- DOIVIAC
Domus Vilacro Assembler

User’'s Guide

SB0EG




- DOMAC
Domus Macro Assembler
User’s Guide

First Edition

A/S REGNECENTRALEN July 1978
Information Department 42-i 0833




Author : Jens Lovmand Hvid

KEY WORDS: RC 3600, Macro Assembler, User's Guide.

ABSTRACT': This paper describes the RC 3600 Macro Assembler
language and operation of the DOMAC Macro Assembler.

Users of this manual are cautioned that the specifications
contained herein are subject to change by RC at any time
without prior notice. RC is not responsible for typographi-
cal or arithmetic errors which may appear in this manual
and shall not be responsible for any damages caused by
reliance on any of the materials presented,

Copyright © A/S Regnecentralen, 1978.
Printed by A/S Regnecentralen, Copenhagen.




Table of Contents

PREFACE page

INTRODUCTION
1.1 Macro Assembly
1.1.1 Machine Language
1.1.2 Assembly Language
1.1.3 Translation of Assembly Language
1.1.4 The Macro Facility
1.2 Assembler Input/Output
.2.1 Assembler Input
«2.2 Scanning Modes
«2.3 Assembler Output
1.2.3.1 Error messages
1.2.3.2 Program listing
1.2.3.3 Relocatable binary object program
1.2.4 Linkage editing

— S W

SYNTACTIC ELEMENTS
2.1 Terminals
2.1.1 Operators
2.1.2 Break Characters
2.2 Numbers
2.2.1 Integer numbers, single precision
2.2.1.1 Source representation
2.2.2 Integer numbers, double precision
2.2.2.1 Source representation
2.2.3 Floating point numbers, single precision
2.2.3.1 Source representation
.3 Symbols
.4 Special elements
2.4.1 The character @
2.4.2 The character #
2.4.3 The characters **
2.4.4 The characters ++
2.4.5 The character -

SYNTAX
3.1 Symbols
3.1.1 Permanent symbols
3.1.2 Semi-permanent symbols
3.1.3 User Symbols
3.1.4 Symbol table listing
3.2 Expressions
3.2.1 Operator hierarchy
3.2.2 Relocation Characteristics

21
21
21
22
23
23
24
27
28
29
31
32
32
32
33
33
33
33

34
34
35
35
36
36
36
37
41




3.3 Instructions page

3.3.1 Arithmetic and Logical Instructions
3.3.2 Program Flow Control Instructions
3.3.2.1 Addressing
3.3.3 Data Transfer Instructions
3.3.4 Input/Output Instructions
3.3.4.1 Input/output instructions with accumu-
lator
3.3.4.2 Input/output instructions without
accumulator _
3.3.4.3 Input/output instructions without
device codes

4 PERMANENT SYMBOLS

4.
4.

1
2

Source interpretation

Program control

Semi-permanent symbol definition
External reference

Macro definition

Alphabetic list of permanent symbols

+ARGCT

.DUSR
.DXOP
.EJEC

<EXTA
<EXTD
<EXTN
-EXTU
.GOTO

43
43
47
48
50
51

51

53

54

57
57
58
58
59
59
60
60
61
63
64
66
67
68
69
70
71
73
75
76

77
78

79
80
81
82
83
85
86
87
88
89




.NOCON
«NOLOC
«NOMAC
-NREL
.PASS
POP
.PUSH
«RDX
.RDXO
.TITL

MACRO PROGRAMMING
5.1 Macro definition
5.1.1 Interpretation
5.1.1.1 The character %
5.1.1.2 The character !
5.1.1.3 The character
5.1.2 Nesting of Macros
5.2 Macro call
5.2.1 Syntax of Macro call
5.2.2 Substitution of arguments
5.3 Repetitive and conditional operations in Macros
5.4 Listing of Macro expansions
5.5 Examples of Macros
5.5.1 Macro ZONE
5.5.2 Macro NDEF

EXTENDED CAPABILITIES
6.1 Generation of numbers and symbols
6.2 Generation of labels

ASSEMBLER OPERATION
7.1 External requirements
7.2 Call of DOMAC assembler

page 91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
109
110
112
114

115
115
117
17
117
117
118
119
119
120
121
122
123
123
130

136
136
139

141
141
141




7.3 Assembly execution
7.4 DOMAC error messages
7.4.1 Source input errors

A

< CCWOWOZOCORHQEOAEUOD

X

Adressing error

Bad character

Macro error

Radix error
Equivalence error
Format error

Global error

Input parity error
Conditional error
Iocation counter error
Multiple definition error
Number error

Overflow error

Phase error
Questionable line
Relocation error
Undefined symbol error
Assembler label error
Text error

7.4.2 Run time errors

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

page 144
147
147
148
148
148
148
149
149
149
149
149
149
150
150
150
150
151
151
151
151
151
151

153

157

159

168

169




Preface

Notation Conventions

- This manual is intended to describe the syntax of the DOMUS Macro
Assembler Language. To do so with sufficient clarity, it will be
necessary to supplement the ordinary text with a number of special

----- symbols — together with some rules regarding the application of
those symbols - which are themselves not part of the Macro Assem—
bler language. These symbols and their rules of application are
as follows:

represents a carriage return (new line).
- b represents a form feed (new page).

VVVVVVV cap capital letters are used whenever some part of the
format described in the text is a literal part of the
symbolic language and which therefore must appear in

"""" context exactly as indicated.

low lower case letters combined with underscoring are used

to denote those parts of the format which are variable
and where consequently the programmer will have to
decide on whichever string of symbols or characters
should be used. If ample space is at hand, the variable
descriptor will be written out fully, but in other

- cases it may be abbreviated. If more than one word is
needed to describe the variable, the individual words
will be joined by means of a hyphen.

<> parts of a format appearing in between angle brackets
indicates, that those specific parts of the format are

optional. For example:
.END<Aexpression>

(():()) ordinary parentheses separated by colon is used to

indicate a choice of possible formats of which one only
- is to be used. Such alternate choices may themselves be
optional, in whice case the outer set of parentheses
will be supplanted by angle brackets. Examples of the
above are:

JIF((E):(G):(L):(N))

—_ LTXT(E) : (F):(0)>A delimiter




A represents any number and combination of break
characters, i.e. the characters comma, space or
tabulation.

A represents one single break character (comma, space or

tabulation) - a restriction which must be observed in
certain formats.

ceee represents an omission of one or more words of a format
in cases where the consequent space-saving effect does
not compromise the necessary clarity. -~

In this manual octal representation of numbers will be used ex-
tensively alongside normal decimal notation. To differentiate

between these two representations octal numbers in the text it-
self will always be distinguished by the suffix g -~

In examples octal representation will be the rule and will not
normally be specifically indicated; representation to other bases —
must be inferred from the actual context.




Introduction

Macro Assembly

The function of any language is to ease the transfer of informa-
tion from its point of origin to the recipient. In this context
it is of no real importance what medium is used for actual trans-—
mission - the most well-known of course being air, which carries
our normal spoken conversation.

What is important is that both originator and recipient are able
to understand the language.

