As shown above camplementation of zero will again produce zero
and there will thus always be one more negative number than there
are non-negative numbers within the given range of digit posi-
tions. The numerically largest negative nunber is a nunber with
the sign bit 1 and all remaining bits 0. The positive value of
this number cannot be represented in the same number of digit
positions as used to represent the negative number.

Thus a single precision signed integer can lie in the rarnge fram
- 32,768 to + 32,767 while a double precision signed integer can

Note that addition and subtraction of signed nunbers in two's
camplement form is identical to the same cperations on unsigned
numbers; the CPU just treats the sign bit as the nost significant
(highest-order) magnitude bit.



@:.:.:

17

Logical Quantities : 2.4.2

2.5

2.5.1

Operations on logical quantities can be performed on individual
bits, bytes, or words. In all cases the quantities operated on
are treated as simple un-structured binary quantities. The logi-
cal value "true" is represented by 1 while the logical value
"false" is represented by 0. Two logical quantities are identical
if and only if they have identical values in corresponding bit
positions

The rumber of bits, bytes, or words operated on will depend on
the instruction actually being used.

Addressing 2.5

It has already been mentioned in the section "Program Execution"
(section 2.2.1) that the CPU must be able to locate the instruc-
tions stored in main memory. Similarly the CPU must be able to
locate the data involved in the operation to be performed - the
address of which data will usually be indicated in the instruc-
tion.

Word Addressing ' 2.5.1

Main memory is subdivided into a number of words - the actual
magnitude of which depends on the CPU configuration actually
being employed. Every single word in memory has a definite ad-
dress, which is given as a number: the first word in memory has
the address 0, the next word has the address 1, the next word has
the address 2, and so on. It will be recalled that the address of
the instruction currently in effect is held in the one-word
program counter during the execution of a program. The
instruction itself must contain information about the address of
data to be used during the execution of that particular
instruction.



2.5.1.1

18

In contrast to the address held in the program counter the ad-
dress information contained in the instruction will not always
directly specify the necessary address but may form the basis for
a calculation whose result will be the desired address. This cal-
culation is called "effective address calculation" and the result
of this is the "effective address".

The six instructions which directly reference memory in this way
use eleven bits of the word containing the instruction for ef-

fective address calculation. The format of these six imstructions
is shown below:

IN-
@ |DEX DISPLACEMENT

[ I R l | N I I O O I |
| 1

|
0 1 2 3 4 5 6|7 8 9101112!131415

The eleven bits concerned are bits 5 to 15; of these bit 5 is
called the indirect bit, bits 6 and 7 are called the index bits
and the remaining eight bits (bits 8 to 15) are called the dis-
placement bits.

There are four essentially different modes of effective
address calculation available:

Page zero addressing
Relative addressing
Index Register addressing
Indirect addressing

Page Zero Addressing

Page zero addressing is indicated by the index bits being 00.
Then the displacement bits are taken as an ordinary unsigned in-
teger number indicating directly the effective address. An 8-bit
number will lie in the range fraom 0 to 25549; this first block
of 25644 words in memory, which can be addressed directly in
this way way, is known as page zero.

2.5.1.1



2.5.1.2

19

Relative Addressing

2.5.1.3

Relative addressing is signified by the index bits being 01. In
this case the displacement bits are taken as a signed, two's
camplement integer number. This number is added to the address -
contained in the program counter - of the instruction currently
in effect; the result of the addition is the effective address.
By this means the effective address can be any address in memory
accessible to the program as it is defined relative to the ad-
dress of the instruction. A signed 8-bit rnumber will lie in the
range fram =128, to +1274 relative addressing therefore gives
access to a block of 256,; words distributed evenly on either
side of the instruction.

Index Register Addressing

Index register addressing is signified by the index bits being
either 10 or 11. If they are 10 then accumulator 2 is used as an
index register; if they are 11 then accumlator 3 is similarly
used.

In both cases the displacement bits are taken as a signed, two's
complement integer number; this rumber is added to the nunber
contained in the accumulator indicated by the choice of index
bits. The result of the addition is the effective address.

NOTE: The addition performed in relative and index register
addressing is clipped to 15 bits, i.e. the high-order
bit (bit 0) of the resulting address is set to 0. For
example:
if the displacement bits are 01 001 111 and (in rela-
tive addressing) the program counter stands at 111 111
110 101 011, then the addition should produce the re-
sult: 1 000 000 000 011 010, but bit 0 will be set to 0
so that the result reads: '

0 000 000 000 011 010.

If however Memory Extension has been selected the procedure out-

lined in this note will not apply (for further details see sec-

tion 5.3).

2.5.1.2

2.5.1.3



2.5.1.4

20

When index register addressing is used the addition of the dis- .
placement to the number contained in the accumulator does not
change the valuve contained in the accumulator.

Indirect Addressing 2.5.1.4

While discussing the three addressing modes hitherto covered it

~ has been tacitly assumed, that the indirect bit (bit 5) of the

instruction was 0, since only then will the result of the address
calculation be the effective address. .

If the indirect bit is 1 then the word addressed by either of .
the three previously mentioned address calculations is expected

in itself to contain an address (level 1 indirection). The word

concerned will of course contain the usual 16 bits of which now

bit 0 will be the indirect bit ard bits 1 to 15 will contain the

address proper.

If now the indirect bit in the level 1 indirection address is 0

then the address contained in bits 1 to 15 is assumed to be the

effective address, but if the indirect bit is 1 then the level 1

indirection address is again expected to contain a further ad-

dress (level 2 indirection). This procedure will then be repeated

until an address is eventually retrieved where bit 0 is 0 and

bits 1 to 15 consequently will be taken to be the effective ad- o
dress.

It should be noted that there is no limit to the levels of in-
direction accepted by the CPU. Neither is there any imdication if
the chain of indirect addresses due to an error should form a
closed loop thus continuing indefinitely.

NOTE: Multi-level indirect addressing mode is disabled
if Memory Extension has been selected (section 5.3).



21

. 2.5.1.5 Auto Locations ' 2.5.1.5

Two areas of main memory are reserved for special addressing
purposes.

Locations in the range from 20g to 27g are autoincrément loca-
tions, which means that if an indirect addressing chain refer-
ences an address in this range then the word in that location
will be retrieved, the number contained in the word will be in-
cremented by one and this will then be written back into the lo-

cation. The updated value is then used to contimue the chain of
indirect addresses.

Locations in the range from 30g to 375 are autodecrement loca-
tions. Exactly the same procedure as outlined above applies here
except that the contents of the location will be decremented
instead of incremented.

NOTE : When autoincrement or autodecrement locations are ref-
erenced in an indirection chain the state of bit 0
before the incrementation or decrementation will be the
condition determining the continuation of the chain.
For example: .
if an autoincrement location containing the number
177777g is referenced during an indirection chain

. then the next address in the chain will be location
000000g - and it will be assumed that this location
in itself will ocontain an address due to the fact, that
the original word contained in. the autoincrement location
(177777g) had a 1 bit in bit 0.

2.5.2 Byte Addressing 2.5.2

Although the ordinary addressing routines will only allow addres-
sing of complete 16-bit words in memory a convenient programming
method is available which will allow handling of individual by-
teS. :



22

This method involves the use of a "byte pointer" which is a word
containing in bits 0 to 14 the address of a normal two-byte word
in memory and where bit 15 is the "byte indicator". If the byte
indicator is 0 the referenced byte will be the leftmost byte
(containing bits 0 to 7) of the word whose address is given in
bits 0 to 14 of the byte pointer; if the byte indicator is 1 the
referenced byte will correspondingly be the rightmost byte (con-—
taining bits 8 to 15).

Programming routines to handle individual bytes in this way are
listed in Appendix D of this manual.

Byte addressing cannot be used when locations in the extended
memory area are manipulated.



®s.

3.1

‘ 3.2

3.3

23
Instructions

Introduction

The camplete set of operation instructions available for RC3803
CPU is divided into four subsets. These are instruction sets for
program flow control, data transfer operations, integer arithme-
tic, and logical operations and a special subset for programming
the processor functions plus the optional features: Real Time
Clock, Power Fail/Auto-restart, and Memory Extension.

Instruction Formats

All instructions in the set are one 16-bit word in length but the
lay-out will differ depending on the type of operation to be per-
formed; more specifically this will bear on the number of accumu-
lators employed in the execution of the instruction. In the fol-
lowing description of the different subsets a discussion of the
general format in each separate case will appear initially fol-
lowed by a description of the individual instructions which make
up that particular subset.

Mnemonic Description

In the description of individual instructions the specific form
of the instruction is given in the following generalized format:

MNEMONIC <optional mnemonic> OPERAND STRING <optional cperands>

The main mnemonic is a group of letter symbols which must be used
to initiate the cperation concerned in the instruction. To this
may in some cases be appended the optional memonics, which will
cause a modification of the execution of the instruction.

The operand string consists of the actual operands necessary to
the execution of the instruction. To this may likewise be appen-
ded optional operands.

3.

3.1

3.2

3.3



3.4

24

The symbols <> and == are used as an aid in defining the
specific form of each individual instruction:
< > indicates optional mnemonics or cperards
==== used as underlining to identify where definite substi-
tution is required, i.e. where the actual identifica-
tion of accumulator, address, name, number, or memonic
must be inserted in the instruction string.

The following abbreviations are used throughout this manual:

AC Accumulator
ACD Destination accumulator
ACS Source accumulator.

Program Flow Control 3.4
Program flow control operations are handled by way of the program
counter - as cutlined in section 2.2.1 - and thus do not explicit-

ly utilize any of the available accumulators. The instruction

lay-out in this subset is as follows:

oP In-
0 0 0 |Code [@]dex DISPLACEMENT

}I ; | I:ll;ln
0123456'789101112131415

In this format bits 0, 1, and 2 are 000, bits 3 and 4 contain the
operation code and bits 5 to 15 contain the memory address as de-
scribed in section 2.5.1.

The symbol @ - placed anywhere in the effective address cperand
string - will set the indirect bit (bit 5) to 1.



25

The index bits (bit 6 and 7) are set by a cama followed by one
of the digits 0 to 3 as the last operand of the operand string.
If no index is coded, the index bits are automatically set to
00. The index bits can be set to 01 by using the character
"period" (.) at the beginning of the effective address operard
string. When the period is used, it is followed by either a plus
or a minus sign and the gppropriate displacement, e.g. ".+7" or

“0’2"0

The subset contains the following four instructions: JUMP, JUMP
TO SUBROUTINE, INCREMENT AND SKIP IF ZERO, and DECREMENT AND SKIP
IF ZERO.

3.4.1 JUMP 3.4.1

JMP <@> displacement < ,index >

0 0 0 0 O0]@ |dex DISPLACEMENT

| A R | I DO IO O N T N |
I 1 | T 1

0 1 2 3 456 7 8 9101112131415

The instruction will cause the effective address to be camputed
and subsequently placed in the program counter. Sequential cp-
eration will then continue with the word addressed by this new
value of the program counter.



3.4.2

JUMP TO SUBROUTINE

JSR <@> displacement < ,index >

o cme— c—
—_——

0 0 0 0 1@ |dex DISPLACEMENT

L1 1 1 [ N N T O N O
I 1 | | 1

01 23 45 6 7 8 911112131415

The instruction will cause the effective address to be camputed.
The current value of the program counter is incremented by one
and this number is placed in AC3, whereupon the previously cal-
culated effective address is placed in the program counter and
sequential operation then continues with the word addressed by
this new value of the program counter.

NOTE: The camputation of the effective address is campleted
before the incremented value in the program counter is
written into AC3. This means that if the effective ad-
dress calculation involves AC3 as an index register,
the original value contained in this register will be
used in the calculation before it is overwritten with

the incremented program counter.

As this instruction saves the incremented value of the program
counter in AC3 the use of this instruction for subroutine calls
makes the return to the proper point in the main program extreme-
ly simple necessitating only the instruction JMP 0,3.

3.4.2 .



' 3.4.3

27

INCREMENT AND SKIP IF ZERO 3.4.3
ISZ <@> displacement <, index>
In-
0 0 0 1 O0fj@|dex DISPLACEMENT
L1 11 | | T I A N |

| 1 I | T ,
0 1 2 3 4 5 6 7 8 910111213 1415

This instruction will cause the effective address to be camputed.
The word in this location is incremented by one and the result is
written back into the original location. If the result of the
incrementation is zero then the next sequential instruction is
skipped.

3.4.4 DECREMENT AND SKIP IF ZERO 3.4.4
DSZ <@> displacement <, index>
In-
0 0 0 1 1| @ |dex DISPLACEMENT
| . ] | I I I

! | i | |
0 1 2 3 45 6 7 8 910111213 1415

This instruction will cause the effective address to be camputed.
The word in this location is decremented by one and the result is
written back into the location. If the result of the decrementation
is zero then the next sequential instruction will be skipped.



3.5

Data Transfer Operation

Data transfer operations always involve one of the available ac-
cumulators as terminal point for the cperation (except when the
Direct Memory Access feature is utilized, see section 4.5). There
are however slight differences in the instruction format depen-
ding on whether the data transfer is internal (between main memo-
ry and accumulator) or external (between peripheral device and
accunulator). This section will only describe the instructions
pertaining to internal data transfers, while external transfer
will be dealt with in chapter 4: Input/Output.

Internal data transfer instructions use the following lay-out:

10)3 In-

0 |lcode| AC |@ |dex DISPLACEMENT
| : i I}Jl}ll

01 2 3 45 6 7 8 9101112131415

In this format bit 0 is 0, bits 1 and 2 contain the operation
code, bits 3 and 4 specify the accumulator to be used in the cpe-
ration, and bits 5 to 15 contain the memory address as ocutlined
in section 2.5.1.

The symbol @ - placed anywhere in the effective address cperand
string - will set the indirect bit to 1.

The index bits (bits 6 and 7) are set by a camma followed by one
of the digits 0 to 3 as the last operand of the cperand string.
If no index is coded, the index bits are automatically set to 00.

The index bits can be set to 01 by using the character "period"
(.) at the beginning of the effective address operand string.
When the period is used it is followed by either a plus or a
minus sign and the appropriate displacement, e.g. ".+7" or ".-2".

The internal data transfer subset camprises the following two
instructions: LOAD ACCUMULATCR and STORE ACCUMULATOR.




.3.5.1

29

LOAD ACCUMULATOR

3.5.2

LDA ac,<@>displacement <,irdex>

In-

0101 AC | @ | dex DISPLACEMENT
} }l}llgll

01 23 45 6 7 8 91011 1213 1415

This instruction will cause the effective address to be camputed
ard the word contained in this location will then be retrieved
ard subsequently written into the accumulator specified. The pre-
vious contents of that accumulator will be lost; the contents of
the location addressed will remain unchanged.

STORE ACCUMULATOR

STA ac,<@»displacement <, index>

0[1 0] AC | @ |dex DISPLACEMENT

| I I N N N U N I I
| ! | |

01 2 3 45 6 7 8 9101112131415

This instruction will cause the effective address to be camputed
and the word presently located in the accumulator specified will
be retrieved and subsequently written into the main memory loca-
tion indicated by the result of the effective address calcula-
tion. The previous contents of this location will be lost; the
contents of the accumulator will remain unchanged.

