VIUSIL
1 Programming Guide

- S B00)

MUSIL Programming Guide

Revision 1
A/S REGNECENTRALEN March 1976
Documentation Department RCSL 42 - i 0344

Author and .
Text Editor: Joan Rosenstein

KEY WORDS: Programming, coding, MUSIL, RC 3600, source language.

ABSTRACT: This manual shows how to program an RC 3600 in the MUSIL

high-level language.

SUPPORTING DOCUMENT:
RC 3600 MUSIL Programmer's Reference Card (RCSL 42 - i 0355)

Users of this manual are cautioned that the specifications
contained herein are subject to change by RC at any time
without prior notice. RC is not responsible for typographi-
cal or arithmetic errors which may appear in this manual
and shall not be responsible for any damages caused by

reliance on any of the materials presented.

Copyright © A/S Regnecentralen, 1976
Printed by A’S Regnecentralen, Copenhagen

Table of Contents

PART ONE - BASIC SYSTEM ARCHITECTURE

1.1 Introduction
1.2 The RC 3600 System
1.2.1 RC 3600 Hardware
1.2.2 RC 3600 Systems Software
1.2.2.1 The Monitor
1.2.2.2 The Systems Process S
1.2.2.3 The Drivers
1.3 RC 3600 Applications Software
1.3.1 Applications Run Media
1.3.1.1 Basic Systems
1.3.2 Program Production Packages
1.3.2.1 The MUSIL Comepiler
1.3.2.2 MUSIL Text Editor
1.3.2.3 Program Generators
1.4 RC 3600 Operation
1.4.1 Operation Principles

PART TWO - THE MUSIL PROGRAM

2.1 MUSIL Program Structure
2.2 The Constant Section
2.2.1 |Identifiers
2.2.2 Numbers
2.2.3 Text Strings
2.2.4 Tables of Constants
2.2.5 Section Structure
2.2.6 Some Cautions On the Use of Constants
2.2.7 Common Errors
2.2.8 Constant Section Example
2.3 The Variable Section
2.3.1 Identifiers
2.3.2 Integer Variables
2.3.3 Text String Variables
2.3.4 Section Structure

page

VO 0 0 V0V VUV VWV 00 W 0 00 N N NV

— e
o O O

15
16
16
16
17
18
19
19
20
21
23
23
23
24
24

2.3.5 Some Cautions On the Use of Variables
2.3.6 Variable Section Example

2.4 The Procedure Section

2.4.1 Defining a Procedure
2.4.2 Executing a Procedure
2.4.3 Code Procedures

2.4.4 Some Cautions On the Use of Procedures

2.4.5 Examples of Procedures

2.5 The Main Program Section

PART THREE - /O COMMANDS

3.1 Overview
3.2 The Organization of Data
3.2.1 Bytes
3.2.2 Records
3.2.3 Blocks
3.2.3.1 Blocking Methods
3.2.4 Files
3.3 File Descriptors
3.4 Buffer Strategy
3.4.1 Input
3.4.2 Output
3.5 Exception Handling
3.5.1 GIVEUP Mask
3.5.2 GIVEUP Procedures

2.5.1 Section Structure

2.5.2 Arithmetic Operators

2.5.3 Relational Operators

2.5.4 Monadic Operators

2.5.5 Logical Operators

2.5.6 Operators in General

2.5.7 Assignment

2.5.8 Labels

2.5.9 Compound Statements

2.5.10 Unconditional Branching

2.5.11 Conditional Branching

2.5.12 Repetitive Statements

2.5.13 Commands For the Operator Console
2.5.14 Some Cautions For the Main Program Section

page 24
25
26
26
26
27
27
27
28
28
28
28
29
29
30
31
32
32
32
33
34
35
39

43
44
45
45
45
46
48
48
50
50
51
51
53
53

3.6

3.7

3.8
3.9

Record and File Variables

3.6.1 Record Variables

3.6.2 File Variables

3.6.3 Example of File Definitions
Using the File Descriptor

3.7.1 Accessing the File Descriptor
3.7.2 Examining the Status Word
3.7.3 Example of a GIVEUP Procedure
Accessing File Contents

I/O Commands

3.9.1 Opening and Closing Files
3.9.2 Record-by-Record Data Transfer
3.9.3 Character-by-Character Data Transfer

3.9.4 Primitive Procedures

3.10 Data Manipulation
3.11 Possible 1/0O Errors
3.12 Example of a MUSIL Program

PART FOUR - APPENDIX

4.1

4.2

4.3
4.4

4.5

4.6

The Type Section

4,1.1 Section Structure

4.1.2 Integer and String Types
4.1.3 Record and File Types
4.1.4 Possible Errors

Reference List of MUSIL Commands, Operators,
and Symbols

4.2.1 MUSIL Commands

4,2.2 MUSIL Operators and Symbols
ASCIl Code Table

Device Reference Tables

4.4,1 Kind Table

4.4,2 Operation Mode Table
Program Production

4.5.1 Compilation

4.,5.2 MUSIL Compiler Error Messages
4,5.3 Copying MUSIL Program Parts
4.5.4 Program (Tape) Generation

List of reserved MUSIL words

page 53
54

55
58
59
59
60
62

SXTERS

69
71
73
74

89
89
89
90
90
91

91
92
93
94
94
94
97
97
98
99
100

100

BNE fEE S n A G 2 N aE D I A AN BE B aE e O ar Em

Part One
Basic System Architecture

-
-

1.2.1

Introduction

In this Part One, we shall see how the RC 3600 system is built up and operated. We
shall also take a brief overall look at the applications software available on the sys-

tem.

1.2 The RC 3600 System

The RC 3600 is a system that is composed of hardware and systems software. The
hardware is a 16-bit per word mini-computer which is particularly reliable and
sturdy, but not optimally flexible nor specifically designed for the support and ter-
minal functions that an RC 3600 system is designed to perform. Thisflexibility and
suitability is provided by the systems software.

The RC 3600 system is a satellite system. That means that it is ultimately associated
with a larger host computer. The job of the host computer in an RC 3600/mainframe
configuration is to perform computation and data management, often in the form of
data base or file management. The job of the RC 3600 in this configuration is to take
over those functions that can be separated from the mainframe, such as |/O, periph-
eral management, data entry and collection, data conversion, and various tasks as-

sociated with communications,

The RC 3600 system can be used with or without standard or custom-made appli-
cations programs supplied by Regnecentralen. For those users who wish to program
their own applications, a special high-level programming language is provided.
This language, called MUSIL, is designed for programming support functions. There-

fore, it is strong on |/O handling and weak on computational facilities.

The central idea in RC 3600 structure is to complement each element of hardware

with systems software. We shall first survey these hardware elements.

RC 3600 Hardware

RC 3600 hardware consists of a central unit with its associated core memory, periph-

eral units with their associated channels and controllers, a real-time clock, an inter-

1.2.2

1.2.2.1

1.2.2.2

1.2.2.3

rupt system, and a bootstrap loader. With this equipment alone, one can process only
one job at a time, each sort of |/O device must have its own data transfer protocol,
and high-level programming languages cannot be used. There is also a direct memory
access channel for use by the faster peripherals to access core without going through
the central processor, but the RC 3600 hardware alone cannot utilize this speed maxi-
mally, because only one job can proceed at a time with this hardware, which means
that the whole machine is limited in speed by the slower peripherals in 1/O-oriented
tasks, which are the main tasks of the RC 3600. To solve these problems, various soft-

ware elements are used to complement each hardware element.

RC 3600 Systems Software

RC 3600 systems software is composed of a monitor, the systems process S, /O utility

routines, and peripheral device drivers.

The Monitor has the job of implementing multiprogramming. It does this by
compleménﬁng the hardware interrupt system with a software interrupt system
utilizing a software real-time clock. It provides the means for each process
to communicate with the others. It can, therefore, provide a means for sev-
eral different jobs to be executed at the same time by providing each of them
in turn with time slices regulated by the clock. In this way more than one job
can run at the same time and slow 1/O processes do not slow down the overall

performance of the system.

The Systems Process S implements a software core allocation system. It creates

process descriptors for each process it loads, and these descriptors can be used
by the monitor in its task of mediating information among the various pro-
cesses. S also replaces the buttons and switches that give the operator direct
access to the hardware with an operating system that gives the operator access

to the system as such.

The Drivers replace the individual peculiarities of the various peripheral de-

vice types with a single 1/O protocol, enabling the monitor to treat I/O processes on
the same level with any other processes. Those routines that all the drivers use in com-
mon are gathered together in the 1/O utility procedures, so as to make each driver as

small as possible.

1.3.1

1.3.1.1

1.3.2

1.3.2.1

1.3.2.2

RC 3600 Applications Software

Most RC 3600 users require one or more standard or custom-made applications pro-
grams from Regnecentralen. For such customers full job runs are usually provided on
one medium, e.g., on one magnetic tape or in one card deck. These runs contain
both the systems and the applications software. Other customers require their own pro-
gramming capability. For them it is necessary to have a run medium with systems soft-

ware and a program production package.

Applications Run Media

Those using ready-made programs receive a medium with a monitor, a "basic system",
I/O utility routines, drivers, and one or more applications programs in object code,

along with an interpreter to execute the object code.

Basic Systems consist of a systems process S, a console device driver, and an
autoload device driver. The last is necessary because S must have a device
driver from which to load application modules. The console device driver can
be of two sorts, a driver for the Operator Control Panel (OCP) or a driver for

a keyboard device. Basic systems have been developed to keep the space needed

for systems software as small as possible.

Program Production Packages

These packages can be supplied separately or on a medium with the necessary systems
software, which in this case also must include an interpreter. The package itself con-
sists of a MUSIL compiler, a MUSIL Text Editor, any necessary drivers, and a program

generator,

The MUSIL Compiler converts MUSIL source code into MUSIL object code,
which is executed by a separate piece of software called the MUSIL Interpreter.

The MUSIL compiler can also integrate assembly-coded subroutines, called "code pro-
cedures" into the object code output from the compiler. In addition, it can copy parts

of MUSIL programs into locations in other MUSIL programs.

MUSIL Text Editor allows editing on MUSIL source text by character, string,

line, or page. It operates by taking in the source text as data to itself.

1.3.2.3

149

1.4.1

Program Generators combine one or more compiled MUSIL programs onto a

single run medium along with the necessary systems software. They can also integrate

‘into the run "command files", which are files containing code that substitutes for di-

rect operator action, which makes a run more automatic than it would ordinarily be.

RC 3600 Operation

RC 3600 operation is both simple and flexible. Standard programs can be run auto-
matically by a few simple commands or can be closely controlled by the operator
through decision points in the programs that give rise to requests for the input of "run-
time parameters" by the operator. Error messages are also complete and easily under-
stood. The programmer who wishes to operate an RC 3600 system should obtain an

RC 3600 Operator's Guide and/or an RC 3600 Data Conversion Operator's Reference
Card.

Program writing can also be done at the RC 3600 console. Programmers who wish to

create or edit MUSIL programs at the machine should also provide themselves with an
RC 3600 MUSIL Programmer's Reference Card, which contains information on program
writing, compilation, and editing, as well as program production through run gener-

ation.

Operation Principles

The operator may communicate with any loaded process, including the systems pro-
cess S. Messages to and from S are indicated on a keyboard device by CTRL G (BELL)
and S and the symbol >, respectively, and on the OCP by the LOAD button and
LOAD lamp.

To load a medium, the command LOAD is used, and to select a file from a loaded

medium, the command INT, meaning "interpret", is used.

The word "file" is also used to indicate a device whose medium does not contain a
catalog. Thus, the paper tape reader is operated as a file. On the other hand, a disc
contains, normally, more than one file and a catalog, so that in operating with a disc
one must specify which file on the disc one wishes to access. This use of "file" simpli-

fies RC 3600 operation for non-cataloged media.

Most standard programs can be operated from an OCP, but more complicated programs

and program writing require a kéyboord device. The user of an RC 3400 system with

11

an OCP can request from Regnecentralen one or more command files to make the use
of his machine more flexible. For example, with an OCP all programs must be loaded
from the autoload device, but with the proper command files another device can be

used for program load, imitating this capability of the keyboard devices.

Part Two
The MUSIL Program

®
n
iy

15

MUSIL Program Structure

MUSIL programs must be written in modular form. Comments may be placed anywhere
in the program, as long as they are placed outside of words, numbers, and text strings.
(It is, of course, most common to place them between statements or between rows of

a table.) Comments are signaled by exclamation points, thus:

. THIS IS A COMMENT .

MUSIL programs are presented in five sections, which must be given in the following

order:

The Constant Section is the first section. It is normally present. In it are defined all

the constants that will be used in the program, both numerical constants and text

string constants. Constants may not be defined anywhere else in a MUSIL program.

The Type Section may be absent. If it is not, then it must be the second section. In it

are defined types, or categories, of variables. It is used mostly for file type definitions,

for file types are usually long. This section provides only a convenient short-hand

type of definition for variable structures. It cannot itself define variables.

The Variable Section is used to define variables of both numerical and text string type,

as well as records and files. Variables cannot be defined anywhere else in the program.

The Procedure Section is, properly-speaking, a part of the Main Program Section that

follows, but it is convenient to speak about it as a separate section. In it the pro-
grammer can define his own procedures, usually 1/O exception-handling procedures,

that he can call later on from the Main Program Section by name.

The Main Program Section contains the program's instructions.

MUSIL commands can be viewed as of two types: 1/O commands and other commands.
In this Part Two we shall discuss only the latter. |/O commands are discussed in Part
Three.

16
2.2

2.2.1

2.2.2

The Constant Section

In the Constant Section we define numerical or text string constants as well as tables
of numerical or text string constants. Conversion tables are often found in this section,
but conversion tables can also be made into separate programs. (Certain conversion

table programs can be obtained from Regnecentralen.)

ldentifiers

The definition of a constant has the following form:
name = value,

The "name" may consist of any sequence of letters of the alphabet or numerals, but it
must begin with a letter and may not include characters other than letters and num-
bers. The name may be of any length, but only the first 7 characters and the total
character count will be used by the program. That is, to the program the following

names are the same

MYNAME11 and MYNAME13
but

MYNAMET1 and MYNAMETT1

are different.

A "value" may be a number, a text string, or a table of numbers or text strings.

Numbers

A number may be assigned to an identifier (a "name"). The number may be decimal,
octal, or binary; but whatever the number, its binary equivalent must not exceed 16

bits. For decimal numbers this means that the number must fall between
-32768 and 432767

For octal numbers the range is
0 . to 8'177777

Octal numbers are generally used to express bit patterns conveniently.

Numbers may have spaces between a sign and the numerals, but there must not be

spaces within the number itself. Identification of numbers is done as follows:

NUMIT = 2'011001, . A BINARY NUMBER '
NUM2 = 8'775, - AN OCTAL NUMBER
NUM3 = -23005, . A DECIMAL NUMBER

‘
B BN N N BN BN N BN B EE S BN GE BN EE N N N B B ..

2,2.3

17

In the absence of a sign, a positive sign will be assumed.

Decimal points may not be used within numbers.

Text Strings

Strings representing ASCII texts may be assigned a name. This is done according to

the following model:

name = 'text string’, or
name = "text string", or
name = "text string', or
name = 'text string",

Either single or double quotation marks may be used, and mixing single and double
quotation marks within the same identification is also allowed. An example of the

identification of a text string might be
ALPHA22 = "ERROR HAS OCCURRED",

After ALPHA22 has been thus defined, it can be used as the name of the text string
ERROR HAS OCCURRED.

