m

DATA ENTRY
—Elease =

! Format Language Guide

. BB00

1 »

i DATA ENTRY

g Haoease =

‘ -

y Format Language Guide

|

l Second Edition

l A/S REGNECENTRALEN August 1977
Marketing Department RCSL 42-i 0664

g 4

1 @

] DATA ENTRY

I Release 2
@ -

: Format Language Guide

| g

l Second Edition

l A/S REGNECENTRALEN : August 1977

Marketing Department RCSL 42-i 0664

o

Avuthors: Aino Andersen, Lis Clement, Peter Jorgensen, Bodil Larsen
Text Editor: Peter Jorgensen
KEY WORDS: MUS, Data Entry System, batch translation, format language,

definitions, coding sheets, execution, examples.

ABSTRACT: This manual contains a description of the format language, and
instructions on the writing, translation and execution of format

programs.

Users of this manual are cautioned that the specifications
contained herein are subject to change by RC at any time
without prior notice. RC is not responsible for typographi-
cal or arithmetic errors which may appear in this manual
and shall not be responsible for any damages caused by
reliance on any of the materials presented.

Copyright ® A/S Regnecentralen, 1977
Printed by A/S Regnecentralen, Copenhagen

Foreword

The main differences between the present second edition and the first
edition of RC 3600 Data Entry Release 2 Format Language Guide
(September 1976) are due to the extension of the RC 3600 Data
Entry System with

multiple - entried tables (disc tables)

subscript - intervals and conversion operators

pseudo - registers

infinite number of formats, subprograms and tables.

In order to handle multiple - entried tables the standard format TABLE
has been changed and a new coding sheet (disc table coding sheet)
has been introduced. It is now possible to give between 0 and 6 func-
tions to one argument, so the syntax of the SEARCH - statement has
been changed (variable number of destinations , and one or more desti-

nation(s) may be dummy).

To permit reference to groups of characters within fields or registers
subscript - intervals and conversion operators (ALPHANUMERIC , NUMERIC)

have been introduced.

The system has been extended with a number of pseudo-registers containing

run - time information, such as batchname, data and time.

Some instructions concerning (user defined) registers have been made

in order to leave fill characters and justifications untouched.

a. automatic field (i.e.kind D, C or |) must have exactly
the same length as the corresponding register.

b. after execution of an eventual field program connected
to a D-field or an |-field the field contents will be
copied into the register.

c. I-fields must be of numeric type (N).

Beside this (user-defined) registers with a negativ value will be in

embedded trailing representation (as for SS-fields).

In section 3.7.1.7 DUR-statement is described even if it is not imple-

mented yet. The statement is used to simulate activation of the DUP

control key.

Finally the TRANSLATE program has been changed in order to inform
about the size of a translated item (i.e. format, image, subprogram

and table).

How to Use this Guide

The purpose of this manual is to enable the programmer to acquire a reliable
working knowledge of the Format Language. It is believed that a careful
study of the six chapters and the appendices will equip him with all the in-

sight required to write and successfully operate Data Entry format programs.

The subjects dealt with in the various chapters and sections are listed in the
Table of Contents. For the novice, especially, the following order of study

is considered preferable:

Introduction

The Format Language

Definitions

Format - Image - Subprogram - Table Coding Sheets
Execution of Format Programs

Entering New Formats, Subprograms, and Tables

o O AN — W O

Programming Hints
Appendices | - VII

Appendix VIl Definitions of Terms and IX Index should be consulted any
time the user of this manual feels the need to orientate himself about the ter-

minology.

Table of Contents

i
i
®
. 0 INTRODUCTION page 0 -1
' 1 DEFINITIONS | 1-1
1.1 Definition of Batch - Record - Field 1-1
l 1.1.1 Batch 1-1
1.1.2 Record 1-1
' 1.1.3 Field 1-1
1.2 Definition of Format, Subformat, and Field Description 1-3
1.2.1 Format 1-3
' 1.2.2 Subformat 1-3
1.2.3 Field Description 1-3
' . 1.2.4 Field Definition - Field Program 1-3
1.3 Definition of Subprogram - Table 1-5
. 1.3.1 Subprogram 1-5
1.3.2 Table 1-5
' 1.3.3 Argument - Function 1-5
1.4 Definition of Register 1-5
1.5 Definition of Fill-In-the-Blanks and Format Image 1-6
' 1.5.1 Fill-In-the-Blanks 1-6
1.5.2 Format Image - Subformat Image 1-6
' 1.5.3 Image Page - Fill-In-the-Blanks Mask 1-6
’ 2 FORMAT - IMAGE - SUBPROGRAM - TABLE CODING 2-1
SHEETS
’ 2.1 Format Coding Sheet and Image Coding Sheet 2-1
. 2.1.1 Format Coding Sheet 2-1
2.1.1.1 Subformat Head 2-1
l 2.1.1.2 Field Description 2-3
2.1.2 Image Coding Sheet 2-10
. 2.1.2.1 Subformat Head 2-10
2.1.2.2 Tag Description 2-10
2.2 Subprogram Coding Sheet 2-14
l 2.2.1 Subprogram Head 2-14
. 2.2.2 Subprogram Part 2-14
l @

2.3

Table Coding Sheets

2.3.1 Single Entry Table Coding Sheets

2.3.1.1 Table Head With Argument Description

2.3.1.2 Argument Part
2.3.2 Double Entry Table Coding Sheet

2.3.2.1 Table Head With Argument Description

and Function Description
2.3.2.2 Argument and Function
2.3.3.Disctable Coding Sheet

2.3.3.1 Table Head with Argument Description

and Function Description

2.3.3.2 Argument and Function Part

3 THE FORMAT LANGUAGE

3.1

3.2

3.3

3.4
3.5
3.6

On Programming

3.1.1 What Is a Program?

3.1.2 The Elements of a Program

3.1.3 The Elements of the Format Language
3.1.4 Example In the Format Language
Character Set

3.2.1 Names

3.2.2 Arithmetic Operators

3.2.3 Relational Operators

3.2.4 Logical Operators

3.2.5 Punctuation Symbols

Operands

3.3.1 Constants

3.3.2 Registers

3.3.3 Fields

3.3.4 Subscripts

Notation

Arithmetic Expressions

Conditions

3.6.1 Relation

3.6.1.1 Comparison of Numeric Operands

3.6.1.2 Comparison of Nonnumeric Operands

3.6.2 Table Condition
3.6.3 Validity Condition
3.6.4 Compound Conditions

page 2 - 17
2-17
2-17
2-17
2-19
2-19
2-20
2-21
2-21
2-23
3-1
3-1
3-1

- 12
3-12
3-12
3-12
3-13
3-13
3~ 14
3-17
3-19
3-20
3-21
3-24
3-25
3-25%
3-26
3-28
3-28
3-29

3. 7 Format Language Statements

W W W W W Wwwwwwwwwwwww

7.

NNNNNNNNNNNNNNNN

7.
3.7.2 Conditional Statements
3.7.2.1

Subprograms

.

© N O AW N

1

1

1

1

1

1

1

1
1.9
1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17
1.18

3.7.1 Unconditional Statements

3.

ALARM Statement

ALLOW and DISALLOW Statements
COMPUTE Statement
CONNECT Statement
DEFINE Statement

DISPLAY Statement

DUP Statement

END Statement

END SUBFORMAT Statement
GOTO Statement

LIMIT Statement

MOVE Statement

NOTE Statement

PERFORM Statement
SEARCH Statement

SELECT Statement

SET Stotement

SKIP Statement

IF Statement

3.8.1 Statements In Subprograms
3.8.2 Operands In Subprograms

4 EXECUTION OF FORMAT PROGRAMS

G G a0 & s S SN 60 M SN TN S0 N & B8 AN 0N o8 2 AW an
w
[e o)

4.1 Selecting Subformat
4.2 Terminating a Format Program
4.3 Execution of Subformats
4.4 Execution of a Field Description
4.4.1 Keyed Fields
4.4.2 Automatic Fields

4.4.2.1 Duplicate Fields
4.4.2.2 Constant Fields
4.4.2.3 Increment Fields

4.4.3 Not Keyed Fields
4.4.4 Fields Skipped By SKIP
4.4.5 Fields Skipped By ENTER

page 3 - 31
3-31
3-31
3-32
3-33
3-34
3-35
3-35
3-36
3-36
3-37
3-37
3-38
3-38
3-39
3-40
3-40
3-42
3-43
3-43
3-43
3-43
3-45
3-45
3 - 46

N
1
HBOBA A W W NN NN =~

4.4.6 Fields Skipped By RECORD RELEASE

4.4.6.1 Fields With Kind KEYED, DUPLICATE,

CONSTANT, INCREMENT
4.4.6.2 Fields With Kind NOT KEYED
4.4.7 Fields Skipped By BYPASS
4.4.8 Execution of a Field Program
4.5 Field Flags
4.5.1 Validity Flag
4.5.2 Skipped Flag
4.5.3 Flags For REKEY
4.5.4 Flags For EDIT
4.6 Registers
4.7 Replay
4.8 Execution of IMAGE

ENTERING NEW FORMATS, SUBPROGRAMS, AND TABLES

5.1 New Formats

5.2 New Subprograms

5.3 New Tables
5.3.1 New Core Tables
5.3.2 Disc Tables

PROGRAMMING HINTS

6.1 Screen Processing
6.1.1 Screen Processing Assigned To the System
6.1.2 Establishing Keying Positions ’
6.1.3 Defining Tags

6.2 Reformatting

6.3 Automatic Insertion
6.3.1 Not Keyed Fields
6.3.2 Constant Fields

6.4 Automatic Duplication

6.5 Automatic Incrementation

6.6 The Use of Tables

6.7 Partial Rekeying

¢.8 The use of Pseudo Registers

N N R L - - N N N
i
W 00 N N N OO v 1 i

(8,]
1

5-1
5-9
5-11
5-11
5-15

APPENDIX |

APPENDIX I
APPENDIX Il
APPENDIX IV

APPENDIX V
APPENDIX VI
APPENDIX VII
APPENDIX VI
APPENDIX IX

Required Space In Core For Formats,
Subprograms and Tables

Required Space On Disc For Batches
Examples

Standard Formats FORM, IMAGE, SUBPR,
and TABLE

Format Language Syntax
Limitations

Messages from TRANSLATE
Definitions of Terms

Index

Introduction

The RC 3600 Data Entry System is a software package operating under the
RC 3600 Disc Operating Multiprogramming Utility System (DOMUS).

It is an input data preparation key-to-disc system, receiving data from local
or remote key stations under format program control, and storing data on disc
files. Whenever a data batch is completed, it may be dumped on tape or
transmitted for remote processing. New format programs can be created and

the formats are available to all key stations simultaneously.

The system offers a great variety of data manipulation possibilities during data
entering, including: validity checking, rekeying, editing, skipping, dupli-

cation, arithmetic operations, batch accumulating, etc.

Supervisor functions include: format program generation, data batch trans-

mission, etc.

The keying of new format programs is done under control of a standard format
and the resulting format text is stored on the disc as a normal data batch. Now
the supervisor may translate it to a format program and add it to the format

library.

This manual contains a description of the format language, and instructions

on the writing and translation of format programs.

As to the practical use of the RC 3600 Data Entry System, see User's Guide
and Operating Guide.

1.1

1.1.1

1

1

1.2

1.3

Definitions
Definition of Batch — Record — Field 1.1
Batch 1.1.1

A batch is the area on a disc (a disc file), where the processed data are

stored. The batch is output area for the processed document.

Record 1.1.2

A batch consists of a number of records. These records describe the logical

structure of the processed document(s).

Field 1.1.3

A record contains a number of fields. A field is an element in the document
that is processed as a single unit (e.g., a customer number, a name, an ad-

dress).

Example i

See Figure 1.1.3.

Here the document is an invoice and the corresponding batch may consist of

a number of documents structured in the same way as this invoice.

Legically, the document may be divided into the following three parts:

A _hgc_:_d_, containing:
customer name, date, terms of payment, customer number, payment

to, invoice number

An article line, containing:

article name, quantity, unit price, and final price

A total, containing:

total price

Each part corresponds to a record in the batch.

Figure 1.1.3

FRUIT MARKET Inc.

56, Orchard Road
APPLEVILLE
Phone: 076—-33 44 11
Cables: fruitmark

Customer/Kunde: Delivered to/Leveret til:

L. Brown
39 Main Street

3000 Appleville

Invoice date/Faktura dato: Terms of payment/Betalingsbet.: Date shipped/Forsend. dato: Shipped by/Sendt med:
76.09.03 c.o.d,

Your ref./Deres ref.: Our ref./Vor ref.: Shipped from/Sendt fra: Shipped to/Sendt til:

Customers no./ Serial no./ Department no./| Account Area Flight no./Fly nr: A.W.B. no./Fragtbrev nr.:

Kunde nr. Lebe nr. Afdelings nr.: type/ no./

70950 07]2 Konto art: [Omr.nr.]

Payment to/Betaling til: Gross weight/Brutto vaegt: Net weight/Netto vaegt:
Fruit Market Inc.
56 OI'ChCll'd ROC\d Colli: Country of origin/Oprindelsesland:
3000 Appleville

INVOICE NO./FAKTURA NR. 0019908

ORIGINAL

Quantity/ Unit price/ Amount/Beleb:
Antal: Stk. pris:
3 | Apples 5.000 15.000
3 Pears 4.000 | 12.000
Total 27.000
1-2

1.2

1.2.1

1.2.2

1.2.3

1.2.4

The individual columns in the document are viewed as separate elements, and

each such element corresponds to a field in the batch.

Definition of Format, Subformat, and Field Description 1.2

Format 1.2.1

A format is a program for the Data Entry system. This program guides the key-
ing of one or several given documents, and writes the formatted information

to a batch on the disc.

§gbformar 1.2.2

Each format is divided into a number of separate subformats. Each subformat
controls the keying of one part of the document, possibly the whole document,

and writes out the data, in formatted form, on the disc as one record.

Records produced with the same subformat have the same length, while rec-

ords produced with different subformats may have different lengths.

Field Description 1.2.3

Each subformat consists of a number of field descriptions which describe the

individual elements of a document.

Each field description controls the keying of one such element; calculating,

reformatting, and writing it out as a field in a record.

Field Definition - Field Program 1.2.4

A field description consists of a field definition and a number of program

statements which are referred to collectively as a field program.

If we return to the previous example (Figure 1.1.3), then a format for the

keying of such a document could look like this:

FORMAT INVOI
SUBFORMAT 1:
customer field description
date field description
terms of payment field description
customer no. field description
payment to field description
invoice no. field description
SUBFORMAT 2:
article name field description
quantity field description
unit price field description
final price field description
SUBFORMAT 3:
total price field description
Now, if one uses
SUBFORMAT 1 once
SUBFORMAT 2 as many times as there are article lines in the document
SUBFORMAT 3 once

~ then all filled-in columns in a document of this kind can be read and pro-

cessed as fields in a batch.

1.3

1.3.1

1.3.2

1.3.3

1.4

Definition of Subprogram — Table

1.3
Special items in the format language are subprograms and tables.
These are programmed and translated independently. They can be
referenced by name from a format program or a subprogram.
Subprogram 1.3.1.
A subprogram is a collection of program statements, which are
executed when the subprogram is called (from a format program or
a subprogram).
Table 1.3.2
A table is a collection of structured data which are referenced as
one unit form a format program or a subprogram.
Argument - Function] 1.3.3
A table is either single-entried or multiple-entried.
The Tst column is called argument;
The 2nd and following columns are called functions .
A single-entried table contains only one column (arguments).
A table consisting of two columns (argument and one function)
is said to be double-entried.
Table data must be so structured that all columns are identical as
to length and type. Examples on the use of tables are given in
Section 6.6.
Definition of Register 1.4

Each format program can command a number of registers (X01-X99).

They can be used to transfer information from one subformat to
another, or as working locations, or when transferring data to and from

subprograms. The contents of user-defined registers can always be

changed by a field program.

Registers may be of different length.

1.5

1.5.1

1.5.2

1.5.3

The format program can also access a number of pseudo-registers containing

run-time information. These registers cannot be changed by the format program.

Definition of Fill-In-the-Blanks and Format Image 1.5

The image, or fill-in-the-blanks, facility is another special item contained

in the system.

Fill-ln-the-Blanks 1.5.1

Fill-in-the-blanks guidance assists while keying by displaying prompting mess-
ages on the screen. Let us look at example 1 again: a good guidance for key-

ing subformat 2 will be the shown printouts. The place of the cursor will indi-

cate the element to be keyed.

article name: quantity:

unit price: final price:

blanks blanks for
keying final price

Such printouts appear as fill-in-the-blanks (tags) on the screen. This means
that there are blank spaces between the printouts and the specific columns

are keyed in these blank spaces.

Format Image - Subformat Image 1.5.2

which the fill-in-the-blanks are written to the operator during keying. The

image is sectioned so that each subformat has its subformat image.

Image Page - Fill-In-the-Blanks Mask

A subformat image may be further divided into several image pages, each of

which structures a fill-in-the=blanks mask, i.e., a screen image.

®
N
[a—y

N
-
d

2.1.1.1

Format — Image — Subprogram —
Table Coding Sheets

New formats, images, subprograms, and tables are coded on special coding
sheets (documents), and the entering of these documents into the Data Entry
system (by keying) is performed under format control, as with all other data.
Batches created in this way are translated by calling the TRANSLATE super-
visor program. After a correct translation the new format, subprogram, or

table will be available for use in the system.

In the following the coding sheets will be presented column by column, with
those columns that require keying marked with an asterisk (*).

Format Coding Sheet and Image Coding Sheet 2.1

Format Coding Sheet 2.1.1

The format coding sheet consists of two parts:

subformat head, and

field descriptions.
See Figure 2.1.1

Subformat Head 2.1.1.1

Column 1*: Format name Min. 1 character, max. 5 characters. The
1st character must be a letter, the following
may be either letters or digits.

The format name identifies the current for-
mat in the system, and must differ from all
existing names of formats, subprograms,

tables, etc.

Column 2*: Subformat name 1 character, letter or digit.
The subformat name must be unique within
the format. The subformat name identifies
the current subformat, meaning the subse-

quent row of field descriptions.

5280 -2y SO MIGONT SONIEL 0 7400 VNV S NS N BdAL

T T v T T T Ty T T R YT T oy T TTTTT T T T T T T
e AARREE I SE S i S Sl S RANRARR S S S AR SRS This BENES St S S Sl S LA S S B e S s B LIS S A S S S S S A R S S S S M S B 5 T T T T T T T T T T T T T T T L YT Y
AR S S S S B S B LA S T A A S S A N S B A B n T T T T Ty T T T T T T T T T T T Y T T T T T T T T T T T T TTTTY T T T I v T D S S B S
[N A A L S s S S NN A S S S S M A e B it A S S B S B S S BN S M B et s s s S S S i S SRR R B R S T T T T Y T TV T VYT oTTT
STTTTTT Y LS 2 S S S e At S S e SRS s S S T T T LA S S S A A B B B N A A A S S Bt A S R e ks S i S S e T T T T LR R S S i s R S T T oreT
A NS e S e Bl T T LZ2NL R A A I A S B N S S B S S A SN G S A AN O N SO S B B S S N SN S S B S SO S S S S Sy S s S s [N A S Sl s s aEle o S I S i A SRS S S ToroTorToTTT T oy T
T T TTTTTTTTT LA L L A B S A A A A [B S S A N S A A B B S S RO S S S R e S s S S e s e Sl s ot LI S T T°T TorpT TOT A m LA S
TN TUT TOTTIUTIT T 7T T T T Ty LD B S s S e S S S B S e Mt S S S S S B SO e s M e | LD S S S S A S SN SN A M S S T T SRS e Sutt Sl S S T S ph Tt
A S B S S S A S S S St el S s S e S Sk S S S S S AN A S S S A S S A S A S S S B B (RN AU St S S s A S S St S S S TTTTTTT Yy T T T A - T S ¥ T T ToUTT o
LA S S A S R A A A A S A S A S S A LS S S S N MU S S e S S S S S s S S D S S S S S s e S e o s e i G AUV o o S S LA SR AR S S Tyt orT o T [S S
oot RANRAE A S S S S A S SR SRS f el [S S S Sl Sk S T T T T T T T T Y LN S A S e i B S S S e S S S it SRS SR S S Tt - L Sl & il T - o
B e e e e e e e Sl i s S e B i Sl S S o e e e B e e e B L e e e e S e B T i R KRk Tt Tt RUNETCID SO ENE S S S oY T T v Tt Voo
FER T A A S TTUYTTTIOT Ty Yooey T TT T T T T T T TTTTT TTUTTITTTT TTTTT 1T T T T T b —reeys et v T M A
R S SN S S S e A A S AN T S A S A A SR S S A N M e S A SO S S SO I RS S S S S S S S S S Bt e s e st e meh iy o oD D SRR SE S S et SEER SRS S SRR i A SR S o ' i LA
- e B S St Sl S B AR e Shie A St e A A A R S S S R A S e R i S S i (Ul Sl S S e At S S Nl s Bt s i e st s s G s e o s s el S S - T - 11 LA B GRS T ? T mr oo
- ST S e SN S AL S S S S A S S S S A S N G S A S 0 S A A T T T T T T T T T T A e e s S S e Al S S S S AR A Rt S S Sl -ttt e Sl T i - [S
LA A S S e S G S S S ol S st i S et e B e e e e S e T S e A S e R et S PR 3 Hh i S SRR S LA SR AES Sat ds - o
T T i Sl e sl R e PR R R T R G S e e S s o Sb T S S S A s SH S S s s ot e SR P T R e Rt s T Ty P e oy ¥ N - - . T s
G AT N PR REN (018 B) 3 L G G v * . :
S INCTA 3 WY > I o~
SINGNDLY LS WVaD(. X/O0/0/> o) o
v SIS SN &S S5
. SATAIAYES & 2 < Nl
N Crfo& [R ”y B
) o Ng o /
v VYA & > N4
;oY / N RO ~ Ny
z / < . .
4 /\u
/ \\ *
- .
N -

I'T°¢ $9NDO1d

R IUTHTeN
>N i

-... 133HS BNIG0D Lvwdod OO 9E

40

Column 3: Protected

Column 4: Comment

2.1.1.2 Field Description

Indicates whether the current subformat is

protected against manual selection or not.

N = no protection, i.e., the subformat
can be selected manually.

Y =protection, i.e., the subformat can
only be selected by the format (through
a SELECT statement).

If this column is empty, then N is under-

stood.
Min. O characters, max. 74 characters.

A comment can be used, for example, to

describe the format/subformat,

2.1.1.2

Columns 1-14 constitute the field definition, while column 15 is a field pro-

gram part.

Column 1: Field name

Min. O characters, max. 5 characters.

If field name is specified, the first charac-
ter must be a letter and the following either
letters or digits.

The field name identifies a field within the
current subformat, and must be unique on

subformat level.

The 2nd, 3rd, and 4th columns descriBe the current field's position on the

screen (by indicating first field position).

Column 2: Page

Max. 1 digit; min. value =1, max. value
= 8.

Used to divide a record into a number of
parts (pages), each of which consists of a
number of fields which together make up the
screen image.

The pages are numbered from 1 up. When

page is indicated, its value must be either

Column 3: Line

Column 4:

Position

equal to or greater than that of last indicated

page number, and it must furthermore be ac-
companied by the indication of line and po-

sition (i.e., columns 3 and 4).

Max. 2 digits; min. value =1, max. value
= number of data lines on screen.

Indicates on which data line the field is to

be entered on the current page. When line

is indicated, page and position must also be

stated (= 2nd and 4th columns).

Max. 2 digits; min. value =1, max. value
= number of characters on screen line.
Indicates position of first character of the
field on current line, counting from left.
The position number is limited so as to allow
the whole field to fit into the remainder of
the screen line.

When position is indicated, page and line

(= 2nd and 3rd columns) must also be stated.

If columns 2-4 are not keyed, one of the following will occur:

- If there is sufficient space left on current line: the.field is placed after the

preceding field, leaving a blank position in between.

- If there is not sufficient space left on current line: the field is placed on

the next line, starting from the left-most position.

- If there is not sufficient space left on the current screen image: the field is

placed on the st data line of the next page, starting in the left-most

screen position.

- If the current field is the first field in the subformat: the field is placed on

the 1st data line of the first page, starting in the left-most screen position.

Column 5(*): Length

Column 7(*): Type

Column &(*): Min. length

Max. 2 digits; min, value =0, max. value
= 80.

When length is greater than 0, the field
length will be "length" = number of charac-
ters.

When length =0, only the program part (col-
umn 15) of a field description can be stated.
When using a format, no field input is re-
quired, but the program part of such a field
will be executed.

When length is left blank, no other columns
but the program part (= column 15) of the
field can be stated, in which case this pro-
gram part is treated as a continuation of the
program part of the preceding field descrip-

tion.

Max. 2 digits; min. value =0, max. value
= |length (see 5th column) of current field
description. |

Indicates minimal number of characters to
be keyed to the field; if min. length =0,
the field may be skipped. Indicated when-
ever length (column 5) > 0.

Describes field type, i.e., which charac-
ters should be keyed to the field.
N = unsigned numeric.

Allowable characters:

1. Digits 0 through 9.

2. Fill characters.

The field will be treated as a posi-

tive expression.

SN =signed numeric.
Allowable characters:
1. Digits O through 9.
2. Minus sign (preceding first digit).

3. Fill characters.

Column 8 (x): Output position

When the minus sign is keyed, the

field will be computed as a negative
expression, otherwise as a positive.

A minus sign is stored in its keyed po-
sition, and occupies thus a field po-
sition that would be free if no minus
sign were keyed (leading separate

representation).

i

SS

signed numeric.

Allowable characters:

1. Digits O through 9.

2. Fill characters.

When the field is terminated by the
-ENTER key, it is treated as a nega-
tive expression;when the ENTER key
is used, the field is assigned a posi-
tive value.

The negating operator is stored as an
overpunch of the right-most charac-
ter in the field - also called embedded
trailing representation (0 becomes a~,

1 becomes a J, 2a K, 3an L, etc.).

AN= alphanumeric.
Allowable characters: all non-control

characters.

A = alphabetic.
Allowable characters:
1. Letters A through Z.
2. ., -

3. Fill characters.

The field is indicated when length (column 5)
> 0.

Max. 3 digits; min. value = 0, max. value
= 255.

The position of the field in the output rec-

ords is indicated by a field number, which

permits reformatting the field sequence

from input.

Column 9: /I

Column 11: Rekey

' Column 10: Fill characters

Fields with output position = 0 (no-transfer
fields) are always placed aofter the last field
in the output record. Such fields, though
still stored in the output record (for possible
rekeying) are not transferred by dump- or
transfer programs.

The first field in the output record has out-
put position =1,

Only fields with a length (column 5)> 0
are counted.

Fields with length (column 5) = 0 are al-

~ ways placed after the last field in the out-

put record.
Indication of output position is required if

length (column 5) > 0.

Indicates justification:

R =right-justified

L = left-justified

If the number of keyed characters is less

than field length (column 5), the keyed char-
acters are placed either in the right-most or
in the left-most part of the field. Remain-
ing positions are filled with fill characters
(see next column specification!).

No indication = automatic right-justification.

Specifies fill characters to fill not keyed

positions in the field:

A =space
0 =zero
* = asterisk

If fill character is not indicated, spaces

are understood.,

Indicates rekeying of a field:
Y =rekey field.
N = do not rekey field.

No indication implies rekeying.

Column 12: Display

Column 13: Kind

Indicates whether an edited field shall be
displayed on the screen or not. 'Editing' in-
cludes, among other things, justification
and insertion of fill characters.

N = do not display edited field.

Y =display edited field (contents of out-
put record field) justified and filled
with fill characters.

Example: Display =Y may be used to show

input of a not keyed field.

No indication of display implies N.

Indicates field kind, that is:

K =keyed field. Field may be keyed.

N = not keyed field. No operator action
required; the field contents may be
computed by the field program.

C = constant field. Field contains either
the contents of the register specified
in column 14, or currently keyed field

input.

D =duplication field. Either the field con-

tains the value of the register speci-
fied in column 14, or one keys in the
current value when the field is en-
countered. In the latter case the re-
gister is changed to the keyed value.
| = incrementation field. As for duplica-

tion field, except that - if no data are

keyed in - the register value + 1 is en-

tered to both field and register.

The field must be of type "N" (column 7).

When kind =C, D, or |, indication of re-
gister (=column 14) is required.
No indication of kind implies that kind = K.

Column 14: Register Max. 2 digits; min. value =1, max. value
=99,
Specifies which register should be used to
hold the field contents if field kind = C, D,

orl.

Register may only be specified for fields
with kind (column 13)=C, D, or I.

Column 15: Program statements Min. 0 characters, max. 80 characters.
Contains a part of a field program.
A field program consists of a number of
these columns, which together form none,
one, or several statements (see Section 3.7).

These statements are used when, for in-

stance, submitting current field to closer
control than what is specified in columns 5
through 14. If a statement is to include a
reference to a field, the corresponding
field name (as specified in its 1st column)
must be indicated.

If there is not enough space in a column to
include the whole field program, the field
program may be continued in the next col-
umn 15, provided the preceding columns 1
through 14 are left empty.

A field program is considered to be con-

cluded if a filled-in field description (col-

umns 1 through 14) or a new subformat is

encountered, or if the format is concluded.

If the format coding sheet is not large enough
to hold the whole subformat, continue on a
new format coding sheet, but leave the sub-

format head empty.

2.1.2

2.1.2.1

2.1.2.2

2-10

Image Coding Sheet 2.1.2

The image coding sheet consists of two parts:

subformat head, and

tag descriptions.
See Figure 2.1.2.

Subformat Head

Column 1*: Format name Min. 1 character, max. 5 characters.
Format name must be identical to the name
~ of the format where the current format

image is used.

Column 2*: Subformat name 1 character.
The subformat name must correspond to the
name of a subformat within the format that
uses those tags which are listed up to the
appearance of the next subformat head or

the end of the tag description.
Column 3: Comment Min. O characters, max. 74 characters.
Comments are used to describe e.g. the

screen layout.

Tag description 2.1.2.2

Together, the 1st, 2nd, and 3rd columns describe the screen position of the

current tag (by indicating 1st text position).

Column 1*: Page Max. 1 digit; min. value =1, max. value
=8.
The tags of one subformat are hereby divided
into a number of parts (pages). Each page
contains as many tags as together create
one screen image.
The pages are numbered from 1 up. Tag de-
scriptions belonging to the same page must

appear in one sequence.

8L£0

=2y 1SD¥

T v T T v U I T T T T T T T T T T T T T T T T T 1 T T T i T T T T T T T T T T T T T T T T T 2NN B B S B S ¢ T T T T T T T T 4 T LI S B S |
AR AR Sl S S m S S e e S e LA A E S D E S S S St ma s S B LN A i B i B H S o B e e e e T T [A i B S SR SR B B S S ma AT S T ”~
e T AN e T J";_ AL A A B S B E S B B st s s s S L B S B B B B e B R e T T LA A A A S S Sl S St B v St S SRS 1 n’-h‘f
[A A A N HS S S B Sl St st pat S S [A S s A R S B B B B e e e LA SN B B B B S B pn et sty S S A S B S Bl S e e e ol R S S T i
\T«A.,{JﬂwJ.!ﬂJ!J‘JJ1~_Aj_a_<q_4‘_|J|—|4.4Jij,l4J|)_]JlJ!jJ|<A_____A_<<4‘___qqA_4‘__,qj<<~“__«17<_4_4,1§
T AL A S A B A s B S et S S S LA B A E (N B SN B B e et et & [A e S S S e e Bt s e e S e LA B S B A A B SR St S B e wts S S S e
‘,1.4‘4|\J‘v.q’<f|‘_|\44|q!,4rj!14ltjlql4q T T T T T T T T T T T LA N S A B E S G S Sy e e m SR SR LA S A A S B N S S S e s s s SR S AR A A At S M | T
£ A A E A E A B S G S e e e S e R e LA A B B A S Hs B e s e e e e — AL A R R S SR S S M B B e i s S S S T T T T T T T T T T
(RN A A S B St R Bt S s n & [A A A R B S B S S e B s s S e e LA S B B s s s o J«..d‘J!J,.sJI_’._IJlj\ﬂIJ-f‘_u [A A A B e S B A n Sl S S s i S S e T T 1
L e S e e e e e o A B I S S S S S e S e S e e e e SRR L A B S B e S B e e e e B . T U
LA S [S B St S S B S S s s o 1_1J!|41|T4¢|4|!]'J\“4'Jl[«414x [N B S B B S Bt S S e st S O TTTTTTTTITT T LA A A S R S S B T T T T T LAN N B B T T T TIOYT T T v -
LA A S B S M M S e e S e LA A e e S A el e e e e D e i e e T [N A A A i S A S S B S S S B S B T S JLARA S S B S mhn o T T
L e B S JIJLJTJIIW:A.I.J;J‘lql JL I L E B S B e B B e L R s e S, FLL s s e S S B s S s e e e B LN A B A E B S B S S B S st B e e &
I S A A S S S T T T TTT T T 1T T T T T T LA T T T T T Ty T T T AR A A AN S SR S S v T T T T T T T T T T LA T T T T LA A S LA S T A
[A S A S e S S Sl s S s S T H S D e B B s S S e A S T S LA A D B S B B S B S S B e e B B e T e a— T T
i T oy T T T T LA A A e S B e it S S St s s e T S I A S A S A S Bt S S B e e B R SR Y -1 B
~ S e S A et e S A1 | L A N B E S S e e e e e e e e e L [S At S St v s S e e S S S R TTTTOTU T - -1
v € |
IX3L ONV VA/ /30,
N
WO
....... T T T v T T T H i LS T T
o) - - € I
- o ININNOD | AN
. LvINHOA

L' N2l

F(EKO&%

‘S3LON

«

133HS DNIAOD IADVINI

SIVILING

LadaSAG

00

N

,,r.m:,.?ﬁuu

- W =y N ow BN = mm
D ———————— e e .

The page numbers are printed in unbroken,

non-decreasing, sequence.

Column 2*: Line Max. 2 digits; min. value =1, max. value
= number of data lines on the screen.
Indicates on which data line the actual text

is to start (on current page).

Column 3*: Position Max. 2 digits; min. value =1, max. value
= number of characters on one screen line.
Indicates position of the first character of
current text on the current screen line.
The position may not fill more than to al-
low the rest of the screen line to hold the

whole text.

Column 4*: Text Min. 1 character, max. 80 characters.

This contains the tag which is to be used by

the current subformat in the screen position
specified by page, line, and position (that
is, the Ist, 2nd, and 3rd columns).

The following spaces (i.e., superfluous
spaces to the right of the text) are not in-

cluded in the image.

2-13

2.2 Subprogram Coding Sheet

2.2

The subprogram coding sheet consists of two parts:

subprogram head, and

subprogram parts.

See Figure 2.2.

2.2.1 Subprogram Head

Column 1*: Subprogram name

Column 2: Comment

2.2.2 Subprogram Part

Column 1: Program statement

2-14

2.2.1

Min. 1 character, max. 5 characters.

Ist character must be a letter, the follow-
ing characters either letters or digits.

A subprogram's name serves as its identifi-
cation in the system and must differ from all

existing formats, subprograms, tables, etc.

Min. O characters, max. 74 characters.
Comments may be used when, for instance,

describing the subprogram.

2.2.2

Min. 1 character, max. 80 characters.
Contains a part of a subprogram. A subpro-
gram consists of a number of such col-
umns, which together form one or more
statements. (See Sections 3.7 and 3.8")

£LL80 '=2¥ 1SV

T T T T T T T T T T T T T T T 1 L L Ll T T T T T T T T T T T T T T Ll L] Ll T T T T T T T T T T T T T T T T T T 1 T T T T T T T T T T T T T T 1 T T T T T i
T T T T T T 1 1 T T T T T T T T rrr—r T T T T T T I 1T I I T T T T T 1 1 T 1 1 T T T T T r I 1 1T T T rTTTa T 71«%«11
Ty~ T T T T 7 T T rrYTré¢tTryTTTTrY v vttt T T T T T T T T T T T T T 7 T T T T T T T T T T T Vv T T T T v T T T T ey by

o~
LA A AU R BN SN N SR EA SN S SR SR SN S SN SN S SN SR S SN R NS SN SN RN SRS SEAN SRR RN S SN AR NS S A N SN SN SRS SRR SN NS AN SN AN AU IR S SR SN R SN BN B B SN B AR SN AR SR BN SRR SR SR A SR R B T T T T

NN SN RS S B S U S BN S S R N B NN B ER SN U S S UMD SN U R S R SN SN BRSNS EM B S SR U B B S S U B B S S N SR S S S B B S A SR AR S SRS A SR BN R AR G S RS B S S AN S A E S A A
rrryYrr7T— T 7 T 1T T 1 7T 17— T v T 7 T 7T o T 7 7 7 rr—T—— T rr—r—— rr—Tr— T T 7 77 1 7 7 17 7 17 v 7 7 v 1 17 17V 1 71T v Tt 1 1 v T T T T v v T T T T T T T
T " ¥V T T T T T 77T 7 T 77Ty rrr7r Iy rrrTrTCrrry 1171 1 11T vy 7T 1 1. 7 1 T 1T 1 T T T T L NN SRS B NS D SRR SRS I SR EN R S R SR B
LIS SE S S S S S S S S 25 SN S S SHn S B SR SRS R SE A D R S E S S E SR B R SRS AU SUM SRR SN S SR S RN SN SN RS SR R R S S SRS S SR N ERAD I SN SR SR SR SRR RN SR S SRS SR B S H SR S A E S R A A R A

T TV ¥~V T T T T I I rrr T 7Ty 77 37T rrTTTTrTrrIir v+ ‘v 71 117 1 1 rrTr—1r—r1r 1t 1 T T 1 T T v T T 1T 1T T TTTTT T T
T+ 7 7 T 7T T 7o 7 T T o o7 o T 7 7 7 7 T rrr—7rrrrvY~7rvr—~7v 7171 7 r7 71T 1 717 17 1 1. 773 1 71 v 1 Yy T 1 1T 1T 7 17 T 1 1 1. 1T 1 1 T T T v T T T T T T
Y 1 v 1 7 T 7 1T T T 0T T T T T 7T TrTrrr T+~ 7 r‘7r7J17 ‘1Y ‘1 ¢ v 1 1 v y-r v r rvr— 1 1 v 1T Vv 1 1 Tv T T ¥ T Tr T TTrorer T T T T
-7 Yy 7 Ty TrTT v T T T rTTTTTTroYTYTTTYtT v T 7 7 Ty T T TTrTTTryYtrtyr T rvoTrTT v v 1 v T T T v T T 1 1 Y v ¥ v T T T T 1777 v T T T
T T T T T L2 LA AL L AL N AU AN E SRR HERS B B AR AN SN N SR A B RS AR S S R R AU N T T T v 7 T T T T YTTYTTTTTYTTYTTY T T T 1 T T T T T T T T T T
T T T T T YTV T 7 7 T T 7 7 T T rrTrrTrTTTTT YT T T T rrTTYTTTTTTT T T T v T T v T T 1 ¥y v T 1T T T T T T T v T T T T T
TTYTYCTCTYTCTTCOTTYTCCT T v T v T T T T Tr 1T T T T 1 T 1T 4/., T T T T T rTrYTYTrsrT—r 1 T 7T T T T Tyt T T T7T T 1 1 Vv 1 T T T T T T T T T T T T

SINIWILYLS WYHOOHd

T 1 T T T T T T T T T T
z '
INIWWOD JWVN
DOYd NS

Z°'T [NoId

LUBNSAS AU 2]

‘WVYHOO0HdENS ‘3lva SIVILINI

40 I5vd | __'133aHs ©N1aoo wvdooddans | OO 9 e

SANHNNDHY 4

HoN3aatl | awwn
71 v v 31avL

L'€°C NDId

2-16

‘aiva ‘SIVILINI

38avy

30vd (ITONIS) 133HS DNIGOD F1av.L

-S31ON

2.3 Table Coding Sheets 2.3

2.3.1 Single Entry Table Coding Sheets 2.3.1

A single entry table coding sheet consists of:

table head with argument description, and

argument part.