3.5.1

3‘5‘2



3.6

30

Integer Arithmetic and Logical Operations

Arithmetical and logical cperations always use two of the avail-
able accumulators - usually designated "source accumulator" and
"destination accumulator" - to hold the operands involved. In-
structions in this subset have the following lay-out:

OP

1] ACS | ACD | Code SH C |# | sKIP

IJ'1%14 L

01 2 3 45 6 7 8 9101112131415

In this format bit 0 is 1, bits 1 and 2 specify the source accu-
mulator, bits 3 and 4 specify the destination accumulator, bits 5
to 7 contain the cperation code, bits 8 and 9 specify the action
of the shifter, see fig. 3.6, bits 10 and 11 specify the initi-
alizing value of the carry, bit 12 indicates whether the result
of the cperation must be loaded into the destination accumulator
or not, and finally bits 13 to 15 specify the skip test.

All operations initiated by instructions in this subset are per-
formed by way of an arithmetic unit whose logical organisation is
illustrated in fig. 3.6:




31

ORGANIZATION CF ARITHMETIC UNIT
17 BITS
y
FUNCTION SHIFTER
GENERATOR
1 17 BITS
1 BIT |ACS |ACD
16 |16 SKIP SENSOR
CARRY BITS |BITS
Initializer
Y 3
| CARRY |[Accumulators |
T ACD 1 17
BIT 16 BITS \9 BITS
—0
LOAD NO LOAD

Figur 3.6

The instruction specifies two accumulators containing the two
operands which will have to be supplied to the function generator.
This then performs the desired function as specified in bits 5 to
7 of the instruction. In addition to the actual function result
the function generator will produce a carry bit, whose value de-

- perds on three quantities: an initial value specified by the in-
struction, the input ocperands themselves ard the function actual-
ly performed.

The initial value of the carry bit may be derived fram a previous
value of same or a campletely independent value may be specified
via the instruction.

The 17-bit ocutput from the function generator - made up of the
carry bit and the 16-bit function result - is then placed in the
shifter. Here the 17-bit result can be shifted one place either
to the right or to the left; alternatively the two 8-bit halves
of the function result can be swapped without affecting the car-
ry bit. The output from the shifter can then be tested for a
skip. The skip sensor will test whether the carry bit or the
function result itself is ejqual to zero or not.




32

After the skip test the output may be loaded into the carry bit
and the destination accumulator respectively. Note however that
loading is not an absolute necessity.

The diagrams below illustrate the possible actions taken by the
shifter:

Optional Shifter
Mnemonic Operation
L All bits are moved one position to the left.

Hereby bit 0 is shifted into the carry position
while the carry bit is shifted into bit 15.

_

C 0-15

R All bits are moved one position to the right.

Hereby bit 15 is shifted into the carry position

while the carry bit is shifted into bit 0.

l“ C 0-15

S The two halves of the 16-bit function result
change places bit by bit. The carry bit is not
affected by this operation.

c 0-7 8-15
Y ><
C 0-7 8-15




33

The following table lists the various options available for use
with the instruction format etbodying the two—accumulator
multiple operation. The characters in the colum headed "Class
Abbreviation" refer to the specific fields of the instruction
format as given at the beginning of this section. The characters
in the colum headed "Optional Mnemonics" are those which may
optionally by appended to the main mnemonic. The binary numbers
in the column headed "Bit Settings" show the actual bits which
will gppear in the appropriate field of the instruction word.
The camments in the column headed "Operation" describe the re-
sultant action of the option in question.



34

Class
Abbreviation

Optional
Mnemonic

Bit
Settings

Operation

C

(Carry
Preset)

00

01

10

1

Do not initialize the carry
bit.

Initialize the carry bit to
0.

Initialize the carry bit to
1.

Initialize the carry bit to
the camplement of its
present value.

SH
(Shifter)

00

01

10

1

Leave the result of the
arithmetic or logical
operation unaffected.
Coambine the carry amd the
16-bit result into a 17-bit
number and shift it one bit
to the left.

Cambine the carry amd the
16-bit result into a 17-bit
nunber and shift it one bit
to the right.

Exchange the two 8-bit .
halves of the 16-bit result
without affecting the carry
bit. ‘

(Load)

Ioad the result of the
shift operation into ACD.
Do not load the result of
the shift operation into
ACD.




35

SKIP 000 Never skip.

SKP 001 Always skip.

SzC 010 Skip if carry equal to
zero.

SNC 011 Skif if carry not equal to
zero.

SZR - 100 Skip if result equal to
zero.

SNR 101 Skip if result not equal to
zero.

SEZ 110 Skip if either carry or
result equal to zero.

SBN m Skip if both carry and
result not equal to zero.

The instruction subset pertaining to integer arithmetic and logi-
cal operations include the following instructions: ADD, SUBTRACT,
NEGATE, ADD COMPLEMENT, INCREMENT, and MOVE, all of which refer
to arithmetical operations, and the logical operations COMPLEMENT
and AND.

Integer arithmetic is performed in fixed point mode on 16-bit,
signed or unsigned operands in the accumulators. Iogical opera-
tions are performed on 16-bit unstructured binary operands in the
accumulators.



ADD<c><sh><#>acs ,acd<,skip>

1{acs |acs |1 1 ol sSH | C |4 | SKIP
| I T T O I I L1

1 ]
0 1 23 456 7 8 9101112131415

This instruction will first initialize the carry bit to the spe-

cified value. Then the number in ACS is added to the number in

ACD and the result is placed in the shifter. If the addition pro-

duces a carry = 1 out of the high-order bit (bit 0) the carry bit .
will be camplemented, i.e. this will happen if the sum of the two

numbers being added is greater than 65,5354,.

The specified shift operation is then performed and the result of
this is placed in ACD provided that the load bit of the instruc-
tion has been set to 0. If the skip test demanded results in the
condition being true the next sequential instruction will be
skipped.



37

@362  sEmcr 3.6.2

SUB<c><sh><#>acs, acd<, skip>

11ACS |ACS |1 0 1}{SH C |# | SKIP
] | L 1 I | L1

¥ 1

0 1 2 3 45 6 7 8 9101112131415

This instruction will first initialize the carry bit to the
specified value. Then the number in ACS is subtracted fram the
number in ACD (the actual operation being performed by first

. forming the two's complement of the number in ACS and then adding
this to the number in ACD) and the result of the subtraction pla-
ced in the shifter. If the operation produces a carry = 1 out of
the high-order bit (bit 0) the carry bit will be camplemented,
i.e. this will happen if the number in ACS is less than or equal
to the number in ACD. The specified shift operation is performed
and the result of this is placed in ACD provided that the load
bit of the instruction has been set to 0. If the skip test de-
manded results in the condition being true the next sequential
instruction will be skipped.




NEG<c><sh><#>acs ,acd<, skip,

- — e  a— ——
= = == === ==

1/]ACS |ACD| 0O O 1] SH | C 4% | SKIP

) I L 1 | | L1
1 T

0 1 2 3 45 6 7 8 9101112131415

This instruction will first initialize the carry bit to the spe-
cified value. Then the two's camplement of the number in ACS will
be formed and placed in the shifter. If the camplementation pro-
duces a carry out of the high-order bit (bit 0) the carry bit
will be complemented, i.e. this happens if the mumber in ACS is
zero. The specified shift operation is performed ard the result
of this is placed in ACD provided that the load bit of the in-
struction has been set to 0. If the skip test demanded results in
the condition being true the next sequential instruction will be
skipped.



. 3.6.4

ADD COMPLEMENT

3.6.5

39

ADC<c><sh><#>acs,acd<,skip>

——— —— S———
_—— == s m——

ACS
]

ACD

1

|

0 0

SH
]

C
!

SKIP
1

]
|

|
|

01 23 45 6 7 8 9101112131415

This instruction will first initialize the carry bit to the spe-
cified value. Then the logical camplement of the mumber in ACS is
added to the mumber in ACD and the result is placed in the shift-
er. If the addition produces a carry out of the highorder bit
(bit 0) the carry bit will be camplemented, i.e. this happens if
the number in ACS is less than the number in ACD. The specified
shift operation is performed and the result is placed in ACD pro-
vided that the load bit of the instruction has been set to 0. If
the skip test demanded results in the condition being true the
next sequential instruction will be skipped.

MOVE

MOV<c><sh><#>acs ,acd<,skip>

1{ACS |ACD| 0O 1 O] SH| C |# | SKIP

| O O S I T A | L
T )

012 3 45 6 7 8 91011 12131415

- This instruction will first initialize the carry bit to the spe-

cified value. Then the number in ACS is plaged in the shifter,
the specified shift cperation is performed and the result of this
is placed in ACD provided that the load bit of the instruction
has been set to 0. If the skip test demanded results in the test
condition being true the next sequential instruction will be
skipped.

3.6.4

3.6.5



3.6.7

INC<c><sh><#>acs,acd<,skip>

svemtow e w———

ACS
1

ACD
{

0

1

1

SH
]

C
1

SKIP
|

I

0 1 2 3 4 5 6 7 8 9101112131415

This instruction will first initialize the carry bit to the spe-
cified value. Then the number in ACS is incremented by one ard
the result is placed in the shifter. If the incrementation pro-
duces a carry out of the high-order bit (bit 0) the carry bit .
will be camplemented, i.e. this will happen if the number in ACS
is 177777g. The specified shift operation is performed and the
result of this placed in ACD provides that the load bit of the
instruction has been set to 0. If the skip test demanded results
in the test condition being true the next sequential instruction
will be skipped.

COMPLEMENT 3.6.7

COM<c><sh><#z,cs ,acd<, skip>

ACS
]

ACD

0 00
1

SH

C
l

SKIP
]

]
I

]
1

01 2 3 45 6 7 8 910111213 14 15

This instruction will first initialize the carry bit to the spe-

cified value. The logical camplement of the binary quantity in

ACS is formed and placed in the shifter. The specified shift

operation is performed and the result of this is placed in ACD

provided that the load bit of the instruction has been set to 0.

If the skip test demanded results in the test condition being

true the next sequential instruction will be skipped. .



41

3.6.8 AND 3.6.8

AND<c><sh><#>acs,acd<,skip>

1JACS |ACD |1 1 1| SH C |# ]| SKIP

] } 1 1 ] 1
! |

0 1 2 3 45 6 7 8 9101112131415

This instruction will first initialize the carry bit to the spe-
cified value. Then the logical "and" of the two binary quantities
in ACS and ACD is formed and placed in the shifter. Each bit pla-
ced in the shifter is 1 if and only if the two corresponding bits
in ACS and ACD respectively are both 1; in all other cases the
result bit placed in the shifter will be 0. The specified shift
operation is performed and the result of this is placed in ACD
provided that the load bit of the instruction has been set to 0.
If the skip test demanded results in the test condition being
true the next sequential instruction will be skipped.

3.6.9 Examples 3.6.9

To show how these different instructions may be used under vari-
ous circumstances consider the following examples:

3.6.9.1 Deciding the Sign of a Number 3.6.9.1

To determine whether an integér oontained in an accumulator is
positive or negative can be done in several ways, but the most
efficient will be to use the MOVE instruction and thus the in-
herent power of the two-accumulator multiple-operation format.



3.6.9.2

42

Assume that the number in question is contained in AC3. Use of
the instruction:

MOVL#3,3,SZC

will place the number in the shifter and shift the number one
place to the left. This will place the original sign bit in the
carry bit position and the skip test can then be used to deter-
mine whether this bit is 0 or 1. The two following instructions
in the program must of course be chosen in such a way that the
appropriate action is taken in either case.

Note that by using the optional mnemonic # the load bit is set
to 1; thus the output fram the shifter will not be loaded back
into AC3 and the original number contained herein will therefore
be retained for further use.

Dividing a Number by a Power of Two

To divide a binary number by 2 is simply equivalent to shifting
all digits one position to the right (campare with decimal nota-
tion where division with 10 - i.e. the base - is readily acknow-
ledged to be produced by this expedient). The fact that the
rightmost bit of the original number will be discarded after the
shift means that the result of the division will be rounded down

.to the nearest integer.

The division can be performed simply and efficiently by employing
the MOVE instruction as follows:

MOVL# 2,2,SZC
MOVOR 2,2,SKP
MOVZR 2, 2,SKP
MOVCR 2, 2,SKP
MOVOR 2,2

3.6.9.2



43

The number being divided is supposed to be placed in AC2. The
first instruction is simply a repetition of the previous example
of deciding the sign of the number. If the number is positive the
second instruction will be skipped and operations will continue
with the third instruction. This will shift the number one place
to the right thus resulting in the division by 2, while at the
same time initializing the carry bit to 0, so that when this bit
is shifted into the sign bit position the number will remain po-
sitive. Note that after division the number is now loaded into AC2
so that this accumulator now holds the result of the division.
Finally the fourth instruction is skipped and the fifth repeats
the division once more - following which there is no further skip.
The repetition means that the end effect will be that the original
number has been divided by four. If the number is negative exactly
the same sequence of operations are performed with the appropriate
alterations to cope with the negative sign - the instructions now
in force being the second ard fourth.




3.6.9.3

44

Changing Locations Simultaneously Inverting the Order 3.6. 9..

Assume that a block of 3010 words, which at present occupy
locations 2000g to 2035g, must be moved to locations 5150g
to 5203g in such a way that the order of the individual words
in the block will be inverted.

To do this a section of a program is set up which will autoin-
crement through one set of locations, autodecrement through the
other set and decrement a control count to determine, when the
block transfer has been completed. The program section listed
below wil accomplish this:

LDA 0,CNT ;camment : set up .
STA 0,21 : autoincrement location
LA 0,CNT + 1 ; set up
STA 0,35 : autodecrement location
LOOP: LA 0, e 21 H get a word
STA 0, @35 ; store it

DSZ ONT + 2
JMP Loop

count down word count
jumb back for next word,
skip to here when count
is zero

-e

-e

CNT': 001777 : 1 before source block
+ 1 005206 : 1 after destination block
+ 2: 36 H word count



4.1

45

Input/Output

Introduction

All useful information processing to be performed by the camputer

" depends on the existence of some means of cammunication between

the CPU and the outside world. For this purpose the CPU is con-
nected to a number of peripheral or Input/Output devices the ac-
tual type, size, and number of which is campletely indeperdent of
the internal logical structure of CPU.

The program must of course contain instructions designed to
handle the external data transfer operations; these are all nor-
mally termed Input/Output = usually shortened to I/O - operations
and allow for the transfer of information in units of bits,
bytes, words, or groups of words called "records" depending on
the device in use.

All instructions in the I/0 subset are basically similar to the
previously mentioned internal transfer instructions (section 3.5)
except for the fact that addressing as such is not relevant; on
the other hand the CPU must have information as to which periph-
eral unit is to be employed for the actual data transfer and
secondly there must be instituted some means of allocating the
necessary time for the transfer.

To handle the control of peripheral devices - of which there may
be several units of widely differing types connected to the CPU
at any given time - the RC3803 CPU is equipped with a six-line
device selection network. To initiate cperation on a specific de-
vice a signal must be transmitted on the selection network, but
each individual peripheral device will only respond to this sig-
nal if it is identical to the device's own device code. The de-
vice code is a six-bit integer number corresponding to the lines
in the selection network.

4.