Text strings cannot be operated on arithmetically. Once they have been named, how-

ever, they can be

assigned to a variable as its current value,
used in text comparisons,
output on the operator console,

output to a peripheral device.

Text strings may include byte values given by their numeric representation. One com-

mon use of this facility is to output control characters, for example,
ALPHA = 45!,

places the binary value of decimal 45 into location ALPHA. The angular parentheses
indicate a byte value. Since the ASCII code for decimal 45 is a minus sign, ALPHA

can now be regarded as containing a textual minus sign.

If we write, for example,
V = "<8']26>",

then the ASCII code for the letter V can be retrieved from location V for later use.

2.2.4

As another example, if we write

CR = n<'|3>||’

then the ASCII code for a Carriage Return can be retrieved from location CR for use

in controlling a line printer.

Strings of such ASCII characters can also be placed together under one "name", so

that they can be called together as a sequence of ASCII characters. If we write, for

example,

ALPHA31 = "<45><0><10>",
then ALPHA31 will contain the ASCII codes for
Minus sign NUL Line feed

No punctuation is used between the factors of such a string of ASCII characters.

Tables of Constants

Tables of numerical or text string constants can be defined in the Constant Section.
Tables are in fact text strings themselves, so that their elements cannot be operated

on arithmetically in a direct way.

Tables are identified as follows:

name = # element]l blank element2 blank%, or

name = '"<elementl><element2> ,
where the quotation marks may, again, be single or double, or any mixture of single

or double quotation marks. The blanks denote spaces and/or new lines.

As examples we can take the following:

LPTTABLE
LPTTABLE

#14 0 64 89 56 8'377 0 65#,
"<145<0><64><8P><56><8'377><><65> ",

I

which are equivalent definitions for the same table identification.

Note that the following definitions are absolutely equivalent:
ALPHA = #45#, and ALPHA = "<45",

Table definitions are, therefore, very useful for writing device conversion tables and

can include all characters, as well as controi characters.

2,2.5

2.2.6

19

Section Structure

The Constant Section begins with the key word
CONST

which is not followed by any punctuation. Directly after CONST come the desired
identifications in any order. Each identification is followed by a comma, except for

the last identification, which is followed by a semicolon, thus:

CONST
ALPHA = 45,
BETAl = -8'377,
GAMMA = "MOUNT TAPE",

Because the whole MUSIL program can be regarded as one single compound statement,
identifications may be entered with any spacing. Blanks will be ignored, as long as

they do not occur within names or values.

Some Cautions On the Use of Constants

Values are stored in their named locations left-justified. Numerical constants are
stored as given in the program. String constants are marked by a binary zero at the
end of the text. When text string are read out to another location or to a peripheral
device, this binary zero is stripped off. If, therefore, a text string is assigned to a
variable during program execution and then output on a console device, the console
will not stop printing at the end of the text, unless a binary zero has been appended

to the text by the programmer.

To avoid such annoying occurrences, a binary zero should be placed at the end of
each fext string that will be operated on in some way before being output to the con-

sole. This is done thus:
ALPH = "OUTPUT THIS TEXT<O>",

As an example of what else can happen if this is not done, suppose | have assigned the
text THIS MESSAGE IS WRONG to ALPHA20. Suppose that later on in the program |
wish to change the contents of ALPHA20 to THIS IS ALPHA and then output the con-
tents of ALPHA20. What | want to output is

THIS IS ALPHA
but what | will get is

THIS IS ALPHAIS WRONG

Using the binary zero after the text strings would solve this problem.

20
String constants that will not be moved around in the program do not, of course, need
to conclude with this explicit binary zero.
Text strings may mix ASCI| characters and byte values thus:
MTTEXT = "<7><10>MT ERROR",
The free use of blanks allows long tables to be presented in a way that makes them i
easy to check. One neat way to insert tables is the following. |
LPTTABLE=#0 O 0 O O O O 0 O : Oth !
6 0 0 0 0 0 O O O '9h:
33 34 35 36 37 38 39 40 41 .18th !
45 46 47 48 49 50 51 52 53 27th: 1
60 61 62 63 64 5% ! 36th ! o
where the numbers in exclamation points are comments that give the ordinal position |
of the first number in each line.
2.2.7 Common Errors

The most common errors in the Constant Section are

1) CONST, Punctuation after CONST.

2) ALP =12 No comma after an identification.

3) LASTONE =5, Comma after the last definition in the section.

4) ANY =7, _ Semicolon after an identification that is not the last.

5) GA.1=2, A name that does not consist of only numbers and letters.
6) TFIVE = "A", A name that begins with a number. .
7) TW 00 =2, A blank within a name.

8) J=3.4, Presence of a decimal point.

9) K=556, Presence of a blank within a value.

10) L=2,330, Presence of a comma within a value.

11) B ="<8'128", Wrong ASCII value.

12) G ="<7>, 100", Comma between ASCII values of a text string.
13) TABLE =#0,33,37# Commas within a table.

14) ALPHAI134 = 5, Doubly-defined name (program disregards all characters
ALPHAI37 = 6, of a name after the first 7).
15) HIGH = 50000 Value too large.

. '

21

RC36-00007 PAGE 02

Constant Section Example
CONST
NOQ= 8,
OPTXTS=
1<14><6>
<10>PR0OG NO : 7<0>
<10>BLOCK NO : <0O>
10>FILE NO : <0>
C10>REWIND H <0>
<10>FIXRECS : <0>
<10>MAXCOL HER G
<10>MINCOL 2 <0>
<10>BLOCKED ¢ 0>,
START= ISTART!,
STOP= 'STOP?Y,
SUSPEND= *SUSPEND!,
CONT= YCONTY,
INT= VINT?Y,
STATE= 'STATE?!,
MINUS= "'9
PLUS= 141,
FIVE= 1<55<0> 1,
FIFTEEN= 1<15><0>,
NL= 1<10>,
NEXTPARAM= 1<27>,
SP1A= 1<g>",
ENOCLINE= 1<123><0>,
RETURN= 1<13>,
RUNTXT= T<8><C4><C10>RUNNINGC13>K0>,
CRTXT= Y<7><10>CR ERROR 'y
MTTXT= 1<T><10>MT ERROR 'y
EQJTXT= '<14>CTOCI0>END JOBRC13DLO>Y,
SUSTXT= T<T>CI1CD>SUSPENDEDKI3>C0>Y,
CRMOUNTDECK= 1<14><7><10>L0AD CARD DECK<K13><0>?,
MTMOUNTTAPE= '<14><7><10>MOUNT DATA TAPEC13DC0>!,
ENDTAPE= '<14><T>C10>END-OF-TAPE MARK<C13><C0>!,
CONTSTATE= Y <C10>CONTSTATE: <0>,
SPACES= !

203239923032272222022222223223222222222323a
1200322922930770022922229222222222220222233 "

0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202

CRTABLE=

#
!
!
!
!
!
!
1
!
!
!
!
!
!
!
!
!
!
!
!
|
!
!
!
l
!
!
1
!
!
!
!
l
L

16
24
32
40
48
56
64
72
80
88
86
104
112
120
128
136
144
152
160
168
176
184
192
200
208
216
224
232
240
248

64
249
248

56
240
233
232

40

96
217
216

24
208
169
168
104

80
201
200

© 192

137
136

72
106
153
152

88
112
185
184
120

241
49
121
57
97
33
105
41
209
17
89
25
161
225
160
32
163

73

129
65
128

145
81
144
16
177
113
176
48

242
50
122
58
226
34
224
42
210

90
26
162
98
170
234
164

T4

10
13C

66
138
202
146

82
154
218
178
114
186
25¢

CONTRPOLLER FORMAT TO ERCDIC

2

243
51
122
59
227
35
107
43
211
19
91
27
163
99
171
235
195
3
15
11
131
67
139
203
147
83
155
21§
179
115
187
251

4

244
52
124
60
228
36
108
44
212
20
92
28
164
100
172
236
19¢
4
76
12
132
68
140
204
148
84
156
220
180
116
188
252

5

245
53
125
61
229
37
109
45
213
21
93
265
165
101
173
237
197

E

-

77

12

132

69
141
205
1456

85
157
221
181
117
189
253

€

246
54
126
62
230
38
110
46
214
22
94
30
166
102
174
238
198
6
78
14
134
70
142
206
15¢
86
158
222
182
118
150
254

7

247
55
127
63
231
39
111
47
215
23
95
31
167
103
175
236
166
7
75
15
135
71
143
207
151
87
159
223
183
116
191
255

! RC36-00007 PAGE 03‘.

®
y
W

2.3.1

2.3.2

23

The Variable Section

While the Constant Section assigns names to values, the Variable Section names lo-
cations in core for the values that the program will use. In order to do this, the pro-

gram must be told what sort of values will fill these locations.

Identifiers

Variables may be integers, text strings, files, or records. The format for a variable
definition is

name:type; or name,name,,hame:type;
The restrictions on "name" are the same as for the Constant Section. "Type" is de-

clared as in the following paragraphs.

File and record variable definition will be discussed in Part Three.

Integer Variables

If we wish to declare a location in such a way that integers can be stored in it, then

we write

name:INTEGER;

For example,
D:INTEGER; or
[:INTEGER; or
NUMBERS: INTEGER,

Blanks may be freely used after or before the colon, e.g.,

FIRST : INTEGER,
NEXT : INTEGER,

so as to give the coding a pleasing appearance and make it easy to read.

Allowable numerical values that can go into these locations are between

-32768 and 32767

24

2.3.3

2.3.4

2.3.5

Text String Variables

Locations can also be declared for text strings. In this case the number of bytes to be

reserved must be declared. The format is
name:STRING (number of bytes);

For example,
TEXTI : STRING (20), or
TXT,TEXT,A : STRING (6);

Text strings assigned later on in the program that are smaller than the number of bytes
declared for their location will be left-justified. Implicit binary zeroes will not be

assigned.

Section Structure

The Variable Section begins with the word
| VAR

which is not followed by punctuation. Each declaration in this section ends with a

semicolon, including the last declaration.

Some Cautions On the Use of Variables

There are only a few common mistakes in the Variable Section:

An incorrect name

A punctuation error

2.3.6

0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234

0235

0236
0237
0238
0239
0240
0241
0242

Variable Section Example

VAR

OPDUMMY 2
PROGNO:
BLOCKNOQO:
FILENO:
REWIND:
FIXRECS:
MAXCOL
MINCOL:
BLOCKED:

CPTEXT:
OPSTRING:
OPDEC:

OPCONT:
NEXTCONT:
GLCONT:
WBLOCKED:
ERRORNO:
MASK?
TOM:
SIGN:

Q:

PAR?
LENGTH:
OPENED:?
P1:

p2:

P3:

S1:

S22
NEXTMT:
INLENGTH:
DUTLENGTH:
CARDSREAD:

SAVEDSUSPEND:

STRING(2) 3
INTEGERS
INTEGERS
INTEGER;
INTEGER;
INTEGER
INTEGER
INTEGERS |
INTEGER;

STRINGC(C20)
STRINGC(C20)
STRING(C10)

STRING(2)3
STRING(1)3
STRINGC(1)3
INTEGER?
INTEGERS
INTEGERS
INTEGERS
INTEGER;
INTEGERS
INTEGERS
INTEGER?S
INTEGERS
INTEGERS
INTEGERS
INTEGERS
STRING(C2):
STRING(2):
INTEGERS
INTEGERS
INTEGERS
INTEGER S
INTEGER?

e we wo

!

! RC36-00007 PAGE 04

RUNTIME PARAMETERS

COCMMUNICATION AREA

INTERNAL VARIABLES

26

2.49

2.4.1

2.4.2

The Procedure Section

The Procedure Section has no key word to begin it. It consists only of procedure defi-

nitions, one after another.

Defining a Procedure

In the Procedure Section the programmer defines his own procedures. This is done ac-

cording to the following format:

PRQCEDURE name;
BEGIN

ooooooooooooo

END;

Within the BEGIN END described above may be found any of the sort of state-
ments that can be used in the Main Program Section. The Procedure Section is useful

for defining what shall occur in the case of an I/O exception situation.

The variables and constants used within the Procedure Section must have been pre-

viously defined in their appropriate sections.

Executing a Procedure

To start the execution of a procedure from within the Main Program Section, one
writes simply

procedure name;
For example, suppose we have within the Procedure Section

PROCEDURE ENDGAME;
BEGIN

END,
then, to call this procedure from the Main Program Section, we write

ENDGAME;
simply. Procedures cannot be called by other procedures. ée%u /&47 ahe A(%"‘“J

2.4.4

2.4.5

27

Code Procedures

To incorporate code procedures within a MUSIL program during compilation, the pro-
grammer must indicate in his program where the MUSIL compiler is to put these pro-

cedures. One does this by writing in the Procedure Section

PROCEDURE name (parameter specification,, ...
..., parameter specificaﬁonS)
CODEBODY external identification;

The parameter specification and the external identification can be obtained from

Regnecentralen.

To call the code procedure from the Main Program Section, one then writes

name (parametery, ..., parameters)

Code procedures and instruction in their use are supplied by Regnecentralen.

Some Cautions On the Use of Procedures

The most common errors are

Forgetting to define the procedure's constants and variables

in the Constant and Variable Sections, respectively.

Trying to jump from a point within one procedure to a point

within another procedure.

Trying to call a procedure from another procedure before the

first procedure has been defined.

Trying to call procedures recursively.

Examples of Procedures

Such examples will be given in Part Three.

2.5.1

2.5.2

N>

yf,

The Main Progam Section

The statements that actually control a job are found in the Main Program Section.

Section Structure

The Main Program Section begins with the key word
BEGIN

not followed by any punctuation. It ends with the word
END;

Statements in this section are separated from one another by semicolons. Spaces may

be freely used between words.

Arithmetic Operators

MUSIL includes the following arithmetic operators:

+ addition
- subtraction

* multiplication

/ division

and parentheses may be used freely.

Arithmetic operations are executed from left to right in order of their priority, which is

(from high to low)
plus and minus signs

multiplication and division

addition and subtraction

Thus -5+6%7-2/3
is equivalent to 5+6+7)-(2/3)

Relational Operators

The available relational operators are

< less than >= greater than or equal to
> greater than = equal to
<= less than or equal to <> not equal to

These symbols can also be used for text string comparisons, in which case the strings will

be compared lexicographically, that is, on the basis of their numerical ASCII values.

2.5.4

2,5.5

29
Monadic Operators
There are four monadic operators:
+ number The plus sign
- number The minus sign
BYTE textstring The integer value of the first character

of the text string

WORD textstring The integer value of the first two charac-
ters of the text string

. For example, suppose TXT contains

"<2'11001001><2'11110011>"

which is equivalent to "A", then

BYTE TXT gives the integer
WORD TXT gives the integer

Logical Operators

There are three logical operators:

operand 1 AND operand 2

0000000011001001
1100100111110011

yields the integer value of the logical AND

operation as performed on the current value of

the two operands

operand 1 SHIFT operand 2

shifts the value of the first operand to the left

if the second operand is positive, and to the

right if the second operand is negative, shifting
the number of bits equal to the numerical value
of the second operand; the shift is not cyclical:
bits shifted out of the word are lost and the

vacant positions are filled with zeroes

operand 1 EXTRACT operand 2 l//é""’“Mj

extracts bits from the first operand; the number
of bits extracted is equal to the current numeri-

cal value of the second operand

The operands involved in the logical operators must be integral and the result will be

an integer.