See Figure 2.3.1.
This coding sheet only applies to core-tables; coding of disc tables is
performed on the disc table coding sheets (2.3.3)

2.3.1.1 Table Head With Argument Description 2.3.1.1

Column 1*: Table name Min. 1 character, max. 5 characters.

The first character must be a letter, the fol-
lowing either letters or digits. The table's
name serves as its identification in the sys-
tem, and must differ from all existing for-

mats, subprograms, tables, etc.

Column 2*: Type =S, for Single entry table.
Column 3*: A-type This describes the argument type, thus:
N = unsigned numeric

AN = alphanumeric

Column 4*: A-Igth Max. 2 digits; min. value =1, max. value
= 80.

Gives the argument length.

All arguments have the same length.

2.3.1.2 Argument Part 2.3.1.2

Column 1*: Argument Min. 1 character, max. A-lgth characters.
If A-type =
N: Right-justify the argument and fill not
keyed positions to the left of the argu-
ment with zeroes.

AN: Left-justify the argument and fill not

2-17

GLEQ t-2¥ 1

r—r0 0¥Vt T T T T T T o T T T T T T T T T T T T T T
4
T T T T T T 1 1 LA AR S IR I I B | T T T T LA A S S T T T T T 7 LA SN S AR A S R T T T 7 T TrTT o T T 7 T L SL A A S SR | T T T AN SR SR A SR N B H L A B 3
' 3
T T T T T T T T T T T LA S S B A BN R E RN NS SRARD SN S EE SRS I EE E S T T T T T T T T o 1T T T T T T T T T T T

k4

r-vV «——/ vy 7Yy v T T T T v vy v Ty vy vy YT T T YT T TTTTYTTT T TTTY O T YT Y YTOTYTTT YT YT T T T T T T T T T T T T T T T T O T T
3

ryeerTr——TrTv——"v Yy ~Vvv¢v 170 r—yyV¢v v v 1 v 1o —¢v 1 ¢ o vyvtr 11 ¢vrvvrv. T v v v&© ., 7oV T T T o V7T T 7T T 7 T T T T T T T T T T T T T T T TTY
4

LI A A A R R O A SR R AN RN DR A AL R R SN SR S S RN R SN SRER NNED AUND HAND NS N BN SN SN AN SUN N ANNN SR SNNE SN NS NUSN EAND SEN RENS SN BN S RS S NN SN BES: NUN S EEED SEE SHEN SHN SN S S SN S M S S mas man s p e e ceb SRR
3

T Tt o r oo T +vro rr¢v . vr v . & v v v OUrmrTrTYT7T TrTTrreTrrrrrrr T
4

rv-ryY™w 7 7y 7y 7 rry vy 77 7 o777 v 1 ¢ v 7 >y v v 7 T Ty T T T T T T T T T YT Y T Yo oTTTYTYTOTOTOTTT T T T T T T T T T
3

L L A A L D B A B R BN B SN BN SRR SRS IR B BN SRR AN N BEND SRR BN SN S S SN AN SN SN SR SN AU N R S R N PN SN AN S R S R R A BN R S S S SN BEMD A S S S S S S S G
. 4

r~—Tr—7 77y 7rrr—7v7 7 7—7vV/7v v 7 v 77 ¢ ¢ 1 11— 7y 1 ¢/ ¢ 7 7 7 7 77T T 7 7 17 7T 7 T T T Ty YT TT T T T T OOTT YT T T T T T T T T YT
3

r T o e ' T e r T v . v v v . ror—¢r—r——T7TT™T T T 7T 7T T 7 oo Tr—— T TTT™mr—r7—T T T T T TrTTrTrrT—Tr T T T T T T T T T T T T T T
¢

rv¥— v—/7ry 77y v7vvvVrr—yvy 7 T 77T T VvTT T 7 v v ¢ 1T 17 v v+ v vy TTyvCyY%TTyovrrTTTrTT T T T v T T T T T Ty T T T T T T YT T T T T T T T T T
i

rr— .),/ T 777 ‘¢ ¢+ v ¢ o —‘+v— ot ¢vro. 111 Vv 1+ 1+ T v+ rT. ¢ vr T T T 7T 77 v 7 /7 T rrror-ror——o,—TT7 7T TrTrTrTTY T YT T T T T T T T T T T
[4
rr——r——Vv~Vvy 7~y 777 r—rr—7— 7 7T v 7v 171 7¢v 11 1t+v 1 11— r ‘1t 7 T v v v vy v Y 1 17 v 1T T T T r7 1 T 7 T
3

rr—¢7v¢o v Vo7 o v T T o+ g v 1o v roeerYyryr—r—YyY— ' v vy r—r T oo o o o T T T T T T T T T T T T Ty
Z

rY~—~«Y7Y— 77 7Yy 7vv7T 7 7 7T 7 777 1 ¢ ¢ 1 ¢ r— ¢ 1Y 1 Yy 1 v 1y ¥y T v Iy TTrTrrTTT T T T T T T TTTYT T Y T T T T T T T T T T T T T T T T
3

~—rr T oY+ T ooy T rrr T
k4
TTrTr v T vy 1T r - v vt o1 T 1 T 1 1 1 17 T T T ¢ 7T o T
3

v+ T Ty T v T
. k4

LA A AN E AR N SN AR DU SR SN S IR AR AN SR ER BRSNS ENN I I H S S NN B A RS B SRS SR S S NN SRR SN A SN SN BN END SRR S U S S S S R SR A RN SR SR S SE SEE U SRR S SN SN St Nt Sy S L S B S S S
3

SNOILONNS % SINIWNDHY ¢ B 1+

T T T T T L

]
S S G S

9+ S| v € |2 L

HLONWIAJAL{HLOT| 3dAL n JNVYN

41 4] Vv v 3718vL

'€ [WNOIA

CLUDNSAG AL T eE(]

-378vl ‘d1va ‘STVILINI

40 39Vd | @18N00a) 133Hs oNI002 F1avL | O OG99 ES

2-18

keyed positions to the right of the ar-
gument with blanks (A).
An argument may not stretch over more than

one line.

2.3.2 Double Entry Table Coding Sheet _ 2.3.2

A double entry table coding sheet consists of

table head with argument description and function description, and

argument part and function part.
See Figure 2.3.2.

This coding sheet only applies to core-tables; coding of disc tables is
performed on the disc table coding sheets (2.3.3).

2.3.2.1 Table Head With Argument Description and Function Description 2.3.2.1

Column 1*: Table name Min. 1 character, max. 5 characters.
The first character must be a letter, and the
following may be either letters or digits.
The table name serves as its identification
in the system and must differ from all exist-

ing names of formats, subprograms, tables,

efc.
Column 2*: Type =D, for Double entry table.
Column 3*: A-type Describes the argument type, thus:
N = unsigned numeric

AN = alphanumeric

Column 4*: A-Igth Max. 2 digits; min. value =1, max. value
= 80.
Indicates the length of argument.

All arguments have the same length.

Column 5*: F-type Describes the function type, thus:
N = unsigned numeric

AN = alphanumeric
2-19

Column 6*: F-Igth

2.3.2.2 Argument and Function

Column 1*: Argument

Column 2*: Function

Max. 2 digits; min. value =1, max. value
= 80.
Indicates the length of function.

All functions have the same length.
2.3.2.2

Min. 1 character, max. A-lgth characters.

If A-type =

N: Right-justify the argument and fill not
keyed positions to the left of the argu-
ment with zeroes.

AN: Left-justify the argument and fill not
keyed positions to the right of the argu-
ment with blanks (A).

An argument may not stretch over more than

ore line.

Min. 1 character, max. F-lgth characters.

If F-type =

N: Right-justify the function and fill not
keyed positions to the left of the func-
tion with zeroes.

AN: Left-justify the function and fill not
keyed positions to the right of the func-
tion with blanks (A).

A function may not stretch over more than -

one line.

2.3.3

2.3.3.1

.

Disc Table Coding Sheet. 2.3.3

A disc table coding sheet consists of

table head with argument and function description, and

argument part and function part.

See Figure 2.3.3.

Table Head with Argument Description and Function Description 2.3.3.1

Column 1%: Table name Min. 1 character, max. 5 characters.
The first character must be a letter, and
the following may be either letters or
| digits. The table name serves as its identi-
fication in the system and must be the

name of the disc table holding the table.
Column 2" Type =M, for possibly Multiple entry table.

Column 7" : No. of Functions A digit specifying the number of functions
per argument; min.value = 0, max.value = 6.

Zero means that the table is single-entried.

Column 8": A - type Describes the argument type, thus:
N = unsigned numeric

AN = alphanumeric

Column 9(*): F1 - type Describes the type of first function, thus:
N = unsigned numeric
AN = alphanumeric

Not filled in if no. of functions equals 0.

Column 10(*): F2 - type Describes the type of second funtion

(see column 9). Not filled in if no.

of functions less than 2.

Column 11(*): F3 - type Describes the type of third function
(see column 9).Not filled in if no. of

functions less than 3.

Column 12(*): F4 - type Describes the type of fourth function
(see column 9). Not filled in if no. of

functions less than 4. 2-2%

v090 !- zsffou L J @ @
LS T T T T T T T T T T T T T Ll T T T T T T T T L} T T L) T T T T T T 1 T T T 1 T T T T T T T v T T T T T T
T T T T 1 T T LA T T T T L T T T T T T T T L T T T T T T T T 1 ¥ T T T T T T T T T T T Y T T T T T T
1T T T T T T T T T T T T T T T i T 1 T T T T T T T T T T T T T
T T T T T T T T T L T T B o T T T T T T T R T T R T 1 T L] T T LR L] T T 1 T T T T T 1 T T T T ¥ T T T T
Ll T T T T T L) T T T T L T T T T Ll T 71 T 1 T T T T T L} T T T T T T L T L] T 1 T T T T T T T T ¥ T T T T T
T T T T 7 Al R 4 T T T T T T T T T T 1 T T T T L T T Li T T T T T T L] LR T T T T T T T T T T T T T T T T
T 1 T T T T T L T T T T T T] T T T T T T T T T T T T T T T Af RE T T T T T T T T T L ¥ T T T T T T ¥ T T T
T 1 T T T T T 1 T T T L T Al T T T T T T 1 T T T T T T T T Al T T T T T T T T T T T ¥ T Ll T T T] T T T T T
T T T T T T T T v T T L] T L T L) L] T T T T T ¥ T T T T T T L
.
T T T T T T T L} T T T T T T T T T T T T T T | T T T T T T T T T ¥ T T 1 T T T 1 T T T T T T T T T Bl T T
Ll T 1 T] L] T T T T T
T T T T T T T T T T T T 1 T ¥ T T Rl T T R T T T T ¥ L] T T T T T T
T T T T T T T T T T T T T T T T T T T a T L T L T T T T T T T
T 1 T T T B A\ T T T T T T T ¥ T T T T T T T T T T T
T T T T T T T T T T L T T T T T T T T T T T A T T T T T T T T T L T
L T T T T T T T T T T T T T T T T T T T | ¥ T T L T T T T T T T T T T ¥ l T T T T T 1 T T T T T 13 T
T T T T T T T T T T T T T T T T T T 1 T T T T T T T T T T T T T T T T Ll Ll T T T L} T T T T T T T T T T
T T T T T T T N T T T T T T T T T T T T T T T T T R T L} T T T T T T T T R T T T T T T T T T T T T T T T
T Y T T T T T T T T T L T T Ll T
T T T T T T T T T T T T T T T T T T T M T T T R T LN B T
4 L
SNOILONNA B SINIWNOHY
40
'3°Q°N"1=d0 NI Q3114 41 G3AIN 38 OL AINO .
T T T T T T T T T
! i .
: i i
F— * S | ! b ..
v lo oo T Ter s 8 '
LA WD U4 G4, S S0 W - i
NI Q37174 31 GIAIN 38 0L AINO
Lo NSRS e AR A ;
3dAL | 3dALT 3dAL. 3dAL: 3dAL| 3JAL| 3dAL EA
|$_ —s41 -wdl -€4) 24| -] oV EXELZY
i i L 1 I
P
g gz @nbiyg
.
waISAS Audug eleq)
‘37avL ‘31va 'STIVILINI
mo NOGH_ :S3LON m D DDmm

2-22

2.3.3.2

Column 13(*): F5 - type

Column 14(*): F6 - type

Argument and Function Part

Column 1 (*): Operation

Column 2(*): Arguments and

Functions

Describes the type of fifth function
(see column 9). Not filled in if no.

of functions less than 5.

Describes the type of sixth function
(see column 9). Not filled in if

no. of functions less than 6.

2.3.3.2

Operation to be performed:

I =lInsert, the argument in column 2
on the same line and functions in
following lines are to be inserted
in the table as one entry.

U = Update, the functions in following
lines replace the functions of an
existing entry identified by the
argument specified in column 2 of
the same line.

D =Delete, remove the entry identified
by the argument specified in column 2
of the same line from the table.

E =End, specifies that the line is the last

line on the last coding sheet.

I¥ column 1 of the same line is filled in with

an E then column 2 is empty.

If column 1 of the same line is filled in with

a D then column 2 is an argument.

If column 1 of the same line is filled in with
| or U then column 2 is an argument and the
following lines contain the corresponding
functions in column 2 (column 1 empty). The
number of functions following the argument
must correspond to the number specified in

column 7 of the table head (see above).

Each argument and function must contain

at least one and at most 80 characters,
however, the lengths must correspond to
the characteristics with which the disc
table has been created, see Users Guide

part 2.

An argument is specified as follows:

If A - type=

N: Right - justify the argument and
fill not keyed positions to the left
of the argument with zeroes.

~AN: Left - justify the argument and fill
not key positions to the right of the
argument with blanks (a).

An argument may not stretch over more than

one line.

A function is specified as follows:

If Fx - type (x = function number) =

N: Right - justify the function and fill
not keyed positions to the left of the
function with zeroes.

AN: Left - justify the function and fill
not keyed positions to the right of
the function with blanks ().

A function may not stretch over more than

one line.

3.1

3.1.

1

The Format Language

On Programming : 3.1

What Is A Program? 3.1.1

A program can be viewed as the exact description of

the procedure wheréby you solve a specific problem.

Consider, for example, the problem of crossing a street without being overrun
by a car. In a case like this it is not enough to know that you must "watch out
before you cross the street", if you have not been confronted with precisely

the same problem before.

Therefore, the problem must be analyzed, which means that one must try to
survey the parameters contained in the problem, and to assess their different

roles therein.

In order to be able to cross the street you must therefore know that a car might
come, that it might come from left or right, and that it might prevent your

getting across the street.

Thus, a program must be a step by step description of
how the parameters (operands) contained in a problem
should be handled so as to arrive at the desired final

stage from a given starting point.

In the example of crossing a street one may choose as a starting point the situ-
ation where the program ignores the events leading up to that situation. As
the final stage one selects the arrival at the opposite sidewalk. Written in or-

dinary language, such a program might look something like this:

Example 3.1.1a

1. Look to the left.

9.
As suggested above, one could use another, preceding, program to describe
how to reach the specific street that one is to cross, and a following program

to specify what actions to take once one has crossed the street.

Therefore, the starting situation could be altered a little. Let us say that,

. Do you see a car?

Yes: Go to point 3.
No: Clear, go to point 5.

. Is the car less than 200 meters away?

Yes: Go to point 4.

No: Clear, go to point 5.
Is the car parked?

Yes: Clear, go to point 5.
No: Go to point 1.

. Look to the right.

. Do you see a car?

Yes: Go to point 7.

No: Clear, go to point 9.

Is the car less than 200 meters away?
Yes: Go to point 8.

No: Clear, go to point 9.

. lIs the car parked?

Yes: Clear, go to point 9.
No: Go to point 1.
Walk to the opposite sidewalk.

1. You are standing at the curbline, and

2. You know that the street has two-way traffic or, if not, that it is a one-

way street (with traffic from left or from right).

The source of your information may be a previously executed program (its final
stage), and in rewriting the program given in the example above (3.1.1a) you

can insert the information under 2., so as to be able to decide which way to

look:

Example 3.1.1b

1. Does the street have two-way traffic?
Yes: Go to point 1b.
No: Go to point la.
Ta. Does the street have one-way traffic from the left?
Yes: Go to point 1b,
No: One-way, from the right: Go to point 5a.
1b. Look to the left.

5. Does the street have one-way traffic only ?
Yes: Clear from the left, go to point 9.
No: Go to point 5a.
5a. Look to the right.

We could further extend the example's program. It could, for example, count
all cars passing from the right, it could register how many times one had
looked to the left before the street was safe to cross, and so on. This infor-

mation could be fed into a following program, e.g., for statistical use.

All information that is available for a program in the starting situation is

called input parameters, which, together with the program's own calculations,

may influence the execution of the program. Information derived from a pro-

gram is called output parameters.

3.1.2 The Elements of a Program 3.1.2

A program consists of a number of statements. Every single statement's execu-
tion marks a step on the way from the program's starting situation to its final
stage. The statements are written in a programming language, that is charac-

terized by the firm rules that guide the formulation of a statement.

In the examples 3.1.1a and 3.1.1b every step can be viewed as a program

statement.

3.1.3

The statements operate on a set of parameters (oper-

ands) that can be read and changed.

In Example 3.1.1b point 1 can be viewed as the read-out of the input para-

meter, stating the direction of traffic. If the example had been extended also
to register the number of passing cars, this number would be a parameter that
would be changed during the course of the program, from zero at the starting

situation to the actual number of cars at the final stage.

The execution of the program begins with the execution of its first statement.
This done, the next statement is executed, and so forth, until the program's

last statement has been reached.
As can be seen from the examples above, the statements of a program are not

executed in unbroken order; some statements are skipped as a result of the

answers that are given to the questions presented.

The Elements of the Format Language 3.1.3

There are two types of programs in the Format Language: field programs and

subprograms. A field program consists of those program statements that belong
to a field description. A subprogram is a labelled collection of program state-
ments, which are executed when referenced from a program. Subprograms are

used if the repeating of the same sequence of statements in several programs is
to be avoided. ‘

The operands for a program are called variables and constants.

A variable is aplace for storing information that can later be called upon
and may be subject to change. In the Format Language, the
variables are fields and registers. A variable is referenced from
a program statement by calling it by name. A field is referenced by using the
name of a field description, by which the program is made capable of proces-
sing a keyed unit of a specific part of a document. Fields cannot be referenced

from subprograms.

A register is referenced by putting an "X" before its number. Registers in a
given format are used to transfer information between programs, and to store

intermediate results within programs.

3.1.4

Variables may contain different kinds of values, e.g., numerical or alpha-

betical.

A constant contains information that cannot be changed by the
program, but is entered into calculations together with variables. Like vari-
ables, constants may contain different kinds of values. In the Format Language
several constants may be assembled into a specified table, and can thus be ref-

erenced collectively from the program.

Example In the Format Language 3.1.4

Problem:

A document contains, among other things, the following elements:

DATE OF PURCHASE][]]DATE OF PAYMENT []]] AMOUNT: [T[T]

The two dates are specified by year and month (format YYMM). Date of pur-
chase may not come later than date of payment. If purchase date coincides

with date of payment, the program calculates a discount.

Problem analysis, program planning:

The first field program controls the date of purchase, and uses as input para-
meter a field with a keyed four digit number (specified in the field program's

definition section).

The second field program controls the date of payment in the same manner as
the first field program; it further compares the two dates. Thus the date of

purchase will be one of the program's input parameters.

Since these dates are identically checked, one can use a subprogram, with
the date itself as the input parameter and a correct/not correct indication as
the output parameter. Month and year are separately checked; the year must

be within the 70-80 (inclusive) interval, which is used as a constant.

As for the amounts, these are not subject to special verification, and a cor-

responding field description therefore involves only the definition section.

Calculation of discounts is performed by the field program of a 'not-keyed

field' (meaning a field which receives its value solely from the calculating
done by the program). As input parameters the program uses the two dates and
the amount, and the resulting discount amount will appear in the field as the

output parameter. The discount percentage is a constant.

Example 3.1.4a shows how to write field descriptions, and in Example 3.1.4b

you will find the subprogram that checks the date.

The program statements will be discussed later in this manual. Here only the

following information is given:

- 'DEFINE X01 4' defines a register of length 4.

- 'COMPUTE X01 = KDATE' transfers the contents of a field to a register.

- 'PERFORM DCHEK' causes the subprogram DCHEK to be executed, after
which the program continues with the next statement.

- 'ALARM 'DATE OF PURCHASE WRONG'"' causes the writing of an error
message, whereupon the information must be keyed anew, and the field
program is again executed from the beginning.

- 'IF KDATE > BDATE', > means 'IF GREATER THAN',

- 'DISCOUNT = AMOUNT/100*3' places the result of an arithmetical ex-

pression in a field. The discount rate is 3 percent of the amount.

64€0 !-Z¥ 1D W'G 'O N =aNI el 0" =714 0k <,.z< ss !

.A_V_AA____4.___~_~__<‘<<<__.4~_<_<—~<___4_44<<___<<<,<<<_.,<__.<__<. T T T

S S SR S S S S S S B N S e e S S SRR TS S S e St S S S S I A A S S N SN NN A N R S N A D A B L A AL A T T T T T T T T T T T T T Ty T T T T T T T
N
TTTTY S s o e S T S A E I R S S S s S B M A S A N S R LI O AL LA L L T T T Y T T T 7T T T T T T T T T 1 LA A 1
Tt T oo out T I S (o S s o o S A5 0 SN (N N N U N S A SN N O L S L D B LB L L L S N SO S S S N S N S U N R L A B O T T T T T T T ™
S S M P M mun e CH LN S S S S I S s e B S e A S M S S L L L B B AL AL L AL) N AN S S B M S IR S B S M D R B D SR S A S T T T T T T T T -T
R e s T mm e S L L S R I S o s s S (S S e S R SN S S R L N S A A AL L L L L L AL L T T T T T T T T T T T YT T T T T T T N A E
St) S S SO s E S S m S S S B A S B S B S S S T B D B R N L SO B L L L B AL AL T 1T T T LI T TUYCUTTT T T £ G e S S S

"0 = INAOISTT T1NdW0T 7S T3

T T T T T T T 177 TTT 7T T 71T 7T 717 177171 ™Y T 7T T 7T I T TrTr o rouUuT T T 1 b v 1717 T T T T 7 T T Tl T) I g T ol T T T T T T T T T T T T S B SR T T T
€,001/INNOWY = INOISTd TLNdWOI NIHL
T 1 17T 1 1 17 177 T) (R (D P R A (D SN B H N B R A) SR R A T S N AN SO U A B SR S | T T 71T 71T ™7 v v 1 171 1717 17T T

TTTyveg = I | M Lol €8 WV |6 6| | | oosida
JAAﬁ_.444_4\—___4‘<4~__-___ﬁq-—<_q<~4<4—-__a—__d—-__4<_<q___——-_-q-_4\—‘__—4—_<<4 T Q N—_ z_ N— OAN T T .z\q’bﬁovfﬂqk
T UNINAYS 40 T1Vd NYHL ¥TLVI¥D FSYHIINd 10 FLVd, WIVTY NIHL LVdg < F1VaN J7 IR

T Jam M o o) B S S S S o B S S S B S S N S L S A S B B SO S U S R Y S ML 1P | 4‘ T E< LU A P S S) G PR B L) _x‘ T 7 T T T T T T T ToTTTT T
L ONOYM INIWAVd 40 J1VA, WIVTV NIHL 0 = L0X 1]

T _RV\WM_U_Q_ tw_o(_QAN«\ T T T T T T i T TTTYTTTTTY T

S S S i ST S E S S s e B s A A N A B D A N A L AL LB B AL AL TTTT T T T T T T _N_NK_T_Q.Qd TT N_Q‘k_ WKS_\N&_DNU_ T _ N~ >_ Q_ wj T T m«kﬂqJ‘Qqn

S e Sn it S S S S S S J M S DU SU B B S N R A S B B N B AL : T T T T R auanets SR ar St St Rl RN G

T oNOYM TSYHINAd 40 TLVA, W¥YTY WIHL 0 = [0X F'Y |
A8 S S o o o SRS SIS V7Y I 7277 1 I B e i Tt e B SRS
T T T T T T T T T T T T T T g o) Fundkoy | || W
T T T T T T T T T T T g gy gN S d Yy 10X INT3d | N IR B (o2 I R N I

Gt vi letjafrijoi] e 8 L 9 S v e |z L
N N N
SIN3WALYLS WvHOOHd / %4% %77@7 Q& w.(%u $ S/ & £
RATATLY e/ ¥/ /5) L) 7S $&E
& Y44 NAS A > ” » o
OW\ ~ O v W\d e S
D < S =
,~¢J\
T T T T T T T T T T
o - v cle |
o _ _ . - — - . . INVYN
INFANOD L | 8 LYAHO4

op*1°¢ TWVYX3

o 39w ‘ .| 1F3HS DNIGOD LYWHOS 0ooes
° ® ° °

wso -z @ ® ® [J

LA S S SR S B A B N | AL A L A L L A L HE R A SN S A SR SR S B AN SR ES S SN SN SRS S S B B B B SE SN S S s e s e S S I B B S-S e s e e
LN L L L L A A L L SN S S B R SR S R S S B B SN SR S SN SN B S S SR SR S B S SRS S S S S S S e s m t s S S SR SRS T . TR I .
LA LA L A N L N S N A B A S B AU SRS SN SR B SRS RS RO SR S B B B SR S S B SR S SN St B S S oo s et S S s S RS S e e e T e T T
oyt oy Ty T o TTTTTY T T T T Tt T T T T TYTTTTrTTT T T T T T T '——T—1 T 11T T T T T T T T T T T T T T T

_4_4«_ujqqﬂﬁ___.ﬂq__-daq__._«4__~<4_.a_.~_q~___~__<_~_.___q_—a__<___~«A4\4qum4<_‘

T T T T T T7 T u_ _0< T
:d0LS
T L T
T T T T T T T T 7 T LI T T T T R T T T T T T T T T T T T “AQ_ T T T T T T T T T T T T T T B E B
= JOX FLNIWOD

.
_—_____q<__—«4.__uq-_-__~____<.__,_q_q______q.__-q.-___<41<-444~A4__‘___-¥AQ_4@1
: L ON,

._q_.4<a.\ﬂ__<—_ﬂ_,_—_.ﬂﬂ___.-q____«4_~q4_<__«4<_<_~J\1_1_<<_q4_.4~—_‘___qq-____aqqﬁ1

AL A L A A L AL L AN AN RN AN N D SR SN AN A SR B SO SN SN BN S SN NN SN SN R S B B S SR SR SN S S B S B Sa S s e e s nn e S S R SR I LA ,NMQacalﬁﬁm_ _OK_O<0_ T

JLANL I A A A A S A AN B A A S AR SN A B S SN S AN S (N N SN SN SR RN S B SUR M I G S St SN S SN SN SE S SN Ga cuae sumn s S Sun man S R BRI _ﬂ_N_ T T AN_odx_ _.w.k_b_m; w_O_U_ T T

LA SR R AR A A A S AN A E D S S E RS S R SN SN SR SR S SAN SN SUNES SN M S S LA E A A ED S B R A S RN S N S N SRS S _R“N_UW_Q_ T ,w. <w_\. AN.IN_qﬂQ_ qm4 ~4|N~ —NAIN4O_\<_ T T

T T TTTTT T T Y T T T YT TTTTT T T T T T T T T «\¥<OK_ Eq T _-N_ _w_ _E_N_ 4|Nﬁ _~<N<N« .A~ <N1““_XAM_ <Q_O~ T ~\N< ,.Vq «N_ _x.¥d T H_ YT
LA A S S S N AU e I A S S AOM (N N N SR SRS NN SNNN S S BN AR BN S BRI SRS S Sun T,

,, .\¥~Qﬁ|N_0~>\~ ﬂQ_IN<O_®_ gﬁwdl_ﬂNa “ﬂao_m« _A_ MNQX_\< MQ_O_ _ﬁqol_‘m_ _V_ _Ndoq*_y_ _l_\d TTTT
LA S AL A S S B (R AN BN SR NS SUNE SRS SN SN _‘ LA AL A A SR U A RN B RN SN SENND SRS S N _N<>_>< 4“4 «NAOJ\X_ <.w_uN_Q¥. Tt aQ_Q<N1 ‘ _N_O_x< _“A <Nao_x_ dmak_\v‘l_zﬁo_UA T

LA S A A A A S A A A S A S A A S A A S S SR St SR N SR S BUN SR S S

T T | T TTOT

_Ns_zd qa‘lq AwdoﬂXa _IMM-N _04?4 ,NAQMQ_\A ﬂanqz_ _N_O_Xq <” _N_o<x_ ”WK%\NAM\F\O u,

SIN3W3ILVLIS WYHDOHd

YILS/DITY DN/XYYOM S/ 20X “7LVAI DNOYM NIHM O=10X dOLS “WWAA = 10X :1dviS NFHId

LNFWINOD

ay° 1€ IdWVYX3

LsAS AL g e R

‘WYHDOHdENS 3Lva. “SOVILING

40 39Vd | 0| 133HS BNIGOD Wyso0oddans | OO ESN”

3.9 Character Set 3.2

The character set for the format language consists of 50 characters. These

characters and their corresponding meanings are:

Character Meaning
0,1,2,3,4,5,6,7,8,9 Digit
A,B,C,D,E,F,G,H,1,1,K,
L,M,N,O,P,Q,R,S,T,U,

V,W,X,Y,Z Letter

A Space

+ Plus sign
- Minus sign or hyphen
* Asterisk
/ Stroke

= Equal

' Comma

; Semicolon
' Quotation

Left parenthesis
Right parenthesis

Greater than

ANV — —

Less than

Colon

The basic elements of the language are:

names, arithmetic operators, relational operators, logical operators, and

punctuation symbols.

The elements are explained in the following sections.

3.2.1 Names 3.2.1

A name is composed of a combination of characters. Allowable characters are:

Letters: A through Z
Digits: 0 through 9

A name must begin with a letter. Only the five leading characters are signifi-
equivalent to PERFORMANCE; but IN is not equivalent to INCORRECT.

There are 6 types of names: reserved names, user-defined field names, user-
defined label names, user-defined subprogram names, user-defined table

names, and user-defined subformat names.

Reserved names have a special predefined meaning to the system; therefore,

these must never be used as user-defined names. Reserved names are listed in

cant. Thus PERFORM is equivalent to PERFO, for example, and PERFO is l
Some of the reserved names are verbs. Verbs identify statements in the format l

language and are used in field programs and subprograms. The verbs allowed

in each of the two programs are listed in Table 3.2.1-2.

Table 3.2.i- 1. l

Table 3.2.1-1. List of Reserved Names .

|
ALARM GIVING SET
ALLOW GOTO SKIP l
ALPHANUMERIC IF SUBFORMAT ‘
AND | IN THEN '
AT INVALID TO
COMPUTE LIMIT VALID
CONNECT MOD X00 l
DEFINE MOVE X01
DISALLOW NOT : l
DISC NOTE X99
DISPLAY NUMERIC XBATCH ® l
DUP OR XDATE
ELSE PERFORM X JOB
END SEARCH XOPERATOR
FIELD SELECT XTIME

Table 3.2.1-2. List of Reserved Verbs

may be used in:

Verb Field Program Subprogram

ALARM x x
ALLOW | x <
COMPUTE x x
CONNECT < x
DEFINE | < <
DISALLOW x x
DISPLAY | x <

. DUP

END X X
END SUBFORMAT P
GOTO X X

LIMIT X X
MOVE x ' X
‘NOTE X X
PERFORM | X X
| ' SEARCH X X
SELECT SUBFORMAT x

SET X

SKIP X X

3-11

' IF X X

3.2.2 Arithmetic Operators 3.2.2
The arithmetic operators are used to perform specific arithmetic operafions.
The used symbols and their operation are :

+ Addition

- Subtraction

* Multiplication

/ Division

MOD Modulo

NUMERIC Conversion of nonnumeric to numeric
ALPHANUMERIC Conversion of numeric to nonnumeric

3.2.3 Relational Operators 3.2.3
Relational operators specify the type of comparisons to be made between
two operands in relational conditions. These symbols and their meaning
are :

> Greater than

>= Greater than or equal to
= Equal to

< Less than

<= Less than or equal to
<> Not equal to

3.2.4 Logical Operators _ 3.2.4
Logical operators are reserved names that define a connection between
operands. The reserved names and their use are :

AND Logical 'and'
OR Logical ‘'or!
NOT Logical 'not!

3.2.5 Punctuation Symbols 3.2.5
The punctuation symbols used in the program statement section of a
format program, and their names, are :

A Space (Left parenthesis
' Comma) Right parenthesis
; Semicolon ' Quotation mark
Colon
3-12

3.3

3.3.1

Operands 3.3

The operands used in the format language are described in the following para-

graphs. The operands are:

Constants
Registers
Fields

Registers and fields may be used with subscripts; this feature is described in
section 3.3.4.

Operands may be used as destination or as source, except constants which only
may be used as source. Source means that the operand is 'input parameter' to
a statement. Destination means that the operand is 'output parameter' from a

statement.

Operands may be numeric or nonnumeric. A numeric operand contains a nu-

meric value. A nonnumeric operand contains a string of characters.

Constants 3.3.1

Constants are strings of characters which represent a specific value. There are

two types of constants: numeric and nonnumeric.

A numeric constant is composed of digits, and must contain at least one digit
but not more than 80 digits. The value of a numeric constant is always posi-
tive. Negative values are obtained in the statements, where it is allowed, by

preceding the numeric constant by a minus.

Examples of valid numeric constants are:

198
50
091

3-13

3.3.2

3-14

Examples of invalid numeric constants are:

-198 Sign is not allowed
1.5 Cannot contain a decimal point
9,85 No comma allowed

A nonnumeric constant can contain any characters including those not in the
format language character set, except quotation marks, The constant must be
enclosed in quotation marks. A nonnumeric constant can be from 0 to 78 char-

acters.

Examples of valid nonnumeric constants:

'"MONTH IS GREATER THAN 12!
'19876'
'TYPE N FOR NO, Y FOR YES'

Example of invalid nonnumeric constant:

'TYPE 'N' FOR NO' Cannot contain quotation marks

A nonnumeric constant may look like a numeric constant, but the two are not
identical. They are both stored as characters, but a numeric constant is inter-
preted as a numeric value. Thus the numeric constant 00190 is equivalent to
the numeric constant 190, but the nonnumeric constant '00190' is not equival-

ent to the nonnumeric constant '190' or 'AA190'.

Registers 3.3.2

Registers have been added to extend the possibilities of the language. Regis-
ters are normally used in three connections. They are used for transferring data
from one record to another, for transferring data to and from a subprogram and

for computations. Registers are defined by the DEFINE statement, see Section
3.7.1.5.

The letter X followed by any number from 01 to 99 is used to name a register.
As many registers as needed can be used in a format program. The numbers
used need not be sequential, but should be sequential starting with 01 to con-

serve storage.

Examples of valid register names:

XO01
X11
X99

Examples of invalid register names:

X00 Digits not 01 to 99
X1 Too few digits
X010 Too many digits

A register contains either numeric or nonnumeric data. The type of data is de=-
pendent of the program statement, which had the register as destination last
time (e.g., the MOVE statement makes the register nonnumeric, the COM-
PUTE statement numeric). Data are always stored as characters in the register,
The length of a register is declared by a DEFINE statement and is the number
of character positions in the register. The DEFINE statement must be executed
before any other statement referring to that register. The DEFINE statement
gives no type to the register; the type is given first when the register is used
as destination in a statement. It is allowed to change the type

of a register during execution of the format program.

If nonnumeric data are stored in a register, and the number of characters in
the data is smaller than the register length, data are stored from left to right
and the remaining positions in the register are filled with spaces. If the num-
ber of characters in the data is greater than the register len/g’rh the right-most

characters are truncated.

Numeric data are right-justified in the register, and remaining positions are
filled with zeroes if the data are created by the COMPUTE statement. The
negating operator of data representing a negative value will be stored as
for type SS (see 2.1.1.2). If the number of significant digits in the data is

greater than the register length, a runtime error will occur.

Numeric data stored automatically in a register (automatic fields, see 4.4.2)
will always be identical to the data stored in the field also with respect to

justification, fill characters and representation of negating operator.

An automatic field, of which the length of the register unequals the length of

the field, will cause a runtime error when the field is encountered.

3-15

3-16

The system furthermore contains a number of pseudo-registers containing

run-time information which may be accessed by programs.