4.1




4.2

4.3

Operation of 1/O Devices +2 @

In general all operations on individual I/0 devices are handled
by manipulation of two control bits which are called the "Busy"
and "Done" flags respectively. If the Busy and Done flags are
both 0 the device is idle and cannot perform any operation. To
initiate operation on a device the Busy flag must be set to 1,
and if the Done flag is not already 0 it must be set to this va-
lue. When the device has finished its operation it will itself
set the Busy flag to 0 and the Done flag to 1. (If the Busy amd
Done flags are both - erronecusly - set to 1 the situation is
meaningless and will produce unpredictable effects.)

Thus to initiate operation on a particular device the program .
must first determine whether that device is currently performing

an operation or not, i.e. it must check the state of the Busy

and Done flags. If the Busy and Done flags are 0 ard 1 respective-

ly, the program will be able to start the operation by setting

Busy to 1 and Done to 0 as described above. When the operation

has been campleted the device will reset the two flags and will

thus be available for another cperation whenever necessary.

There are two ways in which the program can test the state of the

Busy and Done flags. One is to use the instruction I/O SKIP (cf.

section 4.6.7), the other is to employ the Interrupt System which

is standard on the RC3803. ‘

Interrupt System » 4.3

The interrupt system consists of an interrupt request line to
which each I/0 device is connected, an Interrupt On flag in the
CPU and a 16-bit interrupt priority mask.



47

An interrupt is initiated by an I/O device at the time when it
canpletes its operation and resets the Busy and Done flags; si-
multaneously the device places an interrupt request on the inter-
rupt request line provided that the bit in the interrupt priority
mask, which corresponds to the priority level on the device, is 0
(cf. section 4.4). If that particular bit of the mask is 1, the
device will still set the flags, but it will not place an inter-
rupt request on the line.

The Interrupt On flag controls the state of the interrupt system
in the sense that if the Interrupt On flag is set to 1 the CPU
will respond to the process interrupt requests; if the Interrupt
On flag is set to 0 it will not do so but will simply go on with
normal sequential execution of the program.

The CPU responds to an interrupt request by immediately setting
the Interrupt On flag to 0 so that no further interrupts can in-
terfere with the interrupt service routine. The CPU then places
the program counter in memory location 0 and executes a "jump
indirect" to memory location 1 on the underlying assumption, that
this location contains the address - direct or indirect - of the
interrupt service routine.

When control has been transferred to the interrupt service rou-
tine this routine will first ensure, that the contents of accumu-
lators to be used by the routine are saved, so that these values
again can be made available when control is eventually returned
to the program proper. The same applies to the carry bit. When
this has been accomplished the routine will determine which de-
vice requested the interrupt; following this it will proceed with
the operations relevant to the servicing of the interrupt.

The determination of which device is in need of service can be
accomplished through either the I/0 SKIP instruction or the
INTERRUPT ACKNOWLEDGE instruction. This last-mentioned instruc-
tion returns the six-bit device code of the device requesting the
interrupt, thereby initiating operation of that particular device.
If more than one device has requested an interrupt, the code re-
turned will be that belonging to the device which is physically
closest to the CPU on the I/0 bus.




44

48

When the I/0 device has campleted its operation, the interrupt
service routine will restore all previously saved values, set
the Interrupt On flag to 1 and finally return control to the in-
terrupted program. For this purpose the instruction, that will
set the Interrupt On flag to 1, will allow the processor to exe-
cute one further instruction before the next interrupt can take
place. This extra instruction must be the instruction which re-
turns control to the main program; otherwise the interrupt ser-
vice routine may go into a loop. However, since the updated value
of the program counter - as related above - was placed in loca-
tion 0 upon responding to the intervupt request, the final in-
struction in the servicing routine can simply be the instruction
"JMP @ 0"; this will transfer control to the main program as in-
tended.

Priority Interrupts

If the Interrupt On flag remains 0 throughout the interrupt ser-
vice routine - as assumed above - all further interrupts will be
ignored and there is thus only one level of device priority. This
level of priority - i.e. which devices will be able to secure an
interrupt - will be determined either by the order in which I/O
SKIP instructions are issued or - if the INTERRUPT ACRNOWLEDGE
instruction is used - by the relative physical locations on the
I/0 bus of the various devices.

If the complete computer installation embodies I/O devices of
widely differing speeds of cperation - such as for example a
teletypewriter versus a fixed head disc - it can be convenient
for the programmer to set up a multi-level interrupt schedule;
this is accamplished by the use of the priority mask coupled
with the appropriate instructions.

4.4



49

The priority mask is one 16-bit word to which the individual I/O
devices are connected in such a way, that each I/0 device is as-
signed to one specific bit of the mask. The standard mask bit
assignment are arranged in such a manner, that devices having
roughly the same speed of operation will correspond to the same
bit in the mask and will therefore be on the same priority level.
(Appendix A of this manual ocontains - in addition to the dev1ce
codes - the standard RC mask bit assignments). Although this
standard is relevant for nost purposes it is not necessary to
comply with J.«t, ‘and the programmer is campletely free to define
his own levels of priority for the individual devices by using
the MASK QUT instruction (cf. section 4.7.5). Whenever a bit in
the priority mask is set to 1 all devices in the priority level
corresponding to that particular bit will be prevented fram re-
questing an interrupt. In addition all pending interrupt requests
from devices in that priority level will be ignored.

When multi-level priority handling is implemented, the interrupt
service routine must be written in such a way that it may itself
be interrupted without damage. This is done by arranging for the
main interrupt routine to save the state of the machine, - the
contents of the four accumulators, the carry bit, and the return
address - whenever it takes over control.

The information concerned must be stored in separate locations
for each time the interrupt handler is entered, so that a higher
level of interrupt will not overlay the return information cor-
respording to a lower priority level. Having thus saved the
necessary return information the main interrupt routine must
determine which device has requested service amd then transfer
control to the correct interrupt handling routine. The actual
transfer is effected in the same way as for the previously de-
scribed single-level interrupt handler.

When the correct service routine has received control it will
save the current priority mask, establish the new priority mask
and activate the interrupt system. When it has finished servi-
cing the I/0 device, the routine will de-activate the interrupt
system, reset the priority mask to its original form, restore the
state of the machine, again activate the interrupt system, and
finally return control to the interrupted program.




45

50

Direct Memory Access Data Channel

The handling of data transfers under program control as described
above requires an interrupt plus the execution of several in-
structions for each word transferred and therefore occupies valu-
able time on the processor.

To avoid this and at the same time to obtain higher transfer ra-
tes the RC3803 CPU is equipped with a separate data channel
through which an I/O device - at its own reguest - can gain di-
rect access to main memory.

When an I/O device is ready to send or to receive data it re-
quests access to memory via the data channel. All such requests
are synchronized by the CPU at the beginning of each memory
cycle. The CPU will then pause at specified points during the
execution of an instruction; at each pause it will accept all
previously synchronized requests in which instance a word will
be transferred directly via the channel fram the device to memory
or vice versa without interference with the program.

All requests are honoured in relation to the relative physical
positions on the I/0 bus of the different requesting devices;
that is: the device being physically closest to the CPU is ser-
viced first, then the next closest device and so on until all
requests have been processed. As synchronization of new rejuests
occur continuously even while previous reguests are being atten-
ded to, a device can in effect saturate the channel if it re-
dquests transfer continually. All devices further out on the bus
cannot gain access to the channel until the transfers involving
the closer device have been processed, although of course devices
which are closer still on the bus will not be affected.

In addition to the pause intervals during the execution of an
instruction data channel request will be handled on completion
of an instruction. At this point furthermoré, all ocutstanding
I/0 interrupt requests will be accepted. When all such data
transfers have been accomplished the CPU will contimue with nor-
mal sequential operation.

4.5



4.6

51

/O Instructions - 4.6

All I/O instructions use the format given below:

0 1 1| ac |op Con-
CODE trol| DEVICE QODE
= | ; 1 = ] L 1 % [

01 2 3 45 6 7 8 9101112131415

In this format bits 0, 1, and 2 are 011, bits 3 and 4 specify the
accumulator involved, bits 5 to 7 contain the operation code,
bits 8 and 9 control the Busy and Done flags in the device, and
bits 10 to 15 contain the device code. The six bits provided for
the device code will define 64, unique devices, but the total
number of separate devices which can be employed simultaneously
on any given installation will be slightly lower than this as
some of the available device codes are reserved for the CPU ard
certain processor features. Of the remaining codes some have been
assigned to specific devices by Regnecentralen. A camplete list-
ing of device codes gpopear in Appendix A.

The subset of I/0 instructions has a number of options that can
be obtained by appending the appropriate optional mnemonic to
the standard memonic of the instruction. These cptional mne-
monics are listed in the table below; the colum headings corre-
spond to those given in section 3.6.

Class Optional | Bit
Abbreviation | Mnemonic Settings gration
F 00 Does not affect the Busy
(Flags) and Done flags.
S 01 Start the device by set-
ting Busy = 1 and Done = 0.
C 10 Idle the device by setting
both Busy ard Done to 0.
P 1 Pulse the special in-out
bus control line. The
effect -~ if any - deperds
on the actual device.




52

T BN 00 Tests for Busy = 1.
(Tests) BZ 01 Tests for Busy = 0.
DN 10 Tests for Done = 1.

DZ 1" Tests for Done = 0.

The I/0 instruction subset contains the following instructions:
DATA IN A, DATA IN B, DATA IN C, DATA OUT A, DATA OUT B, DATA .
Oour C, I/0 SKIP, and NO I/O TRANSFER.

4.6.1 mTA IN A 4’6.1

DIA<E> ac,device

0 1 1| Aac |0 0 1| F | DEVICE (ODE
| | L | ilIJ'll

i
B ] T
01 2 3 456 7 8 9101112131415

This instruction will place the contents of the A irmput buffer on .
the specified device in the AC specified in the instruction.

After the data transfer has been campleted the Busy amd Done

flags are set as specified by "f".

The number of data bits noved depends on the size of the buffer
and the mode of operation of the device selected. Bits in the AC

not receiving any data are set to 0.



.4.6.2

53

DATA IN B

4.6.3

DIB<f> ac,device

DEVICE QOODE
llllllll{ll

01 2 3 45 6 7 8 9101112131415

This instruction will have exactly the same effect as the one

previously described - except that it will utilize the B buffer
of the peripheral device.

DATA IN C

DIC<f> ac,device

0 1 1 AC 1T 0 1 F DEVICE QODE
1 L | 1 L 11
T | | I

01 2 3 45 6 7 8 9101112131415

feasee.

This instruction will have exactly the same effect as the two

previously described =-.except that it will utilize the C buffer
of the peripheral device.

4.6.2

4.6.3



4.6.4

54

DATA OUT A

4.6.5

DQA<f> ac,device

0 1 1| AaC |0 1 O F DEVICE CODE

N N NN VU N N S N O N O A I |
! 1

I |
0 1 2 3 45 6 7 8 9101112131415

This instruction will place the contents of the specified AC in
the A output buffer of the selected device. After the data

transfer has been campleted, the Busy and Done flags are set as
specified by "f". The contents of the AC will remain unaltered.

The number of data bits moved will deperd on the size of the
buffer and on the mode of operation of the device.

DATA OUT B

DOB<f> ac,device

—-—
=

0

1

|

1

AC
|

1

|

0
l

0

DEVICE CODE

i
I

I I |
i

1
01 2 3 45 6 7 8 9101112131415

This instruction will have exactly the same effect as the one
previously described - except that it will utilize the B buffer
of the peripheral device. '

4.6.4‘

4.6.5



4.6.6

55

DATA OUT C

4.6.7

DOCkE> ac,device

0O 1 1] AC}|1 1 O} F DEVICE QODE
L1 11 g I I O O I

| |
01 234567 8 9101112131415

This instruction will have exactly the same effect as the two
previously described - except that it will utilize the C buffer
of the peripheral device.

I/0 SKIP

SKP<t> device

o
-
i
—
-3

0 1 110 DEVICE QODE
v 1 1 L 1 lll%ll

01 2 3 456 7 8 9101112131415

This instruction will test the state of the Busy and Done flags
and will thus enable the programmer to decide on actions to be
taken in consequence of the values of these flags, i.e. whether
a device is in need of service from the interrupt system or not.
The test performed deperds on the value of bits 8 and 9 of the
instruction and is selected by appending the gppropriate op-
tional mmemonic to the instruction according to the table given
in section 4.6. If the test condition specified by "T" is true
the next sequential instruction will be skipped.

4.6.6

4.6.7



56

4.6.8 NO I/O TRANSFER

NIO <f> device

01 110 0j0 O O] F DEVICE CODE

[ N N N N N T AN I R R O I A
i 1 T 1

01 2 3 456 7 8 911112131415

This instruction will set the Busy amd Done flags in the selec-
ted device according to the control code specified by "F".

4.7 Central Processor Functions

I/0 instructions with a device code of 778 will perform a number
of special functions rather than control a specific peripheral
device. With the exception of the I/O SKIP instruction all I/0 in-
structions having a device code of 77g will use bits 8 and 9 of
the instruction format to control the state of the Interrupt On
flag. The I/0 SKIP instruction - when used with a device code of
77g = will cause a test of the state of the Interrupt On flag.
(Alternatively it may be used to test the state of the Power Fail
flag; see section 5.2). The cptional mnemonics for these special
instructions are the same as for normal I/O instructions. The
table below lists the resulting actions for these instructions
when used with the special device ocode 77g.

4.6.8

4.7



57

Class Optional | Bit
Abbreviation | Mnemonic | Settings Operation
F | 00 Does not affect the state
(Flags) of the Interrupt On flag.
S 01 Set the Interrupt On flag
to 1.
C 10 Set the Interrupt On flag
5 to 0.
P 1" Does not affect the state
of the Interrupt On flag.
T BN 00 Tests for Interrupt On = 1.
(Tests) BZ 01 Tests for Interrupt On = 0.
DN 10 Tests for Power Fail = 1.
DZ 1 Tests for Power Fail = 0.

In addition to use of the ordinary I/0 instructions with the spe-
cial device code 77g, there is a subset of special instructions
for processor functions which contains the following instruc-
tions: INTERRUPT ENABLE, INTERRUPT DISABLE, READ SWITCHES,
INTERRUPT ACKNOWLEDGE, MASK OUT, I/0 RESET, HALT, and CPU SKIP.




58

4.7.1 INTERRUPT ENABLE 4.7.1 .

INTEN
NIOS CPU
0 1 170 0fjO0 O OO 1|1 ¥ 1T 1 11

gl J l! | llgll
01 2 3 45 6 7 8 9101112131415

This set of instructions will set the Interrupt On flag to 1. If
the state of the Interrupt On flag is hereby changed, the CPU

will allow one more instruction to be executed before the first .
I/0 interrupt can occur.

4.7.2
4.7.2 INTERRUPT DISABLE

INTDS
NIOC CPU
01 1o ojo 0 of1 oft 7+ 1 1 11
'll ; 1% ] 11;11
01 23 456 7 8 9101112131415

This set of instructions will set the Interrupt On flag to 0.