Machine Language

In the RC 3600 series computers — as in all similar electronic
computers - information is transferred through the use of small
electric currents, and the language itself takes the form of
sequences of either "current" or "no current". In this way the
actual configuration of the sequence, which is usually called the
code, will determine the meaning involved. To visualize the code
to human beings the digit 1 is used to indicate "current" and the
digit 0 is used to indicate "no current”

The computer will perform a series of operations according to
those instructions which are given to it in the program - but as
outlined above these instructions must be given to the computer
in the language which it is able to understand, i.e. as a basical-
ly simple but rather long sequence of ones and zeroes. Thus if
the programmer wishes to load a value, which is at present stored
in the memory cell numbered 6, into the accumulator numbered O,
the corresponding code in machine language would be:
0010000000000110

Assembly Language

The machine language is however not really convenient for human
beings - mainly due to its inherent monotony which easily leads
to use of erroneous codes and thus to unpredictable results. To
avoid this another type of language is created, in which the
machine language codes are replaced by symbols. These symbols are
then given a form, which makes the resulting language more
meaningful to the programmer and consequently easier for him to
learn and remember. The machine language instruction mentioned in
the preceeding section is thus in the assembly language replaced
by the following instruction in symbolic form:




1.1I3

10

LDA 0 6
The sequence of characters "LDA" is now a symbol ~ called an
"instruction memonic” - which means: load accumulator. The
accumulator to be loaded is indicated by the digit 0, and the
memory address containing the number (or other type of infor-
mation) to be loaded is given as the digit 6.

But the assembly language is designed in a way, which offers
further advantages: instead of indicating the address of the
memory cell containing the information by the digit 6 in the
above example, the programmer may use a symbolic representation.
In the program the programmer can define the address in question
through the symbol ASST, for example, and the instruction would
then take the form:

LDA 0 ASST

Translation of Assembly Language

Use of the assembly language leads to easier and more convenient
programming, but the computer is unable to interpret this language
directly. It must consequently be translated into machine language,
a task, which is easily performed by the computer itself, provided
a program is available which contains the necessary instructions
to perform the translation. This special program is called an as-
sembler program and the process of translation is called assembly.

The assembler program reads the symbolic language and converts
the instructions and other information contained therein to the
appropriate numeric codes of the machine language. In this way is
obtained a direct correspondence between the symbolic language
and the machine language, i.e. one line of assembly language is
converted into one line of machine language. (It is gquite obvious
that the actual design of the assembly language is an extremely
demanding task, but a detailed description of these problems is
outside the scope of this work.)

What has been described above is in fact only the preparations,
which must be carried out in order to use the computer for the
actual job of processing some information in a specified way. The
first step — writing the program in assembly language - results in
the source program. The next step - translating the source program
- results in the object program, and only then can the computer
tackle the real job: execution of the object program to provide
the desired processing of data.




11

The Macro Facility

It was mentioned in the preceding section that provision of the
symbolic assembly language was intended to simplify the design of
actual object programs. This process of simplification is carried
a step further by implementation of the Macro Facility.

The idea underlying this concept can be stated as follows: usually
the writing of a program will involve several repetitions of the
same set of symbolic instructions; to avoid this tedium - and thus
enable the programmer to concentrate on the fundamental structure
of his program — macro assembly makes it possible to define such

a set (or sets) of instructions only once in the program and to
refer to the complete set as a whole wherever it must appear in
the program.

Use of the macro facility is implemented in the following way:

The appropriate set (or sets) of instructions is writ-
ten by the programmer as a macro definition, which is
then given a name by the programmer.

Wherever this particular set of instructions should
appear in the program, the programmer writes a macro
call (which must as a minimum contain the name of the
macro definition.)

During translation the assembler will then - through
the use of the so called macro processor — substitute
the set of instructions contained in the macro defini-
tion for the macro call. This effect is called macro
expansion.

Another feature of the macro facility, which enhances its versati-
lity still more, is its capability to accept dummy arguments. This
means that if the program contains sets of instructions which are
identical except for accumulators and memory addresses, it is
possible to define these sets in one macro definition only, in
which the necessary arguments are indicated by dummy symbols;

when the actual macro call is employed in the program it will
contain the actual arguments, and these will then be substituted
for the dummy arguments during the macro expansion. In this way
the macro definition is normally only a framework of the actual
instruction set embodied in the resulting program,




1.2

1.2.1

12

Assembler Input/Output

Input to the macro assembler consists of one or more files of
source program written in accordance with the syntactic rules
outlined in the following chapters of this manual.

Output from the macro assembler can be more or less extensive.

As a minimum it will consist of a list of source program errors,
which will be output on the console. It may however be extended
to include a program listing for reference purposes and a file
containing the object program, which may thereafter be loaded and
executed. The object program file is output in a form called
"relocatable binary", the details of which will be outlined in a
following section. The input/output structure is shown in the
diagram below, where the boxes drawn in broken line represent
optional output.

r ------ =1
|
| Object :

i .
- ¥ {
ASCII Mo wf  File
- acro ]
Source Assembler [ e e 1
Files e L1LSTI1NG :
- File |
| I, -

Assembler Input

Input to the assembler is one or more source program file(s),
which the assembler will read line-by-line. One line of source
program consists of all characters read until a carriage return
character (CR) or a form feed character (FF) is encountered, and
is subdivided into a maximum of four fields:

<label-field><operation-field><operator-field><comment~-field>

some of which fields may be empty in any specific line depending
on assembler syntax and/or the context in which the line appears.
The label-field is used to assign a symbolic name (a label) to a
memory location and contains a user-symbol followed by a colon.
The operation-field is used to specify the actual contents of the
(possibly) labelled memory location. The operation-field may
contain either a value - that is: a constant or an expression -




1.2.2

13

or a symbol, which may be either a permanent symbol or a
semi-permanent symbol.

The operator-field contains the specific operators associated
with the contents of the preceding operation-field. Its actual
contents will therefore be highly dependent on the operation-—
field, but will usually be one or more expressions.

The comment-field contains a string of characters, which will be
read and listed by the assembler, but which will otherwise be
ignored. This field is thus solely intended to aid human interpre-
tation of the finished source program.

All characters appearing in the source input will be read by the
assembler, provided that they are standard ASCII characters.
However, three characters will without exception be ignored:

NUL - the null character {code:000,_)
NI. -~ the line feed character (code:012_)
DEL - the rubout character (code-177 )

The character SUB (code: 032 ) will - if it occurs 1n the input

- be printed in the output llstlng as the character \ , but it will
otherwise be ignored, except that the line containing this character
will be flagged with parity error.

The character EM (code: 031_) represents the physical end-
of-file and the source file will not be scanned beyond this character.

Scanning Modes

The string of characters input to the assembler will be scanned in
one of two alternative modes: string mode or normal mode. In
string mode all ASCII characters will be accepted as input, and
no interpretation of the string will take place. String mode is
applied for either of the following three purposes:

a) Comments
A comment is initiated by a semicolon and is terminated by a
carriage return character or a form feed character.
For example:
vesevseese; ABSOLUTE VALUE OF VARIABLE }

b) Macro Definition Strings
A macro definiton string is initiated by the directive .MACRO
and is terminated by the character %.