30

For example, let VAR1, VAR2, A, and INT be integer variables, and let the cur-

rent values be

VARI 2'0000000010011011
VAR2 2'0000000011100000

INT 2'1111000010111111
A 2'1111000000001111

then
VART AND VAR2 gives 0000000010000000
A SHIFT 2 gives 1100000000111100
A SHIFT (-2) gives 0011110000000011
INT EXTRACT 8 gives 10111111

2.5.6 Operators In General

!

The priority from high to low for all operators is

Monadic operators
Multiplying and logical operators
Adding operators

Relational operators

Division of a number by zero, or division of zero by zero, will not give rise to an

error message. The result of such operations will be

_—

No indication of integer overflow is given.

When text strings are compared, the comparison will take place only on that number

of characters that is the smaller of the two text strings, for example,

Let ALPHA, declared of length 2, contain TR
and let BETA, declared of length 5, contain TRANS
Then, fhe relation
ALPHA < BETA
could give misleading results, for the comparison will take place

only on the first two characters, which are TR in both cases.

Note that the following is not allowed:

"text string" operator "text string"

for operators can operate only on named values.

2.5.7

31

Assignment

The symbol used for assignment is := so that
A:=B;

assigns the current value of B to A,

Integer values can be assigned directly, thus:
INT1:=5;
as long as INT1 had been declared as an integer variable:
| INT1:INTEGER,

But text strings cannot be directly assigned. That is, it is not allowed to write
| TEXT3:="REWIND TAPE";
even if TEXT3 had been previously defined in the Variable Section as a text string
variable. To put REWIND TAPE into TEXT3, one must have in the Variable Section
something like |
TEXT3:STRING(11);
and in the Constant Section
- T3="REWIND TAPE",
and then one can write in the Main Program Section

TEXT3:=T3;
Then REWIND TAPE will be in TEXT3.

Variables defined as integers may have only integers assigned to them. And variables
defined as text strings may have only text strings assigned to them. If, for example,
INTI is an integer variable and TEXT2 is a string variable, then one may not write

either

INT1:=TEXT2; or TEXT2:=INTI,

Multiple assignments are not allowed. That is, one may not write
INT1, INT2:=0; or INT1:=INT2:=0,

When text strings are assigned, the number of characters that are moved is equal to
the lesser of the number of characters defined for the variables involved. That is, if
in the Variable Section we have

TEXT1:STRING(10);

TEXT2:STRING(20),
and in the Main Program Section we have

TEXT1:=TEXT2, or TEXT 2:=TEXTI,
then, only ten characters will be moved in either case. In the first case only the first

10 characters of TEXT2 will be moved into TEXT1. In the second case the 10 charac-

32

2.5.8

2.5.9

2.5.10

ters in TEXT1 will be moved into the ten left-most positions of TEXT2, leaving the

remainder of TEXT2 unchanged.

Labels

MUSIL statements may be labeled, so as to identify them. The label must be a unique

numeric value between 0 and 65535. The format for labeling is

label: statement;

For example, 35: GAMMA:=5;
labels the statement GAMMA:=5; with the identifying label 35.

The use of spaces before or after the label's colon is optional.

Note that the statement
label: END;

must be preceded by a semicolon.

Compound Statements

The sub-statements of compound statements are set off by a BEGIN

Thus:
BEGIN

statement 1;

statement 2;

statement n

END;

There is no punctuation after the BEGIN or before the END (unless the END is labeled).

Spaces may be freely used to improve readability.

BEGIN ... END phrases may be nested up to the number of 30.

Unconditional Branching

This is represented by the statement
GOTO label;

with no space within the GOTO.

... END combination.

33

If the GOTO statement is used to go to a labeled END statement, then the statement

before the END statement must conclude with a semicolon, thus:

.............

ALPHA:=40,
60: END;

No error is committed, however, if the semicolon is used also in other cases.

.5.11 Conditional Branching

MUSIL has the usual
IF relation THEN statement,

as well as an
IF relation THEN statemen’r] ELSE statement,,

If the relation is true, then statement, will be executed. If not, then control will pass
to the next statement. The IF-relation may be any allowable relation, and the THEN-

statement may be any allowable statement, including compound statements. For example,

IF ALPHA=5 THEN
BEGIN
' IF BETA<10 THEN U:=0,
IF GA>=9 THEN V:=1;

oooooooooooooooooooo

END;

The relational expression may contain only variables or constants. The following are

not allowed.

[F "TEXTI1"="TEXT2" THEN ... or
IF TEXT="REWIND" THEN ...

With respect to compound statements, note that in our example above, that if ALPHA
was not 5, then program flow would have passed to the first statement after the END

. statement, bypassing the intermediate IF ... THEN statements.

2.5.12

Repetitive Statements

There are two repetitive statements in MUSIL:

WHILE ... DO
REPEAT ... UNTIL

The format of the first is

WHILE relation DO statement;

This instruction allows the repetition of an operation as long as the relational state-

ment remains true, e.g.,

WHILE X>Y DO
BEGIN

END;

There is no punctuation after the DO. In the above example if X is never greater

than Y, then the DO statement will never be executed.

The format of the second is

REPEAT statement UNTIL relation;

An example for this command might be

REPEAT

ooooooooooooo

UNTIL X=Y;
There is no punctuation after REPEAT or before UNTIL.

In this example, if X is equal to Y when END is reached, then the statement will be

executed once.

2.5.13

35

Commands For the Operator Console

MUSIL contains 10 commands that are useful for communications between the program
and the operator console. They are called Standard Procedures. Six of them will be

described here, and the rest in Part Three.

OPMESS(string variable name);

outputs the text string confained in the string variable or constant named to the oper-
ator console. It continues to output the contents of the variable or constant until a
binary zero <0> is reached. At most 80 bytes will be output in this way. If the text
is less than 80 bytes and does not end in a binary zero, then the output will continue
for the full 80 bytes anyway, outputting whatever is in core following the text de-
sired. Text to be output by OPMESS should be in ASCII code. |

Example: OPMESS(ALPHA); where ALPHA contains a text string,
will output the value of ALPHA on

the operator console. Thus,

CONST
ALPH="REWIND";
BEGIN
OPMESS(ALPHA)
END will output REWIND on the operator

console.

OPIN(string variable name); -

is the reverse operation. It allows the operator to insert a text string of up to 80 bytes
into a variable previously defined as STRING in the Variable Section. In order to

give the operator time to input this text, OPIN must be followed by

OPWAIT(integer variable name);

which makes the system wait for the operator's input. The number of characters that

the operator actually inputs will be stored in the integer variable by the system.

Example: VAR
LENGTH:INTEGER;
MAGTEXT:STRING (80),
BEGIN
OPIN(MAGTEXT);
OPWAIT(LENGTH)
END;

will allow the operator to put up to 80 bytes of text into the variable represented by
MAGTEXT, while the OPWAIT(LENGTH) will give the operator time to do this and

will store the number of characters input in LENGTH,

Operator input will normablly be terminated, when a control key is used (CR, LF,
ESCAPE, etc.).

If OPIN has been used, but it is desired to see if a text has actually been accepted

for input from the console, then the command

OPTEST

can be written. If a text has been accepted for input, then OPTEST will give a non-

zero value. If the OPIN operation has been unsuccessful, then the value of OPTEST

will be zero.

Example: VAR
LENGTH:INTEGER;
MAGTEXT:STRING(80),
BEGIN
OPIN(MAGTEXT);
WHILE OPTEST =0 DO
BEGIN

END;
OPWAIT(LENGTH),
END;

will allow the operator to insert a text infto MAGTEXT. If the input is successful,

then OPTEST will be non-zero at some point and the WHILE ... DO statement will

cease execution.

37

OPTEST is a standard function. Its current value can be used profitably to control
program branching with respect to whether or not operator action has occurred, for

example
IF OPTEST=0 THEN PSTOP,

where PSTOP is a user-defined procedure.

The RC 3600 system operates in binary. Thus all decimal numbers that are input by
the operator with OPIN must be converted to binary before they can be used by the

machine. This is done with

DECBIN(decimal value name, binary value name);

There must have been defined in the Variable Section two variables. One will be
used fo store the number inserted in decimal by the operator. The other will be used
to store its binary equivalent. The variable with the binary equivalent is the one that

must be used for all subsequent MUSIL statements that work with this inserted value.

Example: VAR
DEC:STRING(10); - NB: DECIMAL INPUT IS!
LENGTH, BIN:INTEGER; . DEFINED AS A TEXT STRING !
BEGIN
OPIN(DEC);

OPWAIT(LENGTH);

DECBIN(DEC, BIN),

IF BIN=0 THEN PSTOP,
END;

The decimal value being converted must have no sign. It will be converted into a
16-bit binary value. There will be no check for overflow, so that the number must

be less than or equal to 32767. If a non-numeric character appears within the input,

" then conversion will proceed up to that point and then stop. A plus or a minus sign

or a decimal point is considered to be a non-numeric characier.

BINDEC (binary value name, decimal value name);

is used with OPMESS. [t takes the binary value and stores its ASCII equivalent con-

cluding with a binary zero byte. The decimal value can then be output to the oper-
ator console by OPMESS.

Example: VAR
DEC:STRING (6);
BIN:INTEGER;
BEGIN
BIN:=2'1001;
BINDEC(BIN,DEC),
OPMESS(DEC)
END;

will output decimal 00009 to the operator console for inspection.

The decimal value variable must be defined in the Variable Section as a STRING with

a minimum of 6 bytes. If it must be output with a sign, then the sign must be defined ‘
separately:
CONST
PLUS="+",
VAR

i
|
|
|
i
|
i
i
|
DECSIGN:STRING (1); l
DEC: STRING (6);
BIN: INTEGER, l
BEGIN
BIN:=2'1001; l
BINDEC (BIN, DEC);
DECSIGN:=PLUS; l
OPMESS(DECSIGN);
OPMESS(DEC) ®
END; .
i
|
i
i
i
|
|

which will output first + and then 00009 on the operator console.
(The binary value will be converted to exactly five decimal digits.)

To output +9 directly, one can make use of the instructions

MOVE and [INSERT

The MOVE and INSERT commands are, thus, very useful in connection with commands
to the operator console, but they are most often used for |/O. Therefore, they will

be discussed in Part Three.

39

2.5.14 Some Cautions For the Main Program Section

The most common errors relating to the above material are

1
2)
3)
4)
5)
6)
7)
8)

9)
10)
11)
12)
13)

14)
15)
16)
17)
18)

19)

20)
21)

22)
23)
24)
25)
26)

27)

Forgetting a BEGIN or putting punctuation after it.

Forgetting the semicolon after an END,

Forgetting a semicolon after a statement that precedes a labeled END.
Forgetting the parentheses around a negative (i.e., right-hand) SHIFT.
Forgetting that bits are lost when SHIFT is used.

Mis-sequencing operators.

Dividing by zero inadvertently.

Comparing text strings of unequal length and forgetting that the comparison will
be only on the lesser number of characters.

Trying to operate on text strings instead of on their names.

Forgetting the colon in the assign symbol.

Forgetting to define variables and/or constants before using them.

Trying to assign text strings to integer variables or integers to text string variables.
In assigning texts to string variables longer than the text, forgetting to take care
of the excess text remaining from a previous text assignment.

Forgetting the colon after a label.

Spelling GOTO as two words.

Using constants within relational statements instead of variable or constant names.
[llogical entries into compound statements.

Forgetting that the REPEAT ... UNTIL statement will always be executed at
least once.

Forgetting to convert binary numbers to decimal when the decimal value is to be
output by OPMESS.

Forgetting the OPWAIT instruction.

Forgetting to convert decimal numbers input by the operator to binary before try-
ing to use them.,

Trying to use plus or minus signs with DECBIN.

Trying to input a number greater than 32767 from the operator console.
Forgetting the semicolon after a procedure name.

Using illogical jumps.

Trying to use values assigned within a procedure before the procedure has been
activated.

Forgetting to define a procedure's constants and variables in the Constant and

Variable sections.

Part Three
/0 Commands

i e ———————————

31

Overview

In this section we shall examine the most important MUSIL commands, the
I/O commands. |/O commands deal with the physical transfer of data from
core to a peripheral device, or from a peripheral device to core. Two kinds

of operations are involved in this sort of data transfer.

Control operations do not result in any direct transfer of data, but they are
necessary for data transfer. Typical control operations are, for example, the

opening or closing of a file, the positioning of a magnetic tape, etc.

Transput operations call for the actual data output or input. Such operations
are, thus, of two types: input or output mode. It is the output data that is

the purpose of the entire data processing operation.

Both control and transput operations are performed in conformity with mess-
ages sent to the appropriate driver process. As noted in Part One, the driver
always reports on the success or failure of an /O operation, that is, it re-

ports on its status.

The status of an |/O operation is put into a status word which is accessable
by the programmer as well as by the system itself. The status word tells which
aspects of the I/O operation have been successful and which have failed. If
a failure is such that data processing can not proceed without some special

exception handling procedure, then one of two things can happen.

If the programmer has not provided his MUSIL program with an applicable ex-
ception handling procedure, then the system will stop the processing of the
job and display an error message on the operatior device to inform the oper-

ator of what has occurred. Such error messages have the form
device name ERROR error number
For example
LPT ERROR 21
which means that processing can not continue because the line printer is off-

line.

After the operator has corrected the situation, the job must be restarted from

the beginning.

44

3.2

If the programmer has provided his program with an applicable exception
handling procedure, then control will pass to it. Such procedures are called

GIVEUP procedures and they are called when the status word is compared

with a programmer-generated GIVEUP mask that tells the system which ex-

ception situations will be handled by the program instead of by the system,

The status of an /O operation is only one of the components of the messages
that pass between an I/O device driver and the program and system via the
monitor. Other information that is passed along concerns the identification of
the /O device and data and constant reporting on where the data is at any
time. This information is accessable to the programmer at any time via the

file descriptors, which provide names for the locations from which the infor-

mation can be accessed by the programmer.

I/O operations in MUSIL are arranged in such a way that the programmer is
able to avoid all housekeeping tasks associated with /O, while still retain-
ing the option to assume control of some of these tasks if he so desires. This

in fact is the reason why MUSIL was created, it having been felt that no exist-
ing programming language fully satisfied this objective in a convenient and
logical way. For example, MUSIL provides for an automatic transfer of data
between the peripheral device and the buffers, and it also provides the pro-
grammer with instructions by which he may assume control of this function.
The instructions that give the programmer such direct control are called primi-

tive operations.

Primitive operations are those operations that high-level instructions use to
perform their functions. In MUSIL the primitive operations dealing with buf-
fer control are available also to the programmer, though in normal situations

he would have no need for them.

The Organization of Data

I/O data is organized into groups called bytes, records, blocks, and files.
This organization represents a hierarchy of data organization that makes it
possible to deal with as much data at a time as any given 1/O situation al- .

lows.

3.2.1

3.2.2

3.2.3

45

Bytes
For the RC 3600 bytes are groups of 8 bits. They correspond to "characters"

which are defined as letters of the alphabet, numerals, or special symbols,
for example, punctuation. Most work with MUSIL is done using bytes com-
posed of bit patterns from the ASCII code, but for data any code may be used
in working with an RC 3600.

The RC 3600 is a 16-bit per word machine; thus, each word in the machine
has room for two bytes. MUSIL contains commands that allow the transput of
data byte by byte. k

Records

Records are groups of bytes. The concept of a record is a logical idea. There

" in a way that covers all possible record types,

is no way to define a "recor
but a record is usually considered to be the smallest piece of information that

is of interest to the end-user.

Records are components of larger sets of information, called "files". Records

within a file can be of several types.