The pseudo-registers are predefined by the system their names belonging
to the reserved names of the language. This means that these registers
may be accessed without having been defined by DEFINE statements in

the format program, and that they do not claim storage to be used.

The contents of the pseudo-registers cannot be altered by the programs

which means that they cannot occur:

- on the left side of the equal sign in COMPUTE statements
(see 3.7.1.3).

- after the word GIVING in CONNECT and SEARCH statements
(see 3.7.1.4 and 3.7.1.14)

- after the word TO in MOVE statements (see 3.7.1.11).

- in field definitions (see 2.1.1.2, column 14:register).
Apart from these limitations the pseudo-registers may be used in all connec-
tions where registers are allowed as source operands. The operand type of

the pseudo-registers is nonnumeric.

The pseudo-registers are:

length in

name characters type contents

XBATCH - 5 AN Name of the batch in which processed data
are stored.

XDATE 8 AN Year, month,and day in the format:
YY.MM.DD corresponding to the time at
which a readout of the register occurs.

XJOB 5 AN Name of the job to which the batch is be-
longing.

XOPERATOR 3 AN - Operator initials of key station operator.

XTIME 8 AN Hour, minute, and second in the format:

HH.MM.SS corresponding to the time at

which a readout of the register occurs.

Operator initials are the initials given by the key station operator when work

on a key station is initiated. For further details, see Users Guide, Part 1,

which also describes when and how name of batch and job are entered by the

keying operator.

3.3.3 Fields ' 3.3.3

Fields are numeric or nonnumeric depending on their type as specified in the

field definition:

Field Definition Type Operand Type
N numeric
SN numeric
SS numeric
. AN nonnumeric
A nonnumeric

Current field is the field which field description contains the field program.

Any field before (in the same subformat) and including current field is allowed
as source operand in a field program. No field, except current field, is al~
lowed as destination operand and current field is only allowed as destination
if it is not keyed (i.e., kind = N).

The following rules apply to not keyed fields used as destination operands:

1. It is only allowed to store nonnumeric data in fields of type A or AN, and

numeric data in fields of type N, SN, or SS.

2. When nonnumeric data are stored and the number of characters in the data
is smaller than the field length, the data are left- or right-justified depend-
ing on the specification in the field definition, and the remaining positions

are filled with the fill character specified in the field definition.

If the number of characters in the datais greater than the field length, the
right-most characters are truncated. Then it is checked whether the field
contents correspond with the type assigned in the field definition, other-

wise a runtime error will occur (only applies for type = A).

Examples of storing nonnumeric data:

3-17

3-18

Field Justi-

length Type Fill fication Source Field contents
6 A A L 'ABCAAA 'ABCAAA'

4 A A L 'ADDRESS' 'ADDR'

6 A A L 'ABC' 'ABCAAA!

6 A A R 'ABC!' 'AAAABC!

6 A A L 123" runtime error

3 AN A R 'JANUARY' 'JAN'

10 AN A R 'JANUARY' 'AAAJANUARY'
6 AN A L '123' "123p00"

. When numeric data are stored and the number of significant digits (leading

zeroes are ignored) is smaller than the field length, the data are left- or

right-justified depending on the specification in the field definition, and

the remaining positions are filled with the fill character specified in the

field definition.

If the number of significant digits is greater than the field length a runtime

error will occur. It is then checked whether the field contents correspond

with the assigned type in the field definition, otherwise a runtime error will

occur (only applies for type = N).

Examples of storing numeric data:

Field Justifi-
length Type Fill cation Source Field contents
5 N 0 R 155 00155

5 N 0 R -50 runtime error
5 N 0 R 555555 runtime error
5 SN A R -50 A-50

5 SN A R -50000 runtime error
5 SN 0 L -50 -5000

5 SS 0 R 59 00059

5 SS 0 R -55555 5555n

5 SS 0 R =51 0005

3.3.4 Subscripts 3.3.4

Subscripts are used to refer to individual characters or groups of characters

in a register or a field.

The syntax of subscripts is (notation is described in 3.4):

numeric constant l:numeric consfoniZl

e m e

A single character is accessed by supplying one subscript. A group of
characters is accessed by supplying the leftmost subscript followed by the
rightmost subscript of a sequence of adjecent characters ‘n a register or

field. A group of characters consists of two or more characters.

Subscripts should be in the range 1 to the length of the register or the field,

where 1 's the leftmost subscript.

Examples of subscripting are:

MOVE XDATE (4:5) TO MONTH,
COMPUTE A = B(3) * B(5),
COMPUTE X01(5) =9,

MOVE ‘DD' TO X03(7:8),

If at run-time, the value of the subscript exceeds the size of the register or the

field being subscripted, a runtime error will occur.

When destination operands are supplied with subscripts, please notice the fol-

lowing rules:

1. Only the contents of the character position (s) specified by the subscript is
changed. The justification and filling described in the preceding sections

are not executed.
2. A negative value cannot be assigned to a subscripted numeric operand.

3. A register must be initialized before it is used as destination with subscript.
The initialization may be performed by any statement which has the regis-
ter as destination, The initialization is necessary because when registers
are used as destination with subscript, it is required that the type of the

source and the type of the register concur.

3-19

3.4

w
|

20

Example: If a register is used nonnumerically it may be initialized with a

MOVE statement,
MOVE '* TO Xo01

and then used with subscript, e.g.,

MOVE 'A' TO X01(1),
MOVE 'Z' TO X01(10),

If a register is used numerically it may be initialized with a COMPUTE

statement:

COMPUTE X02 =0
and then used with subscript, e.g.,

COMPUTE X02(1) =5,
COMPUTE X02(3) =9,

4. It is not necessary to initialize a field before it is used as destination, be-
cause a not keyed field is always filled with the specified fill character

before a field program is executed.

5. After a field is used as destination with subscript, the contents of the field
are checked against the type of the field (only applies to type A), and a

runtime error will occur if the contents and the type do not correspond.

Notation 3.4

The notation used in the remainder of this section is described in the following

paragraphs:

1. All words printed in capital letters belong to the language. They are re-

ferred to as 'reserved names'.

2. Variable entries which are to be supplied by the format programmer are

printed in lower case letters.

3. When punctuation or other special characters are printed, they are re-

quired.

>

Braces { } enclosing vertically listed items indicate that one and only

one of the items is required.
5. Brackets [] are used to enclose a portion which is optional.

6. The ellipsis ... indicates that the preceding entity can occur one or more

times in succession.

3.5 Arithmetic Expressions 3.5

Arithmetic expressions (or shortly: expressions) are used in certain program
statements (the IF and COMPUTE statements, see Section 3.7). An arithmetic

expression is composed of operands, parentheses and arithmetic operators

according to certain rules which make an expression written almost as in the

mathematical literature.
A simple example of a statement containing an arithmetic expression is:

COMPUTE XO01 = X071 + X02,

where ' XO01 + X02' is the expression the evalution of it being the sum of
values of register X01 and register X02.

The following rules concerning the type of result of an arithmetic expression

must be observed:

1. The evalution of an arithmetic expression in COMPUTE statements must

result in a numeric value.

2. Arelation (see 3.6.1) may compare either two arithmetic expressions
giving nonnumeric values or two arithmetic expressions giving numeric

values.

The arithmetic operators allowed are:

Operator

+

*

/
MOD

ALPHANUMERIC
NUMERIC

Meaning

1 called adding

, operators

addition
subtraction

multiplication
called multiplying

} operators

convert numeric to nonnumeric

division

modulo

convert nonnumeric to numeric

called conversion
operators

The most simple arithmetic expression consists of merely one numeric operand.

More complex arithmetic expressions may be composed by:

1. separating two or more operands by one of the arithmetic operators;

2. preceding one operand with one of the adding operators (e.g., COM-
PUTE X01 =+5, COMPUTE X01 = -X01);

3. Subexpressions, enclosed in parentheses, may be used as an operand.

The rules for composing arithmetic expressions are:

((fieldname 1) (k'fieldncme 3)
fieldname (subscripts) A fieldname (subscripts)
[NUMERIC(register) + ﬁxlUMERlc]ﬁ register
[{+}] < register (subscripts) > < . >< register (subscripts) > cee ‘
- _nonnumeric constant / _[nonnumeric constant_
. MOD .
numeric constant g numeric constant
[NUMERI]] (expression) " INUMERI]] (espression) >
L - J
) B ..
fieldname W
fieldname (subscripts)
ALPHANUMERIC (register)
register (subscripts)
numeric constant
(expression)
\ J J
3-22

The following rules concerning conversion operators must be obeyed:

1. The entity (fieldname, register, constant, or parenthesed expression).
following the NUMERIC operator must be of nonnumeric type. An
operand to be converted by NUMERIC must only contain digits and
fill characters and the conversion cannot result in a negative value

(negating operator not allowed).

2. The entity following the ALPHANUMERIC operator must be of

numeric type.

Examples of arithmetic expressions are:

X0l

FLD1

59

+X02(1)

-59

NUMERIC X10

ALPHANUMERIC FLD5
XO1*FLD

X 04* NUMERIC XDATE (7:8)
X01(1)+X01(2)+X01(3)

(X01+X02),/2

ALPHANUMERIC (NUMERIC X06+3)
FLD1 MOD 10 + FLD2 MOD 10
(FLD1(13+2+FLD1(2)+3)/(FLD(1)+FLD(2))
((A4B) = (C+D) + (A+B)/2) MOD 10

An arithmetic expression is evaluated in the following order:

1 (first): Subexpression in parentheses
2 : Conversion operators (ALPHANUMERIC, NUMERIC)
3 : Multiplying operators (*,/, and MOD)

4 (last): Adding operators (+ and -)

When a sequence of operators has the same priority, the opreators are exe-

cuted in order of their occurence from left to right.

An example of evaluating an arithmetic expression:

Consider the expression:

-(A+B)» (C-D) /2
3-23

3.6

First the subexpressions in parentheses are evaluated. A is added to B giving
a temporary result, namely R1, and D is subtracted from C giving another tem-

porary result R2, The expression may now be shown as:
-R1 * R2 /2

Now the multiplying operators are executed in order of their occurrence from
left to right, therefore R1 is multiplied to R2 giving the temporary result R3,

and the expression may be shown as:
-R3 /2
The second multiplying operator is executed: R3 is divided by 2 giving R4.

Finally, R4 is negated, and the evaluation is completed.

The following examples show the evaluation of divisions:

expression result expression result
7/3 2 7 MCD 3 1
7/(=3) -2 7 MOD (-3) 1
(-7)/3 -2 (- 7) MOD 3 -1
(-7/(-3) 2 (- 7Y MOD (-3) -1
Conditions 3.6

Conditions are used in the so-called conditional statements (the IF statement,
see Section 3.7). A condition causes the path of control to be altered depend-
ing upon whether the condition is true or false. A simple example is the fol-

lowing statement:
IF TOTAL < X01 THEN COMPUTE X02 = X02 + 1,

The condition is 'TOTAL < X01'. If TOTAL is less than X01, the condition is
true and the new value of X02 is computed. If TOTAL is not less than XO01, the
condition is false and control is transferred to the next statement following the

IF statement.

In the format language the following types of conditions are allowed:

relations, validity conditions, and table conditions.

A condition may be either simple or compound. A simple condition is a relation,
a validity condition or a table condition. A compound condition is composed

of conditions, parantheses, and logical operators.

3.6.1

l{Elation

3.6.1

A relation is a comparison of two operands, either of which can be a field

name, a register, a constant, or an arithmetic expression. The operands ‘are

separated by a relational operator which specifies the type of comparison to

be made between the two operands. The allowable relational operators and

their corresponding meanings are:

The syntax of a relation is:

Relational operator

Meaning

greater than

greater than or equal to

equal to

less than or equal to

less than

not equal to

~

\

field name

field name (subscripts)
register

register (subscripts)
constant

arithmetic expression

, relational op. ¢

field name

field name (subscripts)
register

register (subscripts)
constant

arithmetic expression

The following rules apply to relational conditions:

1. A numeric operand can only be compared with another numeric operand.

2. A nonnumeric operand can only be compared with another nonnumeric

operand.

. Comparisons of numeric and nonnumeric operands are not allowed.

When needed, however, the conversion operators NUMERIC and
ALPHANUMERIC may be used to convert the type of an operand.

Examples of relations:

X01 >=0
X01 = X02

X01+ 2 - A<= X02

D ='JENSEN'
(A+B)>3

3.6.1.1

3.6.1.2

X05 ='TEXT!

X03(1)* 2 >= 10

(A1) + A(2)) MOD 10 =0
ALPHANUMERIC FLD = ' ****+'
YEAR <= XDATE(1:2)

Comparison of Numeric Operands 3.6.1.1
If the operands are numeric the respective values of the operands are com-
pared.

Comparison of Nonnumeric Operands 3.6.1.2

The characters used in nonnumeric operands are ordered according to their po-
sition in a sequence of (all) characters. The relation between two characters
is determined by their positions in the sequence of characters. The character

sequence in ascending order is:

(space)
!

#

$

%

&

/
0 through 9

> oV

through Z

—

When nonnumeric operands are of equal length (i.e., they contain the same
number of character positions), characters in corresponding positions of the
two operands are compared starting with the left-most position and proceed-
ing to the right-most position. If all the characters are the same through the
last position, the operands are considered equal. If a pair of unequal charac-
ters is encountered, the position in the character sequence is determined for
each character. The operand containing the highest character position is con-

sidered to be the greatest of the two operands. See the examples below!

When nonnumeric operands are of unequal length (i.e., they do not contain
the same number of character positions), the longest operand is treated as if
the right-most characters were truncated, to make it the same length as the
other operand. The comparison is then made as though they were the same
length.

Examples of comparing two nonnumeric operands A and B:

TRUE
A B RELATION | EXPLANATION

'JENSEN' '"HANSEN' A>B Operands are of equal length.
Characters are compared from
left to right. J comes after H

in the character sequence.

'FIELD' 'FIELDS® A=1B The right-most character is

truncated in B.

29" '199' A>B The right-most character is
truncated in B, and 2 follows

1 in the character sequence.

'A 39 '029' A< B 0 comes after space in the

character sequence.

"HANSEN' 'HANSON' | A< B Characters are compared from
left to right, the first pair of
unequal characters is E and O,

and E is preceding O in the

character sequence.

3.6.2

3.6.3

Table Condition 3.6.2

A table condition is used to search a table for a specific argument. The syn-

tax of a table condition is:

3 \
field name

field name fsubscripts)
§ register &

IN table name
register (subscripts)

constant

~ Y

The table name identifies the table in the library of tables used. The table

may be either a single-entried or a double-entried core table, but not a
DISC table (see Section 5.3).

The arguments in the table, specified by table name, are searched for a
match against the operand preceding the word IN. If a match is found the

condition is true, otherwise the condition is false.

The operand preceding IN and the arguments in the table must be of the
same type (i.e., either numeric or nonnumeric). The methods for comparing
operands as described in Sections 3.6.1.1 and 3.6.1.2 are also used when

evaluating a table condition.

Examples of table conditions:

X01 IN TABL1
- FLD IN CTABL
FLD(1) IN CTABL

Validity Condition 3.6.3

The validity condition determines whether a field is valid or invalid. The

syntax of a validity condition is:

A
field name { VALID }

INVALID

3.6.4

Every field has an associated validity flag, which can be explicitly set to
valid or invalid by the SET statement (see Section 3.7.1.16). Unless changed
by a SET statement, the validity flag of a field is invalid if an error has been

detected and not corrected, otherwise the validity flag is valid.

Compound Conditions : 3.6.4

Conditions, parentheses, and logical operators may be combined to form a

compound condition.

The logical operators and their meanings are:

Logical Operator Meaning

OR logical disjunction
AND logical conjunction
NOT logical negation

The syntax of a compound condition using the AND or OR operator is:

(condition) { AND} (condition) [{AND} (condifion)} cee
OR OR

The syntax of a compound condition using the NOT operator is:

NOT (condition)

The results of the relationships between two conditions A and B are:

A B NOT (A) (A) AND (B) | (A) OR (B)
true true false true true
true false false false true
false true true false true
false false true false false

Additional pairs of parentheses, enclosing subconditions, may be used to speci-

fy the order in which the compound conditions are to be evaluated.

The compound conditions are evaluated in the following order:

1 (first): Arithmetic expressions

2 Relational operators / table operator
3 Subconditions in parentheses

4 : Logical NOT operator

5 Logical OR operator

6 (last): Logical AND operator

When a sequence of operators has the same order, the operators are executed

in order of their occurrence from left to right.

Examples of compound conditions and their evaluation:
NOT (A > B)

First the relational condition A > B is evaluated, then the result is negated.

(X01 = X02) AND (A IN TABI1)

First the relational condition preceding the word AND is evaluated, then the

table condition following AND, and finally the AND operator is executed.

NOT ((X01 > A) OR (X01< B))

First the relational conditions preceding and following the word OR are evalu-

ated, then the OR operator and finally the NOT operator.

NOT (X01 > A) OR (X01 < B)

First the relational condition following the word NOT is evaluated, and the
result is negated, then the relational condition following the word OR is

evaluated, and finally the OR operator is executed.

3.7

3.7.1
3.7.1.1

Format Language Statements 3.7

A statement is the basic unit of a field program or a subprogram. Each state-
ment begins with a verb and describes some action to be taken. Normally this
is an action which could not be specified in the checkbox part of the format

coding sheet.

The statements are separated by commas, and a program is terminated by a

comma.
A field program consists of none, one or more statements.

In the format language there are two categories of statements: conditional
statements and unconditional statements. A conditional statement is one which
contains some conditions that are tested to determine the path to be taken in
the field program (the IF statement). An unconditional statement is one which

specifies an unconditional action to be taken.

Unconditional Statements 3.7.1

ALARM Statement

The ALARM statement is used to display error messages on the message part of
the keystation screen. The syntax of the ALARM statement is:

nonnumeric constant
register
ALARM q register (subscripts) 4

field name

field name (subscripts)

The ALARM statement displays the contents of the operand on the second line
(the message part) of the keystation screen. Statements following the ALARM

statement are not executed, and the operator must either correct or bypass the
field.

3.7.1.2

w
1

Examples of the ALARM statement:
ALARM 'FINAL PRICE NOT OK",

CONNECT 'BATCH OUT OF BALANCE, DIFF=' TO X01 GIVING
X02,
ALARM X02,

ALLOW and DISALLOW Statements

The ALLOW and DISALLOW statements check current field for specific values.

the ALLOW statement specifies allowable values, and the DISALLOW state-

ment specifies incorrect values. The syntax for these statements is either:

ALLOW [{ 1—}] numeric constant [{ f}] numeric constant

DISALLOW nonnumeric constant nonnumeric constant
or:

ALLOW

[DISC] table name
DISALLOW

In the second form of the ALLOW/DISALLOW statement table name is a name
which identifies the table in the library of core tables (the DISC option is not
used) or in the library of DISC tables (the DISC option is used). The table
may be either single or multiple entried. Current field is checked against the
table arguments.

The type of the constants following the word ALLOW or DISALLOW, or the
type of table arguments must correspond with the type of current field. The

methods for comparing numeric and nonnumeric operands are described in Sec-

tions 3.6.1.1and 3.6.1.2.

In the ALLOW staiement, if the contents of the current field are not one of
the specified values, the statements following the ALLOW statement are not

executed, and the operator must correct or bypass the field.

In the DISALLOW statement, if the contents of the current field are one of
the specified values, the statements following the DISALLOW statement are

not executed, and the operator must correct or bypass the field.

Examples of the ALLOW and DISALLOW statements:

ALLOW 'HANSEN' 'JENSEN',
ALLOW 0 125 512,
ALLOW CTABL,

where CTABL is the name of a CORE table
ALLOW 'A' 'ST" 'XYZ',
DISALLOW DISC TABOI1,

where TABO1 is the name of a DISC table
DISALLOW -2 -1 0 +1 +2,

3.7.1.3 COMPUTE Statement 3.7.1.3

The COMPUTE statement is used for arithmetic calculations. The syntax of the
COMPUTE statement is:

current field name

COMPUTE « current field name (subscripts)

» = arithmetic expression
register

register (subscripts)

The expression is evaluated (see Section 3.5) and the result is stored in the

operand preceding the equal sign. The current field is allowed as destination

only if it isa not keyed field and numeric in type.
Please note that nonnumeric operands containing only digits and fill characters
may be entered in expressions by converting them to numeric types with the

conversion operator NUMERIC.

Examples of the COMPUTE statement:

COMPUTE Al =0,

COMPUTE X01 = XO1 + PRICE,

COMPUTE MONTH = DATE(3) * 10 + DATE(4),

COMPUTE X01(1) = F1,

COMPUTE X01(2) = X04(5),

COMPUTE FLD = FLD + 1,

COMPUTE X03 = NUMERIC X02 + 1,

COMPUTE X01 (6:7) =F1 (8:9), 3-33

3.7.1.4

Notice: The second example of the COMPUTE statement shows how you can

make a total of a field (named PRICE) in a register. Each time PRICE is keyed
the statement shown is executed and at the end of the registration it will hold

the total.

CONNECT Statement 3.7.1.4

The CONNECT statement is used to connect two items and to store the result-

ing character string. The syntax of the CONNECT statement is:

{"field nome (" field name
i
field name (subscriprs}l t field name (subscripts) current field
CONNECT 4 register {, 10 < register GIVING (Mome

i‘regis\‘er fsubscripts} register

E { register (subscripts)
constant J

.. constant

The operands preceding and following the word TO are concatenated in left-
to-right order. The resulting character string is stored in the operand following
the word GIVING. Current field is only allowed as destination if it is a not
keyed field and nonnumeric in type. The source operands can be either nu~
meric or nonnumeric; if an operand is numeric it is interpreted as a nonnumer-

ic character string.

Examples of CONNECT statements:

CONNECT A TO B GIVING X01,
where A='ABC' and B='DEF' causes X01="'ABCDEF',

CONNECT 'AMOUNT="' TO A1 GIVING X01,
where A1= 512 causes X01='AMOUNT= 512',

CONNECT FLD TO ' GIVING Xo01,
where the lengths of FLD and XO01 are equivalent, causes
X01 = contents of FLD. If FLD is numeric in type this
construction may be used to convert the contents of FLD
from numeric to nonnumeric type.

CONNECT 'A' TO X01 GIVING X01,

' This construction will shift the contents of X01 one po-

sition to the right and a space will be stored in the first

position of XO1.

3.7.1.5 DEFINE Statement 3.7.1.5

The DEFINE statement is used to define the length of a register in character
positions. The syntax of the DEFINE statement is:

DEFINE register numeric constant

The numeric constant defines the register length in character positions. The
upper limit for the register length is 255 character f)osifions, but to conserve
storage the register size should be as small as possible. The length of a regis-
ter must be defined by a DEFINE statement before the register is used in any
other statement, or before the register is used in connection with automatic
duplication, insertion or incrementation (i.e., kind =D, C, or I). It is only

allowed to redefine a register, if it is equivalent in length to the first defi-

nition.

Example of the DEFINE statement:

DEFINE Xo01 1,

Notice: The pseudo-registers mentionned in section 3.3.2 are pre-defined.

The define statement is only used for defining registers named X01 - X99.

3.7.1.6 DISPLAY Statement

The DISPLAY statement is used to display operator information on the message
part of the keystation screen. The syntax of the DISPLAY statement is:

nonnumeric constant
register
DISPLAY < register (subscripts) r

field name

field name (subscripts)

The DISPLAY statement displays the contents of the operand on the second
line (message part) of the keystation screen, and it will be displayed until
some other message to the second line occurs. The display statement can be

used for simple fill-in-the-blanks keying and for debugging format programs

by displaying register contents.
‘ 3-35

3.7.1.7

3.7.1.8

Examples of the DISPLAY statement:

DISPLAY 'KEY YOUR INITIALS /,
DISPLAY Xo01,

DUP statement (Not yet available) ‘ 3.7.1.7

The DUP statement is used to simulate activation of the DUP control key.
The syntax of the DUP statement is:

DUP numeric constant FIELDS

The numeric constant defines the number of foolowing Constant, Duplication,
and Incrementation fields to be created as if the DUP control key was acti-
vated. If the number of fields reference to a field beyond the record a run-
time error will occur as will be the result if a Keyed field is encountered
before the specified number of fields have been treated. Otherwise the state-
ments following the DUP statement are not executed and the action specified

by the statement is performed.

Examples of DUP statement:

DUP 1 FIELD,
IF FLD =X01 THEN DUP 3 FIELDS,

Notice: If an error, calling upon operator intervention, occurs before the

number of fields have been treated then the action specified by the DUP state-
ment is interrupted and a message will be displayed on the key station display

screen as would be the case if the DUP key had been pressed the same number

of times as specified by the statement.

END Statement 3.7.1.8

The END statement is used to terminate a format or a subprogram. It must physi-

cally be the last statement of the format or the subprogram. The syntax of the
END statement is:

END

3.7.19

3.7.110

END SUBFORMAT Statement 3.7.1.9

The END SUBFORMAT statement is used to terminate any subformat except the
last subformat, which is terminated by the END statement. When required, the
END SUBFORMAT statement must physically be the last statement in the sub-
format. The syntax of the END SUBFORMAT statement is:

END SUBFORMAT

GOTO Statement 3.7.1.10

The GOTO statement is used to transfer control from one part of the program
(that is, a field program or a subprogram) to another statement in the same pro-

gram. The syntax of the GOTO statement is:

GOTO label

A statement may be labeled by assigning it a name followed by a colon (addi-
tional labels are allowed). The label is used in a GOTO statement to pass

control to the statement after the label.

Labels must be defined within the program that contains the reference to the

label, and a GOTO statement cannot reference a label in another program.

Examples of labels and the GOTO statement:

IF X01 <0 THEN GOTO ERROR,

ERROR: ALARM 'BATCH OUT OF BALANCE',

AGAIN: IF X01=0 THEN GOTO NEXT,
COMPUTE X01 = X01 - 1,

GOTO AGAIN,

NEXT:

3.7.1.11 LIMIT Statement 3.7.1.11

The LIMIT statement is used to check current field against a range of values.
The syntax of the LIMIT statement is:

LIMIT [{T}J numeric constant l:{f}:l numeric constant

The LIMIT statement is only allowed if current field is numeric in type.

The second value must be greater than or equal to the first value. The range

includes the smallest and the largest value.

If the check falls, the statements following the LIMIT statement are not exe-

cuted, and the operator must either correct or bypass the field.

Examples of the LIMIT statement:

LIMIT 1000 5000,
LIMIT -500 999,
LIMIT -510 -509,
LIMIT -1 11,
LIMIT 0 0,

3.7.1.12 MOVE Statement 3.7.1.12

3

38

The MOVE statement is used for moving nonnumeric data from one place to an-
other, such as from one field to another. The syntax of the MOVE statement

is:

(3

field name current field name

field name (subscripts)

current field name (subscripts)
MOVE < nonnumeric constant ¢ TO <

register

register register (subscripts).

register (subscripts)

The operand preceding the word TO is moved to the operand following the word
TO. Both operands must be nonnumeric in type. Current field name is only al-

lowed as destination if it is a not keyed field.

Examples of the MOVE statement:

MOVE 'TEXT' TO X02,
MOVE X01(1) TO FLD1(3),
MOVE X03 TO FLD4, ‘
MOVE FLD(1) TO FLD(2),

3.7.1.13 NOTE Statement , 3.7.1.13

The NOTE statement is used to write a commentary which is shown on the

source listing but is not used in the system. The syntax of the NOTE statement

is:

NOTE character string

The system ignores the character string following the word NOTE up to the first

comma or semicolon.

Observe the following rules about the NOTE statement:

1. The character string may contain any characters including those not in the

format language character set.
2. The character string may proceed through more than one line.

3. If quotation marks are used in the character string they must occur in pairs

on a line.

. The NOTE statement must not be the last statement before ELSE (because

e
o

there is no comma or semicolon before ELSE, see Section 3.7.2.1 about
the IF statement).

5. The character string may contain any reserved name.

6. The character string may be empty.

Examples of the NOTE statement:

NOTE CHECK DATE,
NOTE THIS FIELD CONTAINS THE SALES PRICE,
NOTE IF X01 <> 0 THEN FIELD 1 IS INCORRECT,
NOTE 'JENSEN' IS AN INVALID NAME,
NOTE 'JENSEN' IS AN INVALID NAME.

BUT "HANSEN' IS OK;
NOTE ,

Notice: A field program must not end with a label, because labels are pre-

ceding statements. If a label is wanted at the end of a field program, a NOTE

statement with an empty character string may be used as last statement.

3.7.1.14 PERFORM Statement 3.7.1.14

A PERFORM statement is used to pass control from a field program to a sub-

program, or from one subprogram to another subprogram. The syntax of the
PERFORM statement is:

PERFORM subprogram name

The subprogram name must be in the subprogram library (see Section 5.2). Re-
turn from the subprogram is made to the statement following the PERFORM

statement.

The PERFORM statement may occur as the last statement in a field program,

in which case further statements are not required.

See further in Section 3.8 about subprograms.

An example of a PERFORM statement is:
PERFORM CHE10,

3.7.1.15 SEARCH Statement 3.7.1.15

The SEARCH statement is used to search a table for a specified argument and
if the search is successful, to store the function (s) of the argument, otherwise if

the search is unsuccessful, to perform a specific action. The syntax of the
SEARCH statement is:

(field name
field name (subscripts)
SEARCH < register >IN [DISC] table name

register (subscripts)

constant
\ J

*
current field name

GIVING J current field name fsubscripts)
register

register (subscripts)

AT END unconditional statement

Table name identifies the table in the library of core tables (the DISC option
is not used) or in the library of DISC tables (the DISC option is used). The

table must not be single-entried.

Using the operand following the word SEARCH the table is searched for a match

against the arguments of the table.

If the search is successful, the function(s) of the argument which matched will
be stored in the operand(s) following the word GIVING, and the unconditional

statement following AT END will not be executed.

Double-entried core-tables can only contain one function per argument, i.e.

only one operand must be specified following the word GIVING.

If the table is a disc-table with more than one function per argument then as
many operands as the number of functions per argument must be specified
following the word GIVING. The first function corresponding to the argument
will then be stored in the first operand specified, the second function in the

second operand specified etc.

To prevent unwanted functions from being stored, an asterisk may be specified
instead of one or more operands following the word GIVING. The place of an

asterisk among the operand(s) defines the unwanted function(s).

If the search is unsuccessful, control is transferred to the unconditional state-
ment following the words AT END, and the operand(s) after the word GIVING

will not be changed.
3 - 41

3.7.1.16

The source operand must be of the same type as the table arguments. Current
field is only allowed as destination if it is a not keyed field, and if it is of

the same type as the table functions.

Examples of the SEARCH statement:

SEARCH CUSNO IN CTABL GIVING X0t
AT END ALARM 'CUSTOMER NUMBER NOT KNOWN',

SEARCH FLD1 IN ATABL GIVING FLD4
AT END GOTO ERROR,

SEARCH FLD(1) IN ATABL GIVING X01
AT END COMPUTE X01=0,

SEARCH ARTNO IN DISC ARTTB

GIVING * X01 X13 »=

AT END ALARM 'ARTICLE NUMBER NOT KNOWN',

NOTE ONLY 2ND AND 3RD ARGUMENT OUT OF 5 ARE STORED,

SEARCH CUSNO, IN CTABL GIVING *
AT END ALARM'CUSTOMER NUMBER NOT KNOWN,

Notice: If the search is unsuccessful no value is stored in the destination

operand (s).

SELECT Statement 3.7.1.16

The SELECT statement is used to change subformat under program control. The
syntax of the SELECT statement is:

SELECT SUBFORMAT subformat name

The SELECT statement may appear only in the last field program in a subfor-
mat. The statements following the SELECT statement are not executed, and

the subformat change is made.

Examples of the SELECT statement:

SELECT SUBFORMAT 2,
IF X01 =0 THEN SELECT SUBFORMAT E,

3.7.1.18

3.7.2
3.7.2.1

3.7.1.17 SET Statement 3.7.1.17

The SET statement is used to set the field status to valid or invalid. The syn-

tax of the SET statement is:

SET field name < YALID
INVALID

The validity flag of the specified field is set valid or invalid, based upon the

selected option.

Examples of the SET statement:

SET FLD1 VALID,
IF TOTAL <> X01 THEN SET A INVALID,

Notice: The field status will not be replayed, i.e. once a field status is

changed (in)valid it is treated as if it was (in)valid.

SKIP Statement 3.7.1.18

The SKIP statement is used to make an automatic skip to a forward field. The

syntax of the SKIP statement is:

SKIP numeric constant FIELDS

The numeric constant defines the number of fields to be skipped, which must
be greater than 0. If the number of fields reference to a field beyond the rec-
ord a runtime error will occur, otherwise the statements following the SKIP |
statement are not executed and the skip action is performed. The skipped fields

are filled with fill characters and their field programs are not executed.

Examples of the SKIP statement:

SKIP 1 FIELD,
IF FLD > 10 THEN SKIP 2 FIELDS,

Conditional Statements 3.7.2

IF Statement v 3.7.2.1

The IF statement is a conditional statement. It is used to make a path through

the field program, depending on the result of the evaluation of the specified

3-43

condition. The syntax of the IF statement is:

IF condition THEN sentence [ELSE sentence]

The condition following the word IF is evaluated. If the condition is true, the
sentence following the word THEN is executed. Control is then passed to the
next statement ofter the IF statement, unless the sentence contains a GOTO

statement, in which case control is passed to the GOTO label.

If the condition is false, the sentence following THEN is skipped and the
sentence following the word ELSE is executed, or, if the ELSE option is omit=

ted, the next statement after the IF statement is executed.

The IF statement may occur as last statement in a field program, in which

case no following statement is required.

A sentence contains one or more statements, separated by a semicolon, and

terminated with a comma or the word ELSE.

A sentence following the word THEN may contain any statement except a con-
ditional statement. A sentence following the word ELSE may contain any

statement including a conditional statement.

Notice:

1. Neither comma nor semicolon is allowed immediately before the word
ELSE.

2. A sentence following the word THEN is terminated when the word ELSE
or a comma is encountered.

3. A sentence following the word ELSE is terminated when the first comma

is encountered.

Examples of the IF statement:

IF NOT (TOTAL = X04) THEN 'ALARM TOTAL PRICE NOT OK'
ELSE DISPLAY 'END OK!',

IF X0T > 0 THEN COMPUTE X02 = X02 + A;
COMPUTE XO01 = X01 - 1,

3.8

3.8.1

IF X01 < X02 THEN COMPUTE X02 = X02 - A
ELSE COMPUTE X02 = X02 + A; COMPUTE X03 = X03 - 1,

IF A> BTHEN GOTO C,

NOTE NEXT STATEMENT CHECKS IF A PREVIOUS (NUMERIC)
FIELD ONLY CONSISTS OF FILL CHARACTERS (I.E. HAS BEEN
SKIPPED),IF ALPHANUMERIC FLD5 ='#+*#++*' THEN SKIP 2 FIELDS,

Subprograms 3.8

A subprogram is a program that is called from another program, by using the
PERFORM statement. Control is transferred to the first statement in the sub-
program, and returned to the calling program by the END statement in the

subprogram.

Statements In Subprograms ’ 3.8.1

The statements allowed in subprograms are:

ALARM (field name not allowed as operand)

ALLOW (the DISC table option is not allowed)
COMPUTE (field names not allowed as operands)
CONNECT (field names not allowed as operands)

DEFINE

DISALLOW (the DISC table option is not allowed)

DISPLAY (field name not allowed as operand)

Dup

END

GOTO

IF (validity condition and field names as operands
are not allowed)

LIMIT

MOVE (fie!d names not allowed as operands)

NOTE

PERFORM

SEARCH (the DISC table option is not allowed)

SKIP

3.8.2

Notice:

. A subprogram must end with an END statement.
2. A subprogram cannot call itself in a PERFORM statement.

Operands In Subprograms 3.8.2

Only registers and constants are allowed as operands in statements in subpro-
grams. The register names refer to the same registers as in the field programs,

and a register may be used both in field programs and in subprograms.

Registers are used for transferring data to and from subprograms, as the for-
mat language contains no possibilities of defining subprograms with para-

meters.

Example:

Consider a problem, where you want a check-digit control in a numeric

field. You program the check in a subprogram, for example:

SUB.PROG
NAME

COMMENT

2

COOO0CHECK-01GIT CONTROL - XO7= CUSTOMER NUMBEk

Ty T '

PROGRAM STATEMENTS

1

S

A XOT1(5)*1). MOD, 1.1, X> O THEN

,!.L,FJ L {1X‘OI 71 (J./'))*L5l S0 USRS WSS A SN SN U SN S S WOV S NV SN MUY G GRS S SO SR S SR i i i i 1 1 i i i L 1 L 1
1 f+1XxOL71('2|)A*141 D LS 5N N W S S VS R WSS W WG OSUUN A WS SN AU WS SN SUS SO RDY SRS U UNIPU SHNED WS NN U S WU SN S W SN |
b 1 +XO7 (3)l*L3 1 1 R i 1 1 1.1 i i 1 S U SR S | i 1 F SRS S W S— 1 i L i 1 U Y L T
*2,
e L;J;X QIlL_(4, 7)4 B O T 4 - 4 4 bewdboodoodbo bl L b4 b cbede b bd b) e i SN 1

VRS WA VRS WO WU SN SRS S W S Y N § SIS S W S|

ALARM ' INCORRECT CUSTOMER NUMBER' .,

S SN WUV S W N TN WA S W G S S S |

£ ND

lS)lll14111L1111|LJA;ALlJl:ALAA’1[11£A11I1111|14

e NS WL SIS W S W ENURS WU S0 WS GRS WS S TS SR N SN SUUIS AN GRS S G GO S WS VUUY S SN S SN SO S U U SN S S U S SN S R S S T |

The corresponding field program may look as follows:

FORMAT 3

NANME

P COMMENT

S

.A‘z\
&
= & > Koo
S NS < 59 N v_-\ N
SSESE S)08 o) $
G S E S SO A & . e
S/) SSSET J SIS/ &/ procRAN STATEMENTS
2l s | o4 s | 6 7 8 {9wo|n|zp3]| 14 15

CUSNO| | | .| 8l onN | 1l |||]] . | COMPUTE XO1=CUSNOs. .\ . .. '\ '\ .0
J_PgRA,FOJB.«.LC‘oLQL«q_,"L)J_J N S _l i 1.1 lvl T S S i

= S - S TS TN S T S VR SO G S TN G EOO G W S U VO U S G U S W U U WD G W W |

®
w
[}
N

S

4.1

1"‘
N\

4.3

Execution of Format Programs

Selecting Subformat 4.1
After invoking a format the system is set ready to execute the first subformat.
The same subformat is run through cyclically until a new subformat is selected.