14

For example:

MACRO SUBST
LDA 0 6
MOVE# 3 3 8szic

c) Text Strings
A text string is initiated by the directive .TXT (or one of
the optional equivalents to this) followed by one or more
break characters. After this follows a delimiter and the text
string proper, which is ultimately terminated by reappearance
of the same delimiter. The delimiter may be any character, but
it should obviously not be one of those occuring in the text
string itself, as this would result in premature termination
of the text string.
For exanple:

TIXT / RANGE: 230-270/

All input not in string mode will be accepted by the assembler

in normal mode. In this mode only a definite subset of the full
ASCIT character set will be accepted as legal input, and the
input character string must be divided into lines. Line termina~
tion is - as previously mentioned - indicated by either CR or FF
characters. In normal mode a definite interpretation of input
will take place; primarily certain characters and/or groups of
characters will be interpreted as specific syntactic elements,
further discussion of which is however deferred to the next
chapter. Further rules of interpretation concerns lower case
alphabetic characters, which are without exception interpreted as
their upper case equivalents. If the input source file contains a
character, which is not an element of the subset accepted in
normal mode, such a character will be unconditionally ignored in
respect to assembler syntax, but it will appear with a B (bad
character) flag in the error listing.

The subset of ASCII characters accepted in normal mode is listed
on the following page.




1.2‘3

1e2.3a1

1.2.3.2

15

Assembler Output
The assembler program may produce three distinctly different
types of output:

Error messages to the console

Program listing

Relocatable binary object program

Error messages are given in the form of single letter codes and

will be output to the console. During the assembler program's
first pass over the source file, a fairly small class of errors
will be detected if they occur. The corresponding error messages
will be output at that time.

During the second pass all errors detected will be output, either
as part of the program listing or — if the optional program list-
ing has not been requested -~ as a separate error listing output
to the console.

A more detailed survey of error messages and codes appears in
section 7.4.

Program listing is intended to supply the programmer with infor-
mation about the program as it has been read and accepted by the
assembler, thereby to ease comparison with his original program.
In addition the program listing may contain error indications as
mentioned in the preceding section. The program listing is output
in the form of lines corresponding to the lines of source file
input. Each line will contain the following information:
Columns 1 -3: If no errors are detected in the input, these
colums will contain a two—-digit line number
followed by one space. If errors are detected, a
maximum of three single-~letter error codes will be
output in these colums (cf. section 7.4)

Columns 4 - 8: These columns will contain the value of the pro-
gram counter whenever this applies. Otherwise they

will be left empty.

Column 9: This column contains the relocation flag relevant
to the program counter listed in colums 4 - 8.

Columns 10-15: These columns will form the data field whenever
this applies. Otherwise they will be left empty.

Column 16: This column contains the relocation flag relevant
to the data field in colum 10- 15.




16

7-bit 7-bit 7-bit
Octal Character Octal Character Octal Character
Code Code Code

0Ll HT o7k < 134 \
o1k FF 075 = 125 ]
015 CR 076 > 136 t
071 M 077 ? 137 <«
032 SUB 100 @ 141 a
0ho SP 101 A 142 b
oh1 ! 102 B 143 c
oh2 " 103 C 144 d
oh3 # 104 D 145 e
045 % 105 E 146 f
ok6 & 106 F 147 g
ohy ' 107 G 150 h
050 ( 110 H 151 i
051 ) 111 I 152 j
052 & 112 J 153 k
053% + 113 K 154 1
o5k R 114 L 155 m
055 - 115 M 156 n
056 o 116 N 157 o
057 / 117 0 160 P
060 0 120 P 161 q
061 1 121 Q 162 r
062 2 122 R 163 s
063 3 123 s 164 t
064 L 124 T 165 u
065 5 125 U 166 v
066 6 126 v 167 W
067 7 127 W 170 x
070 8 130 X 171 y
071 9 1321 Y 172 z
072 : 132 Z

073 ; 133 [




EX123
EX124
EX125
EX126
EX127
EX130
EX131
EX132
EX888
£X889
EX999
EXMAC

LDA
SENDM

17

Columns 17-: The remainder of the available columns will con-
tain the line of source input as read by the
assembler. If macro expansion has occurred during
assembly this will be incorporated in the listing.

As part of the program listing the assembler may produce a
cross-reference listing of the symbol table. This table may be
restricted to the user-defined symbols appearing in the program,
or it may be extended to include semi-permanent symbols as well,
depending on the programmer's choice. An example of a cross-—
reference listing is given below:

000002 2/22

000003" EN 2/05 2/25

000004" 2/28

000005’ 2/31

000006 2/34

000007 /37

000010" 2/40

000011" 2/43

177777 XN 2/06

000001$ XD 2/07

000002% XD 2/07

000000 MC 2/10 2/14 2/16
000133 2/20 /22 2/23 2/25 2/26 2/28 2/29

2/31 2/32 2/34 2/35 2/37 2/38 2/40
2/41 2/43 2/uy
000000 PS 2/48
020000 PS 2/47
006004 PS 2/49

The relocatability symbols appearing in the example will be de-
tailed in the following section; the symbols appearing in the
"type- of symbol" column in the example are given in the list below:

AA user—defined symbol

EN  entry (.ENT)

XD external displacement (.EXTD)
XN external normal (.EXTN)

PS  semi-permanent symbol (.DUSR)
MC macro name

As previously mentioned, the output listing is an optional fea-
ture and it may be omitted according to the programmer's choice.
Similarly the programmer can choose to suppress certain lines of
the list if he so wishes.




1.2.3.3

18

The relocatable binary object program is a line-by-line transla-
tion of the source program into machine code, which is however
eventually output in a specially blocked binary code (cf.appendix
C). The majority of lines will after translation appear as one
16-bit binary number, which is the basic unit of information
handled by the computer and is called a word. The words of the
final object program will on execution be placed in CPU memory by
the loading program, to do which it must be able to associate a
memory address with the individual words.

When the assembler assigns an address to each word of the dbject
program it will not necessarily be the absolute memory address
into which the word will be located by the loader; this may be the
case, but the effective address may on the other hand be changed
during the loading operation, thereby effecting relocation of the
object program. Consequently the assembler must produce an object
file, which in addition to the contents of each address also con-
tains the necessary information to the loader regarding this re-
location in memory.

Information about the intended relocation is provided by the
assembler, which maintains three program counters of which one
only will be current at any given time. Initially the three pro-
gram counters will be set to zero; as each successive word is
generated during assembly, the current program counter will be
incremented by one. The three program counters correspond to
absolute, normal and page zero relocation respectively, whereby
absolute relocation means, that the relative memory location is
not changed during load; normal relocation means, that a constant
value is added to the relative memory location value during load,
and page zero relocation means, that a constant similarly is
added to the relative memory location value during load.

Byte relocation - whether normal or page zero — means, that the
appropriate relocation constant is added twice during load. The
constants associated with normal and page zero relocation will
usually be different.

The programmer may select which among the three program counters

should be current at any specific stage of assembly. This is done
by including in the source text the appropriate permanent symbol

(.LOC, .NREL and .ZREL respectively); these symbols may likewise

be used to reference the respective program counter values in the
program (cf. section 4.6).




1.2.4

19

Although the preceding passage has concentrated on the relocation

of word addresses, it should be noted, that also the contents of

the storage word may undergo relocation during load, i.e. a con-—
stant value may be added to the word as well as to its address
during the loading operation.

NOTE: The loading programs used by the MUS/DOMUS operating
systems will only accept binary object program having
normal relocatable addresses. (They will in fact also
accept absolute relocatable addresses, but such addres-
ses are destined for use solely by the operating system
itself).