Fixed length records are the components of a file that consists of records which

all have the same number of bytes in them. Variable length records are com-

ponents of a file in which the length of the records varies from one record to

another.

Blocks

Some data media allow records to be blocked, that is, grouped together.
Blocking is a physical concept. A block of data is a quantity that is read in-
to memory or written out of memory in one physical operation. Blocking in-
volves some physical delineation on some medium, such as an interblock gap
of a magnetic tape or a control character input to a line printer within the
data that it receives from memory. On the slower peripheral devices one can
observe the occurrences of blocks, for when the end of a block is reached one
can often see the device pause for a moment. On some media blocks can also
be directly observed. A punched card, for example, is usually treated as a

one-record block.

3.2.3.1

Both fixed and variable length records may be grouped together in blocks.
The size of blocks is usually determined by the programmer, whose decision

depends on the parameters of the application he is programming for.

Record length format may also be classified as undefined. This means that
each record will be treated as a separate block. This is done, for example,
when the block size of a magnetic tape input file is unknown to the program-

mer who must process the tape.

The programmer's decision on blocking strategy is related to his decision on
the number of "buffers" that he will employ. Buffers are sections of core that
are reserved fo hold input or output data for transput from or to peripheral de-
vices. They will be more fully discussed below, but here it should be noted
that programmer decisions with respect to blocking, buffer size and number
of buffers are very crucial for the speed of an 1/O operation. For example,
the common situation in which a magnetic tape containing print line images
is to be printed out on the RC 3632 line printer operating at 1800 lpm re-
quires 7 buffers for the print lines and one buffer for the magnetic tape input
for optimal throughput. Such information can be calculated by the program-
mer, or it can be provided to him by Regnecentralen on the basis of experi-

ence.

Blocking methods. There may be any number of records in a block, including

fractions of records, but the most nomal cases are

1) To have one record per block, and

2) To have an integral number of records per block.

In the first case we say that the records are "unblocked" . In the second case
we say that the records are "blocked". In many cases the last block of a

blocked file of records may not be completely filled with information.

Six types of records are common:

1) Fixed length unblocked, where all the records have the same length and

there is one record per block.

record record record

2)

3)

4)

5)

6)

47

Fixed length blocked, where all the records have the same length and are

grouped in blocks.

record | record | record record | record | record

first block second block

Variable length unblocked, where record length varies and there is one

record per block.

record length
information

record length

. - record
information

i record

Variable length blocked, where record length varies and records are

grouped in blocks.

block record record first
length length record length record block
block record ecord second
length length rec block

There may be any number of blocks and of records in a block.

Undefined length unblocked, where there is one record per block but

there is no information about their length.

record | record record

Ist block 2nd block last block

Undefined length blocked, where there is no information about the record

length but records are grouped in blocks.

record record record record record

first block second block third block

3.2.4

3.3

Files

In MUSIL we define a "file" as a set of data stored on some device. For this
reason we can use the device name as the file name, if the medium has no
catalog. If there is a catalog on the medium, as is usually the case for a disc,

for example, then we cannot use the device name directly as the file name.

This usage of the concept of a file allows for simpler programming for non-

cataloged media, the common situation on systems without disc support.

File Descriptors

We have stated that each file in a MUSIL program is defined by a file de-

scriptor. The file descriptor gives the structure of the file and the nature of

the data in it. The file descriptor also contains current information on the
condition of the data in the file that are undergoing processing. The file de-
scriptor allows both the system and the programmer to know and control what

is going on during |/O operations.

Three kinds of information are found in a file descriptor:

1) file identification
2) control information

3) buffer information

File identification includes

1) The name of the file.

As explained above, uncataloged media are considered to contain
but one file. Thus, in this case the name of the file is the name of
the device on which the file appears. For example, the file on the

paper tape reader is called PTR.

2) The kind gives information about the sort of device the file is on. The

kinds include

Is the medium blocked? Is the device positionable? s automatic
error recovery wanted? For example, for magnetic tape it is usual
to repeat a read or write operation that was not successful the first

time, but one might specify a non-repeatable kind for a magnetic

49

tape file in certain situations to save read time, or to validity-

check tapes.

3) The mode gives information about the data in the file. The mode con-

tains an "operation code" that says if the data is input or output data.

4) Whether conversion is to be done, and if so, a reference to the conver-

sion table.

For character-oriented devices (such as paper tape and card equip-
ment and line printers), conversion is most commonly done during
I/O, so that the conversion will most frequently be handled by the
driver process. For block-oriented devices, converion must be

done in the MUSIL program.

Control information

1) The position of the file. For magnetic tapes this would be the "file num-
ber" in IBM usage, that is, the number of tape marks that have been

passed. The position also includes the block number when relevant.

2) The status tells whether or not an |/O operation has been successful, and

if not, why not.

Buffer information includes

1) Buffer size. How big they are in bytes.

2) Used buffer. Which buffer is currently in use and the size of the block in
it (in bytes).

From the above it can be seen that the file descriptor contains two types of
information: permanent information identifying the file and its nature, and

information on the current state of the file.

The information in the file descriptor can be accessed by the programmer
through a system-defined record called FILEDESC. The use of this record will

be described below.

3.4

3.4.1

Buffer Strategy

The MUSIL programmer is responsible for defining the number and size of the

buffers to be used. The buffers so defined will then constitute a cyclical buf-

fer pool.

.,

N
O

/
O"\—O‘/

At any time during 1/O processing one of the buffers will be actually trans-

putﬁng data. This is the used buffer. If something goes wrong during data

transfer, in the absence of a programmer-defined GIVEUP procedure within

the MUSIL program the system will stop the job and display a device error

message to the operator, as explained above. We shall call this the standard

procedure in the description below.

Buffer strategy proceeds as follows:

Input

When a file is OPENed for data input fo memory the system responds to the

OPEN command by making one of the buffers the used buffer, by establish-

ing a pointer from the file descriptor to this buffer. Block length in the file

descriptor is set to zero also. The following operations then occur:

6)

Input of the first block of the file is started into the used buffer.

Input of the second block is started into the second buffer and it is made
the used buffer.

The process is continued until there are no more free buffers.

The first buffer is checked to see if data transfer to it was successfully

completed.

If not, the standard procedure or a GIVEUP procedure is followed, if so,
then the first buffer becomes the used buffer again, and data can be pro-
cessed in it, after which it is used for more input.

This process is followed then for the second buffer, for the third, and so -

on, until all the data in the file is input.

3.4.2

3.5

51

The buffer pool can be viewed as a continually cycling wheel of buffers.
This allows processing to proceed while data is being input. The optimal in-
put speed is achieved when the number and size of the buffers are such as to

allow continuous input at the maximum speed that the device allows.

It should be noted that if an input file is CLOSEd during the input process,
then the buffer wheel will keep turning to empty the buffers, but the data
remaining at the time of CLOSing will be lost.

Output
When a file has been OPENed to receive output, the buffer pool is similarly

activated.

1) The first block of output is put into the first buffer, which is the used buf-
fer.

2) The rest of the buffers are filled with output, each becoming the used buf-
fer in its turn.

3) The data transfer from the first buffer to the device is checked for success.

4) If unsuccessful, then the standard procedure or a GIVEUP procedure is
followed, and if successful, then the first buffer is ready to receive more
data from core and becomes the used buffer.

5) The process is repeated for all the buffers and the "wheel" turns until the
external file is complete.

6) The file can now be CLOSEd. E.g., on magnetic tape a double tape mark

is written.

Exception Handling

There are two kinds of "exceptions": errors, such as parity errors, and nor-
mal stopping points for operations, such as reaching the end of a tape. Ex-

ceptions are reported to the system via the status word in the file descriptor.

After the attempted execution of a driver process operation the success or
failure of the operation is reported in the status word. If all the bits of the
status word are zero, then the operation has encountered no exceptions and

processing can proceed. Though the specific events represented by the bits

52

of the status word are different for different devices, the general over-all

representation is as follows:

Bit

0
1
2

0O N O O A~Aw

11
12
13
14
15

The standard system response to an exception is fo try to repeat the operation.

Interpretation

disconnected
off-line

device busy

device mode 1
device mode 2
device mode 3
illegal

End of File
block error
data late
parity error
end of medium
position error
rejected

timer error

(not processed)

_A_ction

hard error
hard error

if device kind is repeatable, the operation
will be repeated; if not, then there is a
hard error

ignored
ignored
ignored
hard error
hard error
as for bit 2
as for bit 2
as for bit 2
hard error
hard error
hard error
hard error

ignored

[t does this up to five times, after which the error is a hard error. Such er-

rors cause the program to stop running and an error message to be displayed

on the operator console. The error message consists of the device name and

an error number. This number is equal to 20 plus the number of the bit in-

volved. For example, a line printer that is disconnected at the time the sys=

tem wants to print with it will give rise to the message

LPT ERROR 20

for the name of a line printer is LPT and the status bit involved is number 0,
and 20 plus 0 equals 20.

Consult the RC 3600 Data Conversion Operator's Reference Card for the vari-

ous device error numbers and their interpretations.

3.5.1

3.5.2

3.6

53

The programmer may, however, elect to write a procedure that bypasses some
or all of these standard exception-handling facilities of the driver involved.
He does this by "turning off" those bits whose actions he wishes to bypass by
specifying a

GIVEUP Mask

The GIVEUP mask is formed by creating a constant word that has 1's in those
bit positions that correspond to the bits of the status word that the programmer
wishes to prevent. from initiating the standard system response. For example,
if the programmer wishes to write his own exception handling routine for the
occurrence of a position error, then his GIVEUP mask must contain a 1 in its
bit 12.

GIVEUP masks are usually written in binary for easy readability, for example,

2'1100001111111111

GIVEUP masks are part of the corresponding file descriptor and are associated
with

GIVEUP Procedures

Such procedures provide the routine that the system is to follow for each ex~-
ception condition that the programmer has signified his desire to control by
the 1's in the GIVEUP mask.

The programmer need not, however, provide for the standard repetition of the
operation, as the GIVEUP procedure will be consulted by the system only af-
ter it has tried up to five repetitions of the operation that gave rise to the er-

ror.

Record and File Variables

Record and file variables are defined within the Variable Section. We shall

now describe how to do this.

3.6.1

Record Variables

Locations may be reserved for assignment for records. The general format is

name: RECORD
record structure
END;

For example, if we write

VAR
TWOPARTS: RECORD
HEAD:STRING (4);
TAIL:STRING(4)
END;

then we have reserved space in location TWOPARTS for the assignment of rec-
ords of 8 bytes, with the first four bytes being given the name HEAD and the
last four bytes being given the name TAIL. Subsequent to this definition HEAD
and TAIL can be considered to be defined with respect to TWOPARTS, but

not defined in themselves. Thus, later on in the Main Program section, HEAD
and TAIL are defined only when named fogether with TWOPARTS, thus

TWOPARTS.HEAD ' and
TWOPARTS. TAIL

The program will not become confused if the same sub-names are used for

parts of other records. That is, given

TWOPARTS.HEAD and
INPUTLINE .HEAD

the program will know that parts of different records are being referred to.

Further refinements in record definition are also possible. Consider the fol-

lowing:
VAR
S: STRING(1),
INREC: RECORD
CCW:S;
TEST:S;

LINE:STRING(132),
STOPF:STRING(2) FROM 1
END;

. '

3.6.2

55

This coding defines S as a one-character string location. It defines INREC as
a record with the first two bytes as text strings of one byte each. The next

132 characters are called, collectively, LINE and are also text.

Furthermore, STOPF is defined as the name for the first two characters of the

record INREC, these two characters being taken together. Thus, later on in
the program we can make assignments to either of the first two characters of
INREC individually, using their names CCW and TEXT, or we can assign val-

ues to them together, using their common name STOPF, viz., via

INREC. STOPF

Observe that in general each definition within a record definition ends with

a semicolon, except that no semicolon is used after RECORD or before END.

As a final example, suppose that instead of giving the first two characters of
INREC a name STOPF, we wanted to give a name to the first ten characters
of LINE. Then, instead of writing

STOPF:STRING(2) FROM 1
we would write
NEWNAME:STRING(10) FROM 3

Note, then, that the characters of a record definition are numbered up from 1.

Note particularly that a record may not be longer than 256 bytes.

File Variables

File variables are also defined in the Variable section. The most general for-

mat for a file variable definition is

name: FILE
'device’,
kind,
number of buffers,
buffer size,
type;
CONV conversion table name
OF RECORD

record structure
END;

56

The meaning of the parts of the file variable definition are

1) Device is the name for the device the file is, or will be, on. Allowable

code names are

MTO, MT1, MT2, MT3 Magnetic tape units on the first
magnetic fape channel

MT4, MT5, MTé, MT7 Magnetic tape units on the second
magnetic tape channel

LPO, LPI1 Line printers

SP1, SP2 Serial printers

CDR, RDP Card reader, Card reader punch

PTR, PTP Paper tape reader, Paper tape
punch

FDO, FD1 Flexible disc drive

DKPO, DKP1 Disc cartridge drive ®

PLT Incremental plotter

CT0, CT1 Cassette tape unit

CPO Charaband printer

The device name must be enclosed in quotation marks.

2) Kind gives information about the device. Allowable kinds are derived

from the binary representation of the kind. The binary representations are

bit 15 character-oriented
14 block-oriented

13 positionable
12 repeatable (automatic error recovery) .
11 cataloged medium (i.e., disc) '

Thus, for a block-oriented, positionable, and repeatable device (such as

magnetic tape), the kind word would be
2'0000000000001110

which in decimal is 14, so that kind here would be 14.

3) Number of buffers is selected by the programmer.

4) Buffer size is the size of a single buffer. This is also determined by the

programmer.

57

5) Type refers to the record format. Allowable types are

UB undefined, blocked
undefined
F fixed
FB fixed, blocked
\% variable (IBM V format)
VB variable, blocked (IBM VB format)

6) GIVEUP procedure name need not occur. It is present if the programmer

wishes to define his own device error routines. The procedure name must,

of course, refer to a user-defined procedure in the Procedure section.

7) GIVEUP masks occur together with GIVEUP procedures. Inserting a 1 bit

in any position in the word will cancel the corresponding action in the

system's standard error routine.

8) Record structure can be given in terms of the name of a previously-defined

record type (cf. 4.1), or can be specified directly, in the same way that

records were defined, thus:

TYPE
PLINE = RECORD P:STRING(50) END;
VAR
IN : FILE
'MTO', 14,1,60,FB
OF PLINE;
® or
VAR
IN : FILE

'MTO', 14, 1,600, FB
OF STRING (50);

58

3.6.3

0378

0379

0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395
0396
0397
0398
0399
0400
0401
o402
0403
o404
0405
0406
0407
0408
109
0410
0411
o412
0113
6414
0415
04106
0417

Example of File Definitions

IN:

QUT:

FILE ! INPUT FTLE DESCRIPTIUN
'MTOY, ! NAME OF INPUT DRIVER
14, ! KIND= REPEATARLE,
| POSTTIONABLE,
! BLOCKED,

2 | BUFFERS
1995, | BUFFERSIZE
FR; | FIXED BLOCKED
GIVFUP
MTINERROR, I MT ERRQOR PKOCED!URE
2'0110001111111110 ! GIVE 1P MASK
OF RECORVD ! RECORD STRUCTURE

CCWze STRING(1):

DATA: STRING(132)
END?
FILE ! QUTPUT FILE DESCRIPTION
'"LPTY, | NAME OF QUTPUT DRIVER
2 { KIND= BLOCKED
5 ! BUFFERS
133, | BUFFERSIZE
us ! UNDEFTINED
GIVEUP
LPERRAOR, ! LP ERRUR PROCEDURE
2'1100001011110110; | GIVE UP MASK
CONV
LPTTAB | CONVERSTON TABLE
0OF RECORD { RECORD STRUCTURE

CCw; STRING(1)3

NATA: STRING(132)
END:

-— e S G e Gum G e g — Q= Y Bee Y B B fm

.—.