A subformat can be selected manually by using the SUBFORMAT control key,
or it can be program-selected by execution of a SELECT SUBFORMAT state-

ment.

Terminating a Format Program 4.2

A format program is terminated by executing an END statement.

Execution of Subformats 4.3

The field descriptions in a subformat are executed sequentially. After the in-
itial sequential execution of all field descriptions in a subformat follows a
cyclical repetition starting with the subformat's first field description, and

SO on.

This sequential process can be interrupted by a SKIP statement, or by using
the RECORD RELEASE or the FIELD BACK control key.

By using the SKIP statement the execution of one or several subsequent field

descriptions in a subformat can be skipped.

Pressing the RECORD RELEASE control key will cause the remaining field de-
scriptions of a subformat to be skipped, provided this is allowed - see Section

4.4.6.

Pressing the FIELD BACK control key will cause a backward step in the field

sequence of a subformat - though not beyond the current record.

4.4

4.4.1

4.4.2

4,4.2.1

Execution of a Field Description 4.4

The execution of a field description is dependent on the field definition, the
field input and previous skip instructions. There is a number of possible al-

ternatives:

* The field is a KEYED field.

* The field is an AUTOMATIC field.

* The field is a NOT KEYED field (including O-length fields).

* The field has been skipped by a SKIP statement.

* The field has been skipped by the ENTER key, i.e., no data input.
* The field has been skipped by the RECORD RELEASE key.

* The field has been skipped by the BYPASS key.

Keyed Fields 4.4.1

If a field is keyed (i.e. kind = K), the following steps will be executed in the

named order:

* Right/left justification and insertion of fill characters.
* Length check.

* Minimum length check.

*

Type check.

*

Execution of the field program.

Automatic Fields 4.4,2

There are three kinds of automatic fields:

DUPLICATE fields (i.e. kind = D),
CONSTANT fields (i.e. kind = C),
INCREMENT fields (i.e. kind = 1).

Duplicate Fields. Two possibilities are open: 4.4.2.1

1. Keying the field,
2. Duplicating the field.

Keyed fields are executed as specified in 4.4.1.

4.4.2.2

4.4.2.3

Subsequently,
* the field's contents are transferred to the register defined in the field defi-

nition. Un equal length of field and register cause a runtime error.

Pressing the DUPLICATE control key will cause the following to happen:

* The contents of the register specified in the field description are trans-
ferred to the field. Un equal length of field and register cause a runtime

error.

*

A typecheck is performed.

Execution of the field program.
The contents of the field are transferred to the corresponding register.

*

Constant Fields. There are two possibilities: 4.4,2.2

1. Keying the field;
2. Duplicating the field.

Keyed fields are executed as specified in 4.4.1.
Pressing the DUPLICATE control key will result in the field being executed as

a DUPLICATE field, cf. 4.4.2.1.The contents of the field will not be transferred
to the register after the execution of the field program.

Increment Fields. There are two possibilities: 4,4,2.3

1. Keying the field,
2. Duplicating the field.

Keyed fields are executed as specified in 4.4.1.

Subsequently,
* the field's contents are transferred to the register defined in the field defi-

nition. Unequal length of field and register cause a runtime error.

Pressing the DUPLICATE control key will have the following result:

* The contents of the register specified in the field definition are transferred
to the field. Unequal length of field and register cause a runtime error.

* The field is incremented by 1.

4-3

4.4.3

4.4.4

4.4.5

4.4.6

4.4.6.1

* A typecheck is performed.

* Execution of the field program.

* The confents of the field are transferred to the corresponding register.

Not Keyed Fields 4.4.3

NOT KEVYED fields are fields w'th kind = N or length = 0. Such fields will

have no input during registration.

The following is performed:

+ |nsertion of fill characters.

* Execution of the field program.

Fields Skipped by SKIP 4.4.4
If a field is skipped by using the SKIP statement, the following will occur:

* |nsertion of fill characters.

* No execution of the field program.

* Registers corresponding to duplicate or increment fields will not be updated.

Fields Skipped by ENTER 4.4.5

If a field is bypassed by simply pressing the ENTER key, the following will

occur:

* Minimum length check, i.e. if minimum length is greater than zero, an

error message appears and the field has to be keyed.

Otherwise, the following is performed:

* Insertion of fill characters.

* No execution of the field program.

* Registers corresponding to duplicate or increment fields will not be updated.

Fields Skipped by RECORD RELEASE 4.4.6

Fields skipped by pressing the RECORD RELEASE key will be executed in ac-

cordance with the field's definition.

Fields with Kind KEYED DUPLICATE, CONSTANT, INCREMENT. Fields
with kind KEYED , DUPLICATE, CONSTANT INCREMENT are executed as
fields skipped with ENTER (see Section 4.4.5).

4.4.6.2

4.4.7

4.4.8

4.5

* If the minimum length of the field is not zero, an error message appears,
and the field must be keyed. Subsequently, RECORD RELEASE is stopped,

and normal execution is resumed in KEY, REKEY, or EDIT mode.

Fields with Kind NOT KEYED. If the skipped field is of the NOT KEYED

kind the following will happen:

* Insertion of fill characters.

* Execution of the field program.

Fields Skipped by BYPASS 4.4.7

The BYPASS control key is used to bypass fields that one has given up keying

correctly.

* The field will retain the contents it had before activating the BYPASS key,
if the field has been keyed.
* The field program is not executed.

* Registers corresponding to duplicate and increment fields are not updated.

Execution of a Field Program 4.4.8

The statements in a field program are executed sequentially.

The whole field program is executed. However, any error detected through
ALLOW, DISALLOW, or LIMIT, as well as execution of an ALARM, DUP,
SKIP, or SELECT statement will cause the field program to be interrupted

after such a statement.

The sequential processing of a field program can be interrupted by a GOTO

statement.

Field Flags 4.5

During execution of a field description the field is assigned two flags, which
are independent of each other. They are:

Validity flag

Skipped flag.

4.5.1

4,5.2

Validity Flag 4.5.1

This flag has two values:

VALID
INVALID

An INVALID flag is assigned to a field which

*

is skipped by the BYPASS key, or
* is set INVALID by a SET statement, or
* is a 'NOT KEYED' field containing an error, or

* is a keyed field containing an error, that has not yet been corrected.

In other cases the field gets a VALID flag.

If a field in a record has an INVALID flag, the record will also get an IN-
VALID flag.

You may ask for a field's validity flag in an IF statement.

Skipped Flag 4.5.2
This flag has three values:

NOT SKIPPED
SKIPPED
SKIPPED BY STATEMENT

A SKIPPED flag is given to a field which

* s skipped by the ENTER key, or
* is skipped by the BYPASS key, or
* is skipped by the RECORD RELEASE key.

A SKIPPED BY STATEMENT fiag is given to a field which

* is skipped by the SKIP statement.

Otherwise, the field gets a NOT SKIPPED flag. We say the field is skipped
if it has a SKIPPED flag or a SKIPPED BY STATEMENT flag and the field pro-

gram is not executed.

4.5.3

4.5.4

4.6

Flags for REKEY 4.5.3

For fields specified as 'REKEY YES' the flags in REKEY mode are set as for
KEY mode when the fields are rekeyed. A field specified as 'REKEY NO'
gets normally the same flags as the corresponding old field. But depending

on the old field flags for 'REKEY NO' fields some special actions occur:

If the old field validity flag is INVALID, the old field is not used as field
input but an error message appears and the field must be keyed as if it were

specified as 'REKEY YES'.
If the old field skipped flag is SKIPPED BY STATEMENT and the field will

not again be skipped by the SKIP statement, an error message appears and
the field must be keyed as if it were specified as 'REKEY YES',

Flags for EDIT 4.5.4

When fields are keyed in EDIT mode the flags are set as for KEY mode. When
searching in EDIT mode the fields are normally given the same flags as the
corresponding old fields. But depending on the old field flags some special

actions occur:

If the old field validity flag is INVALID, the old field is not used as input,

but the searching stops with an error message.

If the old field skipped flag is SKIPPED BY STATEMENT and the field will
not again be skipped by the SKIP statement, the old field is not used as input,

but the searching is stopped with an error message.

Registers 4.6

Registers may be assigned directly in the field program, or indirectly when
used for automatic fields (kind: duplicate or increment). In the latter case
the field is not transferred to the register until after execution of the field

program, so that the contents of the register will be exactly the same as the

contents of the field.

4.7

4.8

Replay 4.7

When the format program is executed during keying, the format is said to be
'playing' the batch. The format execution sequence and the contents of the
registers may be dependent on what is keyed. Therefore, a register of which
the contents are affected by what is keyed must be changed whenever the

field affecting it is changed. To revise the register contents and bring them

up to date, the entire batch must be 'replayed' from start up to the point where
the change is made. To save time during replay pictures of the registers are
frequently saved in the batch, and the replay is actually performed from the

nearest preceding register picture.

Replay occurs:

* when the RECORD BACK key is used.

* when the FIELD BACK key is used.

* when the CLEAR key is used.

* when the SUBFORM key is used.

* when the RECORD key is used.

when an error is detected during format program execution and a register
has been changed in the format program.

* when keying or rekeying is reopened after the ESCAPE kay has been used.

Be aware that the status of fields will not be replayed.

Execution of IMAGE 4.8

The execution of the format image belonging to a given format is given by

the execution of the format itself.

In selecting subformat the corresponding subformat image is automatically

used.

If a subformat image consists of only one page, the fill-in-the-blanks mask of
this page is written on the screen on selection of the subformat, and remains

there during the repeated registration of this subformat.

If a subformat image consists of several pages, the corresponding fill-in-the-
blanks mask will be replaced during the run of the subformat. This replace-

ment occurs as each new page is specified in the field definitions.

o

5.1

Entering New Formats, Subprograms,
and Tables

The keying of new formats, subprograms, or tables is controlled by a standard
format. The result is a batch, which can be edited, saved, listed, etc., in

the same way as with all other batches in the Data Entry system.

Before entering new formats or subprograms in the system all referenced sub-

programs and fables must have been entered.

The entering of formats, subprograms, and tables is guided by the supervisor
program TRANSLATE, with the exception of DISC tables which are treated

separately.

TRANSLATE controls if the source batch is correctly structured and, if so,
translates it into internal form. The name of the translated file is then in-
cluded in the current library, after which the new format, or subformat, or

table, can be referenced by its name.

New Formats 5.1

The format text of the coding sheets is keyed under the control of the standard
format FORM.

The keying of tags written on complementary coding sheets is controlled by
the standard format IMAGE.

Both standard formats support fill-in-the-blanks guidance.

The FORM standard format contains 3 subformats (see Appendix IV):

H - reads subformat head belonging to the new format;
F - reads field description belonging to the new format;

E - terminates the batch (format text).

The format coding sheets are interpreted by FORM in the following way:

1st subformat

FORMAT .
NAME S| P{ COMMENT Is H
1 2|3 4 B
- rea H
L ‘ l . -read by
< .
3 automatic
> S > Ped
o¢ e S/8/8 SN sl)& selection
GF &)) S)5S &S SE SMSSIS &
Pal Y I Q N, S IS SR JS[/S/E/) & PROGRAM STATEMENTS Of F
1 2 3 4 5 6 7 8 9 10|11 |12113] 14 15
- read by F
i A 1 1 1 1 1 N A 1 1 i’ D S W U W WU O R S W S S N S G S S S
- read by F
e 1 1 1 L A 1 1 i 1 i i N U W S (N N NN G W ANUUN TN SR G G W N W S §
" i 1 1 i 1 L 1 1 i 1 U N G U N B S G B S Y S S N S S S S §
:
'
*
RN I NN IR O I I . leno susForMAT,. . . ., —-read by F
.
automatic
.
FORMAT s| el comment selectlon
NAME S . ofH
1 213 4
A . ‘ A o .. -read by H
o .
- $ - vy auftomatic
¢ S /88 S Solo) & selection
S8 JF &)) E /s SLSES SSASIS &
FF AN /S &)L SSS/T/S/E/ ¥ / PROGRAM STATEMENTS of F
1 2 3 4 5 6 7 8 g 1011|112 113] 14 15
‘ - read by F
N S S S I G 1 1 1 i i1 1 Allilllllllllkllli -
- read by F
;Jf,,_;_r 1 1 | 1L 4.4 i 1 1 It i 1 W NS U0 WA WO A SN WA (NN SN T (N WU S0 N N W
L,L,LJ_I 1 i 1 1 i 1 1 1 jAlLLlALIllAllAAll
.
) * dby F
- rea
!Allll!AiA 1 i l!LI l!l IEANibl’!llAllllilllle Y
.
avtomatic-
ally termin=-
ated by E
*

Such automatic selection of subformats is performed only if this statement

is indicated exactly as above, meaning that the statement must begin in
the 1st position in columin 15, that there must be one, and only one, space
between END and SUBFORMAT, and that the words SUBFORMAT and END

must be immediately followed by a comma.

Subformat H contains 5 field descriptions, which check the following:

1. FORMAT NAME (AN)

2. SUBFORMAT NAME (AN)

The first character of the FORMAT
NAME must be a letter from 'A' - 'Z",

must be a letter from 'A' - 'Z' or a
digit.

. 3. PROTECTED (A) "Y', 'N', or 'A"
4., COMMENT (AN) No check.
5. Field description No check; automatic selection of sub-
(not keyed field) format F.

Subformat F contains 16 field descriptions, with the first 15 receiving input
from the columns of the format coding sheets, while the 16th is a not keyed
(0-length) field for consistency checks of the first 15 field descriptions. The

following checks are performed.

1. FIELDNAME (AN) The first character of FIELDNAME must
be a letter from 'A' - 'Z', or FIELD-
NAME ="'AAAAA".

2. PAGE (N) When PAGE is keyed as SPACE ENTER
two field descriptions are automatic-
ally skipped (that is, neither PAGE nor
LINE or POSITION are specified);
else the following checks are made:
PAGE must be a number from 1 to 8,
and must, furthermore, be greater than
or equal to the last defined PAGE of

the current subformat.
3. LINE (N) LINE is a number from 1 to 21.
4. POSITION (N) POSITION is a number from 1 to 80.

(8,

. LENGTH (N) | When LENGTH is defined as 0 (zero)

' or as SPACE ENTER, an automatic skip-
ping occurs to the 15th field descrip-
tion (PROGRAM STATEMENTS); else
the following check is made:

LENGTH must be a number from 1 to 80.

6. MIN.LENGTH (N) MIN . LENGTH must be less than or
equal to LENGTH, and has to be a

number from 0 to 80.

7. TYPE (A) 'NA', 'SN, 'SS', 'AN', or 'AA".

11.
12.
13.

14,
15.
16.

Subformat E consists of one field description, with a field definition describ~

ing a not keyed (0-length) field, and the field program is solely an END

. OUTPUT POSITION (N)

. R/L (A)
10.

FILL (AN)
REKEY (A)
DISPLAY (A)
KIND (A)

REGISTER (N)
PROGRAM STATEMENTS (AN)

Field description |
(not keyed field)

statement.

QOUTPUT POSITION is a number from
0 to 255.

ILI, IRI’ or lAl

IAI’ |0|’ or 1% 1

lYl’ INI, or IAI

'N', 'Y', 'Or IA'

IAI’ IDI’ 'C" llI, |NI or IKI; Furfher-
more, TYPE must be Na!,

if KIND ="1"*,

REGISTER is a number from 1 to 99.
No checks.

If LENGTH ="'AA"', or LENGTH =0:
only PROGRAM STATEMENTS may be
specified.

The following applies if LENGTH > 0:
- Either PAGE, LINE, and POSITION
are all specified, or none of them.

- MIN.LENGTH, TYPE, and OUT-
PUT POSITION are specified.

- If REGISTER is not specified, then
KIND is either 'N', 'K', or 'A".

- If REGISTER is specified, then KIND

is either 'C', 'D', or 'I'.

When PROGRAM STATEMENTS start

with 'END SUBFORMAT,', subformat ‘
H is automatically selected.
When PROGRAM STATEMENTS start
with 'END, ', subformat E is automatic-
ally selected.
®

I In addition to normal error messages (length, type, limit, etc.), the follow-
. ing alarm texts may appear when using the standard format FORM:

I From subformat.Column

l CURRENT PAGENO LESS THAN PREVIOUS PAGENO F.2
ERROR IN CHECKBOX CONTENTS F.16

I ILLEGAL FIELD NAME F.1
ILLEGAL FORMAT NAME H.1
ILLEGAL SUBFORMAT NAME H.2

l KIND "1" ONLY ALLOWED IF TYPE ="N" F.13

I MIN.LENGTH GREATER THAN FIELD LENGTH F.6

l 5-5

The standard format IMAGE contains 3 subformats (see Appendix 1V).

H - reads subformat head belonging to the new format image;

F - reads tag description;

E - terminates batch (format image text).

The format image coding sheets are interpreted by IMAGE in the following

way:
FORMAT N RAE
MAME S | COMMENT
3
&
&
&, @ &
o/ & 3
S)L/ rex
1 3 4
SR A - i i) . Lo Ak S
i 1ol SN L e
b —— 4 1 i 1 1 ;e H [i i L
1
]
]
' ‘,, L,,,L _.h - EVLA' i i I 1 i i i 1 1 1 i 1 i A S U
FORMAT N I
NAME S | COMMENT)
1 e 3
.
/ &
&) & S
S Q TEXT
2 I
=y - i 1 oL S U S

SRS VN NPT GHIID U SIS IS Py SRS SR S S

1st subformat
is H

read by H

auvfomatic
selection of F

- read by F
- read by F

- read by F
manual selec-
“tion of H

- read by H

automatic
selection of F

- read by F
- read by F

- read by F

manual selec-
tion of E ter-
minates the

batch

Subformat H contains 4 field descriptions, where the following checks are

made:
1. FORMATNAME (AN) The first character of the FORMAT-
NAME must be a letter from 'A' to 'Z'.
2, SUBFORMAT NAME (AN) is a letter from 'A' to 'Z', or a digit.
3. COMMENT (AN) No check.
4. Field description No check; automatic selection of sub-
(not keyed field) format F.

Subformat F contains 4 field descriptions, where the following checks are

made:

1. PAGE (N) PAGE must be a number from 1 to 8,
and must, furthermore, be greater than
or equal to the last defined PAGE of
the current subformat,

2. LINE (N) LINE is a number from 1 to 21,

3. POSITION (N) POSITION is a number from 1 to 80.

4, TEXT (AN) No check.

Subformat E consists of one field description, with a field definition describ-
ing a not keyed (0-length) field, and the field program is solely an END
statement.

In addition to normal error messages (length, type, limit, etc.), the follow-

ing alarm texts may appear when using the standard format IMAGE:

From subformat. Column

CURRENT PAGENO LESS THAN PREVIOUS PAGENO F.1
ILLEGAL FORMAT NAME H.1
ILLEGAL SUBFORMAT NAME H.2

When the created batches are considered to be correct, translation of the
format is initiated by activating the supervisor program TRANSLATE (see
Users Guide):

TRANSLATE FORM form-batch [image—bo’rch]
Remember that all referenced subprograms and tables must be known to the
system before starting the format translation. Once the format is translated

they are no longer needed.

When the format has been correctly translated, the format name is included

in the format library.

5.2 New Subprograms | 5.2

The subprogram text of the coding sheets is keyed under the control of the
standard format SUBPR. The standard format supports fill-in-the= blanks guidance.

The SUBPR standard format contains 3 subformats (see Appendix IV):

H - reads subprogram head;
P - reads a part of a subprogram;

E - terminates the batch (subprogram text).

The subprogram coding sheets are interpreted by SUBPR in the following way:’

1st subformat

is H
S .
WAL CORME BT
l :
| - - read by H
automatic
e , selection of P
PROGRAM STATEMENTS
1
1 FO i i i GRS U W SN U SR SR | 1 1 L i H i i 1 1 1 1 i i i 1 i 1 - read by P
- read by P
il U S S S T N S VA S T N WU S ST ST W N S NS SO S S S S
R O S G SR SR Y G VU WS SR SO U S SN0 SUNY Y SRS N SNNS SNT SN WIS SOUNS SN WY S S SO S MU SN
)
'
[‘
-4 deooo L i . a4 R 1o 1 4 i 4 1 1 1 i i i L i L 1 1 1 i i i i
»*
- read by P
N;,DJA O GO N Y G S N SN SN TR SANAS NAOT SRS WS SN WU WD UOY WU SUY ST S S S S SN S y
automatically

terminated by

* Automatic selection of subformats is ackomplished only if this statement
is indicated exactly as above. That is, the statement should start in the
Ist position, and the word END should be immediately followed by a
comma.

5-10

Subformat H contains 3 field descriptions, with the following checks to be

made:
1. SUBPROGRAMNAME (AN) The first character of the SUBPROGRAM-
NAME must be a letter from 'A' to 'Z',
2. COMMENT (AN) No check.
3. Field description No check; subformat P is automatical-
(not keyed field) ly selected.

Subformat P consists of one field description, with the following operation:

1. PROGRAM STATEMENTS (AN) No check; subformat E is automatical-
ly selected if PROGRAM STATE-
MENTS start with 'END, .

Subformat E consists of one field description, with a field definition describing
a not keyed (0-length) field, and the field program being solely an END

statement.

In addition to normal error messages (length, type, limit, etc.) the following

alarm text may appear when using the standard format SUBPR:

From subformat.Column

ILLEGAL SUBPROGRAM NAME ’ H.1

When the created batch is considered to be correct, translation of the sub-
program is initiated by activating the supervisor program TRANSILATE

(see Users Guide)

TRANSLATE SUBPROGRAM subpr - batch

Remember that all referenced subprograms and tables must be known to the
system before starting translation of the subprogram. Once the translation is

finished they are no longer needed.

When the subprogram has been correctly translated, it is included in the sub-

program library.

@
&)
Qo

New Tables ' 5.3

5.3.1 New Core Tables 5.3.1

The keying of the table text from the coding sheets is controlled by the stan-
dard format TABLE. The standard format supports fill-in-the-blanks guidance.

The TABLE standard format contains 15 subformats (see Appendix 1V):

- reads columns 1 - 6 of table head.

- reads column 7 of table head.

~ reads columns 8 - 14 of table head.

- reads table element, Single entry table, A-type = N,

- reads table element, Single entry table, A-type = AN;.

- reads table elements, Double entry table, A-type = N, F-type = N;

- reads table elements, Double entry table, A-type = N, F-type = AN;
- reads table elements, Double entry table, A-type = AN, F-type = N;
reads takle elements, Double entry table, A-type = AN, F-type = AN;
- stores a control word (DISC TABLE) in the batch and selects subformat O,
- reads operation and selects subformat S;

~ selects subformat A, or N, or O;

- reads disc table element of type AN and selects subformat S;
- reads disc table element of type N and selects subformat S;
- terminates batch (table text).

mZ>V OO0 AWN 42T
1

Subformats M, T, C, O, S, A, N, and E which concern disc tables (possibly

Multple entry tables) are explained in section 5.3.2.

5-1

5-12

The table coding sheets are interpreted by TABLE in one of the following two

ways (see Appendix 1V) when the table is a core-table:

1. Single entry table

1st subformat

is H
TABLE Ala A
NARSE : 'rYFiE,, LGTH;
1 z 3 4 y
s N , - read by H
automatic se-
- lection of sub-
1 ARGUMENTS ‘ format 1 or 2
[E ST TR GRS SNUY SHNE SN NUS-SUNS S S S S D T [AU AU S S SHNNS SR USRI S S S el - reOd by] or 2

[N SO SN URE G VAU GRS UG SUT WU SN SO S NN SR WD SR RS S S b A hecde b Lo ded Ao

- read by 1 or2

AR S SN U S HP S S [S NS TS SUS WU S TSN S UL U SY SIS SN SN GRS S SO R S
J

t

SRS SURSS SRS S SR SR WS UGUON VU R DUpIS S S S YT ST WS U Y Y NNND S MO S SN Wy S, N

- read by 1 or 2

e FUE TN SHS WNPUNG WS DS VUNED SEG G SIS S S

Manual selec-
tion of E ter-
minates batch.

2. Double entry table

Ist subformat
is H

TABLE A A f F
NAME TYPERGTH|TYPE LGTH

1 2 3 4 4 2]

e ‘ - read by H

aufomatic se-
lection of sub-
format 3, 4,

L ARCUMENIZ 4 toneTIONS S5, 0or 6
1 - read by 3,4,
: - B . B o L o o0 e ke sl [T T GO KR S SR RN SN S S B
S et 5,06
:) S S JAY S S SO S SN S S S Nt
,1, F O N SO R 4 TR St SV S N S WP SO SO P WU U SN ST O S S SO U T reqd by 3’ 4,
2 5,oré
il | SR U S U SUNNNC TN S S UNSN SV S S 1
® |
. Lo ek, 4 bdio ek kb b
I
1
I
I
1
|
t
1
2 I
et SR R NS WD WS- SUINY S VRN SN S S S 1 1 1 1 i 1 1 1 " ! i A i 1
1 - read by 3, 4,
F o4 L s i i L i - Y TS S WU SN SN WU SIS S B SRt i | i 11 L 1 1 1 5 or 6
“
wdiedem i 1 i Lo A

Manual selec-
tion of E ter-
minates batch.

Subformat H contains 7 field descriptions, with the following checks to be
made:

1. TABLENAME (AN) The first character in TABLENAME

must be a letter from 'A’ to 'Z'.
2. TYPE (A) *S'or ‘D' or ‘M?

If TYPE='M' the next four field

descriptions are skipped.

3. ARGUMENTTYPE (A) 'NA' or 'AN!
(A-TYPE)

4. ARGUMENTLENGTH (N) ARGUMENTLENG TH must be a num~
(A-LGTH) ber from 1 to 80.

If TYPE ='S’ the next two field de-
scriptions are skipped.

5-13

[N
.
-

5. FUNCTIONTYPE (A) ‘NA' or 'AN'
(F-TYPE) .

6. FUNCTIONLENGTH (N) FUNCTIONLENG TH must be a num-
(F-LGTH) ber from 1 to 80.

7. Field description No check; depending on TYPE, ARGUMENT - l
(not keyed field) TYPE and FUNCTIONTYPE a subformat

from 1 through 6 or M is automatically se-

lected.

Subformats 1 and 2 contain one field description each, with field type being

N and AN, respectively - otherwise no check performed.

Subformats 3, 4, 5, and 6 contain 2 field descriptions each, with field types
being N/N, N/AN, AN/N, and AN/AN, respectively - otherwise no check

is performed.

Subformat E consists of one field description, with a field definition describ-
ing a not keyed (0-length) field, and the field program is solely an END

statement.

In addition to normal error messages (length, type, limit, etc.) the following

alarm text might appear when using the standard format TABLE:

From subformat. Column

ILLEGAL TABLE NAME H.1

When the created batch is considered to be correct, translation of the table

is initiated by activating the supervisor program TRANSLATE (See Users Guide)

TRANSLATE TABLE table-batch

When the table has been correctly translated, the table name is included in

the table library.

5-14

5.3.2 Disc Tables , 5.3.2

When using a table with many table elements, it is sometimes necessary
to set up the table as a disc table. A disc table also features the possi-
bility of up to seven table columns (one argument - six functions) where

as a core table can consist of at most two columns.

The structure of the table (humber of columns, type and length of each
column, largest number of entries) is set up with the help of supervisor
program CREATE which creates a table consisting of empty entries and

which includes the table name in the disc table library.

The entering of data to the table is accomplished with the help of super-
visor program DISCTABLE. This program checks if the table text is cor-
rectly structured, and translates the data into table entries. The trans-
lation, during which the entries are stored in a hash-organized way,

is usually a time=consuming process, but it will, on the other hand,
enable quick checks to be made on the existence of certain elements,

even in cases involving very large tables.

Please note, that it is possible to insert, update (replace), or to delete,
e lements in the translated table also with the help of supervisor program

DISCTABLE, so as to avoid repeating the entire translation procedure.
The table text is either keyed to a batch under the control of the standard

format TABLE, or it may be stored on a magnetic tape generated by another

computer.

5-15

5-16

The subformats of format TABLE are listed in section 5.3.1, the interpre-

tation of the coding sheets takes place in the following way:

e %/
o2 %///
| .

AN

: . . .
A~ Fi- P2 IF3- Fa- |Fs- }FG—
TYPE _TYPE TYPE [TYPE |TYPE [TYPE |TYPE
ONLY TO BE KEYED IF FILLED IN

N R S B T - -
8 9 10 Son P12 13 14
LSRN SO 0.1 TR W - .

peme o —+

i [; i

1st éubformaf is H

- read by H

auvtomatic selection of subformat M

- read by M

automatic selection of subformat T

- read by 7. The subformat is automati-
cally reselected up to six times if re-

quired (number of-functions)

automatic selection of subformat O

-/—recdbyO

§ ONLY TO BE KEYED IF FILLED IN-Qf ~0.D.E.

or

ARGUW
1 2

0‘/

F IS ST U N T W S s

FSUES TSR SO RSN SN WS SRS UM T N S N SR o S

i FURES N WS WS S SN TS G WS SEY SO S {

automatic selection of subformat A or N

- read by A or N

automatic selection of subformat A or N
if following lines contain function(s)

- read by A or N

subformat A or N is automatically rese-
lected as long as functions follow where
upon subformat O is selected

- read by O

- read by O

automatic selection of subformat E.

Subformat H and E are explained in section 5.3.1

Subformat M contains three field descriptions with the following checks

to be made:

1. Field description No check, used for register definition.
(not keyed field)

2. NO. OF FUNCTIONS (N) NO. OF FUNCTIONS must be a number
(NO. OF F'S) from 0 to 6.

3. Field decsription No check, used for computations (e.g. the
(not keyed field) "~ number of times to execute subformat T);

automatic selection of subformat T.

Subformat T contains two field descriptions.

—

TYPE (A) 'Na or ‘AN’
(A-TYPE,; F1,2,3,4,5,6-TYPE)

2. Field description No check, used for determining if keying
(not keyed field) is to continue under the control of this sub-
format or if subformat C is to be selected
(depends on NO. OF FUNCTIONS).

Subformat C consists of one not-keyed field which stores the text 'DISCTABLE"
in the batch so that compatibility with a magnetic tape (see section 5.3.2) is

achieved.

Subformat O contains two fields:

1. OPERATION (A) ‘I*or ‘U'or ‘D' or ‘E*
(OP)

2. Field description No check, not keyed (0-length) field
(not keyed field) selecting subformat E if OPERATION ='E'

or, if not, selecting subformat S.

Subformat S consists of one not keyed (0-length) field which selects subformat A

or N if entered from O.If entered from A or N then one of these subformats are

reselected if a function is to be read, otherwise subformat O is selected.

5-17

Subformats A and N contain one field description each, with field type

being AN and N, respectively - otherwise no check is performed.

If the table text is stored on magnetic tape, this must have the following

format:

The record format of the file must be variable, blocked type (IBM VB format,
max. 512 bytes), and the coding of characters must be in accordance with the

ASCII or EBCDIC alphabets.

The first two records are used for identification:

record 1, 5 bytes : table name, fill characters: space.

record 2, 9 bytes : the text DISC TABLE.

The following records concern the entries of the table.
An insertion of a table entry is accomplished by a sequence of 2 - 8 records:

record 1, 1 byte : the text |
record 2, max. 80 bytes: argument of entry

record 3, max. 80 bytes: function 1

record 8, max. 80 bytes: function 6

If the table is single-entried then an insertion consists of only two records. If the

table is multiple entried, the number of records following record 2 corresponds to

the number of functions per table entry.

A table entry is updated (replaced) by supplying the following sequence of 2 - 8

records:

record 1, 1 byte : the text U
record 2, max. 80 bytes: argument of entry

record 3, max. 80 bytes: function 1

record 8, max. 80 bytes: function 6

The number of necessary records is as for insertion as all elements of the entry are

—

replaced.

5-18

A table entry is deleted from the table by a sequence of 2 records:

record 1, 1 byte : the text D

record 2, max. 80 bytes : argument of the entry
The last record in the file must be a one-byte record containing the text E.

The arguments and functions must conform the structure of the table with

respect to type and length, see also section 2.3.3.

The table text translation is performed by activating the supervisor program
DISCTABLE through one of the calls below (see Users Guide):

DISCTABLE BATCH.batchname (if the table text is keyed
under control of the TABLE format)

DISCTABLE MTx.filenumber ASCIl (if the table text is stored on mag-
netic tape in ASCII code; x = tape

station no.)

DISCTABLE MTx.filenumber EBCDIC (if the table text is stored in
EBCDIC code).

5-19

6

6.1

6.1.

1

Programming Hints

This section describes the special facilities of the system, how they are pro-
grammed, and how they work when the finished format is used for keying.

Screen Processing 6.1

Screen processing is understood as covering all infor-
mation given by the format program on the utilization
of the screen's data area. The first lines on the screen are always

reserved for the system,
As an aid to registration it is possible to specify tags, and it is likewise pos-

sible to specify the keying position of the single units on the screen. Screen

processing, can, however, also be entirely left to the system,

Screen Processing Assigned To the System 6.1.1

In case one chooses to leave screen processing entirely to the system, the
columns PAGE, LINE, and POSITION in the definition sections of all field

descriptions are left unkeyed.

The system will then utilize the screen in such a way that LENGTH in the
definition sections of the field descriptions assigns the number of screen po-

sitions that are set aside for keying to the field.

- The first field of the subformat is keyed in the left most position of the
first data line on the screen. This field is defined as the first field on the

subformat's first page.

- If there is sufficient space on the current line, one proceeds to key the
next field on this line, leaving one blank position before the field.
- If there is not enough space left on the current line, the next field is

keyed on the following line, starting with the left most position.

- If there are no more lines available, the next field is keyed from the left
most position on the first data line of the screen, which then makes this

field the first field on the subformat's next page. Previous to keying this

field the screen's input section is blanked.

Example 6.1.1

A subformat starts with the following field descriptions:

R
N & &
, S/ /& &5 (S)&
9 &S«)6)8/ S S ES) LN 5
FE S S)ESES S E) SE S & S erocra
1 s a| s |6} 7 g8 o lo|1jz|i3} 14 15
F LD. IA - 7 o ST U T U W -
FLD,Z —_ 115» 411
FLD3 4], . N
F‘éHDL{[‘ e P ?15 ¢ 1] i 11
FLDS 5|-.-|- . .

Keying positions on the screen will subsequently appear as follows:

STATUS L/NE
MESSAGE LINE

FLDT § FLDZ§FZD &\\\\\\\\\\\\

FLD 4

Establishing Keying Positions ' 6.1.2
In order to specify where on the screen every single unit of a subformat is to
be keyed, the operator fills in: PAGE, LINE, and POSITION in the defi-

nition section of the field descriptions. The system will process this informa-

tion in the following way:

- A subformat's first field will be keyed from the screen position specified
under LINE and POSITION in the first field description (PAGE is here, as
a rule, specified as 1). This field is the first field on the subformat's first

page.

- If PAGE has the same value in the next field description as in the preced-

LINE and POSITION.

- If PAGE has a higher value in the next field description than in the pre-
ceding one, the screen is blanked, and the next field is keyed starting in
the screen position specified under LINE and POSITION. This field is then

the first field of the subformat's next page.

When planning the keying positions the programmer uses a screen layout form
on which he marks out the keying positions and from which the LINE and
POSITION values can be read and used when completing the definition sec-

tions of the field descriptions.

Example 6.1.2a

Screen layout:

F—A t): €7 8\ 3:1(‘ 11‘]333%1415‘518 17118 19?’20 c1 82232"252827?2833;30‘33153233536;
, 1 —r ,
‘| |cusromeR ~ DATE Bl BEEREE IR
e NO. > ! 5 N O T
i Lo ‘
3 H : i L - ‘.1 it}
| T T T ARIricLE e
o R S O e 4,021) S B S R
L QUAN- j
S &I | i
; CluUNT 5 |
- f-;/”RICE-i—! N i 1] f N
. AMOUNT o
’ + - L 1’ i
Field descriptions:
& o
5 = 5 £ &
S¥ f « (fo & j w 8$§ o/ &
& & & A AN &, [
FE S S)OS ESSE SIS & [rocaam stat
1 2 3 4 5 6 7 8 9 [10f11]12]13] 14 15
C\MS,,ZN,. 7 ..Z",, l/ ,-;Li,“.,l‘ .l. oL 1 * ° ° ° ° ° .l : - ST Y S . |
OLALTL,EL, - 7 - XZ.., - 7._. Aié t ¢ ¢ 1 ° c. 1 N ° ° ° ¢ |‘ i vl S Y W S B |
AARJZ.,./iJ..N, I 14”_ ;9_ & ._‘,-A,* 'L' “ ‘ i ° il e bl Bl ° 1 ° 5 W T S U W W S S §
Q 7:Y - 7 J§ 7 7 4»',1 ° : ! ‘ .i M l. ° ° ° M il i *)V I U B S U |
- PO DU T - S SN S S -
kU,JVfJK‘L,(J C, _Z i 6 i 9 1 6 * 1 e ° 1 ° e 1 ° 1 * .,4 ;_.. ._ V.« il s 1 ° I S S S S S S . |
ALMOJUN / JL7 7 A8 ‘A ° * 1 ° .J .L ‘ ,.,ﬂ ° ° : ° ° 1 ° S IS U W S U W T T

Within the same subformat it is possible to combine field descriptions with
PAGE, LINE, and POSITION filled out, with not completed field descrip-

tions.

Thus, if the system encounters a field description where no information is
given, the keying positions will be calculated according to the formula pre-
sented in Section 6.1.1. Such field descriptions must therefore be adapted to
programmer-selected keying positions, bearing in mind that these might cause

the system to shift page. The system does not permit overlapping.

6.1.3

')

Example 6.1.2b

The field descriptions below will give the same result as the field descriptions

presented in Example 6.2.2a (now, PAGE, LINE, and POSITION are not
filled out in the DATE column).