As previously mentioned the program counter value generated
during assembly will be output in the (optional) program listing
followed by the one-character relocation flag. This flag refers
to the various possible relocation characteristics and may take
the following forms:

Similarly the relocation characteristic relevant to the data
field as it appears in the program listing will be indicated by

Flag Relocation
character characteristic
space absolute

page zero relocatable

page zero byte relocatable
normal relocatable

normal byte relocatable

the following flags:

Flag Relocation
character characteristic
space absolute
- page zero relocatable
= page zero byte relocatable
! normal relocatable
" normal byte relocatable
$ externally defined data field.

Linkage editing

If the option is taken up, the assembly process will yield a
binary relocatable object program, which in its turn may be
loaded into the computer for actual execution.




20

When the object program is about to be loaded, it must however
appear to the loading program as one complete program conforming
to the blocking structure previously mentioned. Consequently all
individual segments of some specific source program must be ass-
embled together and cannot be separately assembled. This situation
is inconvenient, as different programs often will employ identical
program segments, and the restriction mentioned above means that

a considerable amount of assembly runs in reality would be super-
fluous.

To by-pass this difficulty the concept of linkage editing has
been introduced. Linkage editing makes it possible to join
several, separately assembled programs into one complete -~ and
usually more elaborate - program.

The program performing this duty - the linkage editor - will also
ensure that the individual programs to be joined together are
given properly sequenced addresses. The principle is shown in the
diagram below:

Separate Linked
Programs Program
Relative Linkage
address address
0
0
Program
1 1
r-1
r-1
0 r
Program Linkage ,///,,,////J' 2
2 editor \
s=-1 r+s-1
r+s
0]
Program 3
P
r+s+t-1
t-1




2.1

21

Syntactic Elements

The assembly process depends on the ability of the assembler to
recognize the individual syntactic elements of the language as
well as constructions of a more elaborate structure involving
these basic elements. Furthermore the assembler must translate
these elements and constructions into the proper machine code and
as a by-product recognize and keep track of syntactic errors in
the original text.

This makes it imperative to employ very concise definitions and
a completely un-ambiguous syntax. This chapter and the following
ones are intended to provide an explanation of these formal rules.

The basic syntactic elements of the assembly lanquage are divided
into four specific classes, viz.:

Terminals
Numbers
Symbols

Special elements

Terminals

The class of terminals contains those elements whose function is
to separate numbers and symbols from other numbers and symbols,
and it is further divided into two subclasses: operators and
break characters.

Operators

The subclass "operators" contains those elements that are used to
separate numbers and symbols - jointly classified by the term
"operands" - from each other while at the same time indicating,
that some type of operation involving the operands is to be
performed. The sequence of numbers, symbols and operators then
becomes an "expression". Operators may be of type arithmetic,
logical or relational; the characters used to indicate the
different types of operation are as follows:




22

Arithmetic operators:
B Bit alignment (shift) operator
+ Addition
- Subtraction

*  Multiplication
/ Division

Logical operators:
& And
! Or

Relational operators:
< ILess than
<= Less than or equal to
== Equal to
>= Greater than or equal to
> Greater than
<> Not equal to

The shift operator B is identical to the normal alphabetic
character, which might appear in a symbol on which the bit shift
should be performed. To avoid confusion between these two
possible uses of that character, the following rule apply: B is
taken to be the shift operator if the syntactic element
immediately preceding it is a single precision integer number or
if the character immediately preceding it is a right parenthesis.

Break Characters

The subclass break characters contains those elements that are
used exclusively to indicate separation between other syntactic
elements and consists of the following:

A This character represents the subclass space i.e.
a space, a comma, a tabulation or any number and
combination of these individual elements.

.

Colon is used to indicate, that the symbol
immediately preceding the colon is a user-symbol,
i.e. user-symbol:

= The equal sign is similary used to indicate, that the
symbol immediately preceding it is a user-symbol,
i.e. user-symbol=




2.2

2’2.]

23

The actual user symbol and the colon or equal sign
may of course be separated by the class of spaces,
A, without inferring that A is then taken to be the

user—symbol .

() Parentheses are used to enclose a symbol or an expres-—
sion and thereby change the order of precedence of
operators as more fully explained in chapter 3.

[1 Square brackets are used to enclose the actual argu-
ments of a macro call.

Semicolon indicates the beginning of a comment and
thus leads to input being read in the string mode.

~e

{ Carriage return indicates the end of a line

{} Form feed similarly indicates the end of a page.

Numbers
The DOMAC Macro Assembler accepts three types of numbers:

Integer numbers, single precision.
Integer numbers, double precision.
Floating point numbers, single precision.

Although the RC 3600 series Central Processing Unit will only
operate on single precision integers, the acceptance of all three
types of numbers mentioned above is accomplished by packing
double precision integers and floating point numbers into two
words. This packing - and the corresponding programming measures
necessary to handle such numbers - is implemented by the DOMAC
assembler and thus makes it possible for the programmer to employ
the full range of numbers in his programs. Certain limitations do
however apply as will be explained in the following sections.

Integer number, single precision

An integer number is represented as an ordinary binary number
consisting of the digits 0 and 1. When the integer number is
characterized as being given in single precision it means, that
one word only is used for storage of the number. As one camputer
word consists of 16 bits, an un-signed integer in single preci-
sion must lie in the range fram 0 to 216—1, which in ordinary




2.2.1.1

24

decimal notation will be expressed as 0 to 65535. Numbers are
however often represented in octal notation, in which case the
number always (in this manual) will be given the suffix _ to
avoid confusion with numbers in ordinary decimal notation. The
range mentioned above will in octal notation be expressed as 0 to
1777778.

To represent signed integer numbers in single precision the first
bit (bit 0) of the word is used as sign bit - a positive sign
being indicated by 0, a negative one by 1 - while the remaining
15 bits of the word is used to represent the value in two's-—comple-
ment notation. In this case then, the range of values will cover
the interval from -1000008 to +777778 (-32768 to +32767).

Source representation of single precision integer numbers may be
given a variety of formats. First of all the programmer may choose
any radix (number base) between 2 (i.e. binary notation) and 20
(i.e. duodecimal notation) through the use of the directive. RDX
(cf. chapter 4); radices less than or equal to 10 will only re-
quire the usual arabic numerals for number representation, while
radices greater than that require supplementing of the ordinary
numerals with the first letters of the alphabet according to the
convention illustrated in the table below:

Digit Digit
Repre- Digit Radix repre- Digit Radix
sentation Value sentation | Value

0 0 - A 10 >=11
1 1 >= 2 B 11 >=12
2 2 >= 3 C 12 >=13
3 3 >= 4 D 13 >=14
4 4 >= 5 E 14 >=15
5 5 >= 6 F 15 >=16
6 6 >= 7 G 16 >=17
7 7 >= 8 H 17 >=18
8 8 >=9 I 18 >=19
9 9 >=10 J 19 =20

Integer numbers (in single precision) must be presented for input
to the assembler in a definite format as follows:

<+)§<§......g><.>break

In this description of the format the d's indicate the individual




25

digits of the number, which must of course correspond to the re-
presentation and radix as given in the table. The current input
radix — as this has been previously determined by the program-
mer's use of .RDX - will be used for interpretation of the number
except if the optional decimal point shown in the format above is
included. In this case the number will be interpreted as given in
radix 10 - regardless of current input radix.