59

. 7.3 READ SWITCHES 4.7.3
READS ac (F = 00)
DIA <f> ac,CPU
0 1 1L AC{0 O 1| F {1 1 1 1 1 1
|1 | || I S l
01 2 3 45 6 7 8 910111213 1415
This set of instructions will place the current setting of the
data switches on either the Diagnostic Front Panel (if connected)
or the front frame of the CPU-board in the AC specified in the
instructions. After the transfer has been campleted, the Interrupt
On flag is set according to the control code specified by "F".
4.7.4 INTERRUPT ACKNOWLEDGE 4.7.4

(F = 00)

ot 1 acjo 11y F 11T 1T 1T 11

;I;lllllgll
01234586 7 8 9101112131415

This set of instructions will cause the six-bit device code of
that device, which is physically closest to the CPU on the I/O
bus, to be placed in bits 10 to 15 of the AC specified in the

instructions. Bits 0 to 9 of the AC involved will be set to 0.
After the transfer has been campleted the Ihterrupt On flag is
set according to the control code specified by "F".



60

4.7.5 MASK OUT 4.7.5‘

MSKO ac (F = 00)

DB <£f> ac,CPU

0Ot 1t aAC{1 0 O F ¥ 1 1 1 11

S I A O A T O O S O A O |
§ 1

T 1
01 2 3 45 6 7 8 91011 12131415

This set of instructions will place the contents of the AC speci- ‘
fied in the priority mask. After the transfer has been campleted,

the Interrupt On flag is set according to the control code speci-

fied by "F". The contents of the AC remain unaltered.

NOTE:
‘The digit 1 in any bit position disables interrupt re-
quests from any peripheral device in the corresponding
priority level.
4.7.6 I/0 RESET 4.7.6

IORST (F = 10)
DIC «<£> ac,CPU

011|AC101F1'I1111
.ll [ | | I O

001 2 3 456 7 8 91011 12 13 14 15

This set of instructions will cause the Busy and Done flags in
all I/0 devices to be set to 0; simultaneously all bits in the
16-bit priority mask are set to 0. The Interrupt On flag is set
according to the control code specified by "F". .



4.7.7

61

HALT

4.7.8

HALT (F = 00)
DOC <f> ac,CPU

0O v 1yaAaci1T 1o} F P11 o1TY1TO

1 i L Ll L1

01 2 3 45 6 7 8 9101112131415

This set of instructions will set the Interrupt On flag accord-
ing to the control code specified by "F". Following this the pro-
cessor is stopped.

CPU SKIP

SKP <t>, CPU

ot 1jo o1 v 1T P11 11N
1 L1 1 | I N N T O T

I ] 1 1
01 23 4 5 6 7 8 91011 1213 1415

This instruction will cause the Interrupt On flag or the Power
Fail flag to be tested depending on the control code specified
by "T". If the test condition is true the next sequential in-
struction will be skipped.

4.7.7

4.7.8



Processor Features 5. @

Introduction 5.1

Features included in the RC3803 computer are a power monitor
which will handle automatic shut-down and restart in the event of
a failure of the power supply, a special CPU function allowing
memory to be extended beyond the 32K words' capacity, and an ex-
tended instruction set containing the time consumption routines
in the RC3600 software.

The extended instruction set covers a set of micro-programmed
monitor-procedures.

Each procedure is described in details using a pseudo-language .
notation as explained below.

A micro-programmed monitor-procedure is in fact one instruction

possibly interrupted by interrupt or DMA-request.

When finished request the procedure is restarted, that is the

instruction is executed once again. If then terminated the next

instruction is executed as usual. This formalisme is described

using the pseudo-functions fetchnext and serverequest:

Fetchnext: The actual value of the instruction counter PC is
incremented and the next instruction is fetched
fram the memory word addressed in PC.

Serverequest: The actual value of the instruction counter PC is
decremented and the request sevice is entered. When ’
finished the serviceroutine includes a call of
fetchnext, hereby initiating execution of the ac-
tual instruction once again. Please refer to sec-
tion 4.3 for more details.

The notation used in describing the implemented procedures amd
the examples given are related to those given in the system manu-
al 'MUS SYSTEM, Programming Guide, Rev. 1.00', with the follow-
ing motice:

:

= Current process description address.
Program Counter (instruction counter).

8



5.2

63

Power Fail

Core memory in the RC3803 computer is of magnetic type armd in-
formation stored in it is therefore independent of power supply
and will be retained unaltered for a very considerable time in
event of the power supply being cut off. The same does not, how-
ever, apply to the accumulators, program counter, various flags,
etc. in the CPU; all values in these camponents will be indeter-
minate following a break in the supply of power. The Power Fail
feature provides the capability to overcome this difficulty.

In the event of an unexpected power failure the woltage will
rapidly decrease from its normal value to the value where the
processor automatically shuts down campletely. There will however
be an interval of time - roughly one or two milliseconds -
between the initial drop-off of wltage and the actual shut-down.
The Power Fail circuit will sense the beginning reduction of
voltage, set the Power Fail flag and request an interrupt. The
interrupt service routine will then be able to utilize the inter-
val before shut-down to store the contents of the accumulators,
the carry bit, and the current priority mask in memory. In addi-
tion to this it will save memory location 0, where it will store
a jump instruction to the desired restart location and finally it
will execute a HALT. As one or two milliseconds is sufficient
time to execute up to 1500 instructions there is ample time to
perform the power fail routine.

When the power supply is again restored, the CPU will execute a
"JMP 0" instruction after an interval of 100 millisecords. This
will effect a restart of the interrupted program.

The power fail feature has no device code and no interrupt dis-
able bit in the priority mask. Neither does it respond to the
INTERRUPT ACKNOWLEDGE instruction. The Power Fail flag can be
tested by means of the CPU SKIP instruction as described in sec-
tion 4.7.8.

5.2



5.3

Memory Extension

Normal memory capacity of the RC3803 camputer is 32K words (64K
bytes). The Memory Extension feature provides the capability to
increase this capacity to 64K words (128K bytes).

To switch from running in normal configuration to running in ex-
tended memory configuration the following instruction must be ap-
plied:

DICP ac, 1

0O 1 1| X |1 0 1{1 110 0 0 0 O 1

/S BN NN N N NN TSN NN NN N RN SN B
T i )

]
0 1 2 3 45 6 7 8 9101112131415

X = DON'T CARE

This instruction will allow the CPU to utilize the extra block
of core memory and it will furthermore set the Memory Extension
flag to 1. For the instruction to have the desired effect the
switch 64K/128K BYTES on the front frame of the CPU-board must
be in the 128K BYTES position; otherwise the instruction is dum-
my.

The state of the Memory Extension flag can be tested with the I/0
SKIP instruction using the device code (001) reserved for the
Extended Memory (see Appendix A). The testing of the flag thus
follows through the instruction:

SKPDN 1

o 1 110 of1 1 111 ojo 0 0 0 O 1
lLl J | = 1 1 1 !I ]
0 1 2 3 45 6 7 8 910 11 1213 14 15

As usual with this instruction the next sequential instruction

will be skipped if the test condition is true, i.e. if the Memory
Extension flag is 1.

5.3



54

5.5

65

If the 64K/128K BYTES switch on the front panel is returned to
the 64K BYTES position the Memory Extension flag is not automati-
cally set back to 0 (although the CPU no longer will be able to
utilize the extended memory block). To return the Memory Extension
flag to 0 an I/0 RESET instruction must be used. The flag will
also be set to 0 following a power up.

The CPU can execute programs placed in all 128K bytes, because
Multi-level indirect addressing is disabled, when Memory Extension
is selected.

The Disc Controller is capable of writing data into armd reading
data from the extended area of memory.

NOTE : It is important to be aware of the fact, that when
Memory Extension is applied the program counter will
continue from 777775 to 100000g in the course of

normal sequential operation.

CPU Identify 5.4

IDFY ac

0 1 1 AC 0 0 110 0t0 0 O O 1 O
] L 11 | | I I I |
T

|
T T

1
01 2 3 456 7 8 9 101112131415

This instruction loads a microprogram revision number (2 for
RC3803) into the accumulator selected in the AC-field.

Byte Manipulation _ 5.5

In addition to performing cperations on structured armd unstruc-
tured 16-bit quantities, the instruction set of the RC3803 allows
loading and storing of 8-bit bytes.



s ACO
;s AC1T
; AC2
;s AC3

0 1 170 01 0 1/]1 0j0 0 0 0 0 1
! | | | ll | i - ]

01 2 3 45 6 7 8 9 101112131415
CALL: RETURN:
- ACO0(0:7):=0; ACO(8:15):= BYTE
FROM BYTEADDRESS  UNCHANGED .
- UNCHANGED
- UNCHANGED

The 8-bit byte addressed by the byte pointer contained in AC1 is
placed in bits 8-15 of the ACO. Bits 0-7 of the ACO are set to 0.
The contents of AC2 and AC3 remain unchanged.

The byte address in AC1 is a word address left shifted one ard
with a one added in bit 15 if the byte addressed within the word
is placed in bit 8:15.



67

5.5.2 STORE BYTE 5.5.2

STB

0 1 1/0 0j1T 1 O}1 0|0 O 0 O 0 1

!l ! I% ] |J}|I
0 1 2 3 45 6 7 8 9 101112131415

CALL: RETURN:
; ACO ACO(8:15):= BYTE UNCHANGED
;s AC1 TO BYTEADDRESS UNCHANGED
; AC2 - UNCHANGED
; AC3 - UNCHANGED

Bits 8-15 of ACO are placed in the byte addressed by the pointer
contained in AC1. Bits 0-7 of ACO are don't care and not affect-
ed.

The contents of AC2 and AC3 remain unchanged. Note that the re-
maining part of the word addressed is untouched.

The byte address in AC1 is a word address left shifted one and
with a one added in bit 15 if the byte addressed with the word
placed in bit 8:15.



01 1] XX |1 0 10 0j0 0 0 0 1 O

[T I R R A N I A A A I I
| 1 1 T

0 1 2 3 45 6 7 8 9 101112131415

X = DON'T CARE

CALL: RETURN:
; ACO CONVERT ADDR. OONVERT ADIR o
; ACY FROM ADDR. FROM ADIR + BYTE COUNT + 1
; AC2Z  TO ADIR. TO ADIR + BYTE COUNT + 1
; AC3 BYTE QOUNT ZERD

This instruction moves a byte string fram the byte address speci-
fied in AC1 to the byte address specified in AC2. The number of
bytes to be moved is specified in AC3. If ACO <> 0 the moved byte
is converted via a table addressed by ACO.

The byte addresses in AC1, AC2, and AC0O, are word addresses
shifted one and with a one added in bit 15 if a right byte is ad-
dressed. -



5.7

69

The instruction may be interrupted by interrupt request amd data
channel request following the algorithme:

START, ; BMOVE :
LOOP: If bytecount = 0 then goto EXIT else
begin
Q:= byte (fromaddr)
If convertaddr <> 0
then Q:= byte (Q + convertaddr) ;
byte (toaddr):= Q
framaddr := fromaddr + 1 ; Update AC1
toaddr ¢= toaddr + 1 ; Update AC2
bytecount := bytecount -1 ; Update AC3
end H
TEST: If (INT REQ or DMA REQ) = 0
then goto LOOP
WAIT: Servereq (PC) ;s Dor. prog. counter ard
serve rej.
EXIT: Fetchnext (PC) : Incr. prog. counter amd
exec. instr.
Word Move 5.7
WMOVE
01 1] X|1 0 110 10 0 O 0 1 O

l ]

B IO T N A |

0

[
1]

X = DON'T CARE

-. -e

-e

ACO
AC1
AC2
AC3

WORD QOUNT
FROM ADDR.
TO ADDR.

J T )
1 2 3 45 6 7 8 9 101112131415

RETURN:

ZERO

FROM ADD + WORD COUNT + 1
TO ADIR + WCORD COUNT + 1
UNCHANGED



70

This instruction moves a word string from the address in AC1 to
the address in AC2. The number of words to be moved is specified
in ACO.

The instruction may be interrupted by interrupt and data channel
request following the algorithme: "

START, s WMOVE :
LOCP: If wordcount = 0 then goto EXIT else
begin
Q:= word (fromaddr)
word (toaddr):= Q
franaddr  := fromaddr + 1 ; Update AC1 ‘
toaddr ¢= toaddr + 1 ; Update AC2
wordcount := wordcount -1 ;s Update ACO
end H
TEST: If (INT REQ or DMA REQ) = 0
then goto LOCOP
WAIT: Servereq (PC) ; Decr. PC and serve reg.
EXIT: Fetchnext (PC) ; Incr. PC and exec instr.
Search Item ' 5.8
SCHEL

0 1 1 XX 1 0 111 0|0 0 0 0 1 O
- ] { | ; ] L1 I L1
0 1 2 3 4 5 6 7 8 910111213 14 15

X = DON'T CARE

CALL: RETURN:
; ACO - DESTROYED
: ACY CHAINHEAD DESTROYED
s AC2 NAMEADDR ELEMENT
;s AC3 - CUR



7

This instruction searches the chain for an element with a given
nane and delivers the address of the element, if found, and a
zero if the name is not found in the chain. The chain-datastruc-
ture is illustrated in fig. 5.8.

NAMEADDR NAME(0)
NAME( 1)
NAME(2)

RECORD CHAIN DESCRIPTOR

CHAINHEAD + 0
+ 1
CHAINHEAD.CHAIN + 2
1.ITEM 2, ITEM LAST ITEM
RECORD ITEMHEAD

ITEM +0 -

+ 1
ITEM.CHAIN —l+ 2 —_— 0

+ 3 sesees oscccoe
ITEM.NAME(O) + 4
ITEM.NAME(1) +5
ITEM.NAME(2) + 6

ELEMENT =ITEM

EXAMPLE: Search by name through the DOMUS - coreitemchain.

Figur 5.8



72

The instruction may be interrupted by interrupt and data channel

request following the algorithme:

START: element:= CHAINHEAD ;s SCHEL:
LOOP: element:= word (element.chain) ; AC3:= next element
If element = 0 then goto EXIT
Q:= word (nameaddr)
Ql1:= word (element.name) ; Compare 1. word
If Q <> Q1 then goto TEST ; in name
Q:= word (nameaddr + 1)
Q1:= word (element.name + 1) ; Compare 2. word
If Q < Q1 then goto TEST ; in name .
Q:= word (nameaddr + 2)
Q1:= word (element.name + 2) ; Compare 3. word
If Q <> Q1 then goto TEST ; in name
Goto EXIT
TEST: CHAINHEAD:= element ; Saved work value for use
If (INT REQ or DMA REQ) = 0 ; when restarted after int.
then goto LOOP |
WAIT Servereq (PC) ;s Dcr. PC anmd servereq
Fetchnext (PC) : Incr. PC ard exec instr.
: *
EXIT: AC2:= element ;s AC2:= AC3
AC3:= CUR ; AC3:= CUR,
Fetchnext (PC) ;s Incr. PC and exec. instr. .
* When served request a fetch results in executing the

current instruction (PC unchanged) once again with a
probably changed set of registers if so specified in the

microprogrammed instruction just interrupted.



‘IQSAD Search Free

SFREE

73

0 1 1] XX {1
S s

0 1
|

1
]

110 0 0 0 1
I T

0
]

001 2 3'456'7 8 910111213 14 15

X = DON'T CARE

CALL:

; ACO -

‘ ;s AC1 -
; AC2 START

; AC3 -

This instruction searches

it if present, and a zero if not found. The chain-datastructure

is illustrated in fig 5.9.