-

59

Using the File Descriptor

®
W
N

The file descriptor contains a great deal of information about its correspond-

ing file. The programmer may from time to time wish to access this information.

3.7.1 Accessing the File Descriptor

The most common use of the file descriptor is in accessing the status word for
use in a GIVEUP procedure, but it is also common to use the file descriptor
for displaying information about the file. To enable the programmer to have
easy access to the file descriptor, there is a system-defined record for each

file that is defined as follows:

FILEDESC = RECORD

filename.field

ZNAME STRING (6); file name

ZMODE INTEGER; operation mode

ZKIND INTEGER; file kind

ZMASK INTEGER; GIVEUP mask

ZFILE INTEGER; file position

ZBLOCK INTEGER, block position

ZCONV INTEGER, conversion table address

ZFORM INTEGER; record format

ZREM INTEGER, number of bytes remaining in the
current block

ZLENGTH: INTEGER, record length

ZFIRST INTEGER; ~address of the first byte of the
current record

. ZTOP INTEGER, address of the top byte of the

current record (that is, the first
byte of the next record)

Z0 INTEGER,; the status word

ZUSED INTEGER; address of the used buffer

ZSHAREL : [INTEGER block length for the buffer

END;

To access the current value of any field of the file descriptor, one writes

60

3.7.2

For example,
IN.Z0

signifies the status word of the file called IN. To access this status word,

then, we must have a command something like
STATIN:=IN.Z0;

which will put the status word into the previously-defined integer variables

STATIN, or we could write directly something like
IF IN.Z0 = 2'1100000000000000 THEN

oooooooooooooooooooooooooooooo

To display the current block number, for example, of the current file, one

could write

BINDEC(IN.ZBLOCK,OUTPUT);
OPMESS(OUTPUT);

where OUTPUT had been previously defined as a string variable.

Examining the Status Word

The status word can be examined by writing

BINDEC(filename . Z0, string variable name);
OPMESS(string variable name);

but since this event occurs frequently, a special command is available for dis-

playing the contents of the status word on the operator device.

OPSTATUS(filename . Z0, string name);

In order to use this command, we must in the Constant Section define a string
constant that will be capable of outputting a text for each bit of the status

word that is non-zero. This is best illustrated by an example.

Let us define a constant called ERRORS, thus:

61

CONST
ERRORS = "DISCONNECTED <10><0>
OFF-LINE <10><0>
BUSY <10><0>
BYTE OR NOISE <10><0>
HARDWARE <10><0>
WRITE RING <10><0>
UNIT RESERVED <10><0>

EOF <10><0>
BLOCK SIZE <10><0>
OVERRUN <10><0>
PARITY <10><0>
EOT <10><0>
POSITION <10><0>
DRIVER <10><0>
DENSITY <1> My

which is the interpretation of the error messages for a magnetic tape unit ar-
ranged so that each diagnostic will be printed on a separate line, that is <10>

is a line feed and <0> is a carriage return.

Then, the OPSTATUS command
OPSTATUS(filename . Z0, ERRORS);

will display on the operator device the lines of ERRORS that correspond to
positions of the status word that are non-zero. That is, if the status word con-

tains at the time of inquiry
1000000000000000
then

DISCONNECTED

will be displayed, and a line feed and carriage return will be accomplished.

0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
0570
0571
0572
0573
0574
0575
0576
0577
0578
0579
0580
0581
0582
0583
0584
0585

Example of a GIVEUP Procedure

-

PROCEDURE MTINERRORS
BEGIN

IF IN.ZO AND 256 <> 0 THEN GOTG G5 !

IF IN.ZO AND 8'041000 = 0O THEN BLOCKNO:=
IF IN.ZO SHIFT 1 < 0 THEN OPMESS(MTMOUNTTAPE);

IF INsZO SHIFT 1 >= 0 THEN
BEGIN

DPMESS(MTTXT)

MASKI=IN.ZO}

SHOWERRCR
END?S .
REPEAT CPSTOP UNTIL STOPPED <> 0;
IF STAPPED = 1 THEN GOTO 13
OPMESSC(RUNTXT)S

PROCEDURE LPERRORS
BEGIN

NEXTLPI= OUT.Z0 AND 8'750002C;
OUT.Z2C:=0UT.Z0 - NEXTLP:
IF 0UT.Z0 SHIFT 1 < 0 THEN
OUT.Z0N0:=0UT.Z0 ANC 8'0413423%
IF QUT.Z0 = 8'04C0C00 THEN IF NEXTLP <>
DUT.Z0:= NEXTLP;
IF OUT.Z0 AND 8'001342 <> C THEN
OUT.Z0%= CUT.Z0 AND 8'0013423
IF CUT.Z0<>0 THEN
BEGIN
OPMESSCLPTXT)YS
MASK:=0UT«20;
SHOWERROR
NEXTLP:=03
REPEAT CPSTOP UNTIL STOPPED <> 03
I STOPPED = 1 THEN GOTO 13
OPMESSCRUNTXT)S
IF QUT.Z0 AND 81141362 <> (0 THEN
REPEATSHARE(CQUT);

Recommended GIVEUP procedures for many situations are available from

Regnecentralen.

RC3€6-00099 PAGE

IN.ZBLOCKS

3.8 Accessing File Contents

Once a file has been defined in the Variable Section and opened in the Main

Program Section, its records can be read into memory or output to a medium.

When a record has been read into memory, it may be accessed for assignment3
or comparison with respect to the data it contains. Such operations, however,
can take place only on previously-defined (that is, named) records or parts

of records. The format for accessing the data in a file is
filename!

for accessing the data as a whole, and
filename ! .fieldname

for parts of a record.

For example,

VAR
ALPHA:STRING (2);
IN: FILE
"MTO", 14,1, 1340, FB
OF RECORD
CCwW :STRING(1);
SELECT1 :STRING(1) FROM 1;
DATA :STRING(2) FROM 2
END;
BEGIN
ALPHA=IN! .DATA,
END;

puts the current contents of DATA from file IN into ALPHA. Open and get

record statements are defined below.

3.9.1

3.9.2

1/0 Commands

Though buffer strategy in MUSIL is based on the transfer of blocks of data,
actual processing is almost always performed on records or characters. There
are two levels of /O commands in MUSIL, therefore: the higher-level rec-
ord and character commands and the primitive procedures that the higher-

level commands utilize.

We shall now explain the I/O commands in detail.

Opening and Closing Files

OPEN(filename ,mode);

This command ensures that file identification is established, reserves the per-
ipheral device involved, prepares for conversion if necessary, and initializes
the file. The "mode" is input or output and the conditions of transput, for ex-
ample, odd or even parity. It is represented by a decimal number that varies

from device to device. Operation mode numbers can be found in the Appen-
dix.

CLOSE(filename, release);

closes the file. For input files the closing process concludes all pending data
transfers, but it does not check the data transfer, since this data will be lost
anyway. For output files the closing process completes and checks all pend-
ing data transfers and writes a terminator to the file, for example, a file mark
in the case of magnetic tape. "Release" may be any integer. If it is zero,
then the device will not be made available to any other program and the de-
vice will not be automatically set off-line. If "release" is not zero, then the
device will be set off-line. For example, in the case of magnetic tape, re-
lease not equal to zero will cause the tape to be rewound and the tape unit

to be set off-line.

Record-by-Record Data Transfer

This is the most common transput means in MUSIL. It can be done after a file
has been OPENed.

N 65

. GETREC(filename, variable name);

This command has the general effect of making "the next" record available
for processing. The first time it is used after an OPEN command on the file,
it must start the transfer of data into the buffer wheel and establish control
over the turning of the wheel. It does this by calling the primitive commands
INBLOCK, TRANSFER, and WAITTRANSFER (explained below). When used
subsequently, it simply makes the next record in the block the "current" rec-
ord, so that this record can be processed. In this way GETREC can be used
to step through the records in the buffers until it again becomes necessary fo
input a block of data. The specific actions of GETREC in various situations

are best described by an example.

Let us examine the following situation:

VAR
SIZE: INTEGER;

INFILE: FILE
‘FILE DEFINITION.

BEGIN

ooooooooooooooo

END;
The GETREC command would then give rise to the following:

For file record format undefined and unblocked, U:

The general effect is that the contents of a buffer become available for pro-
cessing. If all the buffers are empty, then the instruction starts the transfer of
data into the buffer wheel as well. Let us say we are using cards and have
only one buffer, then the effect of the instruction is to read a card. For paper
tape and one buffer, the effect is to read and process.as much of the tape as

will fit into one buffer. The size of the block read is put into SIZE.

66

For file record format undefined and blocked, UB:

The general effect is to make a number of characters available for processing,
this number being equal to the current value of SIZE. If the buffers are empty
at the time of call, then SIZE characters must be input. If there is less than
SIZE characters in the buffer, then the next block is input until SIZE char-
acters can be available for processing. This situation can be taken advantage
of for reading the first character of a tape block to see what kind of tape
block one is dealing with. For example, if SIZE and MTO have been previous-

ly defined, and we write

OPEN(MTO, mode);

SIZE:=1;

GETREC(MTO, SIZE);

IF BYTE MTO = some binary code THEN
BEGIN
SIZE:=MT0.ZREM;
GETREC(MTO, SIZE);

............... : ‘PROCESSING OF BLOCK!
END;

then the effect is to read and examine the first byte of the tape and then de-

cide if we want to read in the rest of the first block.

For file record format fixed length and unblocked, F:

In this case the record format has been defined in the Variable Section, as
has its length. The command will make a record available, reading in a rec-
ord, if necessary. The number of bytes made available will be put into SIZE.
This will be the record length in this case. In case a record of the correct
length cannot be gotten, the exception procedure is called with status bit 8

(block length). If the error is accepted, the record is delivered as a short
block.

For file record format fixed length and blocked, FB:

The instruction will make a record available. If it cannot find one in the buf-
fers, then it will first begin to read the next blocks into the buffer wheel.
The record length will appear in SIZE. Incorrect record lengths are handled

as for F formats.

G BN N Ny N D D D w D aam o OE o B A P e O Em B

67

For file record format variable length and unblocked, V:

The next record will be made available. If the buffers are empty, input will
proceed into the buffer wheel. The first four bytes of the record, which con-
tain the record length, are decoded and put into SIZE. The variable length

format used is the IBM V format. Incorrect record lengths are handled as for

F formats.

For file record format variable length and blocked, VB:

This is the means of handling the IBM VB format. The next record is made
available, by reading the next blocks into the buffer wheel, if necessary.
The first four bytes of a new block, containing the block length, are decoded.
In any case the first four bytes of the record, containing the record length,

are decoded and placed in SIZE.

PUTREC (filename, name or number or expression);

is the command that makes space for a record available for output and starts
the buffer wheel turning for output by calling the primitive procedures
OUTBLOCK, TRANSFER, and WAITTRANSFER. The specific actions are

For file record format undefined and unblocked, U:

PUTREC(FILENAME, SIZE);

A previous buffer is output, then space is reserved in the buffer for the next
record to be output the next time PUTREC is called. The name, number, or

expression is the length of the record.

For file record format undefined and blocked, UB:

The command makes space for the next record of SIZE bytes in the buffer. If
there is no room for it, it outputs a buffer and reserves space in the new buf-

fer. The name, number or expression in this case is the length of the record.

For file record format fixed and unblocked, F:

The number, name, or expression is ignored. The record length is that given
in the record definition. The effect of the command is to oufput a previous

record and make space for the current record in a new buffer.

3.9.3

For file record format fixed and blocked, FB:

If the record can fit into a buffer, it is put there; if not, a block will be out-
put to make room for it. The name, number or expression in the command is

ignored. The SIZE is that of the record definition.

For file record format variable and unblocked, V:

This command utilizes the IBM V format. A block will be output to make

room for a new record. The block size and record size (which are equal) are
computed, so that the output medium will be in IBM V format. The record of
length equal to the name, number or expression will have room in the space

reserved.

For file record format variable and blocked, VB:

If there is no room in the buffer, a block is output to make room for the cur-
rent record. In any case the record descriptor is computed and the block de-
scriptor is up-dated. The record size must be in the name, number, or ex-

pression.

Some general notes on GETREC and PUTREC should be made. First, the sec-
ond factor of the command has different general functions in the two expres-
sions. For GETREC, it relates to the length of the record coming in from the
buffer, a given fact. In PUTREC on the other hand, the record length must
be given to the program so that it knows how much output space to look for

in the output buffer wheel (except for F formats).

Secondly, GETREC and PUTREC are not equivalent to READ and WRITE, res-

pectively. They do not, in fact, move data.

Character-by-Character Data Transfer

Data transfer by character can be done on files that have records which are
undefined and unblocked. The general effect of character |/O commands is

to input or output data character by character.

INCHAR(filename, integer variable name);

takes the next available byte from the input buffers and places it in "integer

3.9.4

69

variable name". If the buffers are all empty, then INCHAR will call
INBLOCK, TRANSFER, and WAITTRANSFER, in order to read data from the

input device.

OUTCHAR(filename, value);

checks to see if there is room for one byte in the output buffers. If not, then
it calls OUTBLOCK, TRANSFER, and WAITTRANSFER, in order to make

room for the byte. The byte that is put into the buffer is the last byte of the
"value", which may be a number, the current contents of a variable, or the

value of an expression.

OUTTEXT(filename, string name);

outputs the string contained in the "string name" . Output continues until a
binary zero is reached. Thus, the string to be output must contain such a bi-
nary zero. This command is useful, for example, for putting text onto print-
out. OUTTEXT is a shorthand command offered in MUSIL as a convenience.
Its effect can be obtained by using combinations of MOVE and OUTCHAR.

Primitive Procedures

The normal MUSIL |/O commands are arranged in a hierarchy in which the

commands higher up in the hierarchy operate by calling on the commands

lower down:
highest level: GETREC PUTREC [INCHAR OUTCHAR
intermediate level: INBLOCK OUTBLOCK
lowest level: TRANSFER ~ WAITTRANSFER

The intermediate and lowest level commands are "primitive procedures" when
they are used directly and explicitly by the programmer. It should be noted
that few situations will arise in which it will be necessary for the programmer

to use them explicitly, while the higher-level commands always use them.

TRANSFER(filename, length, operation mode);

is the command that actually starts the transfer of physical data to and from
the peripheral devices. In the input mode TRANSFER causes the used buffer
to be filled from the data medium and moves the used buffer pointer to the
next buffer in the buffer wheel. In output mode TRANSFER writes the con-
tents of the used buffer to the medium and moves the used buffer pointer to
the next buffer in the output buffer wheel. The number of bytes transput is
in "length", which must be an integer expression. It should be noted that
TRANSFER does not look to see if the used buffer is ready to receive or out-
put new data. Therefore, TRANSFER is always followed by

WAITTRANSFER (fi lename);

which looks to see if the used buffer is ready with data input or finished with
output. If not, it delays the transput until the used buffer is ready.

INBLOCK (filename);

administrates the data input operotion.. Its effect is to call TRANSFER until
all the buffers are started in the buffer wheel. Then it calls WAITTRANSFER

to prepare the first input.

OUTBLOCK (filename);

administrates the data output operation. lts effect is to call TRANSFER to
- start the output buffers. Then it calls WAITTRANSFER in order to ready the

next buffer.