/))
/ & > Q/%O a5 A &

& S S S Z S S OL NS

Sf X)& < S N2 /) &
T /AR ESACI S S SSSYSSS) & PROGRAM STATI
4 s | 6 7 8 |olwo|1|z]ia} 14 15

CUSTMI| 2] 11 - -l elemolelelelelelosl
OA rE . 7‘767 ." * [] - L] ® - . - * - - G .
A RT/ N 7 4 9 A6 ,'-. ._L.,. J,‘L ° ° b * e S U S WD U VY I T R
Q7Y (1] 5177 4|]emol]]e i PO
U..PRA,/ AC] Lé . 4? ;.A»éA .,_L ° l. * .l M ¢ ° . M l’ 11 T S S ¢
ALM‘OUN 7 7 74 L&_ ¢ i ° ° “ .l 1 ¢ ® ° bl ° 4 .A,_‘L_LA_L_L_J;J_LJ

Defining Tags 6.1.3

Tags are normally specified only in connection with those formats where the
keying positions are defined by the programmer himself (see obdve). Therefore,
tags must be coordinated with keying positions, not only as far as the screen
positions are concerned, but also with a view to possible page=-shifts in the

subformat. Every individual tag within a subformat will then be characterized
by PAGE, LINE, and POSITION (see IMAGE Coding Sheet, Section 2.1.2).

The system utilizes the tag information in the following way:

- On selection of a new subformat or a new page within a subformat the
screen is blanked and all tags belonging to the new page in the subformat
are laid out in their specified screen positions before keying is started to

the first field of the page.

- When the first field of a subformat is going to be keyed, the keying positions
but not the tags will be blanked if last used tags are the same as those be-
longing to the first page of the subformat. This is, for instance, the case

with subformats which contain only one page and are repeatedly executed.

When devising tags and establishing their position in relation to the keying

positions, the programmer uses the screen layout form.

Example 6.1.3a

Extending Example 6.1.2a to include tags gives the following screen layout:

POSITION — . .
el gl 4l 6 oo sl 91;10 11112/13]14/15(16{17|18]18{20{21 2223242526271282930‘31 32533%3
w H T T H !
E HaC e N
[WUMBER DATE HEEEE.
CUSTOMER ~ DATE.
e NO—>
N ARTIGIE R
JARTI CLE 2RIEHE, i
AT QUAN- N
QUANTITY, | <riry- AEREE
? i CUNIT %
SPRICE | s=pRICE—> JRREE
1 AT UNT n
JAMOUNT 2222 B
e e | -
[o | .
Tag specifications:
/\\O%
& AN
Qvo Qéf/ QO(O TEXT
1 2 -3 4
ki_% 7 4747N.AUA;M¢B,.£R\ 1 O‘A 7.l£l 1 i i 1 i A i L i i 1 1 Lol 1 ek
l, - ,Li ,_J»AAA’_RLZ:/.‘CALIE i PR i 1 1 L L i L L 1 L i L i A L i L d
' ,Z<, ‘5 ‘/ OUAI/!_ZT/IZ yl oL i i i 1 1 1 1 i - 1)| L L R 1 1 L 1
- 7'6 / Plkl/CKEI L Lo L 1 L i L 1 1 1 1 I 1 L 1 1 i 1 L 1 B IO T
/ 7 IAAL&QZNI 1 i i ! i 1 1 1 i it 1 i L 1 1 i 1 i 1 1 1 i 1

Example 6.1.3b

This example shows how a format, at the start of registration, can display a

screen image which serves as a keying instruction to the operator.

The format's first subformat might look as follows:

FORMAT

sl CcoMIe
NAME > COMMENT

13 4

EXAMPIW THE SUBFORMAT 15 USED. AS A GU/DE

N
e Y > 'y
S & N
c S SE)ESES SIS SN S
s o/ X C‘O S > Q NI/
S S S/ ES TSP S/ESS/S/ & / procRAM STATEMENTS
1 2l 5 | 4 5 | 6 7 8 19fwof1|i2|13] 14 15
[- Jf 76 11 1.74 JOAI_N. 401 PO (LS WSO AU 10 VUG SO0t U GG N VOO S A WY DA GO WD S G W W S G ¥

DRI O SR (R AV U SR SR A B . ISELECT. SUBFORMAT. 2. . . .
ER N R TR R R St JRECIN SRV S e dde rA£MMM&¢U44M

[T T S -y ek SOU VES SR R S S S 5y 4 Ao bk bbb bed o do b U0 B

b
P
3

Matching tags:

FORMAT
"NAME || cOMMENT

1 2 3

EXAMPI GU/IDLE S

s
« &
NS
QY

{
e

<Q TEXT

2 3 4
1| FORMAT EXAMP. o L
3| 1| THE FORMAT, /S USED f.O,R, KEYING /NVOICES i i, -
/ ISJUABAFIOIRIMIAIZ x/A'n ISIHIOANISI |7-://|/|5| |G|(j|/|bx£_1 D S0 S S0 UL U U IO SO0 U U S SN S NN N SOUU SO S N N S R T B S

S

) A . (MAY, BE ACTIVATED DURING KEYING, TOO).
7| .1 ,s,uaf,ak/v,/:,r, ‘2, HEAD, OF [/ NVO/CEs, SELECTED BY THE OFPERATOR, |
8
9

i o AT THE START OF A NEW INVOICE.
2| .1 SUBFORMAT 3 LINES OF /NVOICE> AUTOMATICALLY SELECTED |
10| 1 JLUL,H,H,,AFTEA’ SUBFORMAT, 2. .\ @ i o ittt

11| 1| SUBFORMAT 4. END_OF. BATCH,, SELECTED BY THE OFPERATOR , |
12| 1] AFTER LAST /NVO/ICE.,

1| PRESS. THE ENTER KEY WHEN YOU WANT TO START KEYING-
75| .7 (71/45 KEYING WILL START /N SUBFORMAT. 2. AUTOMATICALLY)...

NNN NN NNNRNRNKNNT-

6.2

The record that the operator creates when pressing the ENTER key contains
only one field, a so-called no-transfer field (OUTPUT POSITION = 0). Such

a field will be skipped when the batch is transferred to a main computer.
The following final notes on the subject of tags should be added:

1. No tags are attached to a format until the format is entered into the sys-
tem by activating the supervisor program TRANSLATE (see Chapter 5).
When using this format later on, the operator may, however, at the start
of registration, command the registration to be executed without tags.

(See Users Guide on Control Commands')

2. When dealing with subformats that entirely rely on system-established
keying positions, the available space for tags is limited to what might be
left of the lower section of the screen. With such subformats, one may

use, for example, DISPLAY statements as a primitive form of tags.

Reformatting 6.2

Reformatting means storing the units of a document in a dif-
ferent order than the keying order. Reformatting is done by
specifying suitable values for 'OUTPUT POSITION' in the definition section
of the field descriptions.

Example 6.2

A document contains, among others, the following information:

date: [] customer no.: [] article no.: [| quantity: |

The information is typed from left to right, but the preferred storing sequence

on the record might be the following:

Field 1 Field 2 Field 3 Field 4

article no. | customer no. | date quantity

6.3

6.3.1

The field descriptions are therefore filled out as follows:

S ke &> Q
o & A & 6 Q$’\\0 > \‘? (,33/
S & R) A ALY
g /s o fSES SRS /S, @
Y = [9) h N '~ O/
&y /AN & &)L SSSES/S) & / eroGrAM STATEMENTS
1 2 } 4 2 ¢ 8 9 of 23] 14 15
AA TE 3 s|elasjoje »
ES LN L . . M) Lol b d i e
X . -
A R T/ N - 7 eloeflo|a]e .
YA A i . — . LA IS0 S0 S e i IS S N0 H NS LN SN VU NS G S D §
. ofo|e|oefo] o
QTA K S ’ s .‘ :. : i 4‘ - 1 IS WS SN U0 U S IO W I S S S §
Fo 5 i TR e B U S (T S S U I U S Y W U W S
- D U - 4 SN N U S U W G NS SRS VS VIDU SR SRS W
L ! o P " e FER SO O S R U S S SR Bt
i +A i 4 . i 4 L R NN T WS VAU W VOO S W W W W

The programmer should be careful when specifying output position in order to

avoid "gaps" in the subformat (leaving, for example, output position 2 empty,

while defining output positions 1 and 3).

Automatic Insertion

Not Keyed Fields

6.3

6.3.1

A not keyed field does not require keying, but is assiéned its value solely by

the program part of the field description.

Such fields can be used to insert, for example, constant values, or results of

calculations, or the contents of a register, as values in the record.

6.3.2

6-10

Example 6.3.1

“ROGRAN STATEMENTS

18

| MOVE AR’ TO DTYPEs
| .. NOTE TYFE OF DOCUMENT S, |

GRS SRS SRS WS SO SRS SRS SRPUE VO SOUOS SHNSS SO SN SR S-S S SD S S SO S

xxxxx TSRS G O S PO W N S 8

fododododobodd

| JOTAL * AMOUNT>.

R S S S FUNSNE S S VY S D SHES S ST S I NI SUE S S S S S S S-S SIS SV S W S

S ok dode Ao doddea ke d b ded L N S T S W

N| . | COMPUTE DATE = X055,

S S TN S W S GO O U S U S GO SO Y SO0 VA GO S S 8

SURMS VRS VRS IR SR SIS DS VANS UNES SO S VRS W W 14

USSR S T S O W Y 8

Note especially the field description " DATE". The register X05 may have

been assigned a value at the outset of registration of a specific sequence (typic-

ally a subformat that is only used once in a sequence). The date is there-

by made available to all subformats during registration. One should take care

to control that the register is not used for other programs, for instance, appear-
ing in 'REGISTER' in the definition section of a field description.

Constant Fields

A constant field is assigned
when the operator activates
contents of the register are

part of a field description.

6.3.2

the value of a register
the DUPlicate key. The

initialized by the program

When a constant field is executed the first time, it is essential that the regis-

ter specified in the definition section of the field description be assigned

a value prior to execution, or it will not be possible for the operator to press

the DUP key. This is frequently done at the start of the registration of a spe-

cific sequence in subformats that are executed only once within the sequence.

Where the contents of the register are preserved throughout the registration of

asequence, they may not be used for other purposes.

L .

6.4

If the operator does not use the DUP key for a constant field, the keying
takes place as normal. Such keying does not change the contents

of the register.

Example 6.3.2

Subformat 1:

@\\ S i /5 ’ig
2% < &S SE S SE o N
NS of & % B > ol N2 SIL/E/ A
&F) S)E) S S ESSE SSSYSS & [onocra statements
i el a{ a5l] 7| 8 Jofofufelala] s
DATE || .| .| 6] 6| Nl . 11|]]]. |COMPUTE XOZ = DATE;. .

M_Qvlg 1’1 Lo i L J,l 17101 Xlolsl’l 1

Subformat 2:

. - . - . - RETIT R L B o

D_J_A_LT:.EJ S e .164 ,L6_, ._L/,Y,.,.,J_ztz ,g_Qiz,,,,.LJ_AL,I YR U SN U TS YO U U G0 W S S B
.
.

B N Y ik bow { PR S S VNI ERI N SEE o J‘A. L L Lol dedi b dede o de e e e L
.
L b dd U S b ke e L B (U UG 0N VR0 O T NN G W NN WO O A0 VU S WY S0 W 100 OO0 S0
CJ.OA,DJEJ___"“, - L ‘L4.4 _,11 JN 1717 C0;3' F VSN AR S S U SN0 SO W U N U 0 T S S0 VO A WO G OO

The value of the DATE field in Subformat 2 will be the value registrated in
Subformat 1, and the CODE field is filled with spaces when pressing the DUP
key at these two fields.

Automatic Duplication | 6.4
Duplication means dssigning a certain field the same
value as for the corresponding field in the preceding
record.

Duplication is ackomplished by utilizing duplication fields.

A duplication field is one that is assigned the value of a register when the
operator presses the DUP key. If, by contrast, the operator uses normal key-

ing routines, the keyed data will be input to both field and register.

The DUP key cannot be used with duplication fields, if the specified register

has not yet been assigned any value; this is the normal case when first exe-

6-11

cuting a duplication field, and the operator must therefore key the field in-

put, which by this action also will be stored in the register.

The use of a register should be limited to one duplication field in a subformat;

the register should not be changed by program statements.

Example 6.4

A document is filled out as follows:

CUSTOMER NO ARTICLE NO QUANTITY
5002 30 12
5002 992 : 1
3111 992 97
3111 992 33
4001 30 ‘ 14

The matching subformat:

EXAMPI2
/ S) S) S S S S LSS S E
#\\; 3@ \: QCV} S é\‘\ «*Qw o§ &Oc} QV«\”VQS—U <t?cg 1\%0 éog PROGRAM STATEMENTS
1 B 4 3 7 8 g j1of11{12113) 14 5
CUSTN| 40 41 N 1. Lo
ART TN | 3 2 N 2 D02\
AMOUN S| 1 N 3 | |0 . | END_SUBFORMAT,. . .

The effect of DUP on the fourth line, first field, will be the input of 3111 as
customer number in the record, if this number is keyed in the corresponding

position in the third record.

6-12

Automatic Incrementation 6.5

@
o
ot

Automatic incrementation means that a field is assigned

the value of some previously keyed value increased by I.

Automatic incrementation uses increment fields. An increment field has the
same function as a duplication field (see Section 6.4), except that the cor=-
responding register is increased by 1 by activating the DUP key. The keying

of an increment field causes also the corresponding register to be changed.

ExomEIe 6.5

A document is filled out as follows:

o TYPE INFORMATION 1 INFORMATION 2
1 1250 20
2 900 | 1992
3
4 1 77

The matching subformat:

AF‘;imT s|p| coMmENT B , S S
1 213 4 : -]
EXAMP2) L L
® 3 .
2 >
S/ /e RS 3 &
S & if o /5 /6/S)& /&S fofo) &
&S AAVENEVE L)L LSS S)S/ & / procram STATEMENTS
1 2l s lalste] 7 g |olo|i|izfia] 14] 15
7.?&& Jng‘ 4 IS U U S W SIS S S i 7 IN Y B Z‘.. S A._[‘ Q‘LZ (S N Y ,J_~—J,4L~A.,_‘»,LALA...VJ‘_A—V‘A.l.gA,\.L,
/‘_NLE, ZL. I N SR VN A 14 i 1 ‘N el '2 - 1 RSN NS S S U WO S SRS VU SN A S B W S
INF2 || L. 4l 1l M. 3 L L | END SUBFORMAT,. . . .

On the first line of the field TYPE '1' is keyed, on the next DUP, the third
line is left empty, and on the fourth '4' is keyed.

6-13

6.6

6-14

The Use of Tables 6.6

Tables are used in programs during calculations when an operand may con-
tain one out of so many values that a comparison of the current value with
every single possible value, by program statements, would be an insurmount-
able task (as, for instance, using IF and ALLOW/DISALLOW with constants

representing allowed/disallowed values).

Therefore, the values are gathered together in a table and can thus be refer-

enced collectively by a single program statement.

The use of tables ensures another advantage in that they can be utilized by

different programs.

There are two types of tables:

1. If one only wants to find out if a certain value exists, a single-entried

table is used, listing all possible values.

2. If the operation not only involves establishing the existence of a certain
value (argument), but also the access to an associated value (function), a

multiple~entried table is used, which contains all possible arguments to-

gether with their assigned values.

When used for registration, a format is taken from the disc and placed in the
internal core together with the referenced tables. In the case of very long
tables, it is therefore recommended to create so-called DISC tables, in order
to save space in the computer. A DISC table will always be stored on the
disc only. Please also notice that core tables cannot contain more than two
columns (single-entried or double-entried) where as DISC tables can contain
up to seven columns (six functions per argument). See Chapter 5 for further

details!

Example 6.6

A document contains, among other things, the following units:

lvMONTH: [] DAY:[] DATE: []

Corresponding field descriptions:

Note that MTABLE in '"MONTH!' actually serves as a single-entried table.

6-15

2
. ' S/ #?0 &8 o [&
& % §/E/s S8 & o
A&\?s qé’ \740 Qg} &é, §4§ g‘?\y ‘gi;ée &0 PROGRAM STATEMENTS
1 2| 3 4 5 6 7 8 g l1of1j1213] 14 18
' ONTHL | 1. | 9 1IAN 104 | LE NoT_(MONTH /N MTABL).
e P EE S PR VO | THEN ALARM MONTH /S WRONG’..
DAY, . Lol 9l AN Ll | /F NoT (DAY 1N DTABL). e
N A T P A I L THEN ALARM 2 DAY, /S, h(/(’p/\(......
DATE Lol 2Ll N 22 | SFELATE & e o
N . THEN ALARM PDATE. /S WRONG’s. ..
. JF MONTH VALID THEN .\ oo .
_ SEARCH MONTH /N MTABL
l L GIVING X1, " L
AT END, AI-AR/‘! ’SY.STA/‘I EMOR’
. ELSE COMPUTE YOI = 3Ts, .\\
' . JEDATE > XOL (o \ooiivii ity
. | THEN ALARM 2DATE /S WRONG’ 4. .
‘ Two tables are referenced:
l one single-entried and one double~entried
' l; Tasle |o|A- A 1F |F
MNAME TYPE LGTH TYPE LGTH]
! .l 3 ! 3 4 ‘ 5 6
' DTABLL | AM TABLIPIAM 9| N 2
TE s T T 1 % 2 ARGUMENTS § FUNCTIONS
' MK.OINDAIXI~-A,<L;,} I T 1‘7ANUARY Dot
ZUA,EASAAXYL £_ Lk i i Y . 2 3 7 i A 1 1 i Lo
. NLéo,LNAEASQJALY - = .1A.F£BR UA R YJ 1 D B SR N
. . ,TLHﬂLULR"J—SrLQlA;LZV. [FUNNS S SRS TR S 2 2 9 1 i It it i L i L | i i i
FRIDAY. "WMARCH . . .
. SATURDAY A% N A
SUNDAY . !
X
]
| :
' '"WOVEMBER,
2 30L i i 1 1 . J i 1 L i i1
l >1 pLE,LCJEJ/lllélgﬁL IR S T G S
2
17' 1 i i 1 i 1 1 i 1 PR W

If MTABL were a disctable (though inconvenient with respect to its size) instead of
a core table then the following changes had to be made in the program statements

in above field descriptions:

1. The statement in MONTH must be replaced by the following (disctable not

allowed in table condition):

SEARCH MONTH IN DISC MTABL GIVING *
AT END ALARM 'MONTH IS WRONG',

2. The fourth line of DATE must be replaced by:
SEARCH MONTH IN DISC MTABL

The table would be coded like this:

, ; x
I : ! i j i
TABLE T %/// A~ 1 F2- F3- R4 |Fs- [F6-
NAME : Type | TYPE |TYPE [TYPE !TYPE |TYPE | TYPE
L e . ONLY TOBE KEYED IF FILLED IN
[2 8 9 [0 [T3 11
] : Z 2 L2 a4
! i
M.T ABL w AN N L ,
¥ ONLY TO BE KEYEDIF FILLED IN.OP =t U, D, E.
op
ARGUMENTS & FUNCTIONS
1] 2
.
I JAIN'UAR Y . 1 b A 1 " . i i A L L e I e
3‘1 i i i A 1 i 1 L 4. 1 1 i A i A i 1 L i 1 1
.
' F E BKRAUlAARIVL D BN 4 1 1 i A 1 i i 1 . 1 1 1 1 " 1 It 1 1
2A91 L 1 i 1 i i 1 i 1 1 1 1 i i A1 i I\ i i 1 1 A 1 I 1 L j
.
| MAA‘RICIHA i i 1 1 1 1 i I i " A4 i A 1 A L L L P i L i 1
311 i i d A i 1 i e L ' e i IS TR . 1 1 1 1 T T | 1 1 1 1 i 1 L
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
' NIOIV lELMJBLELR‘ I L 1 1 1 1 i H 1 1] 1 i 4 A A 1 i i 1 4
30
A1 1 1 It i 1 J i e i 1 i N B 1 1 1 1 L 1 N A e L
IDECEMBER
i e I A L 1 1 i . e 1 i 1 1 i 1 1 A iy 1 1 i 1 A 1 i i 1
31
i e 1 1 L 1 i 1) i 1 1 1 1 1 e A 1 ’ L 1 e A A 1 ' il A A
E
) GRS WS SN VS W T W S N S SN WU S SN S S N W SN S SN N W S N R SU S " |
1 i L 1l i i i1 1 1 A 1 1 i i i 1 l I i 1 1 1 i 1 1 i 1 i

6-16

6.7

6.8

Partial Rekeying 6.7

In order to save time when rekeyiﬁg it might often be appropriate to rekey

only certain units of certain documents.

This procedure is controlled by the column 'REKEY" in the definition sections
of the field descriptions. If the REKEY column is keyed N (for No), the cor-
responding field is skipped when rekeying.

As a rule, fields containing important information will always be rekeyed, if
the information can not be thoroughly checked at the initial keying stage by
the use of tables, LIMIT statements . or the like. Take, for example, amounts
included in a sum total: if the total turns out to be false, one does not know

if the keying error occurred when the total was keyed or is hidden among the

amounts added up.

The Use of Pseudo-Registers

The pseudo-registers described in section 3.3.2 enable a format to read out

‘nformation about the environment as it looks when the format is used for

registration.

The information may for example be stored in the batch for trace purposes.
Consider a format which, at the start of a registration, outputs name of job
and name of batch together with the time of registration start-up. Once
stored the information will also be available to the computer to which the

batch is transferred for further processing.

6-17

Appendix I

Required Space In Core For Formats,
Subprograms and Tables

The following sizes are all defined in bytes. In some cases length is defined

as an interval (lower limit = upper limit); a definition section may, for in-

stance, at best fill 15 bytes and at worst 16 bytes.

format head 16
+ 4 * number of subformats
subformat head 8
definition section 15-16
image head 4
. + 4 * number of subformats
. image subformat head 4

image page

Program part

+ 2 * number of pages

1
+ 5 * number of texts
+ length of texts

field reference 3
register reference 2
constant 2
+ constant length
subscript 1
table (not DISC table) 1-2
' (1st reference of table) + table length
table (not DISC table) 3
(subsequent references)
DISC table 34-35
label reference 3-4
subformat reference 2
translated subprogram as for normal program part
translated table (not DISC table) 6

+ number of arguments

* (length of one argument + length of
one function)

Al-1

+, -, %, /, MOD, <>, =, <,>,<=,> 1

AND, OR, NOT, VALID, INVALID, IN 1 ¢
COMPUTE - = 1

MOVE - TO 1

CONNECT - TO - GIVING 2

SEARCH - GIVING - AT END 9-11

LIMIT | 1

ALLOW 1-3

DISALLOW | 1-3

GOTO 1

SELECT SUBFORMAT 1

DISPLAY 1

ALARM]

DEFINE - length 3 ®
END 1

END SUBFORMAT 0

NOTE 0

PERFORM (1st reference of subprogram) 9-12
+ subprogram length

PERFORM (subsequent references) 4-5
DUPR-FIELDS 3
SKIP - FIELDS 3
IF - THEN 4-5
IF - THEN - ELSE 8-10
SET 1

Study the example on the opposite page.

Al-2

s
~
C

ExPL 1| | REGUIRED SPACE - 1
" / N A '"Mﬂf/“;f 7
/ , g) f / // / /

I\V'? Qé; gg ‘;-v" \‘f‘y PROGARAM STATI MENTS
Fr |1 . | 11 0 N 1 _ DEFINE XO1 1, CO/‘W&& XO1=F1y .
. f[kFo)R” C//Eck, leaedodcdo bdodo b de A AL
0 EEEEEREE W‘SHEU su&Fakmc zm il
i i 1 i b EuNLQASJUJ&LFAQR.'M.ALrJA oAb bedda o d Ao b don dodld
EXPL 121 1 REQUIRED SPACE -

@ ; 4‘“ PROGRAM $TATEMENTS
o | | . - PISELAY. XOTs o iii i
b b d b L O T U S S R A S POV AP S R
F7. 0 S T 4 T (| AN/ W O O CQN/’UT[Xgl F1s. PERFORN Cﬁ'f@(/
PR AU AN SRR U R O S O SO SO S Ui S U U U S T G U U S S U B S GO
O | Lol N s

Translated, this format requires the following number of bytes:

format head (16 + 4 * 2) ' 24
subformat 1: '

subformat head 8

Ist field description:

definition section 15-16
DEFINE - 1 3
X01 (register reference) 2
COMPUTE - = 1
X01 2
F1 (field reference) 3

5

PERFORM CHECK*) (9 - 12 + 50) 59-62 85-89

*) The subprogram CHECK is assumed to require 50 bytes.

Al-3

Al-4

2nd field description:

definition section 15-16
SELECT SUBFORMAT 1
2 (subformat reference) 2 _
END SUBFORMAT 0 18-19 111-116
subformat 2:
subformat head 8
Ist field description:
definition section 15-16
DISPLAY : 1
X0l 2 18-19
2nd field description:
definition section 15-16
COMPUTE - = 1
XO01 2
F1 3
PERFORM CHECK 4-5 25-27
3rd field description:
definition section 15-16
END 1 16-17 67-71
Total number of bytes: 202-211

In other words, the translated format will require soméfhing between 202 and
211 bytes. |

I

Appendix II
Required Space On Disc For Batches

The control command SET (see Users Guide for further information) reserves

a number of disc segments for a batch. Each segment holds 512 bytes.

During the keying operation three kinds of data are stored in the batch:

1. Batch description,
2. Data records,

3. Register records.

The following describes how to calculate required space for records that are

entered with a given format. (All sizes in bytes.)

1. Batch Description

Fixed length of 1 segment = 512 bytes.

2. Data Records
Gross record length calculated as:

the sum of defined field lengths

+ 2 * number of fields in the subformat (including not keyed and
0-length fields)

+13

3. Register Records

In order to facilitate replay a picture of the registers - a register record - is

frequently kept in the batch.

The length of the register record is calculated as follows:

the sum of defined register lengths
+ 4 * largest defined register index
+17

All-1

One register record is stored for each 10 data records.

Example

Consider a format with only one subformat which contains 10 fields and has

a net field length of 60 characters.
Cross record length = 60 + 2 * 10 + 13 = 93 characters.

If the format uses X01-X03 with a total length of 20 characters, then the

register record will hold

20+ 4* 3+ 17 = 49 characters

If 500 documents of this type are to be registered, the batch will require the

following disc space:

512 + 500 * 93 + (500/10) * 49 = 49462 characters = 97 segments.

All-2

Appendix III
Examples

A Format Example

As an example of a format with image, see the invoice from a greengrocer on

page A Il - 2,

The invoice consists of three parts:

1) The head of the invoice with fields concerning the customers.
2) The body with one line for each sort of vegetables the customer has bought.

3) The end of the invoice with the total price.

The format consists of four subformats:

H - defines the registers used.
1 - controls input of the head of the invoice.
2 - controls input of one line in the body of the invoice.

3 - controls input of the end of the invoice.

Alll -1

1709500712

I. Customer number

Invoice number 4571 1

2. Customer name

L. Brown

Discount percent_;geso

5. Customer address

39 Main Street

3000

4. Postal code

Appleville

5. City

(Date 76.09 .0

1. Article no. |2, Arvticle name 3. Quantityv]4. Unit price le((mnt : 5. Final price
1010101010 Apple 3 5.000 7.500
1010101060 Pear 3 4,000 6.000
13.500
1. Total price
Alll -2

A EE Ny By v OBN N N 0y am O A N O Em A e ol aw B e

T8E0 I-¢v 1804 @
bt b SENS REREREEEEEEE RN NNNEEE TS VR R 12
, - | ERNEVENRERE SR ENE AR RRARRENET RS ;
y 000 XK
o TS 7000 Tvasod)
SURTURERE NS O " xxxxxxyyxxxxxxxxxxxXXXXXXxxxxxxxxxxxxyxxxxxxxxxxxxL
B ERRENE T mwm%e\ «m:o.sm:u\
RERURRRE N §§§X§§xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx K x,xxxxxxxxxx*
| | TWIN mmzsmsu _ NG@E;\ mm%\.%v d
\ ,wcdd«, N ‘LYWH048NS | \0> 2\ -1VWHO4 mo.mo .mm ‘3Lva qq “SAVILING o o S
€40 [3OvVd FOMNI A0 AVIH ., ~ 1NOAV1N33HOS ODmmu

S S N Oy My SN N Ey ay g N A n EE an e g s e e
owmo_-mwﬁuz . . .

) BN | GIHSINTS S/ TDI0AN/ 40 4909 FHL NIHM | '€ [L¥WY046nG LDFTFS|
L | W] L

SR W | . . e b L
1 i BERNEER
S - M ” e m i m — + Ldd ! S S et LR o
,] _ e | Tt ii_ a T i 41 AF 4, , by _, pood et] i 14 L : “ .

EEEN g e SENSHERS

; . ERSERNER SRER w ISR R ERRRRNN|

S . iy b BN | DL g bl

T IS e IR B R r.(+,.+“m‘,.”ﬂ‘.4 o W , ,. : , = i P! LN S rf } LA Ll + ,

,,,,,, foides i W 4 [4 SRS NN SN AR U SR SN NS S N . _
xxxxxxxyxx xxxxxxxxxx xxxxxxxxxxwrrpxxxxxx ,xxxxxxxxxxxxxxxxxxxxv xyxxxxxxxx\
FIIYS TYNIS INNODSIQ FOI¥d LINATRLIINYAY T GWYN FT0/LEY | Y TGWNN quvw
_m?:mf\.smhkr,«r?r\bT}:vﬁw,mmf?wwwruqwmu.cwﬁD,ou,mr,mn»Fméuru,36”3,@10 f.wunﬂmvwm.ﬁ.\.qmwwumqiw,m.\.“J:,_wbc:hﬁmml wwvrr.; n@»m“,f um,»UJWQmH_,me\ummwmmme icioziet m:bqw_.mﬂ?”,“,, A l o«f ”L ,: v od "

== MCILS0d

/ M z , 1OAN/) 60 92 24 RS au
ﬁ o B uJ(& TLVYNHOH49NS . ‘1VYWHOA o ‘31va STVILING <
€ 40 T 39vd I/0M/ A0 AGOG NI INIT INO 1NOAY1N3aHOs| O0OSE L
<

J8E0 -y 1S0d

[Te)
T T i T g i T T 1 T T T T AN B
1 XXX , | g;w HS WS 0L TINVM ON AL
R SIA AIN|<
: 71
: i il
i P T
‘ o ‘ a1
- ., Hv.
N.u / Qn.\ _\KQ R . , A SRR R AR ,W : s
ummr:mb_m.bmewbb,vt%hwhr,«(,ab,ﬁmﬁmw,hw_mw_mw;\owwNw ﬂw,owfwwm,bﬁrrmm wmmﬂmﬂ 1G almt@¢» (¢.m:aa,m,e”uvwﬂwwow,mm,wm“bm AcGe .l,mmm m,wmwomwmmwmmwhw.wwwnm wmymm 2ai1gioe mﬁmmfwb.jwﬂ 3 Qo4 e v
i - - - - NOHISOd
/ £ JOAN/ . E0'60°9¢ 44 N
o) 39vd LYWHO 48NS S 1VWHOA 3lva - w4<r_._l!_A
€310 £ 39vd F2I0ANI 40 INF 1NOAVI N330S OO9DE

SIS G BN N NG A NN oy NG NG M N N G e am e e e e e
Kmotmvwz ® ® o

XQUONT =aNIIEL 0'¢ - U4 °0L - VNV 'SS NS N 3dAL L
T T

T LA B H B B B N S B S A S R S S S B H N H S S S B B SN SR D B N B A B S BN S SN SR SN S AU SN D SIS S SR M A RN S e M A AR S S EES B S S T T T T

2t S S S S LA S S S S A SR A T SO SN A A NS N A S S A N S (N A S S S A N A N D A A S A S N A B N H SO AN N B SO B S B TN NN SO WD SO U (D SN S U T T T T A T T T T

TYTTT TrTTTTTY T T YT T T T T T T rr 1 r vy r 1 rr 7y r 1 T r Ty T Ty I T Ty Y Ty T Y T T Y T Ry T T i T :,J_.xle YTy TTTTYTTTTTT
L B T T T T T T YT T T T T T T T T T T T T T T T Ty T 7T
T T T T T T T T T T T T T T T T T 7T T T 7T 7 T 7T 7T T 7T 1T 7T ¥ 1T 7T 1T 7T T T 717 7T 7 T T 7T 7TV T T T T T T T T T T T T T T T TT T T T T T T T T
T T T T T T T T T T T T T T T T T 777 T rr1y 17 1r1rrrrrJ1r1rrrr 177 1T 7T 7T T 7T P T 1T e T Ty T T T P T T T T T T T T T T T T T Y
TSR ELJR R S S i S A (- H A A A N DO S SN A N B A AN R B B AN M S D AR S At N JO S A M N B N N AN NS R N B SO B N Y H BN O SO NN SO B N S SO R A SO D SN SN SN SR SN SR B T TT T T T T T -7 77T
TYTTUTUTF T T T T T T T T T YT LA S e s A e A N S N N A RN AN N SN B S N N R R N AN D N B M D BN S S A B SO B S S S B N S S) BN T T LA S T T
1 20 A S S N A S S S S A S S S S S S T TTTYTTTTTTYTY TTTTTYTTY T T T T T T Y YT T T T T T TT T T T T T T YT T T - T T T oY T
(N S R A A R A | LA s N S N S St A NS S R R N N S RO A S SO S S S N N B M NS SR JLZAR S A A A s S A A S N SN S SN HNS A AN SR A B B A S B D S B T 1T T T T T . T T T
[Sl s Sl S St A M (e e S M A s S A e e A S S S S S S R S S S N S S S N A B S S S S S B N S SN S S S S B M e D S S S SR S B S N Y T : T e s S T T T T
[T e e Sl S s A B S S S S N S S S S A S I N BN SR BN N D B N S S S AN Y S S D B N S A (A R S B SN L S U AN S D S SO B A S B N SN N BN B M ﬂkwtwﬂgwwd\qu -sz ¥ S R S S ,‘ T T T S B R ST (R
(AR S S S A A A S R A A SR S S A S S S S A A (NN S N S S B S N S S S AN S S S A SO D S SN S SR S S L AR N N B [0 AR Sl SR e R S e Sl B

O TYRYOIS 19777 B
TTTIYY ONIHOYYIS YO YT1S/DTY T TION 0T SOX INTFT| AN S R I R B B A
T T T T e ey T G0N €S 0K INTATY| | IR S A A A A 1 A
N NNY-) /)" At 1777\ /17 VALY VA =17 &) VAP 1) o
N Y L Ak YV | A1, ATy a7/ A T R I T B B A
B NTIYTd INNODSTEFION e toX awEga 1T] o

4
!
{
4
-
4
4
4
4
4
]
1
4
]

——— e B - — v -

-

Si vi ez t|oL 6 8 4 9 5 ¢
SINIWILVIS WYHOOHd / o @%\% A 20/ /) /5 o
SIS S e S F S T :
/Fw, V/ Ay NG & \mw/ hw:
5 y &Y 5l
v

- S , SY¥7.57/97Y 40 NOILINI/ZTT - H LVWIOSGNSKHIOANN/

RIS TROM)

LYWHOA ‘3iva "SAVILING

9 40 / 39Vd | .. 133HS HDNIA0D LYNnHo4| OO9E

[ONN/ €060 9, 44 R SN NINETIFES u

Alll-6

“LE0 ¢y 1SOY MOQONY =ANDIEL 0% s 0k VNV SS NS N AdAL !