The first digit in the number must always be a numeral in the
range 0 to 9. To comply with this rule, those numbers - pre-
supposing a radix greater than 10 - which could otherwise have an
alphabetic character as its first digit, must be written with an
intitial 0; as an example of this rule consider the following
numbers, which are written in base 10 notation first followed by
the same value written in base 16 notation and finally as written
in source representation to base 16:

51351 897 0C897
58835 E5D3 OE5D3
41629 A29D 0A29D
48707 BE43 OBE43

break in the above format terminates the number and can be any
character except a digit inside the range of the current radix or
a decimal point. Normally break will be a character from the set
of terminals, i.e. either an operator or one of the break charac-
ters A, ), + or ;. Note that a space will be interpreted as break.
The shift operator B and the digit B occuring in numbers to base
12 and higher might also be confused. Whenever B is intended to
be interpreted as the shift operator under such circumstances it
must be immediately preceded by the character - . This character
will act as a break character to the number format but is other-
wise ignored and correct interpretation will thus be ensured.

As an example of this convention consider the following two
character strings (where a current input radix of 16 has been
assumed) :

+0C3B9 here B will be interpreted as digit 11
+0C3 «- B9 here B will be interpreted as shift operator.

In addition to the normal integer format described above two
special formats exist, which may be used to pack specific bit
configurations into a word. The first of these special formats is
the following:




26

C
where c represents an arbitrary, single ASCII character with the
exception of the three previously mentioned blind characters: NL
(code 0128), DEL (1778) and NUL (0008).

When this format is applied, the character immediately following
the quotation mark will be converted to its seven-bit octal value
(cfr. with ASCII subset in section 1.2.2), and this value will
then be stored in the rightmost byte of the word i.e. in bits 8
to 15 with bit 8 always being 0.

For example:

ll1

used as input will be converted to its octal value 1368 and
stored in the word as follows:

0000000001011 110

It should be noted, that this format can be used as an ordinary
operand within an expression as in the following examples:

"2+529. yielding: 0 000 001 001 010 000 (0011204)
"z/2  yielding: 0 000 000 000 117 101 (000075)
"s*"G  yielding: 0 000 101 010 001 010 (005212

Note however, that although "| will correctly be stored as that
character's octal value, it will simultaneously terminate the
line of source input.

The second of the special formats utilizes two single apostrophes
enclosing a string of characters:

'string' <{>

The string may contain any number of ASCII characters, but of
these only the first two characters in the string will be con-
verted to their respective octal values and stored in the word.
When this format is used, the full 16 bits of the word will be
used for packing; the first character being stored in the left-
most byte of the word while the second character will be stored
in the rightmost byte as shown in the following examples:




2.2.2

27

'(number)' stored as: 0 0
7 stored as: 0 O

- -

Note that if the digit zero is stored in this format, the word
will not contain absolute zero:

'00' stored as: 0 011000000110000

To generate a word containing zeroes in all bit positions the
apostrophes must be written without any character in between:

" stored as: 0 000000000000000

This second special format may of course be used under exactly
the same circumstances as the first, i.e. as an ordinary operand
within an expression or wherever an integer number is allowed.
Note that the string will be terminated if a carriage return
occurs before the second apostrophe; in analogy with the first
special format the value of the carriage return character will be
stored in the word provided that this character appears as the
first or second character following the initial apostrophe.

The following examples illustrate the various effects possible
with these formats:

"? yields: 0000778
"r - 000162

W - 0000728
nu - 0000428
e -3 0374008
‘g - 3 020046:
o - 0210778
'‘r' - 071000

oy - 0254152
=t - 0022168

Integer numbers, double precision

To increase the range of numbers, which may be handled by the
computer, integers may be represented in double precision. This
means, that the number will be stored in two consecutive words
and that these words will be accepted as one 32-bit binary
number. The range will thus be extended to encompass the numbers




2.2.2.1

28

from 0 to 4294967295 (0 to 37777777778). When representing

signed integed numbers, the first bit of the first word (bit 0 of
the high~order word) is used as sign bhit in exactly the same way
as for single precision representation, giving a range from
-2147483648 to +2147483647. As for single precision integers, ne-
gative numbers are represented in two's-complement notation.

In contrast to integers in single precision, those in double pre-
cision are limited to appear in data statements only.

Source representation of double precision integer numbers is in
most respects analogous to that of single precision integers,
although the limited field of application warrants some slight
changes. Radices of integer numbers in double precision may lie
in the range from 2 to 20 and the representation of numerals
follows the convention given for single precision (section
2.2.1.1).

The input format of double precision integers is:

<+}g<gg....g><.>D break

As before the d's in this format indicate the individual digits
of the number, and the optional decimal point results in interpre-
tation of the number as given in radix 10.

The first digit in the number must - as before - be a numeral in
the range 0 to 9; thus an initial zero must be used according to
circumstances when writing numbers to a radix greater than 10.

break is the terminal character and will normally be one of the
characters

A ; }
Note that as double precision integers may only occur in data
statements, the class of operators is without meaning in context
with such numbers and consequently cannot be used for break. (If
it should happen a format error will be indicated during assem—
bly). The character D immediately preceding the break character
is a special feature of this format and indicates, that the
number is an integer in double precision format, The use of this
letter may lead to conflict with its use as a digit where numbers
to base 14 or above are concerned. This conflict is avoided by
adopting the previously mentioned convention as shown in the
examples immediately below (where a current input radix of 16 has




2.2.3

29

been assumed):
‘ +148D ;D will be interpreted as the digit "13"
+148<+D ;D will be interpreted as signifying a double
precision format.

Some further examples of data statements involving double pre-
cision integers are listed below - together with the assembled
values of the numbers given in octal representation - assuming
current input radix = 8:

+4112767D 000020, 112767

8 8
-4112767D 1777578 0650118
+4112767.D 0000768 1405778
-4112767.D 1777018 0372018

Floating point numbers, single precision

A floating point number is represented in exponent form, that
is: it is oconsidered as the product of a proper fraction and the
number 16 raised to a integer power. Floating point numbers
utilize two consecutive words in storage; such a double word -
consisting of 32 bits -~ is subdivided into three parts in the
following manner:

Bit Bits Bits Bits
0 1-7 8-15 16-32
Exponent
s part Normalized hexadecimal fraction part
[T T T I N T T Y T Y | [T T OO VY T U U SO T I |

\. N\,

a4

Ws}d 1 Word 2

bit 0 is the sign bit, 0 for positive, 1 for negative
sign

bits 1 to 7 hold the exponent part of the number
bits 8 to 31 hold the fractional part of the number

The seven-bit exponent part is an ordinary binary number in the
range from 0 to 1778, but to cope with negative exponents it

is assumed, that the actual number appearing in bits 1 to 7 must
be added to 1008 to yield the correct value of the exponent.