REPEATSHARE (filename);

can be used only within a GIVEUP procedure. This command restarts a
rejected operation and then returns to the internal waittransfer, so that the
operation can be completed before returning control to the next command in

the program.

71

310 Data Manipulation

In this section we shall explore some commands that are used for the direct
manipulation of data. These commands are understandable both as simple
MUSIL commands and as /O handling commands. They facilitate the solu-

tion of data conversion problems.

WAITZONE((filename);

is mentioned here because it is a lower-order command that is used by the
following command, as well as being useful in general to the programmer.
Its effect is to halt processing in an orderly way, so that processing can later
be resumed without trouble. For input files it empties the buffer wheel, skip-
ping data. For output it assures that all output operations have been com-

pleted. For example,

IF operator action is called for THEN
BEGIN
WAITZONE(filename);
............... ‘OPERATOR ACTION:

............... {RESUME PROCESSING!

SETPOSITION(filename, file number, block number);

allows one to position a positionable medium, such as a magnetic tape.
SETPOSITION calls WAITZONE first, in order to halt processing. Then it

positions the medium to the desired block. For example,
SETPOSITION(MTO, 3, 8);

positions the tape to the eighth block of the third file on the tape on tape

unit 0. (Here we use the word "file" in its physical sense.)

72

The command

MOVE (string name, from n+l1st byte, to string name, from n+1st
byte, for number of bytes)

that can be used for operator communication can also be used for data manip-

ulation, for example,
MOVE(IN!,1,0UT!,0, LENGTH);

will take the current record of file IN, starting with the second byte, and
move it into the current record from file OUT, starting with the first byte,
until LENGTH number of bytes have been moved. Note that if LENGTH is

too big, there will be no error message.

MOVE cannot be used to move bytes around within a single string.

CONVERT(string name, string name, table name, length);

can be used to convert between media. It is best explained by an example.

Consider the expression
CONVERT(MTO!,OUT!, TABLE1,OUT.ZLENGTH);

This command would take the current record of file MTO and convert it ac-
cording to the table defined as TABLE1, and put the result into the current
record of file OUT, doing this for as many bytes of the first record as is rep-
resented by OUT.ZLENGTH, which is precisely the length of the current
record of file OUT.

""Length" can be an expression, a number, or a variable name.

INSERT(byte name, record name, place);
This instruction can insert a byte into a place in a string. For example,
INSERT(VALUE, OUT!, 2);

places the 8 least significant bits of VALUE into the third byte position of
the current record of file OUT.

311

73

Possible 1/0 Errors

It is impossible to list all the things that might go wrong where |/O commands

occur. In the list that follows, we have tried to list the most obvious places

where the programmer might take extra care.

)

6)

7)

9)

In setting up a GIVEUP mask remember to start counting bits from zero
and be aware of what each bit signifies for the specific device you are
using.

Try to provide for restart capacity in all operational situations where oper-
ator error might occur, such as his forgetting to put a line printer on line.
Check carefully for correct punctuation in record and file definitions.
Make sure you have up-to-date information on device names and kinds.
For difficult decisions about buffer size and number, you may consult
Regnecentralen for advice.

For difficult GIVEUP procedures, particularly in communications pro-
grams, you may consult Regnecentralen.

Be particularly careful in using the GETREC and PUTREC commands. They
are a common source of error,

Be particularly careful when using the primitive procedures. They are very
sensitive.

Remember that MOVE cannot be used to move bytes within a string.

74

312 Example of a MIUSIL Program ®

.0000
0001
0002
0003
0004
00cC5
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
l{"pOlQ
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037

S 2N i U am
SO
o O
w S
[« JVe)

MUSIL COMPILER/2

KEYWORDS:

ABSTRACT:

RCSL 43-GL141:

75

RCSL: 43-0L140
AUTHOR: CT

EDITED: 74.08.12

PROGRAM RC26-C0007.00

MUS CARDS TO TAPE

MUSTL CONVERSICNyCORyMTAZLISTING

THIS PRQOGRAM HANDLES 80-COLUMN CARDS IN EBCDIC CODF
AND GENERATES FIXED OR VARIABLE LENGTH FORMAT RE-
CORDS WHICH MAY BE WRITTEN WITH A SPECIFIED NUMBER
OF RECORDS IN EACH CUTPUT BLOCK. :

OUTPUT IS EBCDIC CODE IN BLOCKS OF UP TO 2000 BYTES
ON NO LABEL TAPE WITH OR WITHOUT BLOCK AND RECORD
LENGTH STELDS DUE TG THE RECORD TYPE SPECIFICATICN.
THE PROGRAM MAY BE QPERATED FROM EITHER QOCP OR TTY,

ASCII SOURCE TAPE !

0062 1
0063

0064 TITLE:

0065

0066 ABSTRACT:

0067
0068
0069
0070
0071
0072
0073
0074

0075 SIZE:

0076
0077

0078 DATE:

0079

0080 RUNTIME PARAMETERS:
0081 BLOCK NO : 00001
0082 FILE NO ¢ 00001
0083 REWIND : +
0084 FIXRECS ¢ +
0085

0086

0087 MAXCOL s ooo8o
0088

0089

0090 MINCOL s ooose
0091

0092 BLOCKED ¢ 00025
0093 OTHER OUTPUT MESSAGES:
0094 CONTSTATE: +/-
00S5 PROG NO 3 7
0096 RUNNING

0097 SUSPENDED

0098 LOAD CARD DECK
0099 CR ERROR NNNNN
0100 MT ERROR NNNNN
0101 END JOB

0102

0103 INPUT MESSAGES:

0104 STOP

0105 SUSPEND

0106 INT

0107

0108 STATE

0109 "VALUE"

0110

0111 "TEXT"="VALUE"
0112

0113 CONT

0114 START

0115

0116

0117

0118 SPECIAL REQUIREMENTS:

0119

76

MUS CARDS TO TAPE.

RC36-00007 PAGE 01

THIS PROGRAM HANDLES B80-COLUMN CARDS IN EBCDIC CODE

AND GENERATES FIXED OR VARIABLE LENGTH FORMAT RE-

CORDS

WHICH MAY BE WRITTEN WITH A SPECIFIED NUMBER

OF RECORDS IN EACH COUTPUT BLOCK.
OUTPUT IS EBCLIC CODE IN
ON NO LABEL TAPE WITH OR WITHOUT BLCCK AND RECORD

LENGTH FIELDS DUE TO THE RECORD TYPE SPECIFICATION,
THE PROGRAM MAY BE OPERATED FROM EITHER OCP OR TTY,

5564 BYTES,

BLOCKS OF UP TO 2000 BYTFS

INCLUDING TWO 80 BYTES INPUT BUFFER

AND ONE 200G BYTES OUTPUT BUFFER.

AUGUST 12TH 1974.

- NEXT BLOCK TO BE WRITTEN TO
THE FTLE IN WHICH
INDICATES IF REWIND OF TAPE

CURRENT FILE.
IS WRITTEN.
AT END GOF INPUT.

THE 8LOCK

INDICATES QUTPUT RECORD FORMAT FIXED/VARIABLE.

NOTE:

THIS PARAMETER CAN ONLY BE CHANGED BEFQORE

THE PROGRAM IS STARTED AND AFTER END OF JOR,

MAXIMUM NUMBER OF

VARTABLE LENGTH FORMAT QOUTPUT OR

COLUMNS TRANSFERRED WHEN
NUMBER OF

COLUMNS WHEN FIXED LENGTH FORMAT QUTPUT.

MINIMUM NUMBER OF

COLUMNS TRANSFERRED WHEN

VARIABLE LENGTH FORMAT OUTPUT.

MAXIMUM NUMBRER OF

STATE OF CONTINUE
PROGRAM EXECUTICN
PROGRAM EXECUTION
DRIVERS RELEASED,

RECORDS IN EACH BLOCK.

SWITCH (TTY ONLYD.

IS STOPPED.

IS STARTED.

PROGRAM EXECUTION IS STOPPED.

CARD READER HOPPER EMPTY AND CONTINUE IS ON.
CONSULT THE RC3600 OPERATORS MANUAL.
CONSULT THE RC3600 CPERATORS MANUAL.

PROGRAM EXECUTION

STOPS EXECUTION WRITING PROG NO 3

IS TERMINATED,

7,

STOPS EXECUTION RELEASING DRIVERS (TTY CNLY).

NEXT PARAMETER IS
(ESCAPE BUTTON ON

DISPLAYED
TTY HAS SAME EFFECT).

ALL PARAMETERS ARE DISPLAYED (TTY ONLY).
CURRENTLY DISPLAYED PARAMETER IS CHANGED

TO "VALUE",

THE PARAMETER IDENTIFIED BY
CHANGED TO "VALUE"

STATE OF CONTINUE
PROGRAM EXECUTION
NOTE:

THE ERRONEOQUS INPUT,

MTEXT" IS

SWITCH IS INVERTED.
IS STARTED,

AFTER CR ERROR START MEANS ACCEPTING

AFTER MT ERROR START

MEANS REPEATING THE WRITE OPERATION.

NONE

!

' 0120
0121
@2
' 0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
Il 140
141

0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
@0
l 0161

0162
0163
. 0164

CONST
NOQ=

OPTXTS=
1<14><6>
<10>PROG NO
<10>BLOCK NO
<10>FILE NO
<10>REWIND
<10>FIXRECS
<10>MAXCOL
<10>MINCOL
<10>BLOCKED

START=
STOP=
SUSPEND=
CONT=

INT=
STATE=
MINUS=
PLUS=
FIVE=
FIFTEEN=
NL= ’
NEXTPARAM=
SP1A=
ENOLINE=
RETURN=

RUNTXT=
CRTXT=
MTTXT=
EOQJTXT=
SUSTXT=
CRMOUNTDECK=
MTMOUNTTAPE=
ENCTAPE=
CCNTSTATE=
SPACES=

S0 68 o8 S0 oo v ee o

8y

7<0>

<0>
<0>

<0>

<0>
<0>
<0>
<0>7,

'START!,
'STCPY,
"SUSPEND!,
'CONT?,
VINTY,
ISTATE',
-1,

04.1’
1<5><0>7",
1<15><0>,
1<10>,
127>,
1<9>1,
1<125<0> 1,
1<13>,

P<C4><10>RUNNINGL13>K0D>Y,

'<7><10>CR ERROR ',
'<T><10>MT ERROR 'y

'<14><T><10>END JOBC13><KO> !,

'<T>C1C>SUSPENDEDKI3>C0>!,

77
! RC26-00007 PAGE 02 !

1<14><7><10>L0AD CARD DECK<K13><0>?',
'<C14><7><10>MOUNT DATA TAPEK13>K0>?,
'C14><T7><10>END-QOF-TAPE MARKLC13><0>!,

'<10>CONTSTATE:

<0>%,

23202222302227022222022222222222222222232222
2032270032002220020222029229022292223323232a "

78
0165 ! RC36-00007 PAGE 03 !
0166 CRTABLE= I CR CONTROLLER FORMAT TO ERCDIC "
0167 0 1 2 E 4 5 € 71
0168 #
0169 1 0! 64 241 242 243 244 245 246 247
0170 1 8 ! 249 49 50 51 52 53 54 55
0171 1 16 | 248 121 122 123 124 125 126 127
0172 | 24 | 56 57 58 59 60 61 62 63
0173 ' 32 | 240 97 226 227 228 229 230 231
0174 v 40 1t 233 33 34 35 36 37 38 3¢9
0175 t 48 1| 232 105 224 107 108 109 110C 111
0176 1 . 56 | 40 41 42 43 44 45 46 47
0177 ! 64 | 96 209 210 211 212 213 214 215
o17g ' T2t 217 17 1% 19 20 21 22 23
0179 t 80 ! 216 89 90 91 92 93 94 95
0180 I 88 | 24 25 26 27 28 25 30 21
0181 ! 96 ! 208 161 162 163 164 165 166 167
0182 ! 104 ! 169 225 98 99 100 101 102 103
0183 ! 112 ! 168 160 170 171 172 173 174 175
0184 1 120 ! 104 32 234 235 236 237 238 239
0185 ! 128 | 80 193 194 195 196 197 198 196 ’
0186 ! 136 1t 201 1 2 3 4 5 6 7
0187 ' 144 1 200 73 74 715 716 77 718 79
0188 | 152 1| 8 S 10 11 12 13 14 15
0189 1 160 ! 192 129 130 131 132 132 134 135
0190 1 168 ! 137 65 66 67 68 69 70 71
0191 1 176 | 136 128 138 139 140 141 142 143
0192 1 184 1| 72 0 202 203 204 205 206 207
0193 ! 192 ! 106 145 146 147 148 14S 150 151
0194 ! 200 ' 153 81 82 83 84 85 86 87
0195 I 208 ! 152 144 154 155 156 157 158 159
0196 | 216 1 88 16 218 21S 220 221 222 223
0197 ! 224 ! 112 177 178 179 180 181 182 183
0198 ! 232 ! 185 113 114 115 116 117 118 116
0199 1 240 ! 184 176 186 187 188 189 190 191
0200 I 248 | 120 48 25C 251 252 253 254 255
0201 #;
0202

0203 ! RC36-00007 PAGE 04
0204 VAR
.0205
0206 OPDUMMY: STRING(2)3 ! RUNTIME PARAMETERS 1!
0207 PROGNO: INTEGER:
0208 BLOCKND: INTEGER?:
0209 FILENO: INTEGER;
0210 REWIND: INTEGERS
0211 FIXRECS: INTEGER?
0212 MAXCOL: INTEGER
0213 MINCOL: INTEGERS
0214 BLOCKED: INTEGERS
0215
0216 CPTEXT: STRING(C20)3 ! COMMUNICATION ARFEA |
0217 OPSTRING: STRINGC20Y;
0218 UPDEC: STRING(10)3
0219
0220 CPCONT: STRING(2): ! INTERNAL VARIABLES !
0221 NEXTCONT: STRING(1)¢
0222 GLCONT: STRING(C1):
0223 WBLOCKED: INTEGER:
224 ERRORNG: INTEGER;
225 MASK: INTEGER;
0226 TOM: INTEGER
0227 SIGN: INTEGERS
0228 @ INTEGERS
0229 PAR: INTEGERS
0230 LENGTH: INTEGER S
0231 OPENED: INTEGER;
0232 °P1: INTEGERS
0233 pP2: INTEGERS
0234 P3: INTEGERS
0235 S1: STRING(2)3
0236 S2: STRING(?2)
0237 NEXTMT: INTEGER;
0238 INLENGTH: INTEGER;
0239 OUTLENGTH: INTEGERS
0240 CARDSREAD: INTEGER?S
0241 SAVEDSUSPEND: INTEGER:
0242

0243

0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277

80

IN:

ouT:

FILE
TCDRY,
29

29

80,

us

CONV
CRTABLE;

GIVEUP
CRERROR,
2'0110001011110110

OF STRING(80):

FILE
tMTOY,
14,

1,
2000,
F83

GIVEUP
MTOUTERROR,
2'0110011111011011

OF STRING(80):

Vo eam pumn e S sem pem e

! RC36-00007 PAGE 05 !

INPUT FILE DESCRIPTION |
NAME CF INPUT DRIVER !
KIND= BLOCKED |

BUFFERS |

SHARESIZE |

UNDEFINED !

CONVERSION TARBRLE !