CoTTTTTTTYITrY T TTTTT T LSRN A S S S S B B T LS Sk S S A SIS SN SU SRS S S S S S A S T TTTTTr T T T T T T Y ¥ T T T T T TTTTTT T

Alll-7

TTTCTTT YT T T YT T YT T T T T T T T T T T T T T T TR .AAa_.._44.-«<4qﬁxk__U<_Q<w.%_wKG< T QW1‘ 4<\, m4\°4N®. N \hKa\‘JUn

S G S0 S S el a0 S S TE S SN S S S S S s S S St SN S S A N B N N N A S S L B L A A B DL S I T T T % YT T T YT T U T T T T T T T T T T T T T T T T T 7 TUTYTTrTTT

ToprTTTTT T T TYYTTTT YT T CYTTTTTUTTTO “oogm “v MQQVK “v N W‘N \tu\ﬂq_‘ T Nk_oz ‘“gcqmq GG_O«K. KA\tq\r“ T T T T T T T T T T oTT
e TNy gp Y VS04 GViY T ILON STWE W [18 [t|Feo0e

TTTTIYTYTTOUT T T Ty LA S S S S S S R S S A S A S A V‘,A_,4‘_,A,h_444_,A._q__qa.1<<._<<;1<____<<_< T YT T T TTTTTT cToTTTTOY

TTTTESSTYAGY WYY T FLON T 7y T Wyl loS|s

il
A
L ow

PAXA4

S SRER S R A M A SN R S U [REREE S CEE SR G S S A S A S S S A S S A A 4 ITTYTTTYTCTT T T Y NWtJ‘E<Q%‘W_% T T HNA!JE» T t\ML T <q y\‘w‘: Oﬁ.w 04,N NA, N) .mﬂxqqaé
oo 6 \Nox Em&,\ou 7577 10X =19S7G FLNdWOI NIHL TITYA ONSND H/| =1 v ’ '
T o T &woﬁ« N/ m@vwzwu%mw, INAOJSTT .&mw\,\,_ .tgl IN| 7T Mo gl T T oS
S T UMONY LON YIIWON ¥YIW0LSND' 1777 TN St B B I S AR A A I
e g Ty JOX ONIATD TTgVLD NS ONSHD HouYFS T LT
T AT ONY FOVINTIYIS INnODSIT T |
Yo7/ 719¥L E_\Ew\d NI HNVIS = YigwnN yaworsno aviy TFioN || 1| |74 T Wvle 844 | |LovsnD
N Si yioJetferfii{ol e 8 L 9 S v 3 < i
LINIWILY LS WVHOOHA Q&JG OM.“%O\%@\O/J? /woOo%@ 3«(1 7A/./w O//»w/ m&vf vW/ w)bv mm..m,n
/)7 o TS

FI/0ANI 0 GVIH - [LvWYO0S4NS| |[|/OAN/

4 [¥

REIVIN

INBHINOD |« O 5

ivNHO4 3iva SIVILINI

940 7 3ovd | ... 133HS DNIGOD Lvindo4 OO3TE
° o o A ¢

JOAN/ | £060'97 v 44 R R L | u

6LE0 !-¢¥ D . ‘ M1U'QO'N' T AN EL 0

I

- T T d T T LN R B N B T v 1 rqTr oo rrrrrrrrrprrrrrryorrr oo T T T T A T
! g g e
T LT T 7 T T T TTTTTTTTTTTY LA S St S U A S M M M SRS S 0 St S S LN S S S B S A B N S A B S S D S D B S B B S T T T T T T T T TTTTTTTT
i
T T T T T T T T T YT YT T T T T T T T T T T Tt T Y L i Sl
LA B i S S S R B B S S SR D A N S S (N S At SN AN S N D N N RN A B A BN N SO e N A N SN N A AN SR N SO B D SN N SO SN IR U SN N H N MO N N B B S AN NN A D B MO R B T T T T T T T T
T T T T T T Y T T T T T T T DT T T T T T T T T T T T F T T T T T T T T T YT T
[T T T T rTTYrrrYyYrrrrrryrrrrr1ryrry 1 xrrrrrrrrrryryrrr 1y r T T T T T T T T T T T T T T T T T T L S B
N S S S S S S A S S S A SN SR NS S RO SR S S SN BN SN BN PR SRR Ty rrrrrrrrrrrrrrrrrrrTrrrrrr T T T T T T Yy T T T YTy T T T T T T RS T T T T T YUY T
LS S S S e S S S B G S S S S S S S S A e S B SN S B BN S S S A S S S B S SN B B S SN S SN S S A S BN SN S BN SN S SR SR S SR N S N S SR S S A SN N A N D B T T T T T T T LA A
[ELENN A e S S S A A S A S A A N A D S e R S A S N e N N I N R N A A S N N AU IR A N A A D N NN N A S A B A T S S B S S A A T T T T T T TTTTOT T
S8 S A S S e s e s S S e e e e e S s e S e A S e A S A S D A N A A A A A S O A O A S A N S A S S N S N A D SN O S S M A S (A S S S T T LANN S St S S SRR S SN A A S S R N
TTeT T CTTTTTTTTTY LA S N I A A s N M B S S L2000 S N S e R S A S B S A S S O N M I A SN A A SN N e Sl M H A U B B S S e A S A SN S N S S e T T (o S T T T TorT v
R L S St A E Sk S S G & AT S S S S S S S SN S S SO N S B S S N N SN N S B S S S SN NN S S I ENN D SR G SR S G T T TTTT T T T T T T T ™1 1 T A Ranin Bl S S S
T ST T T T T T T LN B S S B B e S M B S S s S S N A SO (N M S S S N (N S AN SR SN M S A N S SN NS S N S S SN A R S S S S - T T T T SIS
RENR T GG S e naie e Sl S SR A A S St S B St S s S e A S S 5 S A S A A 1 A S S S A A A N 00 S A AR A SN A S AU A Sk G B S A S S S S SR S S S SN YT T T e S ol s et s s e S S GRSt S i (N
AL ST S A A A A S A B R A P 34 4_“ ¥v< w.\\ﬂmt Q{“ b ToTroTorTTYT OTTT T R AR S Sl o T or
R T e T i iy S Ty 776 7) R R R T
. . - PR R e e e g e ooy g g sy e s [T - e e i S — B o e e m g e o - — - .
LRSS Sk S S T A S A S A SRR A (RS S A A S S S S A A A I s SRR AR SN Lt e 2 S S S SR SR R S G S St S S St H ot S 1S it Sl s rs S0 DA SRS gyt P o hp T T 1 1
‘0 =40X FLNIWOI
T T YIS 193y ON/LFSTY ¥OF G731 AWwAd FaoM LT T T o | N
Gl yi o |EijcLjitjory 6 8 I3 a g 4 E ’ H
SININILVYLS AVEOOHd \vwo NAY Qwv \Vd RY Od Q9 4 > - > K
~) N C .
ATATAILS s/ /) S/ L)L) 5
PALATL I LAV S & :
VY &S 5/5/ s
2 Ay > <> h :
2 < 5 o
/Nm*
T T T
“
ENTNINGD

LYWHOJ 3iva SIVILING

/OAN/ €0609L 47

o e s | 20| 133HS DNIGOD LVINHOA

Alll -8

~/ { =
~£€0 =¢¥ 1SDd MQONS T SANDIEL 0+ THd 0F VNV SS NS N 3dAL L

: T T T T T S G s A e S s s S S S e S S S B S S SR S HNE S BN RUAL AR SR B AL B S S B BN SRR AR L L T T T T o
H .
T TTTTT T Y T TT LSS S S S S St B AR S S S S . A S S LA B T T T YT T T T T T T T T T T T T T v ™7 T T T T T SN e S S A !
—
—
“pe - —
At e s mun S LA S G S e S s N S S S H R S A S U S N B B N AR SR R B AR LB SR L AL ELER AR AL L T Y T T T P T T T T YT T T Y VT T T T T T T Sl muns ki S S (R SUN RS S SR A

.!4a.,ﬂ:4,..7«_,.. ~,§_,ﬂﬂq_«.___<<_<,_A__«aa<_«~_«1—«.._.‘_._qd«__4<NH“UA~\§&“N_\{\\.Qa3.Wt_NU_2 T vg_ «>\\~ O_NAquNA.\NA}(,H<,\Jaz4\V

[S A S S S A S SR S A A S A T T T LN B T S R S T TTT T TTYTTTYTT T T YT T LI S S S S S B S B T 7 T T T T T YT T
TOTTTTYTTTY S S S S S S SN G S A Shue S S e S S SR N SN SRS A S B BT B T T T YT T T T T T T «NXK.\N{‘\N@ qﬁﬂk T _NHNGE T mL T qz N< wq Wﬂm,nIM.T N . \A HNJ,G
RS0 S0 St S S S S s SIS S S S S J S AU R AL LA S St S S N SR S B TP T LA S S S S S S H S B S S B B S I ot S S S S S S SR D B S S S T T Lot oins S Sub Ml SR Sy A S S Ty T

T s e T ST O O INYN ONY YIgWON TTI7LEV Wty T T B o
e T T T £t e T T Ny S ST T ' 4
R et «, KON LON TN TTI TNV s TR S N SEE Sk A S AR A O B
e e S T G Y X ONIATD TAVAY NI IWYN HO¥V3S -
e i STy TEHAN NTMITE NOTTIINET T
e e Y NI HOYYES = NN FTo71dY avsy TaioN | [TR Wi |ogen g |4 IWYN
e gy e g o <oy LTI T

e s N YT CONLYY =Z0X FINIWOD| e
L e goW) NOTIVIIAIYTA T T T

S DG Yo7 WY04¥Id NV Y7gWaN 319719y Tvay Fuon T] | o] |4

51 yi e o 6 C] 4 R B v 1 o L

SINIWILVLS WYHDOYHd

I AVAVA RIS D o Ry A
> o~ & & Qo
\ /) < s/ M\
N/\

FO/0AN/ 40 A00g N/ FN/T INO - & IyWY0S8nNnS| (8/0AN/

i3 i

ININNOD L d s

JOAN/ | €O 60°2L vy TUaaSAS AT 0] u
LYWHOJ ! -3Lva SSIVILINI |

940 4 39Vd, | .| 133HS DNIQ0D Lvindod OO3E

NS 0 S S e AN a0 0w 000 U6 o OO N G OB S0 O M P R e
Kmo_&v&x

A 1'QON CNiY €1 0'¢ T O W N A9 N N 1d

4444444 T T LA S R B T A T T T T T ™ T T T T T LI T T A
H- T T T TOYTTY T T T T T T T T T T T TTTTT YT T T T T T T T T T T T T T YT T T T - o e
T T T T LA A S B A AR TTTT T T T T T T T T LANE S0 SR AR A A B R A T T TT T T T T YT T T T T T T T T T T

T TTTT T T T TTTY T LIRS TTYTTTTT T T T T T T T T T T T T T T T T Tt T T T T T TT T TUE T Y
T T YT T T T T T T T TTT T T T T 71 TTY T TTTTTTTTT T T T T T 1T TTTTTTT T T T T TTTTTT T L T T T T
SR AN S e S S B S S S S S S N S S S SN JH SN SR BN B T B SN R CO S S S N S LN S S BS B S D SRR SN N B S S S S R SN AR A A S S S M N S «- D S S S S B S SR S SR F 1 T T v vt b TTUTT
[T 77T 1T Y YT T T Ty T T T T YTy LI AR T YT T T T ITTTTTTTTTTT T LANNE SN B B S HE A S B A S TTTTY Y T YTT T 7 - T T T T YT TTTTTT T T v v T

TOTOY TYTTY Y TOTTYTOrYTY Uy YUY T YT sl St T SIS SIS S Su S B e S Saus Wt S SRAN SRS D SR SN SRR 4 S/ S S S S S B S T e o S 5 T el T T - 1 B S e R o
r ' ! T IYwWyos9ns INT| "

T r U T oy T TUTTITOTCTOTCT rwTr T OYUTOYOT T T pyTYTTTTRC T vy U LN A A B B B B &.l\{y\\w« ﬁt *GX _l*wyx WHN.\N\{QMU — 11Tt 11 ottt o tovrotoo bttt
|t Sat S s Sl R S S e e B S S A e o e e s R S B SRR Sk T T T T 4\“&\%& _ﬂ.‘.NG..N wﬂNﬂ‘_Qta\N- qwmwaal T T . : [ttt S aht fih Sreeysov
T T T T TTT T YT TTYTTITTTTT OTCT Y T T T TTYIY YT YT T Y TCTTTTT YT

NG UON TS ToNTS WY T T T
1T YT TTToOrTTTOYTYTTYTR T Tt J\Q_.I:«.. T T Ty Yy YTy Y CTTTTCOUYTIUrT YT VY YT T T TTTY Ewkaﬂ NU—Q\AQ 4';4 w,«o-x‘ ~A_Vq <N~‘§\wﬁwa\ T T - T o - | o o N o k. Y
T T gy GO T TSN IOY NOTHD UNY FIT¥S TYNTS TVFY T FLO o1 ML

H T Ty T

T YT T rereyer oy o 4 v

T " TT%001 /) €0X ¥ JOX =UISIT FLAWOD “dLINN ¥ ALO =£0X FLNdWoD| 171
T T T gy 033y N IYTSNT ONY UNNODSTT Findwod | | || BEEREE R i
e SIS ST T i g aNY F1¥4 FundW0d C F1oM INA| | 1 |ST | N o4|tsig |#lLos /@
Gt PLo|EL 2|0 6 8 I 9 E i
SININIIVLS z,q%,:.is\..\m% %/mﬁww 77&7& w.ow uzr/o 3«{4 g Awy ,O/Vd/ /wvoy w/, %%,
\\ ,z\ 2/ S~ JA\,« T/

\Q> >\\ L YHO4 | €0 mowN 31va q-\. SIVILING

940 5 3oVd| | 133HS DNIGOD LVINHOA!

Alll-10

44£0 1-T¥ 1SDY

Mo N SANIX €L 0 T34 0L W ONY SS NS N GaAt .
Rl T 7T T T Ty T T 1 1 v T T T
—
-
R TOTTTTT T YT T T T T TT7T T T T T T T T T T TTTTT Y T T T T T T T T T — T S !
T T T T T 7177 T T T | B RS A S S N S R A S A R S B T 1T TT T T T T T T T T T T T T T T 7T TTY T 7T T T R T ¥ -
<
YT TTTTTTY Ty rTrTTYTYY TTTOY Aﬁaaa___ﬂﬂﬂq__._ﬂﬁﬂiﬂq_<44_n._._«qq_‘_—___<4 T T 1 T T 7171 Ty T
T T T T T YT T T T T T YT TYTT T T T T T YT T TT T T T T T T T T i R LA S &
T T TUrUTTT Y T TTTTTTTTY T TTT T N N R R T T T TTTTTTT T T T T T T T T 17777 T T T T T T .m
i
[S e ol Sk S S H SRS S S SR AR A S A A S S S T TTTTTTTT T TTYT OTY TTrT TUTTTTY T T T T T T YT TTTT T T YT T T T T - TrTTUTTT VT s - T T
e Sy G S e S SN SR S S SR S T TTTTTTTTOTY T TTTTTT TTTTTTOTT TTTTTYTT T T TTTTTTTTTTTTY _NvA,J:ﬂiﬂ,.__,11.v4,,‘wlr.lllfs T T T T T T
[T T 71T 777 oYY YT T T T YT YTTTTTTY TTTTTTTTT T 41«‘_,,_g_.,<.z<qd<A_ﬂq«,<4Jv.q,,,Aﬂixiﬂw«i T - Bl o T T o T
(L A S S AR ST B R A B S 2000 SR S S S S S S S St e Rt AUS S S A S S S SR S B SU A S M S S S S A RNLAE SO A R S B LA S T <Aw1.1.ﬁ‘_‘4NQ>\w T T o
CYTYTTrTTTTTTY LT S S S S g 41 < o 1T, .ﬁ | S e i A A - T T v T
7735 FION C) LvWyo79ns 197735
7T r T A2 S SRS B T 2 SiCE Ghie Siiee Sl chn Sl St sn SUbobNF AR SR S S S S S S SR SR S S B SN SR SN B A 1 T . T, c - RANERS T
H NFHL .mm.? =" YOl #'/
T T . - T TOTTTTTTTTYTTTY T T T T YTy YT T TTTT T Y T T 1‘1 T T T T T T o e T
T T T T T T 1 U T ha AQ N%W*n y\Q.ﬂqq T
! T 7 e (P g g Sl A P S G g TegTA7Y 7T T \'Y) A g AT T -t ;T - T, [P B RPN
QS&E s§ YTON - 0IATY 79 0L FYOW : wwx >\ot§3§\8 ([AEI 70 viZ e k91131 FYOW
- A 1 STy T Eein ks sane S St s st SN A A S S A S AR S A A A TOTTTT TorororTTo L AU A SR S AR B o r T cot M M . .
i ’ R O,»@, M&\wuix TVLOL, WIVTY
o I ; "WIHL BOX <> TVL0L S/
701 ¥d N TITTVLOL \@_\\@w L7 YIIHD NV 701¥4 TVL0L OVIY FLOM A NiL S92 TVLOL
T Gl vi €L 2i]i oL 6 8 Z 9 3 4 o
SIHIWALVLS WVYHDOH d\% ma ow,u o,w 7/#?& _\VOO /
o O,)w\md ~ &y \ /
s/ S S /
FO/0AN/ 40 ONF - € \336\%5 w ﬁ\o_\,\\
~
I | m
by
i 4

940 9 39Vd,

SILON

T
=
_

T

€O60'94 | 44

133HS GZ_QOO 1VYNHO4

5L h:

oommm_

8LE0 !-¢¥ ’

T T T T T T T T T T T - T L — T T ¥ T
’ A S S S L T TTTTTTTTT L T T T T T T T AN S R B i S S S LN B e S S St S S S S SR S T e
LA S S S Y T T T T LA AR S B S T T T T T T - LA S S S A S S S R SR S SN S S B h - B T
e S e e S e e S S e S B e A T T O r R e e S e e S T R e Ty T
[s S S S S S S S S S St S N S S LA S s St T T T T T T T TTTT TOTTOT TOT T T YT OUTOOTTT TTCTTUT UTTIUUTTTIOYTTICOUYOCvTrY T
R S e s S Sl St Sl S R St S G S S S SUS S S A S S S T T T T Y T SREEE T Rt St S SRR St S SRR s robs SRS RE e SRR S SRS ST S SR S | 4
TTTTTY T T oT oy LA S TR T T LANNE N S S B T T T TOTTYTILTITTT OTT O TYT T - TOTT T T T T ¥ T L T T T SARS S S Suble R St SR St S 4 T T
Toov T YT YUY o T T T T T T T Ty T T T T T T TTUTYTITTTTTOYTTTTTY ITTTYCCTTTTTTCRTOYTYTTYTYTTTYTTIOrT vty Tty oyt ovoov vy ’ i
AR S S S S S S B S Sl S S SRS R L LA S S S S S S T LIRS S S S S St S S St SR S B S S Sl AR S S S S AN S S S S R S SR S SR S B S S S H S S T 1 T
[Sl Sl s S Sl S S S s B S £ E S s S S R T T T LI S S L ol ol S S ..‘ LI R Sl B S e S S S SR SRS St e Sl SRS S S SR S SRS SIS S SN Sl A ~T T
T o T T oo LEIRES Sl Sht M E S T (I T L s i o T eyt sy 15 EUN R S S S £ 0 R e A S A S S S T A T 1
T oYY YT OV T T T T T L L A S T TTT L A A A T A S SRR S EANNE S St S S S S EE S S RN AR HR SR T S A A A S S A S T
¥ e S o S S e Efi s SRl et S St B S i st cn IR SEA S i S e e s s SR S R sl S e S H e shis St St St S SRS S St SR S S »7— 1%»» T T
| L1024 |}
T - ey - - T T T T T T T ,4‘,4 B S B St S ,. . T T T T M,QVOA.UﬁlAJ%(mH\HqWﬂQfQ‘fv._ - b ﬁ\
N R A — 1 S R A A Y TvooTTT T T T T ¥ [N S S S B A B S St S A A S A S A U S A A 41‘11Wamum.qm,qq4Qa<dr “ﬂmﬁqdhuawﬂ)" Ulv<1 & T
- —p - i S T T o S R S RL TS M e Sl B Al e L Sl S st m:<4\<« - ”—NIOF@D w QN v v
N ~ e e e e F— - S . — T e S T S s TP s e S T PR . .
, ¥IENON yINoL1SNIlL 1) |}
o e ., «
R
\\ ; \.\
.p\.)
\ / N\
FOTOANT 40 AaV3H ngmw<z;:\o>z~
H
‘ . : o
INN0D _ 3 m
_ |

\O\ﬂ\(\ LVINEHO
£ 40 } 39vvd

I
w
i
-1
|
i
|

IDI0ANI 40 QH3IH 0L 3O9VNI

S3LCN

mo &0 WN— << P T A N s I

3Lva SAVILING

133HS BNId0D Iovii OO9E

Alll - 12

84€0 ¥ 1SD¥

T T L S SR AN SO SEN N R AR S B BN B SR S SRS SR B S S S T T T T LS B i T L a— —
1
LI oo N i i TTTTIIYTITTITTT T T T T T T ¥ T T T T T T LA S R T T T T T E A B T Ty i H A S S A S S R G R A T
—
—
—
[S B LIS S B S S B T T [A St IR M L T A S B I e B s E s A S A e Sl S A S LSS SR S S S At S RS S S S S SRS ”
T i D T T T T T ERNS T LA S A S B S T T T LA A T T T T M T A S R S A L LR S A S AR S (Nt A S A A S YT !
T T T T T T 1T TOTT T T T T TT T T 1 T T 1
r T T T T LA TTTCTTTTTYTTUTIOTOT . T T T T T T T T T T T T T T T T TUUTTTT T T
T T T (AN A S A A A A T L | LA S A D PR BN B TTTTTTTTTT T T L L2 A A B B [
T LA S S DS A A A A B S SR SN SR B LIS S A L B B S A B A S D S S S A IR S H E A T T T T T T T T T TOT 1
T T T LA S E S S LA H A S S SN N A AN S S BN SR SN SN S B R LA S E A S S S LA S E E S S RS BN SN R SN SR A A LN I RS G A M St M T
T T T T T T TTTTT T T T T T T LA R B T T R B T T LI B S B T T T T T
T T LA A S R S A e e T T T T T T TTTTTOOT T TCTTTUYTT T T . T T T T T T T T Ty T T T T Y Y
T T AL SR S K A A s S Sl B B R S S| TUTTY (N SR A R A L R T T T T A B T TTTT Tt S S S
AU S St A S S S S S S A A S S A LA A N SN S S H AR St St S Sl S SR B S A S S R L S A A D R A T A A A e e A T T
Rl T LN S R A AU IS SU S SR S B S SR SRS S S S S SR S SR SR S N B B T LA S SN SN SR SRS I S S S N S SR S B BN S S S T LA R S S S S S S S
(LA S S S A R A R S S E S SR SRS S (RN S RS S B T T | S A S S S SN SU BN AN S S S SRS SRS S e At S S SN B S SN B AR Sl B S e S G R SRS R S S S A A S S S S S - T
T T T S S N TS ST FITOANT 4O ATOF THL NIHM S IYWYoIInS 1o777s|L |43y
JIHSIN/S S/ FIO/0AN/ 0 A |
,
72144 TYN/4 T UNNODS T FOIYLTLINA T ALIUNYAO T T T T GHYN FTILYY YTIWON LIY|L | |4 |
Fo1dd TYN /4 noosq 1¥d n | 757/ YTINWN _
, |
v ¢ i
|
X3 ,
B 7
,
) o ; - FO/OAN/ SO K0Og N/ FN/T FNO OL FOVW/
ISNISTE TR IDION B

Z AVOG N/ FNIT FNO OL FOVW/ £0'60 9/ 44

1LVYNHOAS ‘31va STIVILINI

40 z 39vd | el 133IHS DNIAOD IOVNI DD@mHU

scee ooy

T T T T H T T T R T T T T T T
T YT T R T T TTTTTTY T Bl T T T T T A - T
T T ka H K T T T 71 TT T T T T T T T T T T T T T T T Y T
T T - i A S S S S RS SN SN S S B LA N S T T T A B s S S S T T
- T - T T T LR S S A B R Ty LA H SR A B LA S R S E RS S EE A B B T LZNR A SR S S B T
T LA S A S S Sl T T T v TTUTTTY T 8 L L EAS S S SR S B B T L TOTTT A T Y T
T T TTTTOTTTY v TOT T T TTTTTT T LI SR S S R S S S T TTTTTTTY T - T T T T T T T T - L
T T T T 1T T T TTTTY T T T YT TTTTTTTTTTY T T LA T T T STUTTT T T
T T T YT T Y T T TTTTTTTTTY LA B A S S B T T T Ty T T v T T T T T T T T T T T
T .S S H S S S S T T S T T T T T T v - T T L T T YT T T T T
. L S S T SRR S S T 1 T T T LN SR S S A S B T T T TOTTT TTTTTTTT T .‘ T T T T
[e T T T T T T T T T AS S S S S T T T T T T i
1 TTTTTIUT Y T 1 T T LI T YT Y LIS S S S S SR B SRS S B S R B L LI s s S B A IR S S R B B B SR S T
I T T T T 1 T TT T T T T S e S S NS S S SN S S A S SR S RS It S SR S S SRS U S R S S 1 T -y s
T T T T T T T T T DN AT faw_\i_..\ﬂgﬂu NVM TOA" 41" ON AL |18}
R _ _ NU \Q\§\\ 2N>\ 14 >\0_ K VLS D.N INVM NOA" 'F1° 'STX AFN} 08|/
= e S e e S S S LA S S YT T T i T L T T YT T Y 4ww\gmﬁlnﬂwkgkx*1w N \
14 £ i
X3 Dw. <
%% A
yavs
T

FO/0AN/ JO GNTF 0L FDVW/

ANININGCD

o

/OAN/

‘LVNHOA

| € 10 £ 39vd

F/0AN! O ONT OL FOVH/

‘S310N

£060°9L

-3iva

44

SAVILINI

133HS DNIA0D FDVII

Alll - 14

£L£0 '-2¥ DY

—-—TTTr T T T T oo T e T 0O
T -1 T T R S Bt s mes e S S B S S shme e s e S S A Bt S S S SR S S S SRS S S U B S S Ba S S SN R S S SR S B R B S SR SR S U SN S SN SR S I A SN S SR A S S A E A A A
—
—
I S e e e Y (SN SN S S S cm s e e S s m S S (S S ARG T S N S S S U S S SRS S N P S ST S S SR R SEE SR SR I SN IR SR SN SR S RN B N S B R S S SR A SR S HR R SR S AL A A
— T YT T T T T T T T T T T T v T v T T T T T T T T T e e
L T LANRAS SR R AN B SR S T T T T T 7 T T ¢ T TrTTTTTTYTTTYT T T T T YT T T T 7T T T Yy vy T T T 1T 7 T T T Ty T

R e e T SR S St s S S St S S S Sy St SR EED S B St S Sy S s S s S SN N SHND S SN S S SN S S S B U S S SN S S S R S B S N S S S S SN SRS B B SR S H S AN S B SR A E SR A S S DL

__<__qq_d‘~.___A__4<444444_4~___144____<~_4_J44_-_<q________________<q<__N_Q§N
LSRN S S E S R S N R SN SN RN SN SR R RS ERN U SRR SRR EEN BN B SR A S SRR RS NN SR _%_N_Q_}_\Ny\a qN:N_.Vd\AnN_Q_TA «24\4 q%dg_q_x_lﬂ. T E.Q.q_QJ\qm é_w;: w_ _OA _A_V_ «NAQJkﬂ T \,
S SR SR S S S S (L AN S s Sl S S Sh B SR S BN BN S AR M RN NN S BN S D EN RA S S SR RN S S SR SN B RN SN A SRS A SR B R _N_Q.\ﬂ qqﬁo_“ 7 _A,N_QANﬂv_\N_O_Xf.T_ LA R 2t R SR R S AR S S B
B e ST S O ANNE B S s sanes S S Sos B S S BN SR Sus S s S B S B S A R S S S S S SR SN E BN B S U S S SR S S S B S SN IR I S SN SEND NN SENE P SN B2 B~ B R £ K. SN EE S S S R B R B S R S
ex (6)80X+
 JNSS (NN SEN S S SN E NN SN SRS NN S SN SN RE S SR SN S SN AN R SN SN IR AN SR SR RN U S S R SN R IR SN S SN SN SN S RN A I SR SRR AN SNNR SRR SR SR HN R S SRR AR B _N.Q_M.N_O_X-Y‘ T T T T T T T
T T T T T T T T T T T T T T T T T 7T LA SR | T T T T T YT T T T T T T T T T T T T 7T T 1T 1T 7T T T T T T T T T T T .N‘ _ﬂ_m_&_wdodxg*g T T T T T LA
B S S S S BN S s s e o S S SR SR SN SE SR S S R S SR U S S S A S S S SR SR GHN S SN SN SN SR S S U SN S SR SR S S S SR SR R R H SR S SR S B _ﬁ_m_M_N_O_x.?_ LA B SRS SN RN SRS AR B S R S
ﬂ% aﬂ_“<\ﬂNqu_X_+_ T T L S S S A
B S S S S ot s st i AN Ml i o S S S S S SN S B S SRS SN S S SN S Sy Bt A Suts HS A S SN SR SN SEN S R S A S D S AR SR S S S BA AU SR S A A B S _N_?_\ _Nqo_x‘_\&.q EA R S RS S S SR R S A B
JRR S Sl S S S S Sna S S B B R S SN S AU SR BN RN SN S UMD SN SRS S SN SRR SUND S S SRR R S SRS S S AR S SR S R AR S S S S A S R S S B B B HNA dﬂam4¥ ~N~ U_X<L.a AR S Ses S SRS S S Al B S S
S e S SRS, ot S B S 1% A A S SR SN S S SH S S B S S S SHS SN U SN SR SN SUUND RN SR S U S SR AL SN S S AU CH S A AU A SR S SR AN A E AN S E A A _N_N_\ _NAU_X‘%LW LU Be e S S SR NN A B S S S
Saa Sl S SR SES S S SE S S SR SN S S Sy S Sy Al SN R RS NN EN RS S Suihe S (N SR SRS S SN SN N SR BN SRS SN S A SR AN AR SEN SR D E S AR AN SR BN A S R S _N‘_ &4\4\ _Nﬂgﬂxv T rNﬁOJXJ., «NK4QAQN¢\4D_U

3

SINIWILVIS WyHOOHd

YTGWAN FT1071dV - = Z0X - (OF SATATOW) NO/JIVITLTYIAN L7117 NIIHD = WvIDOYJIgNSpPLIHI

< |

LNHININOD

TANVHDOHdENS -31va STVILINI

"/ 10 / 3o9vd __ [133aHs ©N1a02 wvaooddans | (J(O9Y
® @ o |]

s THONNI NI TSN WY¥DOVIINS €060 9L 44 EEEEISEE ou

sce0 -zv Py

T T TT LMD SARE AR AR AERED SRR SR A AR SENRE AR S SR A 1 T T T LR A R T T T T T T

Z

v - T LN B SR S SN SN S S B | LA SR S SR S S S SR SRR SA I SRR A SR T 1 1 1 71 T 71 T T T T T T LA R A S A
3

| T T T T T T T T T T T T T T T T T T L T T T

| k4

T T T T T T T T T T T T v 7T T T 7T T 7T 7T 7T VT 7T T T T T T T T T T T T Y T T T T Y T T T T TTT T T YT T T T YT
i

T T T T— 1T LARNED SN NN I BN SN SN SEN SENN SUNN SUND SNDE SN SNED SURR SENS SHND SENN SN SR SENN MRS S LI S S S S SN N AU S S T TTTTTTTTTT T T T T T T T T T T T Y
<

TTTT T Y T YT TT LN SN SENE SN SN SENE SN SEND SNND SENN SNND SENS SUND NENE SUND SEND SEND SENN SNND SENE NS SN SN ¢ YT T T T T T AN S S B S LA S B S S AU S S S R SR S
3

rrrrrrr rTororT T T rrrryrJrrrrrrrrryr r1ryr rr-rvr r- T rr T TrTrTorTT T T LI 1 1 1 v T T r ¢ v Trr 77T r T 17T 7T TvT T
2

T T T T T Y Y T T T T T T T T YT T YT YT T T YT T T T Y T T T T TTTTTTTTTT T T LD A S S N SUE NN B SR S SN SN
3

T T T T T T T Y T 1 71 Yy r v ¢+ 1 r—rrTrTr T r T Tw 1 v 1 1 1 71T 7T T T LR v 1T 71T T v 1 717 T 717 T T 1T 1T 1T 7
4

T T T T T Y LA S B SN SN R SN BN S SN SN SN NN SN SN NANS SN S NN SENE REA SN SAEE ARER AU NN SNSS 8 T T T T T T T T T T 1 T T T T LN S B S B B SN R SUN RN S R
I

T] T T T T T T T T T T T T ¥ T ﬂWAOﬁ“ﬂQﬁ“deﬂQ< d\N
Eél:

T T T T 7T T 1T T T T T T Y T T T YT T T YT T TR T YT T Y TTTTTTT T T T T T T T T T YT ______<k~____‘
HS/ VY -FSYOH|,

T T T T T T T AN B S SR SN S SN SR B S NS N SN S SN RN BN S S N B NN NN T T T T T T T T T T T __<_Q‘m_m_n_w_hwm.m1_w_\
! 4

Ty T T T T T T SN S SN SE SN SN S SN SN S EEN SN BN SN SN RN SN B NS SN RN NS SN AU S SN SN YT T T T T T T T T T T T T T T T T Y T AT TR A
NO/NO

T T T T T T LN S SN S SEE S S SE S R NN S SR N SN U S SN S S S S SN SN SN SN S SRS SR RN SN S T T q.__~<_,<<uw.4446~_~
0O90/01L010 /|

TTTTTTTY T T UTTTTY LN S B SR SR B U S (A S S SR A S S RS S S S SN SN B S HD SR S S T T T T T T T | IS B B SR St S S S S B B A S B N EN P g
YVid|

T r v 1T T T LR T 17 1 T T 1T 1T 177 T rrTr T T T T T 1 1 1 1 1 1 7T T 1 T 1 T T T 1 7 T T T T T 2 T aaT 21 T 2 T ™ 2 T e
\ 040101010}

T T T T TTTTT T T T T TTTTTTYTTTTTT TTTTT T T YT T L T T T L T T YT T T :N.;t.aq
744V

— T T T T T T T LN S B B S S M SR BRNE BEN SN SEPNS S S SHN B SN S B | I S B SRS SN S e S SR HA S S =T T LA N B S S S B S S S B R R SR
0|:
<

T LR B R S B T T [SRS S S Es S S S S S S SRS S IR D SR SRS SRS S S ACHE Sl S B S S T T S T T 4;:,11.4:..,4«..0N
OLVLOd:

SNOILONNS ¥ SINIWNNDHY ¢ % L

T T

O 4| NMOZINV|.|79V LV

9 | s L2 T 3

(HLOYIAAL| HLO | AL " ANVYN

4 41 V v IgvL

- - Lo ey T -
79V.LV FOHONNI NI 03S11 F79VL FTI LAV £060'92 vv LenSAS Ansg e
31ave ‘31va SOVILINI

b

/40 / 39Vd

-S3LON

(318n0OA) 133HS DNIAO0D I31gVL

009E

Alll-16

GLE0 -2V 15Dy

T T T T s T W
Z
]
FAR S S S e A A S A SR N G S T T LI SR B S LA A SR I R S T
—
3 —
LA A S S KA S S SRS SRS SR B e T T T T
LS S RN SR S B A IR D S R S SN S S BN M U SR S SO B St SN S N SRS SR SN B S Sun RN S S S DEne S S S s G St mne s s e o i e S S SR S St S s S S sl s RS HE e T At e e et e s O -
i
4_14.4ﬂ_.._..ﬂqﬂ«,._<_<-.1.<_‘-_\~<_....q<q4ﬂ44ﬁq.«««ﬂ4-441444\ﬁ1._..<_4<.~44ﬁ‘44<_0‘o_k
4
LA A A A A A A A e A S S A A A A N A O S A S A A A S AN R B SR Sl e B S RN SRS NN S -q44__._._-<d44444-ﬂ444‘_44a44‘4:4.1444144U4 P
Yy
.«.<-<4J<._ﬂ.ﬂﬂ..___‘<._44__4qﬂ4..a..4.<<q_.__.-<<1ﬂ4i-<qqqﬂjﬂ4___q~<q-ﬂnq~<ﬂqam
. 4
Yty Yy yYTrvTrTTTYTTYTTTYCTYCTTTO T T T YT YT T YT T T YTTTCTYTYT YT TTTYTTTT T YT T T YTTTYTTT T OYTT YT T T T T T T T T T T T T T T T T T T 7T, T
. \NNm O'89%4% /|,
rr—Y/w— T Ty vy, T Tt v 7T v vy T T T T T T YTy T TYTT T T T T T T T T T T T T T T T T <ﬂ<4444<“Q
: 4
TTorTTyrv Ty v T oy YTy Ty T T T T YT T T TTTTTYT Ty T YT T YT TYT YT T ~40404\0404040401
X Q—
AN N DU R A B A AL A AR R ERD A SRS SRAN SR NS S R S S SR S BN SRS SR RENND AN S SRS SN S SN M S S SN SHE SUN EEN SNNND SN SN U S SN EN S R B S S SENS SRURS SN S SEN s H N S S S S S S S I SR Sa Saa S s e i

_mﬁMoN
ﬁ_4~<4q44_«44«44!444ﬂ4w__‘d4~:1ﬁ:4‘44__~<.4~4_44417._<_.4.A444ﬁ______<4ﬂ<~1<N\\QhWhm.
vy oo r T~V T T Ty rrrr r r t T T T T T T T T YT T
52
[E A A R A AR A S A S BN SN S R A BN SN B SN SN BEN SR S RN SRS S S SN I BN M S UG B U S SR SR SR SR S ﬁqﬂqﬁ___‘<_~<.q«4<__«_44..4a‘4,14q<“4\.‘4w4m%
- s
q<_,<_,4[1~_<<<*~ﬂ_~.-_~q._<<<«4__<__<_4__‘_«____<_44<_~<_«.__,-A_<<,«q,wﬁ 0
Sle
[A S A A A R SN S SN A A SR B SN AN SR S S S S S N S SN SUN SRS SN SR SRS BN S S S N SR U AU S i St Su B SR SE R S SN S S R S S SUS S S s St e mu s Hx#A‘N\NO 0%&0“\ -
l
T LA S B S B S SN S S S B | LA S S S R R SN G SN EE D RREAL SHNNE S I SR SR S N NS SRS SN SRS SN S AN SENS NS S SR SRS S NN S RN S SN SR SU R S SR S T Y
O/
I S A A A A S A S A S B T T T TTTT T T T T LA S ¥ T T T T T T T T T T T q.q T T T T T TTTTTTT T T T T LENEE S SRS S S R S B T T T T Al <‘Jm‘< iy gy § T T " N
3€T-641092)
T T T T
0|:
1L02-4L1/873
SNOIIONNS ¥ SININNDHY & 7 |

€ | NE/INV|79VLD

4 El 14 £

-

o

-

-

HIODYIJALIHLD Y FdAL
E} v v

VEAZN F2/ONNI VI GFST7 FT79VL Y¥TWOLSID 0609z /4’4 TOoAG AL g e

318avL ‘31va STIVILINY

e e _ .| (318N0A) 133HS DNIGOD F18VL DDmm
° ® o , o

LIST:

«

FLL

oul
001
oo
001
ool
0o
Ul

TTTTXIXX

L

FLo

0ot
ou1
vu1
Q01
[V[Vh]
002
ove
oue
[UX]
003
004
Q04
005
0os
005
0ve
[¢1¢].]
007
007
007
[}

N N S .

FLD

001
0ot
[F1V]
001
ov1
002
uue
Qo2
oue
002

002
003
003
004
004

005
o5
('}
U6
006
00
006
oue
006

NRNANUNNRNNNNANNRBVNRRNNNRORBRNRNNNNN ©

»

FLO

001
001
001
oul
oo

002
ou2
ove2

(PR 7R PRV RV AR PET

™
z
°

L1s

FORMAT=SOUKCE TEXT (ExbBU1)Y

LI

uu1
0oe
uul
ul4e
ous
0ue
vo?