START ELEMENT

CHAINHEAD.CHAIN

‘l’ RECORD BUFFERHEAD
BUFFER

BUFFERCHAIN

BUFFER.RECEIVER

RETURN:
UNCHANGED
UNCHANGED
FREE ELEMENT
UNCHANGED

a chain for a free element and delivers

[ ——
[ —-

1 0BUF-

+8
+1
+2
+3
+4
+5

2OBUF- 3.BUF"'
FER FER
<> 0 0
AM A W A

ELEMENT:= BUFFER

EXAMPLE: The MUS-buffer chain is searched for a free buffer
starting from the one addressed in 'START ELEMENT'.

. Figur 5.9

L

5.9



5.10

74

The instruction may be interrupted by interrupt amd data channel
request following the algorithme:

START: element:= start element

LOOP: If element = 0 then goto EXIT
Q:= word (element. receiver)
If Q = 0 then goto EXIT ; AC2:=

Next element;

SFREE:

-e

element := element.chain

-8

TEST: If (INT REQ or DMA REQ) = 0
then goto LOOP

WAIT: Servereq (PC) ; Dcr. PC and serve req. .
EXIT: Fetchnext (PC) : Incr. PC and exec instr.
Process Link 5.10

LINK

01 1| XX|1 1 010 0j0 O O O 1 O
[ I ] 1 I N S |
' LI
01" 2 3 45 6 7 8 9 101112131415

X = DON'T CARE

CALL:
s ACO - DESTROYED
: ACI QUEUEHEAD QUEUEHEAD
s AC2 NEW ELEMENT NEW ELEMENT
; AC3 - QUEUEHEAD



75

This instruction links an element to the end of a Qqueue.
A queue consists of one or more queue elements. One of the
elements is the queue head as shown in fig 5.10.

a Init: l

NEW ELEMENT E
(neutral)

—

QUEUHEAD 1.EVENT 2.EVENT

RECORD EVENTHEAD |
EVENT . NEXT » \_\—- » \_\-— .
EVENT. PREV — —

END
AMAAAAMAL AMAAAA
b Inserted: QUEUEHEAD 1.EVENT 2.EVENT 3.EVENT
(NEWELEMENT')

CRCRERE

A AA AAAALAA
AAARAAAM AAARAY AMAMAAAN/

EXAMPLE: Bufferinsertion in the MUS-eventqueue of a process.

Figur 5.10: a+b



5.1

76

The instruction executes the following algorithme:

;s LINK:
START: element:= new element i Update
oldtail:= word (HEAD.prev) ; Link element

-s

word (HEAD,.prev):= element
word (element.next):= HEAD
word (element.prev):= oldtail
word (oldtail.next):= element

EXIT: Fetchnext (PC) Incr. PC and exec instr.

e

Process Remove

REMEL

01 1} X {1 1 00 1{0 0 0 0 1 O

Y T R TR I T SR I R A N N R |
T | 1 T

01 2 3 45 6 7 8 9 101112131415

X = DON'T CARE

CALL: RETURN:
; ACO - PREDECESSOR
; ACT - UNCHANGED
; AC2 OLD ELEMENT OLD ELEMENT

~-e

AC3 - SUCCESSCR



77

This instruction removes an element from a queue as shown in fig.
5.11.

o QUEUEHEAD OLD ELEMENT
R NEa\aa\'aa\'s |

Figur 5.11: a + b MMM



78
The instruction executes the following algorithme:

START: element:= 0ld element REMEL:
successor: word (element.next) : Update gueue:

-e

predecessor:= word (element.prev)

word (predecessor.next):= successor

word (successor.prev):= predecessor ; Remove element
word (element.next):= element

word (element.prev):= element

EXIT: Fetchnext (PC) : Incr. PC and exec. instr.
5.12 Process Link Priority 5.12
PLINK

01 1| X111 01 0|0 O 0 O 1 O

I IO AN TN U N N N I T I
T { ! 1

012 3 45 6 7 8 9 101112131415

X = DON'T CARE

CALL: RETURN:
; ACO - DESTROYED
: ACY - QUEUE HEAD
;s AC2 PROCESS PROCESS

; AC3 - QUEUE HEAD



79

This instruction links a process to the running queue as the last
process among processes of same priority.

QUEUEHEAD IAST
(prior)

"\ N\

MAAAAAAN INAAAAAA W
NV AANAAAAS M MAAAAAAA
+15
NAAAAAAA bannan AAAAAAAA
Inserted
LAST:= Last element in PROC l’_‘ ‘ ]
the queue with (neutral) —
priority greather
than or egual to AAAAMAN
that of PROCESS
PROC. prior +158
WAAAAMA

The QUEUEHEAD is itself an active element and points out first
process in the running queue, that is - current process. If

neutral - an empty queue - the first element (the head) points
out itself: the dummy process.

Figur 5.12



80

The instruction may be interrupted by interrupt amd data chan-

nel request following the algorithme:

START: word (PROC.state):= 0
priority:= word (Proc.prior)
HEAD:= word (54g)
element := HEAD

LOOP: element:= word (element.next)
Q:= word (element.prior)

If Q < priority then goto EXIT

TEST: If (INT REQ or DMA REQ) = 0

then goto LOOP

WAIT: Servereqg (PC)

Fetchnext (PC)
EXIT: predecessor:= word (element.prev)

word (element.prev):= proc
word (proc.next):= element
word (proc.prev):= predecessor
word (predecessor.next):= proc

Fetchnext (PC)

-e

-e

- -e

-e

-e

-e -e ~-e

~

~e

PLINK:

Proc state:= runnig
AQO:= proc.priority
HEAD:= running queue head
AC3:= HEAD

AC3:= next element
AC1:= priority of next

Dcr. PC ard servereq
Incr. PC and exec instr.

Update queue

insert dement.

Incr. PC amd exec.instr.



81

5.13 Instruction Fetch (Musil)

FETCH

TP XX (11 01 110 0 00 1 0

} | | | 1 1

01

I 1 I

2 3 45 6 7 8 9 101112131415

X = DON'T CARE

. sACO

;ACT
sAC2
sAC3

CALL: RETURN:

- DESTROVED
- DESTROVED
CUR CUR

- UNCHANGED

This instruction decodes MUSIL-instructions and performs a vector
jump as shown in fig. 5.13. The MUSIL instruction-counter (deno-
ted MPC) is found + 33g relative to current process description

address CUR.

Instruction address table.

Current instruction (PC)

¥ F F ¥ F

> W N = O

*

MPC: MUSIL program counter, word (CUR.33g)
DISP: (word(MPC) shift(-8)) and 377g

EXAMPLE: DISP - vector jump to the MUSIL-instruction pointed cut

Figur 5.13

by x above (DISP = 3)



5.14

82

This instruction executes the following algorithme:

; FETCH:

START:

-e

Q:= word MPC
Incr. MPC
Result:= Q and 3378

-e -e

-e

Q:= Q-result
DISP:= Q shift (-8)

e

EXIT: PC:= word (PC + DISP)
Fetchnext (PC)

-e

~e

Take Address (Musil)

Fetch MPC:= word (CUR. 338)

DISP:= word (MPC) (0:7)

Modify PC
Incr. PC and exec instr.

o0 1 1 X1 1 110 0O
Jll | L1 1 1

0 000 10
B I

1 i
0 1 2 3 45 6 7 8 9

X = DON'T CARE

CALL:
;AC0 MODIFBITS
;AC1T -
sAC2 CUR

;AC3 -

¥

10 11 12 13 14 15

RETURN:

MODIFBITS SHIFT (-2)
ADDRESS

CUR

LESTROYED

QO = word (MPC) = next instruction;
Increment MPC |
Decode instruction:



83

This instruction supplies the ADDR of an integer or string addressed
by the MUSIL PC (MPC) and increments MPC.

Integer, MODIF(14:15)

00: Addr := Word (MPC)

-e

String, - - - =01: - -- - H

File, -- - = 10: - - - - H

Mfield,* - - - = 11: Addr := word (zone.zfirst) + Field (8:15),
zone = word (CUR.zn + Field (0:7))

*zonerecordfield

Field = word (MPC)

The instruction executes the following algorithme:

s TKADD:
START: ; Fetch MPC:= word (CUR. 338)
address:= word (MPC) ; Update AC1; |
incr. MPC ; Increment MPC
If modif (14:15) = 3 then
begin
Q:= address ard 3778 ; Update AC1:
address:= (address -Q) shift (-8)
Q1:= address + cur ; Ql:= Cur + address (0:7)
Q1:= word (Q1.Zn) ; Zone:= word (Q1.2Zn)
Q1:= word (Ql.zfirst) : Q1:= word (zone.zfirst)
address:= Q1+) ; Update AC1

end : ADIRESS = Q1 + address (8:15)

EXIT: Modif:= modif shift (=2)
Fetchnext (PC)

Update ACO: modif shift (-2);
Incr. PC ard exec. instr.

-e ~e



5.15 Takevalue (Musil) 5.15

TKVAL

o 1" 1} XX 1|11 1110 110 0 0 0 1 O

[ A N T N N N | I S
| | T

+
01 2 3 45 6 7 8 9 101112131415

X = DON'T CARE

CALL: RETURN:
sACO MODIFBITS MODIFBITS SHIFT (-2)
;AC1 - VAL
:AC2 CUR CUR
;AC3 - UNCHANGED

This instruction returns the value of an integer in MUSIL.

MODIF (14:15): 00 VAL = WORD (MPC)

01 VAL := R

10 VAL := WORD (WCRD (MPC))
- - : 11 VAL := R

R= word (CUR.32g), the interpreter register

.0

e



85

This instruction is executed in following the algorithme:

START:If modif and (14:15) = 0 then
begin
VAL:= word (MPC)
incr MPC
goto EXIT
end
If modif (15) = 1 then
begin
VAL:= R
goto EXIT
end

Q:= word (MPC)
VAL:= word (Q)
incr MPC

EXIT: Modif:= modif shift (=2)
Fetchnext (PC)

;s TKVAL:

Case modif O:
AC1:= value

~e

-e

Increment MPC:;

-e

Case modif 1 or 3:

-

ACl:= value;

~e

Case modif 2 :

-

AC1:= value
Increment MPC:

-

~e

: Update ACO;
Incr. PC and exec.

-e

instr.



5.16 Compare Byte Strings

comp

1 XX 1
1 |

1

1

1 0|0 0 0 0 1 O

0 1

L

|
-

| I N EE NN N N |
|

2 3 456 7 8 9 101112131415

X = DON'T CARE

This instruction compares two byte strings and returns:
RESULT = byte (STR ADDR] + x) - byte (STR ADDR2 + X),
if the strings differ in position x else zero.

;ACO
sACH
;AC2
;AC3

RETURN:

RESULT (R<0, R=0, R>0)
UNDEFINED

UNDEFINED

DESTROYED




87

The instruction may be interrupted by interrupt and data channel
request following the algorithme:

START, ; COMP:
LOOP: If ocount = 0 then goto EXIT else
begin
Q1:= byte (str addr1)
Q2:= byte (str addr2)
If Q1 <> Q2 then

begin
count:= Q1-Q2 ; Update ACO;
goto EXIT
end
str addr1:= str addrl + 1 ; Update: ACT
str addr2:= str addr2 + 1 : - AC2
count:= count -1 ; - ACO;
end;
TEST: If (INT REQ or DMA REQ) = 0
then goto LOOP
WAIT: Servereq (PC) ;s Decr. PC amd servereq
Fetchnext (PC) : Incr. PC and exec instr.
EXIT: RESULT:= count ; Update ACO,
Fetchnext (PC) ; Incr. PC and exec instr.



6.1

88

Processor options 6.

The RC3803 CPU can be equipped with the following optional fea-
tures: a Real Time Clock and a Teletype Controller.

Real Time Clock 6.1

The Real Time Clock generates a continuous sequence of pulses
independently of processor timing. The clock can be used prima-
rily for low resolution timing as campared to processor speed,
but it has a high long-term accuracy.

Following a power turn-on the various frequencies are only avail-
able after an interval of 5 seconds, because the crystal must be

given this amount of time to settle down after excitation in or-

der to emit a steady pulse train.

Selection of clock frequency is accamplished by means of the I/0
instruction DATA QUT A, Real Time Clock:

DA <f> ac,RIC

0O 1 1y, AC|]0 1 OfF |00 1100

}1 ] L | 1|J!1|
0 1 2 3 45 6 7 8 910 11 12 13 14 15

This instruction will select the clock frequency according to
the values of bits 14 and 15 in the specified AC as listed
below:

AC bits 14 & 15: 00 01 10 1"
Frequency: 50 Hz 10 Hz 100 Hz 1000 Hz

In addition the instruction will cause the Busy and Done flags
to be set according to the control code specified by "F" (cf.
section 4.6). Setting the Busy flag by means of this instruction
will allow the next pulse fram the clock to set Done thus re-
questing an interrupt if the Interrupt On flag is 1.



6.2

6.2.1

89

The interrupt priority level of this device is associated with
bit 13 of the interrupt priority mask.
The DATA OUT A instruction applied to select the clock frequency
is needed only once. The first interrupt after this instruction
has set Busy = 1 can come at any time up to the clock frequency,
but once the first interrupt has appeared the following interrupts
will adhere to the selected frequency - provided that the program
sets Busy = 1 before the next interrupt is due. This is done by
the instruction:

NICS 14.
The I/0 RESET instruction will -~ whether it appears in the pro-
gram or is generated by using the Diagnostic Front Panel - reset
the clock to a frequency of 50 Hz.

Teletype Controller

The Teletype Controller provides for two-way cammunication be-
tween the cauputef and the operator. The imput device is the
Teletype keyboard and the output device is the Teletype printer.
All information exchanges between the camputer and the keyboard/
printer use a subset of the 128 character alphanumeric ASCII code
as listed in Appendix B. In addition to a keyboard and a printer,
some models of the Teletype terminal can be equipped with a paper
tape reader/punch cambination. Terminals so equipped are designated
Automatic Send/Receive (ASR) terminals, while those not so equipped
are designated Keyboard Send/Receive (KSR) terminals.

Instructions

Since the terminal is in effect two peripheral devices coupled
together, the controller contains both an input buffer and an
output buffer. These buffers are independent of one another and
are both 8 bits in length.

Similarly two campletely separate sets of Busy and Done flags
are available for input and output operations respectively.

6.2

6.2.1



90

The Busy and Done flags are controlled by means of the two stan-—
dard device flag cammands in the instructions according to the

following list:

"F"

HF"

" F"

The
the

=S Sets Busy = 1 and Done = 0 and either reads a charac-
ter into the imput buffer or transfers a character in
the ocutput buffer to the printer (or the punch).

= C Sets Busy = 0 and Done = 0 thereby stopping all data
transfer operations. This cammand - if issued while a
transfer is in process - will result in partial
reception of the character code being transferred.

P No effect.

instructions used to read the character buffer and to load
character buffer are the standard I/0 instructions with the

appropriate device ocodes. An extract of Appendix A containing
these codes appear below:

Octal ‘
Code Mnemonic Maskbit Device

10 TTI 14 Teletype imput, first controller

11 TTO 15 Teletype output, first controller

50 TTI 14 Teletype input, second controller

51 TTO1 15 Teletype output, second controller ‘



.6.2.1.\

91

READ CHARACTER BUFFER

6.2.1.2

DIA <f> ac,TTI

- e—

01 1, aAC}]0 O 1 F (001 00O

| I S Y N A N T N I N T N A
1 ] ] 1

0 1 2 3 45 6 7 8 9101112131415

This instruction will place the contents of the imput buffer in
bits 8 to 15 of the AC specified in the instruction. Bit 8 is a
parity check bit while bits 9 to 15 contain the character code
proper. Bits 0 to 7 of the AC are all set to 0.