CR ERROR PROCEDURE !
GIVE UP MASK |

RECORD STRUCTURE |

QUTPUT FILE DESCRIPTION |
NAME CF QUTPUT DRIVER |
KIND= REPEATARLE, !
POSITIONABLE, !
BLOCKED,. !
BUFFERS |
SHARESIZE |
FIXED(BLOCKED)/VARTASLE(BLACKED) !

MT ERROR PROCEDURE |
GIVE UP MASK !

RECORD STRUCTURE !

0278
0279

0280
.0281

0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0254
0295
0296
0297
0268

299
1€

0301
0302
0303
0304
0305
0306
0307
0308
0309

PROCEDURE INTITPOSITION:

BEGIN

IF FIXRECS= -1 THEN

BEGIN
IF IN.ZMODE=33 THEN FIXRECS:==23%
IF IN.ZMODE=0 THEN OPENCIN,21)3%

END;

IF FIXRECS= =2 THEN

BEGIN
IF INJZMODE=21 THEN FIXRECS:=-13
IF IN.ZMODE=0 THEN OPENCIN,233);%

END3

IF FIXRECS==-1 THEN OUT.ZFORM:=33

IF FIXRECS==2 THEN CUT.ZFORM:=5;

IF QUT.ZIMCODE=0 THEN OPEN(OUT,3);

IF BLOCKNC=QUT.ZBLOCK THEN

IF FILENO=OUT.ZFILF THEN

GOTO 9993

WAITZONECIND S
SETPOSITIONCOUTSFILENGC,BLOCKNDDS

999:
ENDS

PROCEDURE CONTINUES

BEGIN

GLCONT:=0PCONT?
OPCONT:=NEXTCONT;
NEXTCONT:=GLCONT;
OPMESS(CPCONT);

END;:

81
RC36-00007 PAGE 06

0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350

I RC36-00007 PACE

PROCEDURE DIRECTUPDATE;

03 I INDEX IN INPUT STRING 1
03 I INDEX IN CONSTANT STRING |
’ | PARAMETER NUMBER IN CONSTANT STRING

REPEAT BEGIN

MOVECGPTEXTsP1,S1,0,1)3
MOVE(OPTXTSyP24S25041)3
WHILE BYTE S1 <> BYTE S2 DO
BEGIN
IF BYTE S2 = 0 THEN P3:=P3+1;}
P2:=P2+1
MOVECOPTXTSsP2,S24041)
IF P3I>NOQ THEN S2:=S1:

END:
IF P3<=N0Q THEN
BEGIN
WHILE BYTE S1 = BRYTE S2 DO
BEGIN
Pl:=P1+1;
P2:=P2+1}
MOVECOPTEXT4P14S1450,41)3
MOVE(OPTXTSyP245S24091)3
IF BYTE S1 = 61 THEN
BEGIN
MOVECOPTEXTsP1+1,0PTEXT40,10)3
LENGTH:=LENGTH=-P1-1}
Q:=P3;3 .
MOVECCPDUMMY Q%2 ,0PDUMMY,0,2);
PAR:= WORD OPDUMMY;
P3:=N0Q3
END3
END3
P2:=P2-P1+1;
P1:=03 ‘
END;

END UNTIL P3>=N0Q:

67 |

83

! RC36-00007 PAGE 08 !
PROCECURE 0OPCOM;

BEGIN
1000: Q:=03
10102 REPEAT BEGIN
IF OPTEXT=STATE THEN
BEGIN Q2=13 OPMFSSCCONTSTATE): IF OPCONT=FIVE THEN
OPMESSCPLUS): IF OPCONT=FIFTEEN THEN
OPMESSC(MINUS); GCTO 10403
END3
10152 P=Q+1
1020: OPSTATUSCY SHIFTC(C16-Q),0PTXTS)s IF Q<>1 THEN REGIN

MOVE(CCPDUMMY ,Q%2,0PDUMMY 40,2);
PAR:= WORD 0OPCUMMY;
IF PAR = -1 THEN CPMESS(PLUS):
IF PAR = -2 THEN OPMESS(MINUS);
IF PAR >= C THEN
BEGIN BINDEC(PAR,OPDEC): OPMESSCOPCEC)s ENCs END;
IF OPTEXT=STATE THEN GOTO 106C:
1040: OPMESSCENDLINE);
OPWAITCLENGTH) S
OPTEXT:=0PSTRING;
OPINCOPSTRING)S
IF OPTEXT=STATE THEN BEGIN @:=03 GOTO 1015; END;
IF OPTEXT = SUSPEND THEN

BEGIN

SAVEDSUSPEND:= 13

GOTO 1040°
END;S
IF LENGTH > 6 THEN DIRECTUPDATE;:
IF LENGTH > 6 THEN GOTO 10203
IF OPTEXT = START THEN GOTO 10703
IF CPTEXT = STOP THEN GOTD 10003
IF OPTEXT = CONT THEN

BEGIN CONTINUE; GOTO 10403 END3

IF CPTEXT = INT THEN GCTQ 105603%

IF OPTEXT = NEXTPARAM THEN GOTO 10603
IF OPTEXT = NL THEN GOTO 1020

IF OPTEXT = ENDLINE THEN GGOTO 10203
IF OPTEXT = RETURN THEN GOTO 10203
SIGN:=03

IF CPTEXT = MINUS THEN SIGN:=-13

IF CPTEXT = PLUS THEN SIGN:=+13

IF SICGN <> 0 THEN INSERT(48,IPTEXT,0);

DECBIN(OPTEXT,TOM)

IF PAR < 0 THEN

BEGIN IF SIGN=0 THEN GOTO 1020; PAR:!=-
IF SIGN=1 THEN PAR:=-13 GOTO 10503

END3

IF SIGN=0 THEN

BEGIN SIGN:I=13 PARI=Q0; END;

PARI=PAR+TOM%SIGN;

IF PARCO THEN GOTC 10203

1050: INSERT(PAR SHIFT(-8),0PDUMMY,0)3

INSERT(PAR, OPDUMMY,1)3

MOVECGPDUMMY 0 y0PDUMMY,0%x2,2)3

IF DOPTEST <> 0 THEN GOTO 1040

GOTC 10203

23

1060 IF OPTEXT=STATE THEN IF Q<NOQ THEN GOT0O 1015:
END UNTIL Q>=NDOQ35 GOTGC 1000
1070 OPMESSCRUNTXTYS

END3

0414

0415
0416
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436

0437

0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478

! RC36-00007 PACE

PROCEDURE 0OPSTOP;
BEGIN

END3

OPWAITCLENGTH)S

OPTEXT:=0PSTRING;

OPINCOPSTRING)S

IF OPTEXT=CCONT THEN CONTINUES

IF OPTEXT=STOP THEN GOTO 1;

IF OPTEXT = SUSPEND THEN SAVEDSUSPEND:= 13

PROCEDURE SHOWERROR
BEGIN

ERRORNO:=203

WHILE MASK>0 DO

BEGIN
MASK:=MASK SHIFT 13
ERRORNO:=ERRORNO+1

END;3

BINDECCERRORNO,yOPTEXT) S

OPMESSCOPTEXT); OPMESSCENDLINE);

END:
PROCEDURE CRERRCR}
BEGIN
IF IN.ZC AND 2'10000 <> 0 THEN
BEGIN
SAVEDSUSPEND:= -SAVEDSUSPEND;
GOTO 93
END?

END3

PrROC
BEGI

END3

IF CARDSREAD=C THEN GOTO 9;
IF IN.Z0<>0 THEN
BEGIN
OPMESSCCRTXT) S
MASK:=IN.Z03}
SHOWERROR
END3S
REPEAT OPSTOP UNTIL OPTEXT=START;
OPMESSCRUNTXT)
IF IN.ZC AND 8'0400C0 <>0 THEN 1CARD READER OFFLINE!
REPEATSHARECIN);

EDURE MTOUTERROR:
N
IF OUT.Z0 AND 8'043000 = 0 THEN BLOCKNO:=0UT.ZBLOCK3
NEXTMT:= QUT.ZO0 AND 8'00002C3
QUT.Z0:=0UT.20 - NEXTMTS
IF OUT.Z0 SHIFT 1 < 0 THEN CPMESSCMTMOUNTTAPE);
IF OUT.Z0 SHIFT 1 >=0 THEN
IF OUT.Z0 <> 0 THEN
BEGIN
OPMESS(MTTXT)3
MASK:=0UT.Z03
SHOWERRORS
END;
IF OUT.Z0<>0 THEN
BEGIN
REPEAT OPSTOP UNTIL OPTEXT=STARTS
OPMESSCRUNTXT)3
IF CUT.Z0 AND 8'063352 <> 0 THEN
REPEATSHARE(COQOUT)
END3S -

09!'
®

l 0479
480
481
0482

l 0483
0484
0485
0486
0487
0488
0489
0490
0491
0492
0493
0494
0495
0496
0497
0498
499
500
0501
0502
0503
0504

99

PROCEDURE CHANGETAPES
BEGIN

END3

OPMESSCENDTAPE)
OPWAITCLENGTH) S
OPTEXT:=0PSTRING;
OPINCOPSTRINGD;
IF OPTEXT=CONT THEN
BEGIN
CONTINUES
GOTO S9;
END3
IF OPTEXT=STOP THEN
8EGIN
NEXTM
CLOSE(CCUTs 1)
OPMESSCMTMOUNTTAPE)
FILEND:I=13
BLOCKNO:=13
REPEAT CPSTOP UNTIL OPTEXT=START;S
OPENCOUT»3)3
SETPOSITIONCOUT,1,41)3
ENDS

* - .
. ¥

85
RC36-00007 PAGE 1C

0505
0506
0507
0508
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519
0520
0521
0522
0523
0524
0525
0526
0527
0528
0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0540
0541
0542
0543

0544

0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
0570
0571
0572
SIZE:

11

123

02783

RC36-00007 PAGE 11 !

BEGIN

BLOCKNO:=13 FILENO:=13 REWIND:=-1; NEXTM i
FIXRECS:==-1% MAXCOL:=80% MINCOL:=803 RLOCKED:=25;
OPCONT:=FIFTEEN; NEXTCONT:=FIVE; WBLOCKED:=03; CARDSREAD:=
OUT.ZFILE:=13 QUT.ZBLOCK:=15 OPINCOPSTRING); SAVEDSUSPﬁkD

03
OPCOM; INITPOSITION;

IF OPTEST<>0 THEN 0OPSTOP?:

GETRECCINSINLENGTH) S
IF FIXRECS=-1 THEN
BEGIN
INLENGTH:=MAXCOL?S OUTLENGTH:=MAXCOL;
GOTO 43
END3
IF INLENGTHK=MINCOL THEN OQUTLENGTH:=MINCOL:
IF INLENGTH>MINCOL THEN
BEGIN
OUTLENGTH:=INLENGTH;
IF OUTLENGTH>MAXCOL THEN OUTLENGTH:=MAXCOL;
END; ’

PUTRECCOUT,,DUTLENGTH); CARDSREAD:=CARDSREAD+1;
MOVECINI»090UT! 909 INLENGTH); IF INLENGTHCKOUTLENGTH THEN
MOVE(CSPACES»09QUT| s INLENGTHyQOUTLENGTH=-INLENGTH)
IF BLOCKNOK>OUT.ZBLOCK THEN
BEGIN
BLOCKNO:=0UT.Z8LOCK?
WBLOCKED:=03
IF NEXTMT<>0 THEN CHANGETAPE,
GOTO 23
END3
WBLOCKED:=WBLOCKED+1;
IF WBLOCKEDKBLCCKED THEN GOTO 23
OUTBLOCK(COUT)
BLOCKNO:=0UT,ZBLOCK
WBLOCKED:=03
IF NEXTMT<>0 THEN CHANGETAPE;
GOTD 23

IF SAVEDSUSPEND = -1 THEN
BEGIN
OUTBLOCKCOUT)
BLOCKNO:= QUT.ZBLOCK;
CLOSECIN,1D3
CLOSECOUT,1)3
CARDSREAD:= 03
WBLOCKED:= 03
SAVEDSUSPEND:= 03
OPMESSCSUSTXT)
GOTO 123
END?
IF CARDSREAD=0 THEN GOTC 103
IF OPCONT = FIVE THEN GOTO 103
GOTO 113
OPMESSCCRMOUNTDECK);
GOTO 123
CLOSECIN,1)3
CLOSECOUTyREWIND+2)3
BLOCKNO:=15 FILENG:=FILENC+13:
IF REWIND=-1 THEN FILENO:=1;
IF FILENO=1 THEN NEXTMT:=03 CARDSREAD:=03 WBLOCKED:=03
OPMESSCEQJTXT);
REPEAT OPSTOP UNTIL OPTEXT=START:
INITPOSITIONS OPMESSCRUNTXT)S GCTO 23
END3S

Part Four
Appendix

o o L

4.1.1

4.1.2

89

The Type Section

A MUSIL program may have a Type Section between the Constant Section
and the Variable Section. The purpose of the Type Section is to provide a
shorthand for defining types, or categories, of variables. It is most important
to remember that the definitions in the Type Section are not substitutes for
definitions in the Variable Section. Type Section definitions are used to de-
fine a structure of a variable type. For example, if one has two or more file
definitions in the Variable Section, and both definitions have the same struc-
ture, then one can save some time and effort by defining the structure as a
type within the Type Section and referring to this type in the Variable Sec-

tion.

Section Structure

The Type Section begins with the word
TYPE

not followed by any punctuation. It ends with a semicolon and its statements

are separated from one another by semicolons.

Integer and String Types

The format for integer type definition is
name = INTEGER;
and for a string variable type, it is
name = STRING (n);
where n is the string length in bytes, for example,

| = INTEGER,
LINE = STRING(132),

Once such definitions have been set up in the Type Section, we may use them

to define variables in the Variable Section, thus:

VAR
L,M,N:l;
D,E:LINE;

4.1.3

4.1.4

which defines the variables L, M, and N as INTEGER and D and E as
STRING(132).

As can easily be seen, the Type Section is not terribly useful in defining in-

teger or string variables. It is much more useful, however, in defining file

and record variables.

Record and File Types

Record and file types are defined in the Type Section in a way very reminis-
cent of the definition of records and files in the Variable Section. The only
difference is that the colon used to assign a name to the record or file is re-

placed by an equals sign, for example,

TYPE

PLINE = RECORD
L1:STRING(20);
L2:STRING(50)
END;

IN = FILE
'MTO', 14,1,600,FB
OF PLINE;

Once these definitions have been made of a record and a file structure, then

in the Variable Section we can write, for example,

VAR
INT, IN2:IN;
LINET, LINE2, LINE3:PLINE;

which defines the file variables IN1 and IN2 as having the same structure as

file type IN, and the record variables LINE1, LINE2, and LINE3 as having
the structure of type PLINE.

Possible Errors

In general one may make the same errors in the Type Section as one can make
in the Variable Section. One can also forget to use the equals sign properly.
But the most frequent error is to forget to define the appropriate variables in

the Variable Section and to try to use type definitions as variable definitions.