LIN

v
e
Vi3
uo4
QoS
(V193]
uo2
uo3
uo1
uoe
(3]
vz
uul
oue
IR
Vo1
0oz
001
voe
oul
Ve T

LIN

Ut
ou
vu3
004
0os
001
02
Vol
004
ous
Gué
007
0ot
002
001
oue
Vol
002
uu3
Vub
001
U2
uu3
VU4
ous
0u6

LIN

uo1
002
ou3
V046
001
oue
uu3
006
00d

T

REC
voul

REC

vou2
vuus
Uuu4e
uous
uuue
ouo?
Yuus

NEC
vuve

Vo1
uol
U012
0u13
(VAR
uu1s
[VIVA 0
vo1?
(Y]
001y
vueo
voel
uuez
uuzs
uuee
vues
602s
vue?
0oes
uu2e
vusy

REL
uo3s

vide
V03s
VU34
0035
ubseé
cos?
uoss
0039
0040
0041
voe2
0043
0044
0045
V046
0067
0048
0049
0usv
0051
00se
uus3
V0S¢«
[{1'}-3)
0056
0057

REC
U058

REC

uusy
[M7.10]
0061
0062
0063
0064
G065
uuée
0067

FNAME § P COMMENT

INVOI H Y SUBFORMAY

NAME

FNAME
INVOL

NAME

Cusno

o1scr

NAME
ADDR

PCOUDE

clry

FNAME
Invol

NAME

ARTNO

NAME

QvyY
UNITP
DISCY

FINAL

FNAME
INVOL

NANE

TOTAL

MORE

P LN PS LG ML TY QUT J F R D K KRG PROGRAM STATEMENTS

v

§ P COMMENT

1

SUBFOKMAT 1 = WEAD OF INVOICE

P LN PS LG ML TY OUT J F R D K RG

1

1

v N

1

1

- =

-

S
3

4
1

1

¢ 1 12 8 AN 1L

0
COMPUTE xU4m= 0,
END SUBFORMAT,
P COMMENT
SUBFOKMAT 2 « ONE LINE IN BODY OF INVOICE
LN PS LG ML 1Y OUT J F R D K RG PROGRAM STATEMENTS
2 110106 N 1 [¢]
213 20 1 AN 2L
235 6 1N 3
2 45 10 1 N 4
25710 0N 5 Y N
2 69 10 1 N é
P COMMENT
SUBFORMAT 3 = END OF INVOICE
LN PS LG ML TY OUT J F R D K RG PROGRAM STATEMENTS

2 64615 1N 1

21 64 3 24 oL

LIST: SUBPROGRAM=SGURCE TEXT (EXBDG4):

REC

LIN REC

SNAME COMMENT
UUUT CHE10 SUBPROGRAM = CHECK DIGIT VERIFICATION (MODULUS 10) = X02 = ARTICLE NUMBER

PROGRAM STATEMENTS

001 00U2 COMPUTE X028 (XU2(1)=2
602 0uul
003 LUUs
004 0005
005 uube
006 O0U7
007 vuus
008 0009
V09 VUL
010 0011

011 0072 IF XU2 <> O THEN ALARM 'ERROR IN ARTICLE NUNMBER',

012 V013 END,

END LIS

A1

Alll-18

+X02(2)

+X02(3)%2

+X02¢4)

+X02(5)2

+x02¢6)

+X02(7)%2

+X02(8)

+X02(9)%2
+X02¢10)) mMOD 10,

H = DEFINITION OF REGISTERS

DEFINE XN1 3, NOTE DISCOUNT PERCENTAGE,

PEFINE X02 10s NOTE ARTICLE NUMBER,

DEFINE X03 10, NOTE FINAL PRICE,

DEFINE XO04 15, NOTE TOTAL PRICE,

DEFINE X05 10, NOTE REGISTER FOR SEARCHING ARTICLE,
SELECT SUBFORMAT 1,

END SUBFORMAT,

PROGRAM STATEMENTS

NOTE READ CUSTOMER NUMBER = SEARCH IN CUSTOMER TABLE FOR
.DISCOUNT PERCENTAGE AND DUMP IT,

SEARCH CUSNO IN CTABL GIVING X01 AT END
ALARM 'CUSTOMER NUMBER NOT KNOWN',

NOTE INSERT DISCOUNY PERCENTAGE IN RECORD,
IF CUSND VALID THEN COMPUTE DISCTs X0t ELSE COMPUTE X01e 0,

NOTE READ NANE,
NOTE READ ADORESS,

NOTE READ POSTAL CODE,
LIMIT 1000 900Us NOTE LIMITS 1000 <= PCODE <= 9000,

NOTE READ CITY.,
NOTE DummY FIELD FOR RESETTING REGISTER,
SELECT SUBFORMAT 2,

NOTE READ ARTICLE NUMBER AND PERFORM CHECK DIGIT
VERIFICATION (MOOULUS 10),

COMPUTE xU2® ARTNO, PERFORM CHE10,

If ARTNO = O THEN SKIP 1 FIELD,

NOTE READ ARTICLE NAME = SEARCH IN ARTICLE TABLE FOR
CONNECTION BETWEEN NUMBER AND NAME,

SEARCH NAME IN ATABL GIVING XO5 AT END
ALARM 'ARTICLE NAME NOT KNOWN',

IF X05 <> ARTNO THEN
ALARM 'ARTICLE NUMBER AND NAME DG NOT MATCM',

NOTE READ GQUANTITY,
NOTE READ UNIT PRICE,

NOTE COMPUTE PRICE AND OUMP 1T =
COMPUTE DISCOUNT AND INSERYT IN RECORD,
COMPUTE XO3m QTY # UNITP, COMPUTE DISCTs X091 % XO03 / 100,

NOTE READ FINAL PRICE AND CHECK AGAINST COMPUTED PRICE,
IF FINAL <> X03 = DISCT THEN
ALARM VEINAL PRICE NOT OK*,
NOTE UPDATE TOTAL PRICE,
COMPUTE XxU4m™ X04 4 FINAL,
END SUBFORMAT, -

NOTE READ TOTAL PRICE AND CHECK IT AGAINST TOTALLED UP PRICE,
IF TOTAL <> X0& THEN
ALARM 'TOTAL PRICE NOT OK',

NOTE READ CONTINUATION = YES 3 MORE TO BE KEYED = NO t END FORMAT,
ALLOW 'YES' 'nO ',
IF MORE = 'YES' THEN
SELECT SUBFORMAT 17 NOTE SELECT HEAD OF INVOICE,
END,

LIST: TABLE=SOURCE TEXT (EXKUZ):

REC THNARE T AT AL FT FL
U0UT CTABL D AN 12 & U3

ENTRY REC ARGUMENTS AAND FUNCTIONS

00001 U0ue 2841=201
[y
00002 DUV 2B80149=2323
(1Y)
Q0003 U0Ue 170950=y712
s uso
GovLe uauh 5482=170
\ vas
QUOUS wOv6 3567=8111
033
QULUG LDUT VGUOOVUY
goo
00007 VUUB 14768U=9221
V]
000U8 VUU9 RC
100

END LIST

LIST: TABLE~SOURCE TEXT (EXBU3):

REC TNAME T AT AL FT FL
U001 ATABL D AN 20 N 10

ENTRY REC ARGUMENTS AND FUNCTLONS

00001 QUu2 POTATO
IV R e LTt 1]
00002 UV03 APPLE
1010101010
00003 UuVe PEAR
1U1u101060
000Us QUUS ONION
1234567890
000U5 00U6 HORSE=RADISH
2345678906

END LIST

LISTY IMAGE~SOURCE TEXT (EXBOS):

REC FNAME S COMMENT
0001 INVOL 1 IMAGE TO HEAD OF INVOICE

S REC P LN PS TEXT
1 0002 1 1 1 CUSTOMER NUMBER
1 0003 1 1 20 CUSTOMER NAME
1 0006 1 & 1 CUSTOMER ADDRESS
1 0UUS 1 7 1 POSTAL CODE
1 0006 1 7 20 C1TY
REC FNAME S COMMENT
0007 INVOI 2 IMAGE TO ONE LINE IN BODY OF INVOICE
$ REC P LW PS TEXT
2 0008 1 1 1 ARI NUMBER ARTICLE NAME QUANTITY "UNIT PRICE DISCOUNT FINAL PRICE
2 0009 1 21 1 SELECT SUBFORMAT 3 WHEN THE BODY OF INVOICE IS FINISHED

REC FNAME § COMMENT
0010 INVOI 3 IMAGE TO END OF INVOICE

REC P LN P§ TEXT
0011 1 1 64 TOTAL PRICE

0012 1 20 1 KEY YES IF YOU WwANT TO START ON A NEW INVOICE
0013 1 21 1 KEY NO IF YOU WANT TO FINISH KEYING

[PYF I

END LIST

TRANS TABLE EXBO2

SIZE OF CTABL 3 V0126 BYTES

TRANS TABLE EXBO3

SIZE OF ATABL 3 00156 BYTES

TRANS SUBPROGRAM EXB804

SIZE OF CHE1U 3 00704 BYTES

TRANS FORMAT wITH IMAGE EXBU1 EXBUS

SIZE OF ImMAGE : 00422 BYTES

SIZE OF INVOI 3 01076 BYTES

Alll-19

Appendix IV

Standard Formats FORM, IMAGE,

SUBPR, and TABLE

LIST: FuxtalesguwCe TEXT (STPO1) ¢

REC Fva<g § P COMMENT

CUUT FURS H N FORYAT FGRMAT = SUBFORMAT hEAD EMTRY

$ FLU LIV KEC wASE P L& PS LG mL TY OUT 4 F R b K RO

Aouitl UGl wuidd wASE 1T 1 17 S 1 A 1L
W00 uue Yuul

RN VIVE RRVIVE REVIVIFY™S

H U2 WUl uuud SubFM 1 2 17 1 1 An 3
Hogue due vuse

HoOud wius uur

HoOME ulG Luus

HOoUUS unl uuuy PRoCl 1 3 17 1 G A S

H 003 Gud vuld

H o Gus wud vui

ho0U4s uul BDIE Cust 18 1 76 U AN 4 L
HoUud wul wils i

MUY uie wuis

M oOUS uus wulS

H o GUd uue uule

Houus uuSs uule

HOLUD e LUl

0US uul? LUty

H UUS uul ticy

noOUS UuY uulli

REC FNA@WE § P CONWENT
Duge FURM b N FTELD DESCRIFTION EnTRY

§ FLD Llw REC SAME P LN PS LG ML TY OQUT J F R b K RG

UUT U6 Gods FLDRm 1 Y 18 S G AN 1L
[VIVN VIV BRIV

GU Uus ues

Ul L9l uude PAGE T 1 32 1 Lo 2
0 uue uue?

QU2 HUS vues

wue uie uuey

ug Uud uu3o

0u3 uud LU LINE 1 1 45 2 U s R
IR BVIVFRRVIVE P2
00s GUT uu3S POS T 1 61 2 N 4 R

GUe vue uule

[T IRVIVE INVIVE 1]

w9 UUl Guldbé LENGT
GUS wue LUsr

Gud bud yuis

Uub WUl LUSY mInLe 1 2 32 ¢ U N 6 R
Ute Uil uusy

uue Uud wue

OUA ULe LukR

Jue il yu4s TYPE
YUl LUE VUL

wu? Lud uued .
Ju8 uul Luke OUTPS 1 2 61 5 U N 8 N
WUB w2 uue?

Uy uul Yusd JusT
VuY Uu2 nusy

U10 0Ll LGSU FILL
010 GLue Lusi

U1 wul Ludé NEKERY
U1 vae vuds

612 vl Yidh ulsP
Ul uue uudd

W13 uul UuSe K[No
ut3d wue wudy

s w3 uude

Y18 Uuk uuSY

U3 uud wub

Jl4 wul LU6Y1 KEGLS
ulé vud vuee

-
~
-
[
~
>
o
x

-
n

45 ¢ u A 7L

-
~

76 1 v oA 9

[
-
[
-
<
®
z

-
[

3¢ 1V u oA 1

[

45 1 1A 12

[

61 1 L A 13

-
w

76 ¢ U N 14 R

P T R N TN N YT MM T TN T R T MM N M MMM MMM T T NT AT NN Y T NN N

PROGRAN STATEMENTS

NOTE THE FORMAT NAME IS 1 TO 5 CHARACTERS,
IF (KAAE(IICPAY) OR (NARE(1)DYZY) THEN
ALARM 'TLLEGAL FORMAT NAWMEY,
NOTE THE SURFORWAT Saxe IS 1 CHAKACTER,
1F wOTCC(SUBERDRIOT) AND (SUBFNCEI91)) QR
((SUBFAND®*A') anD (SUBRFNKETZ1))) THEN
ALAR® VYL LEGAL SUBFORMAT NAME',
NOTE SUBFORFAY PROTECTION AGAINST MANUAL SELECTIONG
Y = n0 marUAL SELECTION & = (DEFAULT) ®ANUAL SELECTION 1S POSSIBLE,
ALLDW fyr dpto0or,

NOTE SURFOKMAT WHFEAD IS FUNISHED =

CHANGE SUKFOK“AT TO FIELD DESCRIPYIION,
DEFINE Xx02 5, wOVE ' ' TO XU2, NOTE CONSTANT = SPACES,
DEFISE X085 14 MNOTE KEEPS TRACK OF PAGENO = LINENO AND POS,
DEFINE X014 1, COMPUTE X004 = 1, NOTE LAST USED PAGE,
DEFINE X005 3,
NOTE VMISED wHEr PAGE = MINJLENGTH AND QUTPUT POS ARE CHECKED,
SELECT SUBRFORMAT F,
ErND SUBFORMAT,

PROGRAS STATEMENTS

NOTE FIELD MANE 1S G TO S CHARACTENS,
IF CCFLDNMEADICTAY) OR C(FLDNM(I)DPZY)) AND C(FLDNMIOX0Z) THEN
ALARS YTLLEGAL FIELDNAMEY,
~OTE PAGENG IN DISPLAY=LAYOUT = FROM 1 TO 8,
IF ALPHANUMERIC PAGE = ' ' Twgn SKEIP 2 FIELDS,
LI#1T 1 8,
TF PAGECXUS4 THEW ALARA "CURRENT PAGENO LESS THAN PREVIOUS PAGENO',
CoxPUTE XU4 = PAGE,
HOTE LINENMG IN DISPLAY=LAYOUT = FRO# 1 TO nO OF LINES ON DISPLAY,
LI=I1 1 21,
HOTE POSITION 1N LINENG OISPLAY=LAYOUT =
FRO® 1 70 M0 OF POSLTIONS PER LINE ON DISPLAY,
LIMIT 1 RO,
NOTE TWE FLIELD LENGIH IS FROM O TO BU,
IF LENGTH = THNEw SKIP 9 FIELDS,
LI®1T 1 Bh,
NOTE THE mInlrUm LENGTH OF THE KEYED DATA,
TF WINLEDLENGTH THEN -
ALAR® 'wmIngLENGTH GREATER THAN FIELD LENGTH',
LIMIT U Rus
~OTE THE FLELD TYPE 1S NUMERIC = SIGNED NUMERIC =
SPECIAL SIGNED NUMERIC = ALPHANUMERIC OR ALPHARETIC,
ALLOW "W ' Tsnd TGSt Tant ry 0,
HOTE THE FLIELD NUMBER OF THE FIELD IN QUTPUT BUFFER,
LIMIT O 255,
NOTE KJIGHT OR LEFT JUSTIFICATION IN THE FIELD,
ALLOW ' YRY 01,
MOTE FILL CHARACTER FOR NOT USED POSITIONS IN THE FlELO.
ALLOw ' 0 TG twty,
HOTE VERIFICATION NF THE FIELD IN REKEY=rODE,
ALLOw Tat tyt 0 v,
“0TE OISPLAY OF THE KEYED FIELD,
ALLNw LY 2 R Y
KOTE TWE KIND IS DUPLICATION = INCREMENT =
COLSTANL = NOT KEYED OR KEYED,

ALLOwW Yy |cl "0we LS S L Y
TE (KInp = 'I') AnD (TYPE <> 'N') THEw

ALARM $KInD "I ONLY ALLOWED IF TYPE & “A"Y,
WOTE WEGISTER TO MOLY DUPLICATION OR CONSTANT VALUE,
LIMIT 1 99,

Alv-1

01wl
ute vl
ulé wue
U16 wus
V16 uuse
U16 uud
016 Lie
V16 wuf
016 uun
ule uu9
ule ulu
vle v
uté ulé
V16 VI s
016 utk
016 U1y
ule Ul
016 1?7
016 uIs
y16 uly
Ure udu
vie uel
016 vée
16 ues
016 uls
16 9¢s
U116 ueeé
016 ve7
[PAE-JNtr2.]
016 ueld
vle 33U
ule U
016 03¢
016 u3ss
016 U4
[FAE-JNES)
016 vl
ule us?
016 uls
016 usY
(16 U4l
t1e U6
016 UL
016 (6s
016 Ve
16 U4hd
016 046
U16 uer?

P A MM RN A AT A AN P RN R ARV N TR AN RN TN RFTARNRFTTARN AN YT T

§ FLD LIn

m

uut w1

END LIST

VU6
Hube
(O3
UUBG
Luébf
uos
Uliey
uufu
uudt
viile
Guds
Wil
vurlh
Uule
uwuff
wuly
uury
Wy
DIVE-N}
wuse
uuss
[D2-1%
Lyl
vuss
uus?
wuBy
uusy
(1Y
Uyl
uLYe
uuys
utivs
uuyd
(VR £
9
HuYes
vy
vluv
ulul
Vlud
ulus
uluk
vilud
["ARNT}
0167
[SL-}
oy
["AREY]

REC
UARN
NEC
u11¢

FrUG Y% 1 B LA 35 L
9

PNAME § P COMMENT
FORM B 4 END PORMAT FORMAT

NAME P LN PS LG NL TY OUI 4 b R D K K6

U

LIST: IMAGE=SOURCE TEXT (IMAUT)S

REC FNAME §
VLUt FOR» M

$ REC P LN PS

H Uuue 1
LRVIVIVR |
n QUU4 1
W 00uS 1

T
-

REC PHAtE §
Ouueée FOxm F

$ REC P uLn PS

0uu7 1
Quul 1
00U 1
uiu10 1
uult
ulie 1
uu13
Quls
001y 1
uule 1
ury 1
uule 1
Guly i
aueu 1
0ver 1

TmMTATTRRR AT R

END LIST

PR LLELNARNRKRN S = ==

CUMMENT
IMAGE TO FORMATS FURM

TEXT

FURMAT NAME,oul
SUBFORMAT NAMESR
PROTECTION s wawt
COmMENT 2

COMMENT

TEXT

FIELD NAMES
PAGEsosaes?
LINEeeut

POSITION., 3
LENGTHease?
mIt=LENGTHS
TYPEeent

QUIPUT=POS:

KlNVDesoasel
KEGISTER?
PrROGRAM STATEMENTS?

TRANS FURMAT WSITH IMAGE STDUY IMAUD

SIZE OF I®AGE 3 UU3TU BYTES

SIZE OF FORM § UV450U BYTES

AlV -2

NOTF PROGWAMSTATEMENTS,

LOTE CHECK CHECKBOX CONTENTS,

COomPuUTE XxU3 & U,

IF PAGE > U THEN COMPUTE XU3 = XU3 ¢ 1,

IF LINE > G THEN COmMPUTE XU ® 203 ¢ 1,

1F POS > U THEN CUMPUTE XU3S = XU3 + 1,

IF LENGTH®L THEN GOTO EMPTY, NOTE LENGTH ® O OR LENGTH NOT KEYED,
NOTE "NORMAL'=CHECKBUX,

IF (XUS € U) AND (XS <> 3) THEN GOTO ERRORJ

MOTE BRROR Ln PAGEND » LINENO OR POSITION,

IF ALPHANUMERIC MENLE ® X(2 THEN GOTO EKRORJ NOTE MINKEYED NOT KEYED.
1F TYPEmX(2 THEN GOTO ERRORS NOTE TYPE WAS NO VALUE,

1F ALPHANUMENIC OUTPS m X002 TWEN GOTO EMROR] NOTE OUTPOS NOT KEYED,
IF WEGIS ® [THEN GOTO CHE2 NOTE REGISTER NOT KEYED,

NOTE KEGISVEN KEYEV,

1F K1nbmxU2 THEN GOTH ERRORS NOTE KIND NOT KEYED,

IF KINOBYNY ThEN GOIO ERROR; NOYTE KIND = NOT KEYED,

1F KInD®YA' THEK GUTO ERRORZ nNOTE KIND = KEYED,

GOTO 0K,

CHE2S

NOTE HEGISTER NOT KEYEO,

1F KIwo®m']' THEN GOTO ENRROK; NOTE KIND ® INCREMENT,

IF KInO='B' Thel 60TU ERROR; NOTE KIND ® DUPLIKATION,

LF KInD®ICY InER GUTO ERROR; NOTE KIND ® CONSTANT,

GO0 0K,

NOTE '"EmMPTY' / *CONTINUATION® CHECKBOX,

EMPTYE

IF FLONMCOXUZ THEN GOTO EKRORS NOTE FIELD NAME KEYED,

IF K03 <> 0 THEW GOTO Ei RORS

NOTE ERROK IN PARGENO = LINENO OR POSIVION,

1F ALPHANUMERIC MEINLESDXU2 THEN GOTO ERROR; NOTE MIN,LENGTH KEVED,
IF TYPeCOX(G2 THEN GOTO ERROR; NOTE TYPE KEYED,

1f ALPHANUNERIC OUTPS<>XU2 THEN GOTO ERROR} NOTE OUTPOS KEYED,
1F JUSTEOXUE THEN GOTO ERWOR; NOTE JUSTIFICATION KEVED,

IF FILLCOXU2 THEN GOTO ERRORS NOTE FILL CHARACTER KEVED,

1F REKEYCOPXU2 THEN GOTU ERRORS NOTE VERIFICATION KEYED,

IF DISPCOXUZ ThEN GOTO EKKOR; NOTE OISPLAY KEYED,

IF KINDGOXUZ THEN GOTO ERRORZ NOTE KIND KEVED,

1F REGIS > U THEN GUIO ERROR; NOTE REGISTER KEVED,

60TO 0K,

NOVE ERRGR IN CHRECKBOX CONTENTS,

ERROR S

ALARY YERROKR 1IN CHECKBOX CONTENTS!,

NOTE CHECKBUX CONTENTS 0K,

0K e

IF PRUGE'END SUBFORMAT,' THEN SELECT SUBFORMAT W,

1F PROGRYEND,® THEN SELECT SUBFORMAT E.

END SUBFORMAT,

PROGRAM STATEMENTS

END,

. LIST: FORmAT=SOUNCE TEXT (STHy2):

KEC FuamgE § P COMMENT
viul 1%AGE H & [MAGE FOKMAT @ SUSFORMAT WEAD ENTRY

w

FLO L1n REC wASE P LN PS LG ML TY OUT J F R D K NG PROGRAN STATEMENTS

Ul uul Uuud NAME 1 Y 17 S 1 ARl 1L NOTE THE FORMAT NA®E IS 1 TO S CHARACTERS,
(VR VIV P ERVIVIVE) IF (NANECI)ICPAY) OR (NAMEC(1)D>'2Y) THEN

VIV IEVIVE RRVIVITFY ALARY VY1LLEGAL FORNMAT NAME',

QU2 Uul VUUS SUBFW 1 2 17 1 1 AN 4 NOTE THE SUBFORMAT NAME IS 1 CHARACTER,

U2 uUve Jube 1F NOT (((SUBFRD>®'{I') AND (SUBFASKE'OY)) OR
e vl udu? ((SURFA>S'AY) AnD (SUBFNK=E'Z'))) THEN
U2 wUs uyub ALAR® TILLEGAL SUBFORMAT NAME',

[UVERRVIVE IR VIVIVE S of LTV ST N B £ 'S VI ¥ L
006 wul YL [} NOTE SUBFORMAT HEAD IS FINISHED =

Qu4 vue Vv CHANGE SUHFORMAT TO TEXT DESCRIPTION,

uls UU3 V01¢ DEFINE X01 1, COMPUTE XO1®1, NOIE LASY USED PAGE,
006 uu4 VLTS SELECT SUBFORMATY F,

Uue V05 uwire END SUBFORMAT,

TrIT XTI

XTIrI T

REC FNAME S P COmMSMENT
Q015 INAGE F N TEXT UESCRIPTION EnTRY

$§ FLO LIN KEC NAME P Ln PS LG ML TY OUT J F R D K RG PRUGKRAM STATENMENTS

Ul Gut GUte PAGE 1T 1t 11 1 1 b 1 NOTE PAGENO IN DISPLAY=LAYOUT = FROM 1 T0 8,

QU1 wue yurv LIALIT 1 B,

D01 vu3 vuil 1F PAGE < XU1 THEN

DI IRVIVESRVIVE R ALARM YCURRENMT PAGENO LESS THAN PREVIOUS PAGENO',

vl Uus wuen COMPUTE xUY ® PAGE,

002 V01 uu2T LINE 1 2 11 2 1 N 2R NOTE LINENO IN DISPLAY=LAYOUT « FROM 1 TO NO OF LINES ON DISPLAY,
VU2 UV uule LINIT 1 27,

QU3 V01 uues POS 1 3117 2 1N IR ot NOTE POSITION IN LINENO IN DISPLAY=LAYOUY = FROM 1 TO NO OF
0U3 wu2 uvuds - POSITIONS PER LINE ON DISPLAY,

uUs LUS LU2S LIMIT 1 8L,

Q04 UUY (U26 TEXT 1 S 1 80 1 -AN 4 L NOTE THE DISPLAY TEXT IS 1 TO 80 CHARACTERS.,

004 0ue wuet END SUBFORMAT,

B e

REC FHAME § P COMMENT
Qu28 ImAGE E N END IMAGE

$ FLU LIn REC nNAME P LN PS LG ML TY OUT 4 F R D K KRG PROGRAM STATEMENTS

E 0u1 DUl Loy . 1] END,

END LIST

l LIST: IMAGE=SOUKRCE TEXT (IMAUR):

REC FNAME S COmMENT
VU0 IMAGE N

$ REC P Ln PS TEXT
H V02 1
n 0003
H GLOs

1T FORMAT NAME,.,¢
1 SUHFORMAT NAME? -
COMMENT

-
[V N
-

REC FNAME S COMMENT
00U 1%AGE F

«©
L
m
o

P L~ PS TEXT

woue
ovg?
ouus
ouye

PAGEsaeo!
LinEeeea?
POSITIONS
TEXTS

.
NN
T
RN

END LIST

TRANS FORMAT WITH IMAGE STDUZ2 IMAO?

SIZt OF IMAGE ¢ UL166 BYTES

SIZE OF ImAGE : UU3Y6 BYTES

AlvV-3

LIST: FUxWAT=SOUNCE TEXT (SToLS)S

HEC FNAME § P COMvERT
WUUT SHPN b v SUBPROGKAN FORmMAT « WEAD

S FLD LIN WEC NAYE P LN PS LG ML TY OUT) F K D K RG PROGKAM STATEmMENTS

W oUUT LUT UuUue wAME T 1 1B S 1 A 1L TP (NARECIICTAY) OR (NAME(1ID'ZY) THEN
H DU wue wuuld . ALARM VILLEGAL SUBPROGRAM NAMEY,

noUVEZ VU LLue CORM 1T 3 1 76 U AN e L

LI CTVK JVIVA BRVITIE Y u SELECT SUBFORMAT P,

#oGUS Qud VUL END SUBFONNMAT,

REC PNAME § P COWMMENT
VUUC SUBPR P N SUBPROGRAX FURMAT = PRUGKAMPARTS

$ FLD LIN REC NAME P LN PS LG ®1L TY OUT J F K D K KG PROGRA® STATEMENTS

UUT VUl wuus PrUG 2 1 BuU 1 AN 1L 16 PROG & "ENL,' THEN SFLECT SUBFORMAT E,
[FIVARRVIVESRVIVIVEY Erb SUBFORMAT,

vT

REC FNAME § P COMAENT
QUG SUBPR E N SUBPKOGKAM FORIFA] o END

S FLY LIN REC NANME P LN PS LG ML TY QUT J F R D Kk Rb PROGKAM STATEMENTS
€ 0V YOI

ot u END,
ENV LIST

LISTS: IMAGE=SQURCE TEXT (IMAU3):

REC FNAME S COMMENT
OUU1 SUBPR M IMAGE TO FORMATI SUBPR

§ KEC P Lnv PS TEXT

x

uone 1

1 SUBPROGRA™M NAMEL
"W ooous 1 2

COMMENT 3

-

REC FNAME § CUmMMENT
000G SUBPR P IMAGE 10 FORMATS SUBFK

§ REC P LN PS TEXT

P GOUS 1 1

-

PROGRAM STATEMENISY
END LIST

TRANS FORMAT WITH ImAGE STO03 {(mMau3

SIZk OF IMAGE 3 V0116 BYTES
$I2E OF SUBPR & CULIYB BYTES

AlV-4

LISTSs FORMAT=SOUUKCE TEXT (STouk)s

REC FNAME § P COMmENY
UUUT TABLE W~ TAHLE FORMAY = hEAD

$ FLU LIN REC NAME P LN PS LG ML TY OUT J F K D K R PROGRAM STATEMENTS

HoOUY DUl DuGe nAME 1 1 18 5 1 AN 1 L NOTE TABLENAME IS 1 TO S CHARACTERS,

H QU1 Lu2 uuud 16 (NAMECTI)C'AY) OR (NAME(1)D'Z') THEN

Ho0UY VO3 wuue ’ ALARNM PTLLEGAL TAULE NAME',

M OU2 01 ULUS (YPE 1 218 1 1 A H NOTE TABLETYPE IS EITWER SINGLE DOUBLE OR MULTIPLE,
A QU2 Lu2 uuvé ALLOw 'gt ot tmi,

HoDU2 U3 uuG? IF TYPE @ 'm? TWEN SKIP & FIELDS,

HOUUS V0T UUUB ARGT 2 1 18 2 1 A st WOTE ARGUMENTTYPE IS NUMERIC OR ALPHANUMERIC,
H U3 Gue uuuy ALLOW 'N ' fant,

" OU& VLT LUV ARGL 2 2 1B 2 T N 4 R U NOTE ARGUMENTLENGHT IS FROM 1 70 80,

H (04 wu2 VU1 LIMIT 1 8U.

W QU4 UUS L012 IF TYPEs 'S* THEN

H UU& Lus UU1S SKIP 2 FIELOS,

N UUS U0t UUTG FUNCT 3 1 18 2 1 A 5L NOTE FUNCTLION TYPE 1S NUMERIC OR ALPHANUMERIC,
W 005 DOZ LU1S ALLOW "N ' 'ANY,

N 0U6 UUT VD16 FUNCL 3 2 18 2 1 N 6RO NOTE FUNCTION LENGTH IS FROM 1 70 80,

H Qué Lue Lui? LIMNIT 1 8U,

n GU? V0T LUIB 4 NOTE SELECT ACTUAL SUBFORMAT,

HoOU? G022 LL1Y IF TYPE = V%' THEN SELECT SUBFORMAT M,

H QU7 LOS LuRL ’ IF TYPEm'D' THEN GOTO LO,

H U7 Uus DU 1F ARGT®'N ' THEN SELECT SUBFORMAT 1

HoUu? uod buee . ELSE SELECT SUBFORMAT 2,

N QU7 Uué uuel LD

M OU7 VU7 Uvies 1F ARGTS>'N ' THEN GOTO LDAN,

M 007 QU8 vued IF FUNCT®'N ' THEN SELECT SUBFORMAY 3

H QU7 UUY Lulé . ELSE SELECT SUBFORMAT 4.

M o0U7 010 wue? © LDANE

W QL7 011 uues 1F FUNCT®'~ ' THEN SELECT SUBFORMAT 5

K 007 012 Guey ELSE SELECT SUBFORMAY 6,

"W 007 U13 VO30 END SUBFOKNMATS

REC FNAME § P COMMENT
VUST TABLE 1T N TABLE FORMAT = SINGLE ENTKY = ARGT®N

@«

FLD LIN REC NAME P LN PS LG ML TY OuT J F R D K KRG PROGRAN STATEMENTS

1 001 U0V LU32 ARG 12 180 1A 1R U NOTE READ ARGUMENT,
1 001 002 VL33 EnND SUBFORMAT,

REC FNAME § P COmMENT

U034 TABLE 2 ¥ TABLE FORMAT = SINGLE ENTHY = ARGY®AN
$ FLU LIN KEC NAME P LN PS LG ML TY OUT & ¢ R b Kk RG PROGRAM STATEMENTS

2 OUl UU1 UDUSS ARG T 2 180 1 AN 1L NOTE READ ARGUMENT,
2 0UY Uue uuse END SUBFORMAT,

REC FnAME § P COMMENT
V037 TABLE 3 N TAHLE FOKMAT = DOUBLE ENTRY = ARGYSN « PUNCT®N

FLD LIN REC NAME P LN PS LG ML TY OUT J F R D K RG PROGRAM STATEMENIS

3 0UY VLT VO3B ARG 1 2 180 1N 1R U NOTE KEAD ARGUMENT,
3 002 LUV UL3Y FUNC 1 & Y BU T N 2R U NOTE READ FUNCTION,
3 002 wvuLe Ouku END SUBFORMATS

REC FNAME § P COMMEMNT
UU4T TABLE & N TAHLE FORMAT = DOUBLE ENTRY = ARGTSN = FUNCT®AN

S FLO LIN REC WNAME P LN PS L6 ML TY OUT 4 F R D K RG PROGRAX STATENMENTS

& 0U1T 001 Ous4e ARG 1t 2 180 1w 1R 0 NOTE READ ARGUMENT,
4 QU2 U LUG3 FUNC 1 & 1 80 1 AN 2L NOTE READ FUNCTION,
4 002 002 ules END SUHFORMAT,

REC FNAME § P COMMENT
U045 TABLE 5 N TAHLE FURMAT = DOUBLE ENTRY = ARGI®AN = FUNCTSN

§ FLU LLIN REC NAME P LN PS LG ML TY OUF J F R D K RG PRUGRAM STATEMENTS

5 VU1 0ul ULL6 ARG 1 2 1 80 1 AN 1L - NOTE READ ARGUMENT,
S QU2 D01 LUL? Fune 1 4 1 B0 T A 2R U NOTE READ FUNCTION,
5 002 uu2 vLed END SUBFORNMAT,

REC FNAME § P COMWENT
VUGY TABLE 6 N TABLE FORMAT = DOUBLE ENTRY = ARGTEAN = FUNCTSAN

S FLD LIN KEC NAME P LN PS LG ML TY OUT J F R D K RG PROGRA™ STATEPENTS

6 0U1 VLY LVUSU ARG 1 2 1 8u 1 AN 1L NOTE READ ARGUMENT,
6 GUZ UUT LUSY RUNC T & 1 BU T AN 2L NOTE READ FUNCTION,
6 002 yug vude END SUBFORFMAT,

KEC FiWAME § P COWMEMNT
UUS3 TABLE ¥ I» TABLE FOKMAY = DISCIABLE = NUMBER OF FUNCTIONS

§ FLD LIN REC NAME P LN PS LG WL TY QUT 4 F R D K Rb PROGRAM STATEMENTS

MUY WUl LuSe d DEFINE X01 1,

w DUl Uud udd DEFINE X02 1,

M Ul QU3 UuSe DEFINE XO3 7, MOVE *0000000' 10 Xu3,
M QU1 Ouve Lud? ' DEFINE X0é4 1,

0Ul wud uude DEFINE XO05 1.

% Oul Oul Vugy NOOFF 1 1 22 1 1 N 1 NOTE NUMBER OF FUNCTIONS,
m Ul Gu2 Yusly LIMIT U 60

ooU2 U1 wuel v COMPUTE X011 = NOOFF,

n QU2 ULZ uuee compuTE XUZ = XO01»

m QU2 VU3 LL63 SELECT SUBFORNMAT T,

" UUZ uubk uLbk END SUBFORMAT,

AlVv-5

$ FL®

gut
uul
uG1
yul
uu
i
out
(%3]
vul
({3}
nul
oul
uvl
[
GoY
0w
001
uut
oM
001
ol
o
(9]
ol
uu2
gue
une

T I e G i i i R]

uot
001
v
001

coon

§ FLD

uo
(]
uoe
yu2
oue
w2

cococcC

“»

FLD

001
0u1
o
001
(V3]
o
(1]
001
oul
001
o
o
o
o
G0
001
001
[}
(V)]
ou
001
001
o0
(3]
001
001
Vo1
ool
[04]
oul
aul

PR DD DD BALDD DD LBDNBDDLLBDBL LB N

»

oul
ool

>

z

193]
vul

z

S FLD

-

sul

LI

uul
yue
uld
ulé
uus
uud
uut
yus
uuy
vty
011
ute
urs
Lré
['AR]
ule
urz
ulg
u19
e
uzl
22
ued
ués
Gut
[FIYY3
uus

Lin
uu1
Gue

wud
Hus

Lin
uui
vue
uul
o
uul
Q04

wut
oue
o3

6u7

ul?

0es

u3

LInN

vy
vue

LIN

ol
Que

LiIN

uul

EnD LIST

REC
uubb

WEC

66
[ET-Y4
ues
UIIT.3)
vty
wul
uute
uurd
udfé
uu?s
wure
uuf?
vurs
uuty
DIY.17]
Hugt
upse
uds
ui8e
uugd
wlde
uiet
wig8
uuB9
Juvuy
0u9t
Wi9e

REC
Duvs

REC

uuvh
uuys
yuve
uuy?