After the data transfer has been completed the controller's Busy

and pne flags for input are set according to the control code
specified by "F".

LOAD CHARACTER BUFFER

DA <f> ac,TTO

011l acl|oo 1lF |00 10 0 1
L1 1 L I 1

1 T 1
01 23 45 6 7 8 910111213 1415

This instruction will place bits 9 to 15 of the specified AC in
the output buffer of the controller. After the transfer has been
campleted the controller's Busy and Done flags for output are set
according to the control code specified by "F". The contents of
the AC specified in the instruction will remain unaltered.

6.2.1.1

6.2.1.2



6.2.2

Programming 6.2.2

6.2.2.1

On account of the two-sided nature of the Teletype terminal this
section will describe input and output procedures separately.

Input 6.2.2.1

6.2.2.2

Input cperations - whether full- or half-duplex - do not have to

be initialized by the program because the striking of a key on

the keyboard automatically will transmit the corresponding char-

acter code to the controller. When the character has been assem-—

bled the imput Busy flag is set to 0, the imput Done flag is set .
to 1 and a program interrupt consequently requested - provided

that the priority mask bit is 0.

The character can then be read by issuing the READ (HARACTER
BUFFER instruction (DIA). The instruction should be issued with
either a C or an S camand so that the imput Done flag is set to
0; this will allow the controller to initiate a further program
interrupt request when the next character has been fully assembled.

OQutput 6.2.2.2

Output operations are initiated by the program using the LQAD : ‘
CHARACTER BUFFER instruction (DOA). The instruction should be

issued with an S cammand, which will set the Busy flag to 1 ard

allow the transmitting of the character to the terminal. When the
transmission has been completed the output Busy flag is set to 0

and the output Done flag is set to 1 thus issuing a program in-

terrupt request.

The output buffer must be reloaded by means of the LOAD CHARACTER

BUFFER instruction every time a character is to be sent to the

terminal. Thus to transmit a multi-character message a sequence

of LOAD (HARACTER BUFFER instructions with S cammands must be

issued. The program must make allowance for camplete transmission .
of every single character before transmission of the next char-

acter is initiated.



.6. 2.3 Programming Examples

93

The following examples show sections of programs which will
handle character operations involving the Teletype keyboard,
printer, paper tape reader, and paper tape punch.

Example 1 reads a character from the Teletype keyboard, example

2 reads a character from Tape reader, and example 3 prints a

character on the Teletype printer amd - if the tape punch on an
ASR terminal is turned on - simultaneously punches the character

on the tape.

.@.2.3.1 Example 1

SKPDN

DIAC

6.2.3.2 = Example 2

NICS
SKPDN

® DIAC

6.2.3.3 Example 3

SKPB2Z

TTI
. -1
1,TTI

TTI
0-1
1,TTI

0-1
1,TTO

;Character buffer loaded yet?
1No

sRead character ard clear Done
flag

:Start reader

;Frame buffer loaded yet?

;No

;Read frame and clear Done flag

;Printer free?

sNo, try again
:Print character

6.2.3

6.2.3.1

6'2.302

6.2.3.3



6.2.3.4

Example 4

6.2.3.5

The subroutine shown in this example and called from the main
program by a JUMP TO SUBROUTINE instruction (JSR to TTYRD) illu-
strates reading and echoing characters on the Teletype with Tele-

type interrupts disabled.

TTYRD: SKPDN TTI

JMP =1
DIAC 0,TTI
SKPBZ TTO
JMP =1
DQAS 0,TTO
JMP 0,3

Example 5

This example shows how Teletype may be programmed using the pro-

ACO is used to store the character.

sHas character been typed?
:No, then wait

;Yes, then read character ard
clear Done flag

:1Is TTO ready?

:No, then wait

:Yes, then echo character
:Return

gram interrupt facility. T do so makes it possible to perform a
number of calculations in the intervals of time between Teletype

characters.

6.2.3..

6.2.3.5



95

This routine will read a line and echo it on the Teletype printer
using the interrupt priority system. The characters are read into
a buffer area beginning at location 1000g. The routine is termin-
ated by either a carriage return character or line overflow. Line
overflow is determined by the value of MAXLL (maximum line
length).

.1I0C o] ;
0 :Program counter stored here when
an interrupt occurs.
THAND sAddress of interrupt hardler
.LOC 400 :
START: LDA 1,BUFFER ;Set up buffer pointer in
autoincrement location 23
STA 1,23 :
LDA 1,MAXLL ;Get maximum line length
STA 1,CNTR sInitialize line overflow counter
SUBZL = 1,1 iSet AC1 = 1 )
DCBS 1,CPU sMask out TTO and turn on
interrupts
HANG: LDA 0,CNTR sWhen need full line to continue
hang up here until reading is all
done
MoV 0,0,SZ2R ;
JMP =2 :
BUFFR: 777 ;Buffer begins at location 1000
MAXLL: 110 sMaximum of 7210
characters per line
CNTR: 0 :Line overflow counter
THAND: SKPDN TTI sMake sure TTI caused the

interrupt



SAVO:
SAV1:

TIMSK:

HALT

STA

STA

DIAC

STA

SKPBZ

DQAS

SUB

SUBC

STA

DSZ

0,SAv0

1,Sav1
0,TTI
0, 23

o1
0,TTO
1,CR
0,1,SZR
+4

0,0

0,CNTR

o+3

0, TIMSK

0,Savo
0,SAvV1

96

sError - some other peripheral
interrupted

;Save accumulators that will be
used

H

;Read character and clear Done
;Store character in buffer
sMake sure TTO not busy

;

sEcho character

:Is it a carriage return?

-e

:No

;Yes, clear ACO without changing
carry

:Zero out ONTR to indicate line
done

H

:If not a carriage return,
decrement ONTR

:Line not yet done, go dismiss
:Line is done

;Mask out TTI (and TTO) to inhibit
further input

;Restore accumulators

e

:Turn interrupts back on
;Return to interrupted program



7.1

97

Program Loading
Introduction

Whenever the camputer is used for information processing of any
kind the program must - as previously mentioned - reside in main
memory. But to read a program into memory is in itself a kind of
information processing and therefore requires the existence in

memory of a program - called a loading program - to perform this
duty.

Although the loading program will normally be present, it may
from time to time be necessary to read it into memory. This is
done by a small, specialized loading program which is called a
"bootstrap loader" and whose only function is to read into memory
the more general-purpose loading program.

Two methods are available for entering the bootstrap loader into
memory. One is for the operator to enter it manually utilizing
the data switches and the deposit switch on the Diagnostic Front
Panel. The other is to use the Automatic Program Load option if
the camputer in question is so equipped.

In this chapter only automatic program loading is described. For
details about manual loading the reader must consult the Reference
Manual for the Diagnostic Front Panel - RCSL: 52-AA542.

7.

7.1



7.2

Automatic Loading

To use the Automatic Program Load option, the operator must first
select the input device amd set up the loading program on this
device in preparation to be read. In addition the device code of
this unit must be set up in its binary form on the data switches
10 to. 15 on the front frame of the CPU board (cf. the illustra-
tion appearing in the following chapter). The setting of data
switch 0 on the front panel depends on the type of imput device
selected. If this is a data channel device - for instance magne-
tic tape - data switch 0 must be set to 1. If it is a low-speed
device - for instance a paper tape reader - data switch 0 must be
set to 0.

When this has been done, push the AUTOLQAD switch on the opera-
tor panel. This will cause the bootstrap loader to be read, de-
posited in memory locations 0 to 37g and started location 0. The
bootstrap loader will then read the data switches (0 and 10 to
15), set up its own I/0 instructions with the device code as read
and finally perform a program load procedure which depends on the
setting of data switch 0.

If data switch 0 has been set to 1, the bootstrap loader will
start the device for data channel transfer starting storage at
location 0 and will then loop at location 377g until a data chan-
nel transfer places a word in this location. When this happens,
the word placed in this location is executed as an instruction;
typically this will be a JUMP into the data which have been
placed in locations 0 to 376g.

NOTE : For proper program loading via the data channel the de-

—

vice in use must be initialized for the reading opera-
tion by an I/O RESET instruction followed by a NIOS
instruction. Furthermore the device must stop reading
when 25610 words has been read; o_therwise the avail-
able memory locations will overflow.




29

If data switch 0 has been set to 0, the bootstrap loader will
read the loading program via programmed 1/0. The device must
supply data as 8-bit bytes; each pair of bytes read will be me-
mory stored in as a single word wherein the first and second byte
will become respectively the left and right halves of the word.
To simplify the positioning of the input medium - for instance
paper tape - the bootstrap loader will ignore leading null char-
acters, i.e. it will not store any word until it has read a non-
zero synchronization byte.

The first word following this synchronization byte must be the
negative of the total number of words to be read including this
first word. The number of words to be read - including the first
- cannot exceed 192,47. The bootstrap loader will store the words
read in memory starting in location 1008. When the last word has
been read the bootstrap loader will transfer control to that lo-
cation.

The Automatic Loading hardware in RC3803 is capable of contain-
ing up to 16 times 32 word programs, one of this programs is
listed on the following bages, a bootstrap loader capable of
loading in either of the manners described above.

A list of the available bootstrap loaders in the Automatic’ Pro-
gram Load cption, F10A is too shown.

For details about the RC3803 program load refer to:
GENERAL INFORMATION

Hardware Testprograms and Program Load to RC3803
RCSL - 52AA89%



00000
00001
00002

00003

00004
00005
00006
00007
00010

00011
00012

00013
00014
00015
00016

00017

00020
00021
00022

00023
00024
00025
00026
00027

00030

Figur

BOOTSTRAP LOADER FOR

100

AUTOMATIC PROGRAM LOAD

060477 BEG:
105120
124240

010011 LOOP:

010031
010033
010014
125404
000003

060077 OP1:
030017

050377
063377 OP4:
000011
101102

000377 C377:

READS
MOVZL
COMCR

ISz

IS2
1S2
ISZ
INC
JMP

060077
LDA

STA
063377
JMP
MOVL

JMP

004031 LOOP2:JSR

101065
000020

MOVC
JMP

004030 LOOP4:JSR

046027
010100
000023
000077 C77:

126420 GET:
OP2:

7.1

STA
IsZ
JMP
JMP

SUBZ

0,1
1,1

OP1

oP2
op3
or4
1,1,SZR

2,C377

2,377

OP1
0,0,8zC

377

GET+1
0,0.SNR
LOOP2

1,@C77
100
LOOP4
77

;READ SWITCHES INTO ACO
:ISOLATE DEVICE CODE
;-DEVICE QOLE -1

;OOUNT LEVICE QONTROL INTO
ALL
;10 INSTRUCTIONS

.
’

’ ®
sDONE?

;NO INCREMENT AGAIN

;START DEVICE;(NIOCS 0) =1

;YES, PUTJMP 377INTO

LOCATION 377

H

sBUSY ? :( SKPBN 0 ) -1

;NO, Q@ TO OP1

sLON SPEED LEVICE?(TEST

SWITCH 0)

:NO, GO TO 377 AND WAIT

FCR CHAN. ‘l'

;GET A FRAME
:IS IT NONZERO?
sNO, IGNCORE AND GET ANOTHER

;YES, GET A FULL WORD
;STORE STARTING AT 100
;COUNT WORD - DONE?

;NO, GET ANOTHER

;YES - LOCATION QOUNTER AND
JUMP TO IAST WORD

;CLEAR AC1, SET CARRY



00031

00032
00033

00034

00035

00036
00037

063577 LOOP3:063577

000031
060477 OP3:

107363

000031

125300
001400

JMP
060477

ADDCS

JMP
MOVS

JMP

101

LOOP3

0,1,SNC

LOOP3
1.1
0,3

;DONE ? : ( SKPDN 0)-1
;sNO, WAIT

;YES, READ INTO ACO:(DIAS
0,0) -1

:ADD 2 FRAMES SWAPPED-
GOTSECOND?

sNO, QO BACK AFTER IT.
:YES, SWNAP AC1
sRETURN WITH FULL WORD



DEVICE NO.
(OCTAL)

3-15
17

21-55
57-60
62-72
74-77

3-15
17
21-55
57-60
62-72
74-77

16
56
61
61
73
73

20

Figur 7.2

102

LIST OF AVAILABLE

PROGRAM LOADS in F10B

BIT O

O — O X X

AUTOLOAD

PROGRAM MODULE

NO.
0

A Ut N

FUNCTION

CONSOLE INITIALIZATION
(BAUD RATE, NO. OF STOP BITS
AND MEMORY RESET)

MEMORY TESTPROGRAM

CONSOLE ECHO PROGRAM
CONSOLE CHARACTER GENERATOR

STANDARD AUTOLOAD
LOW SPEED DEVICE
(i.e. Ptr Dev. 12g)

STANDARD AUTOLOAD

DATA CHANNEL PROGRAM IOAD
Mag. tape Dev. 308)

FPA Dev. 46, Dev. 74)

CARD READER PROGRAM LOAD (CDR)
CARD READER PROGRAM IOAD (CDR)
FLEXIBLE DISC PROGRAM LOAD (FDD)
NO FUNCTION

DISC PROGRAM LOAD (DKP)

(incl. a Disc recalibration)
DISC PROGRAM LOAD (DKP)

(no recalibration)

Disc Storage Module PROGRAM IOAD

RELATION BETWEEN AUTOLOAD DEVICE NO
(SET ON THE FRONT PANEL OF RC3803)
AND THE SELECTED PROGRAM MODULE



8.1

8.1.1

103

Switches and Indicators

This chapter contains a description of the switches amd irdicators
placed on the front frame of the CPU board. An illustration of
the front panel is found at the extreme end of the chapter.

Switches
Four groups of switches are placed on the front panel, namely

the ENABLE TCP switch, the AUTOLOAD DEVICE SELECT switches, the
PARITY ERROR switches, and the MEMORY EXTENSION SELECT switch.

ENABLE TCP

This switch transfers control to and fram the Diagnostic Front
Panel, details of which can be found in Reference Manual for the
Diagnostic Front Panel - RCSL: 52-AA542.

When this switch is in the UP position, the Diagnostic Front
Panel can be connected to or disconnected fram the CPU without
creating any disturbance for CPU program execution. Furthermore
the AUTOLOAD DEVICE SELECT switches are operative when ENABLE
TCP is in this position.

Whenever the Diagnostic Front Panel is not connected to the CPU,
the ENABIE TCP switch is inoperative, i.e. pushing this switch
will not affect the CPU.

When the ENABLE TCP switch is in the DOWN position all control
of the CPU is carried out from the Diagnostic Front Panel
connected to the CPU.

NOTE:: The ENABLE TCP switch must be in the UP position
before the Diagnostic Front Panel is connected or
disconnected to the CPU.

8.1

8.1.1



8.1.2

AUTOLOAD DEVICE SELECT

8.1.3

These switches are operative when the ENABLE TCP switch is in the
UP position as mentioned above. They are used for external, ma-
nual setting of specific bits of a word, the bits in question
being bit 0 and bits 10 to 15.