91

4.2 Reference List of MIUSIL Commands,
Operators, and Symbols

4,2.1 MUSIL Commands

COMMAND

DESCRIPTION

BINDEC (binary value name, decimal value name)

CLOSE(filename, release)

CONVERT(stringname, stringname, tablename, length)

DECBIN(decimal value name,binary value name)
GETREC (filename, variable name)

GOTO label

IF relation THEN statement

IF relation THEN statement ELSE statement
INBLOCK (filename)

INCHAR(filename, integer variable name)

INSERT(integer value or name,string variable
name, integer value or name)

MOVE (string name, from n+1th byte, to string
name, from n+1th byte,for number of bytes)

OPEN(filename, mode)

OPIN(string variable name)
OPMESS(string variable name)
OPSTATUS(filename . Z0, string constant)
OPTEST

OPWAIT(integer variable name)
OUTBLOCK (filename)
OUTCHAR(filename, constant)
OUTTEXT(filename, stringname)

PUTREC (filename, integer value or name)
REPEAT statement UNTIL relation
REPEATSHARE (filename)

SETPOSITION(filename, filenumber, block number)
TRANSFER(filename, length, mode)
WAITTRANSFER(filename)

WAITZONE(filename)
WHILE relation DO statement
$COPY

$END

PROCEDURE name (parameters)
CODEBODY external identification;

Convert binary to decimal

Close file

Code conversion

Convert decimal to binary

Get next record for processing
Unconditional branching
Conditional branching
Conditional branching

Prepare a block for input

Get next character for processing

Insert byte value in string at
place designated

Move bytes from one string to
another

Open file

Input string from console
Output string to console
Display status word

Test for successful input from
console

Wait for operator input
Prepare a block for output
Prepare a character for output
Insert text info output file
Prepare next record for output

Repeat command

Restart command for a GIVEUP
procedure

Position medium
Ovutput or input data

Wait for completion of output or
input

Pause
Repeat command

Copy code from a second source
and place it here

Stop copying from this source

Define a code procedure

4.2.2

MUSIL Operators and Symbols

!text !
#|ist#
<number>

1] feXf"

BYTE
WORD

nnnnn:

BEGIN ... END
()

<>
m AND n

m SHIFT n

m SHIFT (-n)
m EXTRACT n
UB

FB

VB

Comment

Table of numbers

Byte value

Text string of ASCII characters or byte values
Constant section separator

Variable definition

Constant declaration, Type definition

Value assignment

Statement separator

Byte value

Word value

Label

Compound statement
Parentheses
Addition

Subtraction
Multiplication
Division

Less than

Greater than

Less than or equal to
Greater than or equal to
Equal to

Not equal to
Logical AND

Shift m left n bytes
Shift m right n bytes

Extract n bits of m

Undefined and unblocked

Undefined and blocked

Fixed and unblocked

Fixed and blocked

Variable and unblocked (IBM V format)
Variable and blocked (IBM VB format)

. '

* %

Special control characters.
Will be interpreted in accordance with actual device
specifications.

*** Reserved for national characters.

® 4.3 ASCIl Code Table
l 5 5 5
— [)] = [- [)]
l g 3 . I 5 2 .
sT6 O 3 86 U % 6 O 5
£ .35 8 E8 -5 B E8 ~35 8
O a8 m "6 o] O 5 m“a O O a8 m ‘G o]
| e NES |8E€ 8 & 82 i3 G
— 0 000 NUL 43 053 + 86 126 V
1 001 SOH 44 054 87 127 W
l 2 002 STX 45 055 - 88 130 X
3 003 ETX 46 056 . 89 131 Y
4 004 EOT 47 057 / 90 132 Z
l 5 005 ENQ 48 060 0 91 133 |
6 006 ACK 49 061 1 92 134 *xx
7 007 BEL 50 062 2 93 135 |
l 8 010 BS 51 063 3 94 136 ¢
o 9 011 HT 52 064 4 95 137 «
10 012 LF 53 065 5 96 140 -
11 013 VT 54 066 6 97 141 a
I 12 014 FF 55 067 7 98 142 b
13 015 R 56 070 8 99 143 <
14 016 SO 57 071 9 100 144 d
I «x 15 017 Sl 58 072 101 145 e
16 020 DLE 59 073 ; 102 146 f
17 021 DCI 60 074 < 103 147 ¢
18 022 DC2 61 075 = 104 150 h
l 19 023 DC3 62 076 > 105 151 i
20 024 DC4 63 077 2 106 152 j
21 025 NAK 64 100 @ 107 153 k
' 22 026 SYN 65 101 A 108 154 |
23 027 ETB 66 102 B 109 155 m
24 030 CAN 67 103 C 110 156 n
l 25 031 EM 68 104 D 111 157 o
26 032 SUB 68 105 E 112 160 p
27 033 ESC 70 106 F 113 161 q
o 28 034 FS 71 107 G 114 162
' 29 035 GS 72 110 H 115 163 s
30 036 RS 73 111 1 116 164 t
| 31 037 Us 74 112 J 117 165 u
I 32 040 SP 75 113 K 118 166 v
33 041 76 114 L 119 167 w
34 042 " 77 115 M 129 170 «x
l 35 043 # 78 116 N 121 171 y
36 044 § 79 117 O 122 172 z
37 045 % 80 120 P 123 173 7]
38 046 & 81 121 Q 124 174 =%
I 39 047 82 122 R 125 175 _|
40 050 (83 123 S 126 176 ~
41 051) 84 124 T 127 177 DEL
l 42 052 * 85 125 U

9.4

4.4.1

4.4,2

Device Reference Tables

Device error numbers are explained in the RC 3600 Operator's Manual and
on the RC 3600 Data Conversion System Operator's Reference Card. Device

information of use to the MUSIL programmer is as follows:

Kind Table
bit 15 set if device is character-oriented
14 set if full blocks should be transferred
13 set if positioning has any effect
12 set if an operation may be repeated
11 set if the device is a cataloged disc file
Examples:
14= 1110 Magnetic tape station
1= 0001 Line printer
3= 0011 Line printer
2= 0010 Card reader
1= 0001 Teletype
1= 0001 Paper tape punch
1= 0001 Paper tape reader

Operation Mode Table

Paper tape reader driver - PTR
1 binary, the input character is delivered
5 odd parity, the most significant bit is removed

9 even parity, the most significant bit is removed

Paper tape punch driver - PTP

3 binary, the converted character is output

7 odd parity, the converted character is augmented by the comple-

ment of its parity in the most significant position

11 even parity

95
Line printer driver - LPn
3 the converted characters are output
7 the first byte of output is interpreted as a carriage control word

Magnetic tape driver = MTn
1 read packed, byte limit =

|
O —
[e0]

5 read packed, byte limit
9 read unpacked, byte limit = 18
13 read unpacked, byte limit = 0

3 write

Concerning the Magnetic tape driver: when using 7 track tape, if 4096 is
added to any of the operation modes, then the reading or writing will be

done in even parity. If the number 8192 is added to any of the mode num-
bers, then the resulting number will cause reading or writing to be done in

the tape's lower density.

For example, 4099 signifies write with even parity, for 4099 = 3 +4096.

Card reader driver -~ CDR
read binary byte

5 read decimal punched cards
21 read decimal punched cards
33 read decimal punched cards and skip trailing blank columns

(a minimum of ten columns are read

Card reader punch driver - RDP
1 read binary bytes

5 read decimal word
9 read binary word
21 read decimal bytes, skip trailing blanks (@ minimum of ten

columns is read)
1 punch decimal byte
19 print decimal byte
27 punch and print decimal byte
47 punch binary word

If 256 is added to any of the read mode numbers then the resultant sum used
as an operation mode causes Hopper #2 to be selected. Adding 64 causes the

card to be released and a new card to be fed.

Adding 256 to any of the punch mode numbers causes Stacker #2 to be sel-

ected. Adding 64 causes a card to be fed before the operation is performed.

For example, 257 = 1 + 256 means Read binary bytes from a card in the sec-

ond hopper.

Plotter driver - PLT

3

write byte

Flexible disc driver - FDn

1

3
5
7

read
write
read, non-skip

write and check read

Charaband printer driver - CPO

3
7
15
31

print converted characters

interpret first byte as carriage control

output to load Direct Access Vertical Format Unit at é Ipi
output to the DAVF unit at 8 Ipi

Cassette tape unit driver - CTn

CTO
1
3

+4
9

17

CT4

— 0 N O W -

15
17
21

read one block per ECMA 34 version 2

write one block per ECMA 34 version 2
read data blocks continuously

read one block per ECMA 34 version 1

read one block without checking

read one block per ECMA 34 version 2

write per ECMA 34 version 2

continuous read per ECMA 34 version 2

write with control read pe}' ECMA 34 version 2
read one block per ECMA 34 version 1

write per ECMA 34 version 1

continuous read per ECMA 34 version 1

write with control read per ECMA 34 version 1
read one block without check

continuous read without check

q4.5

4.5.1

97

Serial printer driver - SPT
3 write converted character

7 inferpret first byte as carriage control

Cartridge disc driver - DKPn
1 read

3 write

Communications equipment

See terminal reference cards.

NB: The Operation Code, which represents whether the operation is an out-
put or an input operation, consists of the two least significant bits of the

Operation Mode.

Program Production

Once one has written a MUSIL program down on paper, one may enter it onto
some medium, such as cards or tape, or one may key it directly into the ma-
chine. For the latter choice, it is convenient to use MUSIL Text Editor,
which takes in the MUSIL source code as data to itself. Text Editor can also
be used to change programs that did not compile properly or to up-date job

programs.

Instructions for using MUSIL Text Editor can be found in the manual MUSIL
Text Editor Version Two. A list of Text Editor commands and error messages

can also be found on the RC 3600 MUSIL Programmer's Reference Card.

Compilation

Once the MUSIL source code has been written and debugged, it must be com-
piled info MUSIL object code for execution by the MUSIL Interpreter. On the
RC 3600 MUSIL Programmer's Reference Card can be found the procedures

and commands for compilation.

98

4.5.2

MUSIL Compiler Error Messages

v

During compilation errors give rise to the following numbers on the listing or

on the operator's console:

020202 Number overflow, a numeric constant exceeds 65535, or 16 bits.
020301 Illegal character in input.

030102 < appearing within a string is not followed by a numeric literal.
030202 The construct < number is not followed by a >.

030302 The number between < and > exceeds an 8-bit byte value.
030403 Core overflow, produced code exceeds available space.

030503 Core overflow, code contains too many relocation bits.

040105 Name conflict in Constant Section.

040205 Name conflict in Type Section.

040302 Syntax in Type Section, no = following an identifier.

040405 Name conflict in Variable Section.

040506 File variable with O buffers.

040602 Procedure head not followed by ,

040702 Procedure without legal identifier or with name conflict.
050102 Type is no identifier.

050202 (is missing after string.

050302 Length undefined for string.

050402 String with length 255 declared.

050502) is missing after string.

050604 Undefined type identifier. Note that no forward declarations are
~allowed.

050702 Improper termination of type specification.
051002 Field of type different from string.

051102 Incorrect use of FROM.,

051205 Name conflict in GIVEUP procedure.
051304 Conversion table undeclared.

051406 Conversion table type error.

060206 Double defined label.

060302 Variable is no identifier. Or undeclared.

060402 . is not followed by identifier or by undeclared field.
060504 Identifier undeclared.

060606 Type error with BYTE or WORD.

060702 Relational operator missing.

061002 Procedure statement with missing)

4.5.3

061102
061306
061406
061506

Type error in procedure parameter.
Illegal number of parameters.

Type error with operator.

Overflow of work registers. Expression too complex.

Error Messages which cause skipping of program parts:

000040
000041
000042
000043
000044
000045
000046
000051
000052
000063
000064
000065

Syntax in section delimiter.

Syntax in constant declaration.

Syntax in table declaration.

Type specification incorrectly terminated.

Variable declaration incorrectly teminated.

Syntax in field list.

Syntax in file declaration.
Incomprehensible statement.
Incorrect label declaration.

Incomprehensible expression.

Copying MUSIL Program Parts

99

At the time of compilation parts of one MUSIL source may be copied into a

place within another MUSIL source. The sources must, of course, not be

located on the same device. To do the copying the command

$COPY

is inserted in the program into which the code is to be copied at the location

where the code copied is to be placed. The command

$END

is inserted into the source whose code is being copied and is placed after

the last instruction to be copied. Copying begins from the first statement of

the copied program.

100

46 List of Reserved MUSIL Words

To produce a tape or card deck or disc with a full run, including systems
software and one or more applications programs in MUSIL object code, one

must use the program generator supplied as part of one's program production

4.6 List of reserved MUSIL words
AND GOTO RECORD
REMOVEENTRY
BEGIN IF REPEAT @
BINDEC INBLOCK REPEATSHARE
BYTE INCHAR
INITCAT SETPOSITION
CHANGEENTRY INSERT SHIFT
CLOSE INTEGER STRING
CODEBODY
CONV LOOKUPENTRY THEN
CONVERT TRANSFER
CONST MOVE TRANSLATE
CREATEENTRY TYPE
OF
DECBIN OPEN UNTIL
DO OPIN ‘
OPMESS VAR
ELSE OPSTATUS
END OPTEST WAITTRANSFER
EXTRACT OPWAIT WAITZONE
OUTBLOCK WHILE
FILE OUTCHAR WORD
FROM OUTTEXT
GETREC PROCEDURE
GIVEUP PUTREC

package.

READER'S COMMENTS

usability, and readability:

MUSIL Programming Guide
RCSL 42 - i 0344

- your critical evaluation of this manual.

A/S Regnecentralen maintains a continuous effort to improve the quality and

usefulness of its publications. To do this effectively we need user feedback

Please comment on this manual's completeness, accuracy, organization,

Do you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Please state your position:

Name:

Organization:

Address:

Department:

Date:

RETURN LETTER -

CONTENTS AND LAYOUT

Thank you'

LIRS . .

. s e 0000000000 000

. ov.ol'.. o0 e e v e

Cu” e

.Qoo' .

e o 000 o0 . . .

1
1
1
1
1
1
1
1
1
t
1
1
o
(e]
>3
o
=
-
]
Q
=
'
-
o
o
>
o
]
o
Q
3
o
(_Il'_
Q
o
(o]
1
'
I
1
1
1
1
1
[
1
1
1
.

e 9 00

Affix
postage
here

e« 0 00

s e e e e o0

A/S REGNECENTRALEN
Marketing Department
Falkoner All& 1

2000 Copenhagen F

Denmark

s o0 0

oocono.coo-v

INTERNATIONAL

EASTERN EUROPE
A/S REGNECENTRALEN
Glostrup, Denmark, (02) 96 53 66

SUBSIDIARIES

AUSTRIA

RC - SCANIPS COMPUTER
HANDELSGESELLSCHAFT mbH
Vienna, (0222) 36 21 41

FINLAND .

OY RC - SCANIPS AB
Helsinki, (90) 31 64 00

"HOLLAND
REGNECENTRALEN (NEDERLAND) B.V.
Rotterdam, (010) 21 62 44

NORWAY

A/S RC — SCANIPS

Oslo, (02) 3575 80

SWEDEN

RC - SCANIPS AB l
Stockholm, (08) 34 91 55 L
SWITZERLAND I

RC - SCANIPS (SCHWEIZ) AG
Basel, (061) 22 90 71

UNITED KINGDOM
REGNECENTRALEN LTD.
London, (01) 439 9346

WEST GERMANY
RC — GIER ELECTRONICS G.m.b.H.
Hannover, (0511) 6 79 71 ‘

REPRESENTATIVES

FRANCE
SORED S.a.r.l.
Nanterre, (1) 204 2800

HUNGARY
HUNGAGENT AG
Budapest, 88 61 80

TECHNICAL ADVISORY
REPRESENTATIVES

POLAND
ZETO

sHREGNECENTRALEN oo™

RUMANIA
l.LR.U.C.
Bucharest, 33 21 57

HUNGARY .
HEADQUARTERS: FALKONER ALLE 1; DK-2000 COPENHAGEN F - DENMARK NOTO-0SzV
Phone: (01)10 53 66 - Telex: 16282 rc hq dk ' Cables: regnecentralen Budapest, 66 84 11