By using two's-complement notation with an implied sign bit in
bit 1 the actual contents of the exponent part will lead to the
interpretation shown in the following list:




30

Exponent=0008 Actual exp.=1008 (decimal: -64)
="- =0268 M- - =1268 ( ="= :-42)
=" =1008 ="- - =0008 (-"- = 0)
="- =1268 —~"- - =0268 ( ="- :+22)
== =177y - - =077 (-"- ;463

On account of the fact, that 16 has been chosen as the base of
the exponent part of the number, the fractional part of the
number must be a hexadecimal fraction; consequently the 24
available bits are viewed as six hexadecimal digits of four bits
each, which means, that the fractional part would normally be in
the range:

.000001 < fraction < .FFFFFF

However, most routines handling floating point numbers are de-
signed to work on the assumption, that all floating point
operands (except zero) are normalized, that is: by suitable
multiplication of the fractional part and consequent adjustment
of the magnitude of the exponent part the number format is re-
arranged so that the first digit of the fraction is a non-zero
digit. Conseguently the fractional part will actually be inside
the range:

.100000 < fraction < .FFFFFF

All floating point conversions by the DOMUS Macro Assembler are
normalized.

Negative or positive numbers are indicated by the sign bit
exclusively; the exponent part and the fractional part are
un-altered by the change of sign. Zero is represented as true
zero, i.e. a double word containing 0 in all bit positions. The
floating point representation as given above will lead to a
numerical range from

.100000%167%4 o | FFFFFF*16*03
which in decimal notation is approximately:
5.40%10779 o 7,24%10%7°

As with double precision integers, floating point numbers are
restricted for use in data statements only.



2.2.3.1

31

Source representation of floating point numbers exhibit two basic
formats, which can be described in general terms by the
following:

<+>d<dd . « o> dKAd. . (A><EH+>d<@>Sbreak
<+>d<dd. . .d>E<+>d<d>break

Note that in the first of these formats the E is optional owing
to the fact, that his format employs a decimal point, whereas in
the second format the E is obligatory (if it is omitted there
will be no indication, that a floating point number is intended).
The d's in the above formats are numerals in the range from 0 to
9. Implied here - as in the use of the decimal point - is the
fact that floating point numbers will always be interpreted as
given to radix 10.

As before, break is a terminal character and will usually be one
of the terminals

A

-e

whereas operators are not allowed as terminal characters for b
floating point numbers.

Some examples of floating point numbers are given below - includ-
ing examples of the alternative use of the two formats:

-1.3 -13E-1
4,121 4121E-3
+0.96 +96E-2
65200.0 652E+2
-10000.0 -1E4
374.,1E+48 +3741E+7
+3.11E-18 311E-20

Although floating point numbers are always interpreted as being
in decimal notation irrespective of current radix, the appearance
of an E - as for inst. in the number -1E4 above - may still lead
to confusion, if current input radix is 15 or above. As before
this difficulty is avoided by the use of the -« convention:

- 1-—E4




2.3

24

2.4

32
Symbols

One of the primary functions of the DOMUS Macro Assembler is the
identification and interpretation of symbols - including of
course those basic symbolic elements already mentioned such as
numbers etc. As this function however is closely tied in with the
syntactical structure of the language, a more detailed discussion
of this topic will be deferred to the chapter dealing explicitly
with syntax (chapter 3).

Special Elements

Five special elements are ignored by the assembler while the line-
by-line reading of the source program is taking place and will
only have any effect after the scan of the whole line has been
completed. The five elements are the following:

@ used to indicate indirect addressing

# used to cause the no-load bit to be set

** ysed to cause suppression of listing of a whole line
++ used to cause suppression of listing of a part line
— used to alter interpretation of succeeding character

The effect of each of these five special elements will be:

The character @

This character is meaningful in connection with Program Flow
Control instructions, Data Transfer instructions or in lines
containing expressions. If the character @ - or any number of
such characters - appears anywhere in a line containing a Program
Flow Control or a Data Transfer instruction, it will cause a
digit 1 to be stored in bit 5 of the instruction when assembly of
the instruction itself has been effected. When the object program
is executed, the instruction thus modified will be taken to
contain an indirect address.

If the character @ - or any number of such characters — appears
anywhere in a line before an expression, it will cause bit 0 of
that data word, which holds the result of the calculation, to be
set to 1. In data words bit 0 has exactly the same significance
as bit 5 of Program Flow Control instructions or Data Transfer
instructions, i.e. addressing will take place in indirect mode
when that particular word is referenced during execution of the
object program.




2.2.4

2.4.3

2.4.4

2.4.5

33

The character #

This character is meaningful in connection with Arithmetic and
Logical Instructions. If the # character - or any number of such
characters - appears anywhere in a source line containing an
Arithmetic and Logical Instruction, it will - when the rest of
the instruction has been assembled - cause a 1 to be stored in
bit 12 of the resulting word. This bit is the no-load bit, and a
1 in this bit will mean, that the result of the operation is not
loaded into an accumulator.

The characters **

Two or more consecutive asterisks appearing anywhere in a source
line will cause suppression of listing of that specific line.
Note however, that within macro definitions there will be no such
effect.

The characters ++

Two or more consecutive plus signs appearing anywhere in a source
line will cause suppression of listing of that part of the line
which follows this special element. Note however, that within
macro definitions there will be no such effect.

The character -

The reverse arrow is itself blind, that is: this character will
be unconditionally ignored by the assembler, but its appearance
anywhere in a source line will cause the character immediately
following the arrow to be interpreted in string mode (Q.v.).




3.1

34

Syntax

The concept of syntax covers the structural relationship, that
must - in any language - exist between the indivdual components
of the language in order to ensure correct conveying of infor-
mation. In computer languages the demands on syntax are even more
severe than those posed by our everyday vocal languages due to
the increased necessity of avoiding any ambiguity. This makes the
proper understanding of the syntactical rules of the DOMUS Macro
Assembler language, as explained in this chapter, mandatory for
correct application to problem solving.

The preceding chapter covered the rules pertaining to the basic
elements of the language; this chapter extends this to more
complex elements and their combination into "sentences", and
treats the three concepts of: symbols, expressions and
instructions.

Symbols

Symbols are used for two purposes, viz. to ensure some specific
action on the part of the assembler and to represent a - possibly
variable - numerical value. Symbols are classified into three
distinct groups: Permanent, Semi-permanent and User synbols; all
three groups however use the same format in source

representation as follows:

a<bb.....b>break

In this description of the format a is one of the characters of
the alphabet A to Z, the full stop-. or the interrogation sign ?.
Similarly b is any one of the same characters A to Z, . or ?, but
includes also the numerals 0 to 9.

break is the terminating character and may be any character with
the exception of the previously mentioned characters.

Note that there is no set length of the symbol string according
to the format, but the assembler will only recognize the first

five characters of the format; all characters in excess of five
will be ignored.




3.1.2

35

Permanent symbols

Permanent symbols are defined inside the assenbler itself, i.e.
the sequence of characters in such symbols have an inherent
meaning to the assembler and camnot in any way be changed or used
to indicate anything but that particular symbol.

Permanent symbols are however used for the two purposes pre-
viously mentioned, viz. to direct the assembly process or to
represent numerical values.

Those permanent symbols used to direct the assembly process are
called "directives" and perform a multiplicity of roles, such as
setting the input radix, initiating text strings etc. The com—
plete set of available directives is listed and described in
detail in the following chapter.

Some permanent symbols may in addition to their function as
directives also represent numerical values of internal assembler
variables; others may only have the last-mentioned function. If a
permanent symbol can be used in both ways, the assembler will
determine the intended use through the context in which the
symbol appears. In doing so the following rules apply:

If the first syntactic element of a line is a directive
it will be used to direct the assembler process.