Setting these switches is imperative in connection with the use

of the Automatic Program ILoading feature as outlined in the pre-

vious chapter. In this case the switches 10 to 15 are set accord-

ing to the binary code of the inmput device being used, whereas

switch 0 is used to distinguish between the types of device

available, i.e. whether the device is a data channel device or a ‘
programmed I/0 device.

Apart from this the switches can be used in conjunction with nor-
mal program operation by including the instruction READ SWITCHES;
this instruction will - as explained in section 4.7.3 - place the
bit values indicated by these switches in their respective posi-
tions in an accumulator specified by the instruction. When loaded
into the accumulator the bit setting indicated will be accessible
to the program. When the bits are loaded into the accumulator
bits 1 to 9 will be read as logic zeroes.

PARITY ERROR : 8.1.3 @

This group contains two switches: STOP and RESET.

When the STOP switch is in the DOWN position a parity error de-
tected during a memory read cycle will cause the CPU to suspend
processing in the microprogram. This will allow connecting of the
Diagnostic Front Panel to the CPU while the CPU is still at that
point of execution where the error was registered. Thus informa-
tion about the memory address giving rise to the parity error can
be read out from the memory address register so that corrective
action can be decided upon.



8.1.4

105

To restart the CPU following a parity error - if so desired - is
accamplished either by pushing the STOP switch to the UP position
or by pushing the RESET switch to the DOWN position.

When the STOP switch is in the UP position the detection of a pa-
rity error will be indicated (cf. section 8.2.1), but processing
will continue without interruption.

When the RESET switch is pushed to the DOWN position the parity
error indicators (cf. section 8.2.1) will be reset; if the CPU
has suspended processing following the detection of a parity er-
ror, this action will simultaneously restart the CPU.

CAUTION '

If the switch AUIO is pushed while the RESET switch is still in
the DOWN position, the CPU will restart in the address determined
by the positions of the AUTOLOAD IEVICE SELECT switches - direct
if switch 0 is set to 0, indirect if switch 0 is set to 1.

(A description of the AUTO switch mentioned above is not included
in this manual. This switch is a feature of the Diagnostic Front
Panel and the external Autoload Panel; more detailed information
must be sought in the relevant manuals.)

NOTE: Activating the RESET switch will only reset the
indicators. The parity error causing the indication
will still be present in the particular memory
location. Only a write operation into that location

will remove the error.

MEMORY EXTENSION SELECT

When this switch is in the DOWN position the Memory Extension
feature is inoperative. If the switch is in the UP position the
programmer can utilize the extended block of core memory by
including the proper instructions in the program. (Refer to
section 5.3.)

8.1.4



Two groups of indicators are placed on the front panel, namely
the PARITY ERROR indicators and the CPU-STATUS indicators.

This group consists of two indicating lights: LEFT and RIGHT. The
LEFT indicator is lit whenever a parity error is detected in the
left byte (bits 0 to 7) of a word being read during a memory read

The RIGHT indicator is lit whenever a parity error is detected
in the right byte (bits 8 to 15) of a word being read during a

The indicators - either or both - can only be cleared by pushing
the RESET switch as previously described.

8.2 Indicators
8.2.1 -‘PARITY ERROR
cycle.
memory read cycle.
8.2.2 CPU-STATUS

This group consists of two indicating lights: FETCH and DEFER.

The FETCH indicator is lit whenever the CPU is reading an
instruction fraom core memory.

The DEFER indicator is lit whenever the next microcycle will be
used to follow an indirect addressing chain.

5. @

8.2.1

8.2.2



107

FRONT FRAME OF CPU BOARD

0ZL 0D

lacus
?

O ALIYVd
LIS JHO

¢ O

P
o

SAINIS-NdD

3
o

HOLAd
o

14

P

Agel




A.

108

/O Device Codes and Mnemonic A.

Decimal Octal

code

01
02
03
04
05
06
07
08
09
10
"
12
13

14
15
16
17
18

19
20

21
22
23
24
25
26

code Mnemonic Maskbit  Device

01
02
03
04
05
06
07
10
1"
12
13
14
15

16
17
20
21
22

23
24

25
26
27
30
3
32

AST,

TTI

PLT
SPC2

DsC
SpPC
SPC1
ACU1
PTR1
AMX3

T™X10
™X11
TMX0
T™X1

PrP1
TTI2

IBM

14
15
N
13
13
12

10

>

Extended Memory

Automatic System Load

Teletype Input
Teletype Output
Paper Tape Reader
Paper Tape Punch
Real Time Clock
Incremental Plotter
Third Standard Parallel Controller
Card Reader
Line Printer
Disc Storage Channel
Standard Parallel Controller
Second Standard Parallel Controller
Second Dial-up Controller
Second Paper Tape Reader
Fourth 8 Channel Asynchronous Mul-
tiplexor
Second 64 Channel

{Asynchronous Multiplexer

{64 Channel Asynchronous
Multiplexer
Magnetic Tape
Second Paper Tape Punch
Third Teletype Input
OCP-Function Button Out
First IBM Channel, Receiver Part

RC3803 A-1



109

Decimal Octal
code code Mnemonic Maskbit  Device

27 33 TTO2 15 Third Teletype Output
OCP-Function Button In
IBM First IBM Channel, Transmitter Part
28 34 TTI3 14 Fourth Teletype Input
OCP-Numeric Keyboard In
29 35 TTO3 15 Fourth Teletype Output
DISP 7 OCP-Display
30 36 OCP-Autoload
31 37 LIPS 12 Serial Printer
32 40 REC } 8 BSC Controller
33 41 XMT 8
34 42 REC1 8 Second BSC Controller
35 43 XMT1 } 8
36 44 MT1 5 Second Magnetic Tape
37 45 cLp 12 Charaband Printer
38 46 FPAR 3 Inter Processor Channel Receiver
39 47 FPAX 3 Inter Processor Channel Transmitter
40 50 TTI 14 Second Teletype Input
41 51 TTO1 15 Second Teletype Output
42 52 AMX 2 8 Channel Asynchronous Multiplexor
43 53 AMX1 2 Second 8 Ch. Asynchronous Multipl.
44 54 HLC 8 HDLC Controller
FPAR2 3 Third Inter Processor Ch. Receiver
45 55 HLC1 8 Second HDLC Controller
FPAX2 3 Third Inter Processor Channel
Transmitter
46 56 CDR1 10 Second Card Reader
47 57 LPT1 12 Second Line Printer
LPS2 12 Third Serial Printer
48 60 SMX Synchronous Multiplexor
49 61 FDD 7 Flexible Disc Drive
50 62 CRP 10 Card Reader Punch
IBM1 Second IBM Channel, Receiver Part
51 63 CLP1 12 Secord Charaband Printer
IBM1 Second IBM Channel, Transmit. Part
52 64 FDD1 7 Second Flexible Disc Drive

RC3803 A-2



110

Decimal Octal
code code Mnemonic Maskbit  Device

53 65 LPS3 12 Fourth Serial Printer
CLP2 Third Charaband Printer
54 66 DIC 9 Digital Cartridge Controller
LPS4 12 Fifth Serial Printer
55 67 LPS1 12 Secord Serial Printer
CLP3 Fourth Charaband Printer
56 70 DST Digital Sense
57 7 DoT Digital Output
58 72 ONT Digital Counter
ACU Dial-up Controller
59 73 DKP 7 Moving Head Disc Channel
60 74 FPAR1 3 Second Inter Processor Channel
Receiver
61 75 FPAX1 3 Secord Inter Processor Channel
Transmitter
62 76 AMX2 2 Third 8 Channel Asynchronous
Multiplexor
63 77 CPU Central Processor

RC3803 A-3



@

1

ASCII Character Codes

To Produce Even
ASCII On TTY Mod Parity
Deci- Cha- 33,35 8-bit
mal |Octal | Hex | racter | Control Function |Cntr Shift Char code
0 000 | 00 NUL Null + + P 00
1 001 | 01 SOH Start of Heading + A 81
2 002 | 02 STX Start of Text + B 82
3 003 |03 ETX End of Text + C 03
4 004 |04 EOT End of Transmissi?n + D 84
. 5 005 | 05 ENQ Enquiry + E 05
6 006 | 06 ACK Acknowledge + F 06
7 007 | 07 BEL Bell + G 87
8 010 | 08 BS Backspace + H 88
9 011 | 09 HT Horizontal Tap + I 09
10 012 | 0A NL New Line line feed| 0A
+ J Qax
+ line feed| 8
n 013 |O0B | VT Vertical Tab + K &8
12 014 |OC | FF Form Feed + L oc
13 015 | OD RT Return return 8D
. + M 8D*
+ return 0D
14 | o016 |oE | so | shift out + N 8E
15 017 | OF SI Shift In + o OF
16 020 | 10 DLE Data Link Escape + P 0
17 021 | 1 DC1 Device Control 1 + Q 1"
18 022 | 12 DC2 Device Control 2 + R 12
19 023 |13 DC3 Device Control 3 + S B3

* on even parity Teletypes these codes have odd parity

RC3803



To Produce Even
ASCII Oon TTY Mod Parity

Deci- Cha- 33,35 8-bit
mal |Octal | Hex | racter | Control Function | Cntr Shift Char code
20 024 | 14 DC4 Device Control 4 + T 14
21 025 | 15 | MAK | Negative Acknow-

ledge U 95
22 026 | 16 SYN Synchronous Idle + v 96
23 027 | 17 ETB End Transmission

Block + W 17
24 030 | 15 CaN Cancel X 18
25 031 | 19 2| End of Medium + 99
26 032 | 1A SUB Substitute + Z R
27 033 | 1B ESC Escape esc 1B

+ + K 1B

28 034 | 1C FS File Separator + + L o
29 035 | 1D GS Group Separator + + M 1D
30 036 | 1E RS Record Separator + + N 1E
31 037 | 1F Us Unit Separator + + O ° 3
32 040 | 20 SP Space space A0
33 041 | 21 ! + 1 21
34 042 | 22 " + 2 22
35 043 | 23 # + 3 A3
36 044 | 25 < + 4 24
37 045 | 25 % + 5 AS
38 046 | 26 & + 6 A6
39 047 | 27 ! + 7 27
40 050 | 28 ( + 8 28
41 051 | 29 ) + 9 A9
42 052 | 2a * + AA
43 053 | 2B + + 2B
44 054 | 2C ' v 2C

RC3803

B-2




113

To Produce Even
ASCII on TTY Mod Parity

Deci- Cha- 33,35 8-bit
mal |Octal | Hex | racter | Control Function| Cntr Shift Char code
45 055 | 2D - - 2D
46 056 | 2E . . 2E
47 057 | 2F / / AF
48 060 | 30 0 0 30
49 061 | 31 1 1 B1
50 062 | 32 2 2 B2
51 063 | 33 3 3 33
52 064 | 34 4 4 B4
53 065 | 35 5 5 35
54 066 | 36 6 6 36
55 067 | 37 7 7 B7
56 070 | 38 8 8 B8
57 071 | 39 9 9 39
58 072 | A : : 3a
59 073 | 3B H H BB
60 074 | 3C < + ., 36
61 075 | 3D = + - BD
62 076 | 3E > + . BE
63 077 | 3F ? + / 3F
64 100 | 40 c] + P co
65 101 | 4 A A 41
66 102 | 42 B B 42
67 103 | 43 C C 43
68 104 | 44 D D 44
69 105 | 45 E E C5

RC3803

B-3




To Produce Even
ASCII On TTY Mod Parity
Deci- Cha- 33,35 8-bit
mal |Octal| Hex | racter | Control Function | ntr Shift Char code
70 106 | 46 F F Cé6
7 107 | 47 G G 47
72 110 | 48 H H 48
73 111 | 49 I I C9
74 112 | 4A J J ca
75 113 | 4B K K 4B
76 114 | 4C L L cC
77 115 | 4D M M 4D
78 116 | 4E N N 4E
79 117 | 4F o] o CF
80 120 | 50 P P 50
81 121 | 51 0 Q D1
82 122 | 52 R R D2
83 123 | 53 S S 53
84 124 | 54 T T D4
85 125 | 55 U U 55
86 126 | 56 v \Y 56
87 127 | 57 W W D7
88 130 | 58 X X D8
89 131 | 59 Y Y 59
90 132 | 5A Z Z 5A
91 133 | 5B [ + K DB
92 134 | 5C \ + L 5C
93 135 | 5D ] + M DD
94 136 | 5E | N\ + N DE
RC3803 B—4




115

To Produce Even
ASCII On TTY Mod Parity
Deci- Cha- 33,35 8-bit
mal [Octal | Hex | racter | Control Function| Cntr Shift Char code
95 137 | SF _ + O SF
96 140 | 60 \ 60
97 141 | 61 a E1
98 142 | 62 b E2
99 143 | 63 c 63
100 144 | 64 d E4
101 145 | 65 e 65
102 146 | 66 f 66
103 147 | 67 g E7
104 150 | 68 h E8
105 151 | 69 i 69
106 152 | 6A j 6A
107 153 | 6B k EB
108 154 | 6C 1 6C
109 155 | 6D m ED
110 156 | 6E n EE
"M 157 | 6F (o} 6F
112 160 | 70 P FO
113 161 | T q 7
114 162 | 72 r 72
115 163 | 73 s F3
116 164 | 74 t 74
117 165 | 75 u F5
118 166 | 76 v Fé6
119 167 | 77 w 77
RC3803 B-5




116

To Produce Even
ASCII On TTY Mcd Parity
Deci- Cha- 33,35 8-bit
mal |Octal | Hex | racter | Control Function | Cntr Shift Char code
120 170 | 78 X 78
121 171 | 79 y F9
122 172 | 7A z FA
123 173 | B | { B
124 174 | 7C : FC
125 175 | D | } 7D
126 176 | 7E | ~ 7E
127 177 | 7F DEL rubout FF

RC3803

B-6




117

Double Precision Arithmetic C.

A double length number consists of two words concatenated into a
32-bit string wherein bit 0 is the sign amd bits 1-31 are the
magnitude in two's camplement notation. The high-order part of a
negative number is therefore in one's complement form unless the
low-order part is null (at the right only 0's are null regardless
of sign). Hence, in processing double length numbers, two's cam-
plement operations are usually confined to the low-order parts,
whereas one's camplement operations are generally required for
the high-order parts.

Suppose we wish to negate the double length number whose high
and low-order words respectively are in ACO ard AC1. We negate
the low-order part, but we simply camplement the high-order part
unless the low order part is zero. Hence

NEG 1,1,SNR
NEG 0,0,SKP  ;LOWN ORDER ZERO

cam 0,0 ;LOW ORDER NON-ZERO

Note that the magnitude parts of the sequence of negative numbers
from the most negative toward zero are the positive numbers fram
zero upward. In other words, the negative representation =x is
the sum of x and the most negative number. Hence, in multiple
precision arithmetic, low-order words can be treated simply as
positive numbers. In unsigned addition a carry indicates that the
low-order result is just too large and the high-order part must
be increased. We add the number in AC2 and AC3 to the rnunber in
ACO and AC1.