REC
uuYs

REC

[P173 2
vl
uru
vive
vius
VA1V

KEC
1y

REC

UtJe
viu?
(v
uIuY

> 0110

AR
U1ie
0113
U114
0115
U116
w17
U118
011y
U120
v121
u1ee
0123
0124
0125
u1de
u1e?
G1¢8
0129
0130
U131
U132
0133
R ETY
0135
u136

REC
u137

REC
0138
u13y
KEC
ul4y
REC
U141
U142
REC
U143
WEC
[T

FHAME § P COMMENT
1ABLE T ~ TAHLE FOWmAT = DISCTAALE = TYPES
NAME P LN PS LG L TY OUT J F R 0 K HG PROGRA™ STATENENTS
FYPE 1 1 81 2 1 & 1L NOTE THE TYPE OF [WE ARGUMENT O A FUNCTION,
ALLOW *an' '~ Y,
IF TYPE » 'AN' THEN GOTO EOF,
1F X012 & U THEN
»OVE "' 0 X03(1)
ELSE
IF x¢ = 1 THEW
WOVE 117 TO XG8¢2)
ELSE
IF X2 m 2 THEm
wovEe 11V 10 XuS(S$)
ELSE
IF XU2 m § THEW
mOvVE "1 TO XUSC4)
ELSE
IF X022 = & TKEN
MOVE 1Y TO XU3(S)
ELSE
If XU2 = S THEN
mMOVE *1' 10 X23(6)

MOVE "' 10 Xu3(7),
EOF1
NOTE END OF FIELD,
u IF X0 ® U THEN SELECT SUBFORMAT C,
COMPUTE XG2 = X02 = 1)
END SUBFORMAT,

FNAME § P COMMENT
TABLE C N TAALE FOKMAT = DJSCTABLE = CONTROLWORD

NAME P LN PS LG ®L TY OUT § F R 0 K RG PROGRAM STATEMENTS

CONTR 1 1 1 9 9 & 1 N NOTE R CONTROLWORD,
MOVE 'UISCTABLE' TD CONTR,
SELECT SUBFORMAT 0,
END SUBFORMAT,

FNAME
TABLE

P COMMENT
N TABLE FORMAT = UJISCTABLE = OPERATION

T <cw

NAME LN PS LG ML TY OUT J F R D K RG PROGRAM SYATEMENTS
OPER 1 1 22 1 1 A 1 ALLOW 'pr Pt oty ter,
MOVE OPER TO XU4,»
[¥] 1f OPER w 'E' YHEN SELECT SUHFORMAT E»
COMPUTE XxU2 = X011 + 1,
SELECT SUBFORMAT S,
END SUBFORMAT,

FNAME § P COMMENT
TABLE S N TABLE FORMAT = DISCTABLE = SELECT SUBFOKMAT

NAME P LN PS LG ML TY OUT J F R D K RG PROGRAM STATEMENTS

[} 1F X2 w U THEN
SELECT SUBFORMAT 0
ELSE
1F X02 = 1 THEN
MOVE X03C1) TO x05
ELSE
IF X02 = 2 THEN
4OVE XG3(2) TO X0%
ELSE
IF X002 = 3 ThEN
MOVE XU3(3) TO X1S
ELSE
IF X02 ® & THEN -
MOVE X03(&) TO X05
ELSE
IF x12 = 5 THEN
MOVE XU3(S) TO XU5
ELSE
IF X02 = 6 THEN
MOVE X03(6) 10 XU5

#OVE XG3(7) TO X05,
IF X04 = *D' THEN

COMPUTE XxU2 = O
ELSE

COMPUTE XU2 = X02 = 1,
IfF X05 = *G' THEN

SELECT SUBFORMAT A
ELSE

SELECT SUBFORMAT N,
ENP SUBFOKRMAT,

FNAME § P COMMENT
TABLE A N TABLE FORMAT = DISCTABLE = ALFANUMERIC AKGUNMENT OR FUNCTION

NAME P LW PS LG ML TY OUT J F R D K Kb PROGRAM STATERENTS

ARG 1 2 18U 1 aAn 1L SELECT SUBFORMAT §,

END SUBFORMAT,
FnAME § P COMWERT
TAMLE N N TABLE FOKRMA] = OISCTABLE = ARGUMENT OR FUNCTION
NAME P LN PS LG L TY OQUI 4 ¢ R D K RG PROGRAM STATEMENTS

ARG 1 2 180 1~ 1 [SELECT SURFORMAT S,

END SUBFORYAT,
FNaME § P COmMMENT
TABLE £ N TABRLE FORNMAT = END
NAME P LN PS LG #L TY QUT 4 F R D K KG PROGRAM STATENENTS

U ElD,

LIST: ImAGE=SOUXCE TEXT (ImAU4):

REC FiNAME § COmmEnT
UUU1T [ABLE n ImAGE FOR FORMATT TABLE

REC P Li PS TERXI

»

H 0bUZ 1 1 1 TABLE NAbEgeqael
A OUO3 1 2) TABLE TYPEsessse?
HoUUU&G 2 1 1 ARGUYENT TYPE,..¢
W oOUUS 2 2 1 ARGUMENT LENGTHS
U006 3 1 1 FUNCTION TYPRGW!
HoOQUU? 3 2) FUSETLON LENGTHI

REC FHAME § CO®MENT
0UUB TABLE 1

§ REC P L~ PS TEXT

-

QUU9 1 1 1 ARGUAENTS

REC FNAXE § COMMENT
QU0 TABLE ¢

§ REC P LN PS TEXI

~n

U1 1 1 1 ARGUMENTE
REC FNAME § COMMENT
0012 TABLE $

§ REC P LN PS TEXT

o013 1 1
[VIVL I)

ARGUUENT:
FUNCTIONS

[y

REC FNAME § COMMENT
VUTS TABLE

§ REC P LN P§ TEXT

ARGUMENT?

w6 1 1 1
1 3 % PUNCTIOND

QU7

XS

REC FNAME § COMMENT
VU8 TABLE 5

$ REC P LN PS TEXT

u19 1

1 ARGUMENTS
oveu 1 3

FUNCTIONT

ww
--

REC FNAME § COMMENT
0021 TABLE 6

§ REC P L PS TEXT

guez 1

1 ARGUMENT Y
vees 1 3

FUNCTIONS

Y

REC FNAME § COmMMENT
QUR4 TABLE ™

$§ REC P LN PS TEXT

=

ou25 1 1

-

NUMBER OF FUNCTIONSS

REC FNAME S COMMENT
UU26 TABLE T

§ REC P LN PS TEXT

-
-

00?1 1 TYPE OF ARGUMENT OR FUNCTIONZ

REC FNAME § COMMENT
0U28 TABLE 0

$ REC P LN P§S TEXT

0 0u2y 1 1

-

OPERATION (byloUst):

REC FNAME § COMMENT
0030 TABLE A

§ REC P LN PS 1EXT

»

V1V % B B

-

ARGUMENT OR PUNCTIONG

REC FNAME § COMMENT
QU3 TABLE N~

$ REC P LN PS TEXT
N 0033 1 1 1 ARGUMENT OR FUNCTIONS

END LIST

TRANS FORMAT wITH IMAGE STO004 IMAQS

SIZE UF IMAGE &t UUT736 BYTES

SIZE OF TABLE 3 01402 BYTES

Alv-7

oo

Appendix V
Format Language Syntax

fieldname

fieldname (subscripts)

Operand: " register
register (subscripts)
constant
N
Constant: J numeric constants
L nonnumeric constants
j arithmetic operafor}
Operator: relational operator
[logical operator
g 3\
s
*
Arithmetic operator: < ’
MOD
N J
\
(>
>:
Relational operator: ‘V P r
| ~
I
< =
(<>
h
j AND
Logical operator: , OR
| NOT

AV-1

Expressions:
. B ~]
((fieldname 1) (fieldname 1) 3
fieldname (subscripts) Y fieldname (subscripts)
. [NUMERIC){ register) + | | INUMERICK register
{%\,J < regisfer (subscripts) > < ; \< regisfer (subscripfs) > Xy
-/ \Lnonnumeric constant / _nonnumeric constant _J
. MOD .
numeric constant y numeric constant
[NUMERIC] {expression)) E\IUMERIC] {espression) >
\ / L.. o,
4 ~N b -
tieidname
fieldname (subscripts)
ALPHANUMERIC { register)
register (subscripts)
numeric constant .
| lexpression: , J

!(relational condition]
Conditions: table condition
validity condition

compound condition

Relational condition:

4 N e \
field name field name
field name (subscripts) field name (subscripts)
register [relational op.) register .
register {subscripts) register kubscripts)
constant constant
arithmetic expression arithmetic expression

/ N J
Table condition:

field name)
field name (subscripts)

{ register 3 IN table name

register (subscripts)

| constant

AV-2

Validity condition:

. VALID
field name
INVALID

Compound condition:

,

e, AND ",
) (condition) OR (condition)

NOT (condition)

AND
OR

} (condition)

AV-3

Statements:
ALARM statement:
¢ . \
nonnumeric constant
register
ALARM < register (subscripts) >
field name
field name (subscripts) J

ALLOW and DISALLOW statement:

DISALLOW

{ALLOW [{f}] numeric constant HTH numeric constant

nonnumeric constant nonnumeric constant

or:

ALLOW
DISALLOW

} [DISC:] table name

COMPUTE statement:

current field name
current field name (subscripts)
COMPUTE

register

register (subscripts)

¢ = arithmetic expression

AV-4

CONNECT statement:
(1 ’
' field name field name
field name (subscripfs) field name (subscripts)
CONNECT { register > TO < register >
register (subscripts) register (subscripts)
constant constant
\ 7/ \ /
GIVING{ current field name
register
DEFINE statement:
(] DEFINE register numeric constant
DISPLAY statement:
g N

nonnumeric constant
register

DISPLAY { register {subscripts) >
field name

field name (subscripts)

g)

DUP statement:

DUP numeric constant FIELDS

END statement:

END

AV -5

END SUBFORMAT statement:

END SUBFORMAT

GOTO statement:

GOTO label

LIMIT statement:

LIMIT -numeric constant

numeric constant

-numeric constant

numeric consfant

MOVE statement:

,

field name

field name (subscripts)
MOVE < nonnumeric constant
register

register {subscripts)

N

4

current field name

current field name (subscripts)

> TO <

register

register (subscripts)

\

NOTE statement:

NOTE character string

PERFORM statement:

PERFORM subprogram name

AV-56

SEARCH statement:

p
. field name

field name (subscript)
SEARCH 94 register ' >IN [DISC] table name

register (subscript)

constant
[€ J

,

*
current field name

GIVING CU":enf field name (subscript) - K
register

register (subscript)
.

AT END unconditional statement

@ SELECT statement:

SELECT SUBFORMAT subformat name

SET field name VALID
INVALID

. SKIP statement:

SKIP numeric constant FIELDS

IF statement:

IF condition THEN sentence [ELSE sentence |

o ' | AV-7

' SET statement:

Appendix VI

® Limitations
‘Maximum number of fields in a subformatv 255
Maximum number of elements i an ALLOW/DISALLOW 255
Maximum number of different core tables in one TRANS call .. 10
Maximum number of different DISC tables in one TRANS call . . 20
Maximum number of different subprograms in one TRANS call .. 10
Maximum gross record lengthvviviiiiveiinniinnnnnnn. 20,000 bytes

Please also note that

- nonnumeric constants (i.e., '...') may not stretch over more than one line;

- no screen position may be simultaneously used both for the keying of a field

and for tag specification.

AVI-1

Appendix VII
Messages From TRANSLATE

The printout produced by supervisor program TRANSLATE contains the size

of the translated item or error messages if the batch to be translated contains
errors.

The size is given in the following format:

SIZE OF < name >: <size > BYTES

where <name> is the name of the format, subprogram, or table produced.

The <size> field, when a subprogram or table is translated, indicates the
number of bytes (characters) occupied by the item when incorporated in a
format. The <size> field given when a format is produced incorporates

referenced core-tables and subprograms, but does not include an eventual
image (see below) and indicates there by the (net) size of the format when

loaded into memory. To calculate the gross size, add required space for
registers and records.

The size of an eventual image will be given as follows:

SIZE OF IMAGE : <size > BYTES

In case of errors the printout will contain one or more of below listed
messages, each message being headed by its number (as in the list).

If an error causes a stop in the execution of TRANSLATE it is noted in the following
list by means of STOP; on the other hand, if an error causes a skip in the

batch it is noted by SKIP. The sign - denotes that the error neither STOPs

nor SKIPs.

AVl -1

The following cases of error printouts contain references to the batch:

<subf> means the subformatname, which is just now handled by TRANSLATE.

A if translation of subprograms.

<fieldno> means the fieldnumber in <subf>; counted from 1; field defi-

nitions with length = 0 or field definitions with outpos

= 0 are defined by fieldnumber for latest field + relative

field definition number (with length = 0 or outpos = 0).

0 if translation of subprograms.

<lineno> means the linenumber relative within <fieldno>; counted

from 1.

<symbolno> means the symbolnumber relative within <lineno>; counted

A VIl -2

from 1 (e.g.:

a field definition is one symbol;

ALARM, THEN, IN, etc. are one symbol each;
'"ONE SYMBOL' are three symbols;

+123 are two symbols;

- <>, >=, <, =, etc. are one symbol each;

IF A <> B THEN are five symbols).

Illegal batchstatus <batchname > <status > STOP

The status of the batch is invalid or not closed:

lllegal format <batchname> <used format> STOP
The used format is wrong, i.e.,
<used format> not 'FORM' in case of FORMAT-translation,
not 'SUBPR' in case of SUBPROGRAM-translation,
not 'TABLE' in case of TABLE-translation,
not 'IMAGE' in case of FORMAT WITH
IMAGE-translation.

4b.

Illegal subformat <batchname > <recordno> <used subformat>
The <recordno> record in the batch has been created
under control of <used subformat>, which is not allowed at
this point.

Name already exists <name> <result>
The <name > already exists in library (i.e., format-, sub-
program-, or table-library), or the library is full.
<result> =1. <name> already in library,

= 2. library is full.

Name already exists <batchname > <recordno> <subf>
The <recordno> record in the batch is defining a sub-

format named <subf>, which has been defined already.

File already exists <name > <result>
Disc error in connection with disc-file <name>
<result> <0 : hard error on the disc, please
check if disc is running,
= 4112 : disc~file <name> already exists,
= 4352 : disc-space exhausted,
= 4508 : fatal program error.

Not in use.
Too many fields <recordno> <subf>

The <recordno> record in the batch is defining the
255th field in subformat <subf>.

STOP

STOP

STOP

STOP

STOP

AVIl -3

A VIl -4

10.

11.

12.

13.

14a.

No field <recordno> <subf>
The <recordno> record in the batch is the first one
after a subformat - head - record, and contains no check-

box (i.e., the field holding field length is empty).

String not terminated <recordno> <subf> <fieldno>

The program has observed a text-start-mark with no text-
end-mark in the same line; the error is detected in the
<recordno> record in the batch defining the <fieldno>
field in subformat <subf>.

Illegal formatname <batchname > <recordno> <formatname>
The <recordno> record in the batch is defining a new
subformat to a format identified by <formatname>.

The batch contains at least two subformats with unlike

formatnames.

Illegal number of records <batchname > <should have been>
<was>

The <was> record is detected to be the last one (in the
logical order) in the batch, but the batch consists of

<should have been> number of records.

Not in use.

Double defined outpos <subf> <fieldno> <outpos>
<outpos> output-field number has been defined twice

in subformat <subf>; the error is detected at the <fieldno>
field.

IHlegal statement type <subf> <fieldno>

An end-statement is written in the last field in subformat
<subf>, but this subformat is not the last one in the format,
no skip.

An end-, endsubformat-, or select-statement is detected

in <fieldno> field in subformat <subf>, but this field

is not the last one in the subformat, skip.

STOP

STOP

STOP

STOP

SKIP

- /SKIP

14b. lllegal statement type -
The program has found a set-statement, an endsubformat-

statement, or a select-statement in a subprogram, or the

end-statement is missing.

14c. lllegal statement type <subf> <fieldno> <lineno><symbolno> SKIP
TRANSLATE has detected an illegal symbol after an end-

statement or an endsubformat-statement; these statements

are to be followed by comma and nothing else.

15. Fatal program error <where > STOP
Fill in an error report for Regnecentralen.
<where> =0 : X01 does not exist as a symbol in
symtab,
=1 : tpass does not contain an end-sub-

format-mark after last field in a

subformat,
=2 : tpass contains more subformats than
counted in subformat head (observed
in connection with new subformat),
=3 : tpass does not contain an end-format-
mark aofter last subformat,

=4 : tpass contains the wrong number of

subformats (observed in connection

with end format).

16. Subformat not terminated <subf> -

Subformat <subf> contains no end-statement and no end-

subformat-statement.

17. lllegal number of arguments <should have been> <was> STOP
The program has detected the <was> argument to be
the last one (in the logical order), but it was expecting

<should have been> number of arguments.

18. Format not terminated -

End-statement is missing in last field in last subformat.

AVIl-5

19. Insert error <name> <resul t> -
An error occurs inserting <name> in library (i.e., format-,

subprogram-, or table-library).

<results> =1 : <name> already in library,
=2 : library is full.
20. Too many tables <subf> <fieldno> <lineno> «symbolno> STOP

There are references to too many (different) tables. Con-

cerning parameters, see above.

21. Double defined <subf> <fieldno> <lineno> <symbolno> STOP/SKIP
Two (or more) identifiers with the same name. Concern-

ing parameters, see above.

22. Ilegal symbol <subf> <fieldno> <lineno> <symbolno> SKIP

Last read symbol not allowed at this point (normally,

syntax error). Concerning parameters, see above.

23. lllegal terminator <subf> <fieldno> <lineno> <symbolno > SKIP
Statement not terminated by comma or label definition not

terminated by colon. Concerning parameters, see above.

24, Undefined <subf> <fieldno> <lineno> <symbolno> SKIP
Item is not defined or does not exist, e.g., table/sub-
program not in library.

Concerning parameters, see above.

25. lllegal type <subf> <fieldno><lineno> <symbolno> SKIP

Item has been detected to be with an invalid type, e.g.,

- a keyed field has been used as destination
(e.g., in a compute-statement),

- expression between if and then is not a
relation,

- nonnumeric fields (or constants) occur
in arithmetic expression.

Concerning parameters, see above.

26. Stack <subf> <fieldno> <lineno> <symbolno> STOP
There is no room for creating current format, the causes

may be

AVIl -6

- too many fields in one subformat,
- expression with a structure too compli-

cated (e.g., many brackets).

You can paraphrase the format to a simpler one (i.e.,

a format, where all expressions are dispersed into simple
ones and all fields (not referred) are identified by field-
name consisting of 5 spaces). If the paraphrasing has no
effect, please fill in an error report for Regnecentralen.

Concerning parameters, see above.

27. lllegal expression <subf> <fieldno> <lineno><symbolno> SKIP
The program has observed an expression before 'IN' in a
table condition.

Concerning parameters, see above.

28. lllegal registerno <subf> <fieldno> <lineno> <symbolno> SKIP
The program has found a reference to register zero.

Concerning parameters, see above.

29. lllegal index value <subf><fieldno><lineno><symbolno> SKIP
A subscript has to be greater than zero and less than 256.

Concerning parameters, see above.

30. Too many items <subf> <fieldno><lineno> <symbolno> SKIP
It is not permitted to have more than 255 strings in an

allow- or disallow-statement, to define a register with

more than 255 characters or to skip more than 255 fields.

Concerning parameters, see above.

31. lllegal recstatus < batchname> <recordno> <recstatus> STOP

The <recordno> record contains an input error.

32 lllegal format structure < batchname > STOP
The batch is not terminated by a record created by sub-
format E.

33. Not in use. STOP

AVil -7

A VIl -8

34.

35a.

35b.

36.

37.

38a.

Remove error <name> <result> -
Disc error in connection with disc-file <name >
<result> < 0 : hard error on the disc, please
check if disc is running,
= 20480: disc-file <name> does not exist,
= 4508: fatal program error, or
disc-file <name > used by an-

other user.

Illegal length <recordno> <entryno> -
An argument or a function to a table-definition has a

wrong length (normally too long).

The error has been detected in the <recordno> record

in the batch, this record is defining the <entryno>

entry in the table.

Illegal length <subf> <recordlength> -
The resulting <recordlength> from <subf> is greater than
than 20, 000.

Illegal outpos <subf><fieldno> <outpos> SKIP
The checkbox for the <fieldno> field in subformat
<subf> is defining an output-position <outpos> greater

than number of fields.

Undefined label < subf> <fieldno> <lineno> <symbolno> -
The program has not found a label definition for a label
referred.

Concerning parameters, see above.

No room in current line <subf> <fieldno> <lineno> -
<symbolno>

There is not enough space in current screen line for

current field.

Concerning parameters, see above.

38b.

3%a.

39b.

40a.

40b.

4la.

41b.

No room in current line <batchname > <subf> <page > -
<line> <position>

There is not enough space in current screen line for the

image text given by <subf>, <page>, <line> and

<position>.

Line too large <subf> <fieldno> <lineno> <symbolno> -
<line> (field description, column 3) is greater than num-
ber of datalines in the screen. ‘

Concerning parameters, see above.

Line too large <batchname > <subf> <page> <line> -
<position>
<line> is greater than number of datalines in the screen.

The parameters describe current image text.

Current page less than previous page <subf> <fieldno> -
<lineno> <symbolno>

The page numbers must occur in a not descending order

inside the subformat.

Concerning parameters, see above.

Current page less than previous page <batchname > <subf> -
<page > < line> <position>

The page numbers must occur in a not descending order

inside the image for one subformat,

The parameters describe current image text.

Page too large <subf> <fieldno> <lineno> <symbolno> -
<page > (field description, column 2) is greater than 8.

Concerning parameters, see above.

Page too large <batchname><subf> <page> <line> -
< position>
< page > is greater than 8.

The parameters describe current image text.

AVIl -9

A VIl -10

42a.

42b.

43.

44.

45.

46.

47.

Screen position used more than once <subf> <fieldno> -
< lineno> <symbolno>

At least one of the screen positions for current field has

been reserved by a previous field.

Concerning parameters, see above..

Screen position used more than once <batchname > <subf> -
<page > < line > <position>

At least one of the screen positions for current text has

been reserved by a previous image text.

The parameters describe current image text.

Subformat does not exist <batchname> <recordno> <subf~ STOP
The <subf> referred in the <recordno> record of the
image~-batch <batchname > has not been defined in the

format.

Screen position used both by tag and by field -
<subf> <page> <line > «<from pos> <to pos>

At least one of the screen positions in the interval <from pos>

to <to pos> is used both by a tag and by a field. The po-

sitions are allocated to <line> line in the <page >

page of subformat <subf>.

Disc tables not allowed in subprograms <subf> <fieldno> SKIP
< lineno> <symbolno >
References to DISC tables must not occur in subprograms.

Concerning parameters, see above.

Registername <> tablename <subf> <fieldno> <lineno> SKIP
<symbolno> <registername >

The <registername > stored in the disc-table pointed out

by the first four parameters does not equal the tablename.

Concerning parameters, see above.

Too many subprograms <subf= <fieldno> <lineno><symbolno> STOP
There are references to too many (different) tables.

Concerning parameters, see above.

In case of disc trouble not described above TRANS prints

<ndame> error < code >

and aborts its execution. <name> defines the disc-file in question, and

<code>> is a disc error code, see Users Guide Part 2, Appendix 2.

When TRANSLATE has finished, it will produce a receipt, see Users
Guide Part 2, Sections 8 and 9.

A VIl - 11

Appendix VIII
Definitions of Terms

For explanation in full of terms used in the RC 3600 Data Entry System, see

the following sections:

' 3.2, 3.2.5
Argument 6.6
Arithmetic ex- 3.5

pressions

Arithmetic operators 3.2.2

Batch 1.1.1
. - translation 2
Character set 3.2

Compound conditions 3.6
Conditional statement 3.7
Constant 3.1.3

Conversion operator 3.5

Disc file 1.1.1
Field 1.1.3
Field flag 4.5
Field program 3.1.3
Fill-in-the-blanks 1.5.1
Format 1.2.1
’ Format program 1.2.1
Function 6.6
Image 1.5
Input parameter 3.1.1
Logical operators 3.2.4

Multiplying operator 3.5

Nonnumeric operands 3.3

Numeric operands 3.3

Operands 3.3

Operators 3.2.2, 3.2.3, 3.2.4
Output parameter 3.1.1

Program 3.1.1

A VI -1

A VIl -2

Record

Register

Relation
Relational operator
Statements
Subformat
Subformat image
Subprogram
Subscripts

Table

Tag

Unconditional state-
ments

Variable

1.1.2
3.3.2
3.6.1
3.2.3
3.7

1.2.2
1.5.2
1.3.1
3.3.4
6.6

1.5.1
3.7

3.1.3

Appendix IX

Index

Numbers referring to figures are underlined.

e
. .
[y .

+ > =

TN

VvV -~ -
]

ASIAY
]

A-lgth

A-type

Addition

Adding operators
ALARM

ALLOW
ALPHANUMERIC

AND
Argument
- description

Arithmetic ex-
pressions

Arithmetic oper-
ators

3.4

3.4

3.4

3.2, 3.2.5

3.2, 3.2.2, 3.5

3.2, 3.2.2, 3.5

3.2,3.2.2, 3.5

3.2, 3.2.2, 3.5

3.2, 3.2.3, 3.6.1

3.2, 3.2.5

3.2, 3.2.5

3.2, 3.2.5
.5, 3.5

3.2, 3.2.5, 3.5

3.2, 3.2.3, 3.6.1

3.2.3, 3.6.1

3.2, 3.2.3, 3.6.1

3.2.3, 3.6.1

3.2, 3.2.5, 3.7.1. 10

3.2.3, 3.6.1

2.3.1.1, 2.3.2.1
2.3.1.1, 2.3.2.1
3.2.2

3.5

3.2.1, 3.7.1.1, 3.8.1
3.2.1, 3.7.1.2, 3.8.1
3.2.1,3.2.2,3.5,3.6.1

3.2.1, 3.2.4, 3.6.4

1.3.3, 2.3.1, 2.3.2,2.3.3,6.6
2.3.1,2.3.2,2.3.3

3.5

3.2.2

AlX-1

AlIX -2

Asterisk (*)
AT

Automatic dupli-

cation

Automatic fields

Automatic incre-

mentation

Automatic insertion

Batch
- transliation

BYPASS

Character set
Coding sheets
Colon ()
Comma (,)
Comment

Compound con-
ditions

COMPUTE
Condition
- compound
- relation

- simple

- table

- validity

Conditional state-

ment
CONNECT
Constant
Constant field

Conversion opera-

tors
Core table

DEFINE
Definning tags

Definitions of terms

Digit
DISALLOW

3.2,3.2.2,3.5,3.7.1.14
3.2.1,3.7.1.15

6.4

4.4.2
6.5

6.3

1.1.1

N

4.7

.2
.2

W NN W W PN W

.6

w

3.6

3.6.1

3.6

3.6.2
3.6.3
3.7,3.7.2

3.2.1,3.7.1.4, 3.8.1

3.1.3, 3.3.1
4.4.2.2, 6.3.2
5.3, 3.6.1

5.3.2

3.2.1,3.7.1.5, 3.8.1

6.1.3
A VIl

3.2, 3.2.1,3.3.1, 3.3.2
3.2.1,3.7.1.2, 3.8.1

.11, 2.1.2.0, 2.2.1,5.2.1, 3.7.1.13, 3.8.1

.2.1,3.7.1.3, 3.8.1

Disc

- file

- required space
- table

DIsC

DISCTABLE
Display

Division

Double entry table
coding sheet

Dup

Duplicate field

EDIT

ELSE

END

END SUBFORMAT
ENTER

Equal to (=)

Error messages

- ALARM

- from TRANSLATE
Examples
Exp['essions, arith-
metic

F-lgth

F-type

Fake

Field

- alphabetic

- alphanumeric

- automatic

- constant

- definition

- duplicate

- fill characters
- increment

- keyed

- kind

- nome

- not keyed

1.1.1
All
5.3.2, 6.6

3.2.1, 3.7.1.2, 3.7.1.15

5.3.2

2.1.1.2, 3.2.1, 3.7.1.6, 3.8.1

3.2.2,3.5
2.3.2, 2.3.2

3.7.1.7
4.4.2.1, 6.4

4.5.4
3.2.1, 3.7.2.1

3.2.1, 3.7.1.8, 3.7.1.15, 3.8.1

3.2.1, 3.7.1.9
4.4.5
3.2, 3.2.3, 3.6.1

3.7.1.1
A VIl

2

2

3

1.1.3, 3.3.3
2,1.1.2
2.1.1.2
4.4.2
4.4.2.2, 6.3.2
1.2.4, 3.3.3
4.4.2.1
2.1.1.2
4.4.2.3
4.4.1
2.1.1.2
2.1.1.2

4

AlX-3

AlX-4

Field (contd.)
- numeric
- output position

- right/left justi-
fication

- signed numeric

- special signed
numeric

FIELD

Field description
- execution
Field flag

for EDIT

for REKEY

skipped

validity
Field program
- execution

Fill characters

Fill-in=the-blanks

- mask
Flag, validity
FORM standard

format

Format

- coding sheet
- image

- nome

- new formats
Format language
- examples

- statements

- syntfax
Format program
- execution

- standard
Function

- description
- length

- type

2.1.1.2
2.1.1.2
2.1.1.2

2.1.1.2
2.1.1.2

3.2.1, 3.7.1.18
1.2.3, 2.1.1.2
4.4

4.5

4.5.4

4.5.3

4,5.2

4.5.1

1.2.4, 3.1.3
4.4.8

2.1.1.2

1.5.1

1.5.3
4.5.1
5.1, AV

2.1

AR AR
.11, 21,201
.

.1.3

3.1.4, Alll
3.7

AV

1.2.1, 3, 4, 6
4

AV

W O N = N -

1.3.3, 2.3.2, 2.3.3,6.6

2.3.2, 2.3.3
2.3.2.1
2.3.2.1,2.3.3.1

GIVING 3.2.1, 3.7.1.4, 3.7.1.15
GOTO 3.2.1, 3.7.1.10,3.8.1
Greater than (>) 3.2, 3.6.1

Greater than or 3.2.3, 3.6.1
equal to (>=)

IF 3.2.1, 3.7.2.1
Image 1.5
- coding sheet 2.1.2,2.1.2
- format image 1.5.2, 2.1.2
- page 1.5.3, 2.1.2.2
- subformat image 1.5.2, 2.1.2.1
- text 2.1.2.2
IMAGE, standard 5.1, AV
format

. IN 3.2.1, 3.7.1.14
Increment field 4.4.2.3, 6.5
Input parameter 3.1.1
INVALID 3.2.1, 3.6.3, 3.7.1. 17, 4.5.1
Invoice 1.1.3, 1.1.3
Keyed field 4.4.1
Keying positions 6.1.2
Kind 2.1.1.2

Left parenthesis (() 3.2, 3.5

Length 2,1.1.2
- minimum 2,1.1.2
. Less than (<) 3.2, 3.6.1
Less than or equal 3.2.3, 3.6.1
to (=)
Letter 3.2, 3.2.1
LIMIT 3.2.1, 3.7.1.11. 3.8.1
Limitations A VI
Line 2.1.1.2, 2.1.2.2

Logical operators 3.2.4

Minimum length 2.1.1.2
Minus (-) 3.2, 3.2.2, 3.5

AIX-5

MOD 3.2.1, 3.2.2, 3.5

Modulo 3.2.2 .
MOVE 3.2.1, 3.7.1. 12, 3.8.1

Multiplication 3.2.2

Multiplying operators 3.5

Names, reserved 3.2.1
New formats 5.1

New subprograms 5.2

New tables 5.3
Nonnumeric operands 3.3, 3.6.1.2
NOT 3.2.1, 3.2.4, 3.6.4

Not equal to («>) 3.2.3, 3.6.1
Not keyed fields 4.4.3, 6.3.1
- skipped by BYPASS 4.4.7
- skipped by ENTER 4.4.5

- skipped by 4.4.6
RECORD RELEASE

- skipped by SKIP 4.4.4

Notation 3.4
NOTE 3.2.1,3.7.1.13, 3.8.1
NUMERIC 3.2.1, 3.2.2,3.5,3.6.1,3.7.1.3

Numeric operands 3.3, 3.6.1.1

Operands 3.3

- in subprograms 3.8.2

- nonnumeric 3.3 .
- numeric 3.3

Operators 3.2.2, 3.2.3, 3.2.4

- arithmetic 3.2.2, 3.5

- logical 3.2.4, 3.6.4

- relational 3.2.3, 3.6.1

OR 3.2.1, 3.2.4, 3.6.4

Output parameter 3.1.1

Output position 2.1.1.2

Page 2.1.1.2, 2.1.2.2

Parameter 3.1.1

Partial rekeying 6.7 .

AlX-6

PERFORM 3.2.1, 3.7.1.14, 3.8.1

Plus (+) 3.2, 3.2.2, 3.5
. Position 2.1.1.2, 2.1.2.2

Program 3.1.1, 6

- elements 3.1.2

- execution 4

- planning 3.1.4

- statements 2.1.1.2, 2.2.2

Programming hints 6

Protected 2.1.1.1

Pseudo—rsister 1.4,3.3.2,6.8

Punctuationsymbols 3.2.5

Quotation (') 3.2, 3.3.1
. Record 1.1.2
RECORD RELEASE 4.4.6
Reformatting 6.2
Register 1.4, 2.1.1,2, 3.3.2, 4.6
REKEY 2.1.1.2, 4,5.3
Relation 3.6.1
Relational operators 3.2.3
Replay 4.7

Required space
- in translated format A |
- on disc for batches A Il

Reserved names 3.2.1

. Reserved verbs 3.2.1
Right/left justifi- 2.1.1.2
cation

Right parenthesis()) 3.2, 3.5

Screen processing 6.1

- ossigned to system 6.1.1

SEARCH 3.2.1, 3.7.1.15, 3.8.1
SELECT 3.2.1, 3.7.1.1¢
SELECT SUBFORMAT 3.2.1

Semicolon (;) 3.2

SET 3.2.1, 3.7.1.17

AlX-7

AIX -8

Single entiy table

coding sheet
SKIP
Skipped tlag

Skipped not keyed

tield
- by BYPASS
- by ENTER

- by RECORD
RELEASE

- by SKIP
Space ()
Space, required
Standard formats
Statements

- conditional

- in subprograms
- unconditional
Stroke (/)
Subformat

~ execution

- head

- name

selection
termination
SUBFORMAT
Subformat image

SUBPR standard
format

Subprogram

- coding sheet
- head

- name

- operands in
- statements in
Subscripts
Subtraction (=)

2.

-

W W W w NN BN PN~

5.2

7.2

8.1

A
.2,3.2.2, 3.5
.2.2

.3

L0101, 2.1.200
.10, 2.1.201

O — W A AN NAM=WWWWWD D>
N A

.3.1, 3.1.3, 3.8
2,2.2

2.1

2.1

.8.2

.8.1

.3.4

2.2

3.1, 2.3.1

2]

21, 3.7.1.18, 3.8.1, 4.4.4

1

2
2.1, 3.7.1.16
5.

2, AV

Table

coding sheet,
single entry

coding sheet
disc table

coding sheet,
double entry
condition
core table

DISC table

head, single entry

head , disc table

head, double
entry

name

the use of

type

TABLE standard
format

Tag

defining tags

description

Text

THEN

TO

Tone
TRANSLATE

VALID
Validity

condition

flag

Variable

XBATCH
XDATE
XJOB
XOPERATOR
XTIME

1.3.2, 6.6
2.3.1, 2.3.1

2.3.3,2.3.3

2.3.2, 2.3.2

3.6.2

5.3.1

2.3.3, 5.3.1, 5.3.2, 6.6
2.3.1.1

2.3.3.1

2.3.2.1

2.3.1.1

6.6

2.3.1.1, 2.3.2.1, 2.3.3.1
5.3, AlV

1.5.1

6.1.3

2.1.2

2.1.2.2

3.2.1, 3.7.2.1

3.2.1, 3.7.1.4, 3.7.1.12
3.6

5, AVl

3.2.1, 3.6.3, 3.7.1.17, 4,5.1

3.6.3
3.6.3
4.5.1
3.1.3
3.2.1,3.3.2
3.2.1,3.3.2
3.2.1,2.2.2
3.2.1,3.3.2
3.2.1,3.3.2

A

X -9

NOTES

@ ® @ o

NOTES

NOTES

° ® ® e

NOTES

Data Entry System

Release 2

READER'S COMMENTS
Format Language Guide

RCSL 42 - i 0664

A/S Regnecentralen maintainsa continuous effort to improve the quality and
usefulness of its publications. To do this effectively we need user feedback

- your critical evaluation of this manual.

Please comment on this manual's completeness, accuracy, organization,
usability, and readability:

Do you find errors in this manual ? If so, specify by page.

i

.‘

How can this manual be improved?

Other comments ?

Please state your position:

Name: Organization:

Address: Department:

Date:

Thank you!

------------------- Foldhere = == === 2 = s o c e c e e e e = -

------------ Do not tear -~ Fold here and staple = = = = = = = = = = = = -
Affix
postage
here

A/S REGNECENTRALEN
Marketing Department
Falkoner Allé 1

2000 Copenhagen F

Denmark

REGNECENTRALEN
Scanips
GCOMPUTER

HEADQUARTERS: FALKONER ALLE 1 DK-2000 COPENHAGEN F : DENMARK
PHONE: (01)10 S3 66 ' TELEX: 16282 rc hq dk - CABLES: REGNECENTRALEN

INTERNATIONAL

EASTERN EUROPE
A/S REGNECENTRALEN
Glostrup, Denmark, (02) 96 53 66

SUBSIDIARIES

AUSTRIA

RC — SCANIPS COMPUTER
HANDELSGESELLSCHAFT mbH
Vienna, (0222) 36 21 41

FINLAND
QY RC — SCANIPS AB
Helsinki, (90) 31 64 00

FRANCE
RC — COMPUTER S.a.r.l.
Paris

HOLLAND ®
REGNECENTRALEN (NEDERLAND) B.V.
Rotterdam, (010) 21 62 44

NORWAY
A/S RC — SCANIPS
Oslo, (02) 35 75 80

SWEDEN
RC — SCANIPS AB
Stockholm, (08) 34 91 55

SWITZERLAND
RC — SCANIPS (SCHWEIZ) AG
Basel, (061) 22 90 71

UNITED KINGDOM
REGNECENTRALEN LTD.
London, (01) 439 93 46

WEST GERMANY
RC — GIER ELECTRONICS G.m.b.H.
Hannover, (0511) 67 971

RC — COMPUTER G.m.b.H.
Hannover, (0511) 63 99 51

REPRESENTATIVES

HUNGARY
HUNGAGENT AG
Budapest, 88 61 80

KUWAIT
KUWAIT — DANISH COMPUTER CO.S.A K.
Kuwait, 51 05 10

CZECHOSLOVAKIA
KSNP KANCELARSKE STROJE N.P.
Praha, 27 00 01

TECHNICAL ADVISORY
REPRESENTATIVES

POLAND
ZETO
Wroclaw, 44 54 31

RUMANIA
ILI.R.U.C.
Bucharest, 33 21 57

HUNGARY
NOTO-0SzVv
Budapest, 66 84 11