If a directive occurs in any position of the line but
the first, the symbol value will be used.

Examples of the use of these rules will be included in the
detailed description contained in chapter 4.

Semi-permanent symbols

The class of semi-permanent symbols is of extreme importance as
is implied by its alternative designation: operation codes.
Semi-permanent symbols can be defined by the use of appropriate
directives following which they may be saved and used during
later runs of the assembler without any need of renewed defini-
tion. As supplied by RC the assembler contains a set of semi-
permanent symbols, a list of which is included in appendix A.
These semi-permanent symbols are defined in such a way, that they
correspond to the RC instruction set, but if he so wishes,

the user may eliminate this set in part or as a whole and define
his own set of semi-permanent symbols, or he may retain the set
and extend it with his own symbols.




3.2

36

User symbols

All symbols — defined by the programmer in the source program -
which do not correspond to a permanent or semi-permanent symbol,
will be classified as user symbols. Such symbols are used
extensively in programming and for a variety of purposes: to
assign a name to a memory address or a numeric value to a
variable parameter, to name external values etc. User symbols are
retained throughout the assembly process in the symbol table, so
that once defined they can be referred to anywhere in the
program, but they cannot be saved, and their possible re-use in
other programs is thus dependent on renewed definition of the
symbol. User symbols may be defined as either local or global;
this has a bearing on the actual value of the symbol at different
stages of the process. The value of a local symbol is only known
to the assembler during the assembly process; the value of a
global symbol is known also at linkage edit time, which makes it
possible to use such globally defined symbols for communication
between different program modules.

Symbol table listing

As previously mentioned (cf. section 1.2.3) the program listing
optionally output by the assembler may include a cross-reference
listing of the symbol table mentioned above. This cross-reference
listing will include all user symbols defined during assembly.
Semi-permanent symbols will not normally be included in the
cross-reference listing unless this has been explicitly requested
by specifying MODE.A or MODE.R in the DOMAC load command (cf.
Operating Procedures, chapter 7). Permanent symbols are never
included in the cross-reference listing.

Expressions

Expressions are combinations of basic elements whose purpose is
to indicate a sequence of operations to be performed on the
elements appearing in the expression. The format of an expression
is:

<operand1> operator operand2

In this format, operand, and operand2 may take either of
three possible forms, viz.:

an integer number in single precision




3.2

37

a symbol

an expression (evaluating to a single precision integer)

Note that expressions are defined recursively by inclusion of
expressions as operands.

Note also, that an operand normally must precede the operator.
Only the unary operators + and - may precede an expression (or
follow another operator without any intervening operand) and thus
operand1 is optional only this case. :

The assembler operators have been listed already, but the list is
repeated here for convenience:

B  Bit alignment (shift) operator
Addition (plus)
Subtraction (minus)
Multiplication

Division

And

Or

Less than

<= Less than or equal to
== Equal to

>= Greater than or equal to
> Greater than

<> Not equal to

+

N * |

A\ 1=-

Operator hierarchy

The recursive definition of the concept of expression means, that
actual expressions may ocontain several operands and operators in
sequenice. The operators appearing in any one expression may be of
more than one type (i.e. arithmetical, logical or relational),
and to ensure that evaluation of expressions proceeds without
ambiguity the following rules apply:

Operators are ranged in three levels of precedence,
which are numbered 1, 2 and 3, and of which level 1
takes precedence over level 2, which will again take
precedence over level 3.

Expressions involving operators in more than one level
of precedence will be evaluated in the following way:
all operations indicated by an operator in level 1 will




38

be performed first; thereafter all operations indicated
by operators in level 2 will be performed and finally
all operations involving level 3 operators conclude the
evaluation.

Expressions or parts of expressions involving operators
of only one level of precedence will be evaluated from
left to right.

The order of evaluation implied in the levels of prece-
dence of the operators may be changed by enclosing an
expression or parts of an expression in parentheses;
those expressions or parts of expressions enclosed in
parentheses are evaluated prior to any remaining parts
of the complete expression.

Parts of an expression enclosed in parentheses are
themselves evaluated subject to the above rules. (This
means that nesting of parentheses is allowed.)

The levels of precedence of the individual operators are as
follows:

Level 1 (highest): B
Level 2: + =-* /& !
Level 3 (lowest): < <= = >= > <

There is no check for overflow during evaluation of an expres-—
sion. Expressions (or parts of expressions) involving

relational operators will as the result of the evaluation yield
either absolute zero (false) or absolute one (true). This is
shown in the following examples where the values X=7 and ¥=5 have
been assumed:

==Y yields 000000
X>Y - 000001
X-Y+3< >Y - 000000
X&Y== - 000000
(X==Y) ! (X-Y>=0) - 000001

The last two examples above are also examples of the use of the
logical operators & and !. While the last example is fairly
straightforward in the sense, that the two relational expressions
enclosed in parentheses each yield a logical value and thus in
reality become logical operands for the ! - operator, the last
example but one is a little more unusual. The situation becomes




39

clear, however, when it is taken into account, that the logical
operations & and ! are subject to the following rules:

The logical operations are effected as a bit-by-bit
comparison of the two sixteen-bit operands.

The logical AND (&) will yield the result 1 in a spec-
ific bit position if and only if both operands have a
digit 1 in that bit position.

The logical OR (!) will yield the result 1 in a spec-
ific bit position if either of the operands or both
have a digit 1 in that bit position.

These rules can be illustrated by the following examples:

054625, & 063571, yields 040421

8 8 8

To realize this, consider the bit configurations:

0546258 = 0 101 100 110 010 101

063571L= 0 110 011 101 111 001

0546255 & 0635718 = 0 100 000 100 010 001 = 0404218
0546258 ! 0635718 yields 0777758

Similarly:

054625, = 0 101 100 110 010 101

063571, = 0-110 011 101 111 001

054625, ! 063571, = 0 111 111 111 111 101 = 077775

8 8 8

The rules governing the modus operandi of the bit alignment
(shift) operator B also merits a more detailed explanation: This
operator will shift the entire bit configuration of gggrand1 a
number of positions to the left; in doing this the high—order
bits of the original gpgrand1 will be lost as they "overflow"

the leftmost bit position, while the low-order bits of the origi-
nal gEgrand] will be replaced by zeroes in the rightmost bit
positions. The number of places, which the bit configuration will
be shifted, is indicated by operan o the value of which indi-
cates the bit position to which the original bit 15 has been shif-
ted. To clarify the operation, consider the number: 013043

8'
which will have the following bit configuration:




40

013043: 0 001 011 000 100 011
then:
01304 3B9 yields: 1 000 100 011 000 000

In this example it has been assumed, that a current radix 8 is in
force, but it should be noted, that even then only operand1

will be interpreted to this radix, while operand2 regardless

of this will be interpreted to radix 10. If it is desired to have
operand2 interpreted in current radix it must be enclosed

in parentheses; thus the same result as above will occur if the
expression is given the form: '

013043B(11)

Due to the fact, that to shift a binary number one bit position
to the left corresponds exactly to a multiplication by 2, the
result of the shift operation can also be given as:

operand1 *Qxk% (15 — operandz)

Where operqggz (as mentioned before) is assumed to be
taken to radix 10, and where ** denotes exponentiation,