ADDZ 3,1,82C
INC 0,0
ADD 2,0

RC3803 C-1



118

In two's camplement subtraction a carry should occur unless the
subtrahend is too large. We could increment as in addition, but
since incrementing in the high-order part is precisely the dif-
ference between a one's camplement and a two's camplement, we can
always manage with only two instructions. We subtract the nunber
in AC2 and AC3 from that in ACO and AC1.

SUBZ 3,1,8Z2C
SUB 2,0,SKP
ADC 2,0

RC3803 C-2



119

Instruction Use, Examples D.

On the following pages are examples of how the instruction set of
the RC3803 camputer may be used to perform some cammon functions.

1. Clear an AC and the carry bit.
SUBO AC,AC

2. Clear an AC and preserve the carry bit.
SUBC AC,AC

3. Generate the indicated constants.

SUBZL AC,AC ;GENERATE +1
ADC AC,AC ;GENERATE -1
ADCZL AC,AC sGENERATE -2

4. Let ACX be any accumulator whose contents are zero.
Generate the indicated constants in ACX.

INCZL ACX,ACX sGENERATE +2
INCOL ACX,ACX ;GENERATE +3
INCS ACX,ACX ;GENERATE +4008

5. Subtract 1 fram an accumulator without using a constant fram

memory.
NEG AC,AC
coMm AC,AC

6. Check if both bytes in an accumulator are equal.

MOVS ACS,ACD
SUB ACS,ACD,SZR
JMP — sNOT EQUAL

— — sEQUAL

RC3803 D-1



7.

8.

9.

10.

11.

120

Check if two accumulators are both zero.

MOV ACS,ACS,SNR
SUB# ACS,ACD,SZR
JMP -_— ;NOT BOTH ZERO

-— -_— ;BOTH ZERO

Check an ASCII character to make sure it is a decimal
digit. The character is in ACS amd is not destroyed
by the test. Accumulators ACX and ACY are destroyed.

LDA ACX,C60 sACX=ASCII ZERO
LDA acy,Ccn ;ACY=ASCII NINE
ADCZ# ACY,ACS,SNC  ;SKIPS IF (ACS) > 9
ADCZ# ACS,ACX,SzZC  ;SKIPS IF (ACS) =0

JMP — sNOT DIGIT
-— -— :DIGIT

C60: 60 ;ASCII ZERO
cn n ;ASCII NINE

Test an accumulator for zero.

MoV AC,AC,SZR
JMP _— sNOT ZERO
-— —_— $ZERO

Test an accumulator for -1.
CaM# AC,AC,SZR
JMP -_ H
—— — :-1
Test an accumulator for 2 or greater.
MOVZR# AC,AC,SNR

JMP -_ ;LESS THAN 2
-— -_ ;2 (R GREATER

RC3803 D=2



121

12. Assume it is known that AC contains 0, 1, 2, or 3.

13.

Find out which one.

MOVZR#
JMP
MOV
JMP
MOVZR#
JMP

aAC,AC,SEZ

THREE

AC,AC,SNR

ZERO

aC,AC,SZR

TWO

sWAS 2
sWAS 1

Multiply an AC by the indicated value.

MOV

ADDZL
ADDZL
MOVZL
ADDZL
MOVZL
MOVZL
ADDZL
ADDZL

ACX,ACX
ACX,ACX
ACX,ACY
ACY,ACX
ACX,ACX
ACX,ACY
ACX,ACX
ACY,ACX
ACX,ACY
ACY,ACX
ACX,ACY
ACY,ACY
ACX,ACY
ACX,ACX
ACX,ACX
ACX,ACY
ACY,ACY
ACY,ACX
ACX,ACY
ACX,ACX
ACY,ACX
ACX,ACY
ACY,ACX
ACX,ACX
ACX,ACY
ACY,ACY
ACY,ACX

sMULTIPLY
sMULTIPLY
sMULTIPLY
sMULTTIPLY
sMULTIPLY
sMULTIPLY

sMULTIPLY

:IN ACY

sMULTIPLY

sMULTYPLY

sMULTIPLY

sMULTIPLY

sMULTIPLY

BY
BY
BY

BY

BY

BY

BY

BY

BY

BY

BY

BY

RC3803

1249

1810

D-3



14.

15.

16.

122

Perform the inclusive OR of the operards in ACO ard .

ACl. The result is placed in AC1. The carry bit is
unchanged.

coM 0,0
AND 0,1
ADC 0,1

Perform the exclusive OR of the operands in ACO and

AC1. The result is placed in AC1. The contents of
AC2 arnd the carry bit are destroyed.

MOV 1,2 .

ANDZL 0,2
ADD 0,1
SUB 2,1

Move 30 words from locations 20008-20358 to locations
30008°30358’ The autoincrement locations are used to
hold the source and destination addresses.

LIA 0,ADDRS  $SET UP SOURCE ADIRESS
STA 0,20
LDA 0,ADIRD ;SET UP CESTINATION ADDRESS
STA 0,21
LOOP: LDA 0,@20 s INCREMENT SOURCE ADLRESS o
; AND GET WORD
STA 0,@21 ; INCREMENT CESTINATION
; ADDRESS AND STORE WORD
DSZ ONT ;DECREMENT COUNT
JMP LOOP ;GO BACK FOR NEXT WORD
cee ;SKIP HERE WHEN COUNT IS
s ZERO
ADDRS: 1777 ;SOURCE ADDRESS MINUS ONE
ADDRD: 2777 ;DESTINATION ADIRESS MINUS
:ONE
CNT: 36 jWORD COUNT —36g BOQUALS 30,,

RC3803 D4



123

. ‘ 17. Perform the following unsigned integer camparisons.

SuB# ACS,ACD,SZR  ;SKIP IF CONTENTS OF ACS =
; CONTENTS OF ACD

SKIP IF CONTENTS CF ACS
CONTENTS CF ACD
SKIP IF CONTENTS OF ACS <
CONTENTS OF ACD

SKIP IF CONTENTS CF ACS <
QONTENTS CF ACD

;SKIP IF CONTENTS OF ACS >
CONTENTS CF ACD

SKIP IF CONTENTS OF ACS >
QONTENTS CF ACD

SUB# ACS,ACD,SNR

ADCZ# ACS,ACD,SNC

SUBZ# ACS,ACD,SNC

-e ~e -e ~e -e - -e -

SUBZ# ACS,ACD, SZC

ADCZ# ACS,ACD,SZC

~-e ~e ~e

18. Compare the signed, two's complement integer contained in

ACS to 0.
MOV# ACS,ACS,SZR  ;SKIP IF CONTENTS CF ACS EQ 0
MOV# ACS,ACS,SNR :SKIP IF QONTENTS OF ACS NE 0

ADDO# ACS,ACS,SBN  ;SKIP IF CONTENTS COF ACS GT 0
MOVL# ACS,ACS,SZC  ;SKIP IF CONTENTS OF ACS GE 0
MOVL# ACS,ACS,SNC  ;SKIP IF CONTENTS COF ACS LT 0
ADDO# ACS,ACS, SEZ ;SKIP IF QONTENTS OF ACS IE O

19. Simulate the operation of the MULTIPLY instruction.

. «MPYU: SUBC 0,0 CLEAR ACO, DON'T DISTURB CARRY
MPYA: STA  3,.CB03 ;SAVE RETURN
LA 3,.CB20 ;GET STEP QOUNT
:CB99 MOVR 1,1,SNC ;CHECK NEXT MULTIPLIER BIT
MOVR 0,0SKP ;0 SHIFT

° -0

'ADDZR 2,0 ;1 = ADD MULTIPLICAND AND SHIFT
INC  3,3,SZR ;COUNT STEP, COMPLEMENTING CARRY ON
;s FINAL COUNT
JMP .CB99 ;ITERATE LOOP
MOVCR 1,1 ;SHIFT IN IAST LON BIT (WHICH WAS
; COMPLEMENTED BY FINAL QOUNT) AND
JMP  @.CBO3 ;RESTORE CARRY
.CBO3: 0
.DB20: =20 71679 STEPS

RC3803 D-5



124

20. Simulate the operation of the DIVIIE instruction.

21,

.DIVI:
.DIVU:

.CC98

.QCC99

.CCO03
.CC20

MOVL
SUB#
SUB
MOVL
INC
JMP
SUBO
SUBZ
JMP
0

20

0,0
3,.CC03
2,0,82C
.CC99
3,.CC20
1,1
0,0
2,0,8zC
2,0
1,1
3,3,82C
Cccos
3,3,SKP
3,3
@.CCo3

; INTEGER DIVIDCE CLEAR HIGH PART
;SAVE RETURN

TEST FOR OVERFLOW

YES, EXIT(ACO > AC2)
;GET STEP QOUNT

sSHIFT DIVIDEND LOW PART
sSHIFT DIVIDEND HIGH PART
+DOES DIVISCR @ IN?

;YES

;SHIFT DIVIDEND LOW PART
:COUNT STEP

; ITERATE LOOP

;DONE, CLEAR CARRY

s+SET CARRY

sRETURN

14 e -e

31610 STEPS

Ioad a byte fram memory. The routine is called via a JSR.
The byte pointer for the requested byte is in AC2. The
requested byte is returned in the right half of ACO. The
left half of ACO and the carry are set to 0. AC1 and AC2 are
unchanged. AC3 is destroyed.

ILBYT:

MASK:

STA
oA
MOVR

MOVS

MOVS

MOVL

377

3,IRET
3,MASK
2,2,SNC

3,3

0,0,2
1,0,SNC

0,0

2,2
@ LRET

sSAVE RETURN ADIRESS

;TURN BYTE FOINTER INTO WORD ADDRESS
AND SKIP IF REQUEST BYTE IS RIGHT
BYTE

SWAP MASK IF REQUESTED BYTE IS LEFT
BYTE

PLACE WORD IN ACO

MASK OFF UNWANTED BYTE AND SKIP IF
SWAP IS NOT NEEDED

;SWAP REQUESTED BYTE INTO RIGHT HALF
OF ACO

RESTORE BYTE FOINTER AND CARRY

® WO WE WMe WP WO W e

%

-e -e -9 e

%
:
2

RC3803 D-6



125

. 22. Store a byte in memory. The routine is called via a JRS. The
byte to be stored is in the right half of ACO with the left
half of ACO set to 0. The byte pointer is in AC2. The word
written is returned in ACO. AC1 and AC2 are uncharmged. AC3
and the carry bit are destroyed.

SBYT: STA  3,SRET ;SAVE RETURN
STA 1,SAC1 ;SAVE ACI
LA 3,MASK

MOVR 2,2,SNC ;CONVERT BYTE FOINTER TO WORD
ADDRESS AND SKIP IF BYTE IS TO BE

e

s RIGHT HALF
‘ MOVs 0,0,SKP ;SWAP BYTE AND LEAVE MASK ALONE

MOVs 3,3 ;SWAP MASK
L, 1,0,2 ;LCAD WORD THAT IS TO RECEIVE BYTE
AND 3,1 sMASK OFF BYTE THAT IS TO RECEIVE

; NEW BYTE
ADD 1,0 sADD MEMORY WORD ON TOP OF NEW BYTE
STA 0,0,2 ;STORE WORD WITH NEW BYTE
MOVL 2,2 ;RESTORE BYTE FOINTER AND CARRY

LA 1,SAC1 ;RESTORE AC1
JMP @ SRET ;RETURN

SRET: 0 sRETURN ILOCATION
SAC1: 0
MASK:. 377

RC3803 D-7




126

Instruction Execution Times

RC3608 RC3609
INSTRUCTION MNEMONIC 32K memory 16K memory
LDA 1.6 ps 1.4 ps
STA 1.6 ps 1.4 ps
1Sz, DS2Z 2.4 ps 2.1 ps
JMP 0.8 s 0.7 ps
JSR 1.25 ps 1.2 ps
COM, NEG, MOV, INC 1.15 s 1.0 ps
ADC, SUB, ADD, AND
Each level of @, add 0.85 ps 0.75 ps
Each autoindex, add 0.85 ps 0.75 ps
Base register addr, add 0 ps 0 ps
shift R, L, add 0.3 ps 0.3 ps
Swap, add 0.9 s 0.9 ps
If SKIP occurs, add 0.2 s 0.2 ps
I/0 INPUT (incl. READS, INTA)| 1.85 pus 1.81 ps
I/0 OUTPUT (MSKO) 2 ps 2 us
NIO (INTEN, INTDS) 1.7 s 1.7 ps
I1/0 SKIP 1.4 us 1.4 ps
If SKIP occurs, add 0.2 s 0.2 ps
For S, C and P, add 0 ps 0 us
DATA CHANNEL
DMA Input 1.9 ps 1.9 ps
DMA Qutput 1.8 s 1.8 ps
DMA Increment 2.7 ps 2.6 ps
DMA Add to Memory 3.2 ps 3.2 ps

Executions times for extended instructions set, see E-2, E-3.

RC3803

E-1



INSTRUCTION MNEMONIC

IDFY
LBD

STB

WMOVE
SFREE

SCHEL

FETCH
LINK

PLINK

coMp

RIGHT

RIGHT
LEFT

.

..

127

1,5 ps
3,1 ps
3,7 ps
4,4 ps
5,0 ps

1,5 ps + (number of words) x 2,7 ps

2,6 ps + (number of occupied ele-

8,7 ps + (number of not recognized

6,7 us
7,2 ps
8,1 us

ments before free) x 2,3 ps

element in the link or
before searched element)

x (3,3 ps - 7,0 ps)

12,6 ps + (number

Modification

higher
in the

00

of element with

or equal priority
link) x 2,3 js

01

10

1

(1)

Modification

4,7 ps

4,9 us

4,7 ps

7,0 ps

00

01

10

1

.0

1,2 ps +

5,1 ps

2,9 us

7,7 us

2,9 us

BYTE 1

LEFT

RIGHT

7,5 ps

6,8 ps

RIGHT

6,8 us

6,2 ps

RC3803

E-2




INSTRUCTION MNEMONIC

BMOVE
(without convert)

BMOVE

(via left convert)

BMOVE
(via right convert)

The interruptable instructions (COMP, BMOVE, WMOVE, SFREE, SCHELL
and PLINK) will be elongated with 1,0 us if the DMA-channel in-
terrupts or if there exist an I/0 channel interrupts waiting in

disable mode.

.

1,5 pus +

1,5,us+

'I,5ps+

TO
FROM LEFT RIGHT
LEFT 7,9 ps | 7,3 ps
RIGHT 7,3 ps | 6,7 ps
TO
FROM LEFT RIGHT
LEFT 11,0 ps | 10,4 ps
RIGHT 10,4 us 9,8 us
o |.
FROM LEFT RIGHT
LEFT 10,4 ps | 9,8 ps
RIGHT 9,8 us | 9,2 ps

RC3803

E-3




RETURN LETTER

Title: RC3803 CPU Programmer's Reference RCSI. No.: 42-11008
Manual

A/S Regnecentralen af 1979/RC Computer A/S maintains a continual effort to im-

prove the quality and usefulness of its publications. To do this effectively we need

user feedback, your critical evaluation of this manual.

Please comment on this manual’s completeness, accuracy, organization, usability,
and readability:

Do you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Name: Title:

Company:
Address:

Date:

Thank you

42-i 1288




................. Do not tear - Fold here and staple

¢REGNECENTRALEN
, af 1979

Information Department

Lautrupbjerg 1

DK-2750 Ballerup

Denmark

..................

Affix

postage
here