Examples of the shift operation are given below. In these
examples it has been assumed, that current radix = 8, and they
show the result of the operation in binary as well as in octal
representation:

13043B15 0 001 011 000 100 011 0130438
13043B12 1 011 000 100 011 000 1304308
13043B10 1 100 010 001 100 000 1421408
13043B6 0 100 011 000 000 000 0430008
13043B3 0 011 000 000 000 000 0300008
13043B0 1 000 00C 000 000 000 1000008

The two operands on either side of the B operator may of course
themselves be expressions, as in the examples below, where the
following values have been assumed: X = 138,Y = 15

8
(X+25)B(Y*3-37) 0100008
( X+25BY) *3-37 0003768
(X+25)BY*3-37 0005418
(X+25)BY*(3-37) 1710008

It has been mentioned before, that the shift operator may be

mistaken for a digit; similarly it may be mistaken for a (part of a)




3.2.2

41

symbol appearing as operand1. In such cases the - conven-
tion may be used, or the number or symbol preceeding the shift
operator may be enclosed in parentheses, as in the following
example:

(X)B(Y * 3 - 37).
Further examples of evaluation of expressions are given below
(where the values of X and Y are the same as above):

X*(Y-10) /Y 0000068
X*Y-Y/10 0002168
(15+X)*(Y-10)+27/X 0001728
(((15+X)+Y)/3+Y)*7 0002578
15+X+Y/3+Y*7 0001678

Relocation Characteristics

It has previously been mentioned, that in addition to a numerical
value symbols (and addresses) have associated to them a reloca-
tion characteristic, which will ultimately come into effect at
the time when the object program is loaded into core memory prior
to execution.

During assembly the relocation characteristic will determine
which of the three available program counters should be utilized
for addressing purposes at any given instant. This obviously
indicates, that relocation characteristics of a specific expres-
sion cannot be completely free from restrictions, and conse-
guently the following rules must be observed:

An expression cannot simultaneously contain both normal reloca-
table and page zero relocatable operands.

An expression can simultaneously contain absolute relocatable and
either normal relocatable or page zero relocatable operands (but
not both) subject to the restrictions implied in the following
example, in which are also listed the resulting relocation
characteristic of the expression as well as the numeric fields
and the flags given in the corresponding output listing:




42

000012 .LoC 10. ;
000007 ABS= 7 ; ABSOLUTE RELOCATABILITY
000003 RE]= .43 ; RELOCATABLE
00000000016 ABS+ABRS ; RESULT ARSOLUTE
00001' 000012’ ABS+REL ; RESULT RELOCATABLE
00002'000006" REL+RFL ; RESULT BYTE RELOCATABLE
00003' 000000 ABS-ABS ; RESULT ARSOLUTE
000041177774’ REI~ARS ; RESULT RELOCATABLE
00005 ' 000000 REI~REL ; RESULT ABSOLUTE
C0006' 000061 ABS*ABS ; RESULT ABSOLUTE
00007 ' 000001 ABS/ARS ; RESULT ABSOLUTE
00010' 000007 ABS&ABS ; RESULT ABRSOLUTE
00011000007 ARS!ARS ; RESULT ABSOLUTE
00012' 003400 (ABS)B(ABS) ; RESULT ARSOLUTE
00013' 000000 REL==ABS ; RESULT FALSE
000141000001 REL<>ARS ; RESULT TRUE

All operations involving the relational operators will always
have a result of absolute relocatability. If the operands are not
of the same relocation charateristic, the result of the evalua-
tion will always be "false", except if the operator is <> in
which case the result will be given as "true". Note that the
actual values of the operands will in this situation be of no
consequence.

In addition to those rules of application shown in the example
above, one other possibility exists. This is a non-standard
extension of the concept of relocatability and is embodied
through the medium of the .EXTA directive; further details of
this must be sought in the description of the said directive in
section 4.6 of this manual.

All other possible combinations of relocation characteristics of
operands than those already mentioned are unconditionally
illegal.

Note: The present versions of the MUS/DOMUS operating systems
for the RC 3600 series computers do not include imple-
mentation of page zero relocation characteristics.




3.3

3.3

43

Instructions

Basically any program consists of a sequence of instructions,
whose function is to convey information to the computer about the
operations to be performed. Evidently the information must be
made available to the computer in a form compatible with the
capabilities of the computer, that is: as a sequence of binary
digits.

Instructions are formatted into a number of fields, which in the
course of the assembly process are translated into one (or two)
word(s) of 16 bits. The first field of the instruction format is
a semi-permanent symbol - called the instruction mnemonic - after
which follows a number of fields separated by space, comma or
tabulation characters. The fields following the instruction
mnemonic must of course correspond in number and type to the
requirements of the format specified for the actual instruction
category.

The RC 3600 series computer will recognize a series of basic
instructions, which will fall into a number of categories. To
each category a corresponding directive exists, enabling defini-
tion of semi-permanent symbols within the various categories.
These are:

Instruction Defining
category directive
Arithmetic and lLogical (AL) JDALC
Extended AL (2 accumulators, no skip) .DISD
Program Flow Control DMR
Data Transfer .DMRA
Count and Destination .DICD
Input/Output (with accumulator) DIOA
Input/Output (without accumulator) .DIO
Central Processor Functions (1st type) DIAC
Central Processor Functions (2nd type) .DUSR
Extended Operation DXOP

Arithmetic and Logical Instructions

The source format of an arithmetic and logical instruction is:

mnemonic<carry><shift>Aacshacd<Askip>




44
In this format the individual fields characterized are:

mnemonic one of the following semi~-permanent symbols:
ADD SUB NEG ADC MOV INC COM AND

carry an optional memonic specifying the state of the carry
bit

shift an optional mnemonic indicating shift action

acs one of the digits 0, 1, 2 or 3 indicating which accumu-

lator is to be used to provide data for the operation

acd one of the digits 0, 1, 2 or 3 indicating which accumu-
lator is to be used to receive data from the operation

skip an optional mnemonic indicating possible skip action

Not included in the above description of format, the character #
may be added anywhere in the source line. If this is done, the
assembly process will place the digit 1 in bit position 12 of the
assembled instruction word instead of the digit 0. Bit 12 is the
no-load bit, and a digit 1 in this position will mean, that
operation output (from the shifter of the arithmetic unit) will
not be loaded into the destination accumulator.

The word containing the assembled instruction will be structured
in the following way:

operation - ; .
1 acs acd code shift carry # skip

[ I I |1 | ||

© 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
The operation code and effect of the eight AL instructions are:
ADD 110 Adds the contents of source accumulator and destination

accumulator and places the result in destination

accumulator

SUB 101 Subtracts the contents of source accumilator from those
of destination accumulator




NEG 001

ADC 100

MOV 010

INC 011

coM 000

AND 111

45

‘Forms the negative (two's complement) of the contents

of source accumulator and places it in destination
accumulator.

Adds the logical complement of the contents of source
accumulator to the contents of destination accumulator.

Performs the shift operation indicated in the
instruction on the contents of source accumulator and
places the result in the destination accumulator.

Increments the contents of source accumulator by one
and places the result in destination accumulator.

Forms the logical complement of the contents of the
source accumulator and places the result in destination
accumilator.

Forms the logical "and" of the contents of source and
destination accumulators and places the result in
destination accumulator.

The optional mnemonics controlling the "carry", "shift" and
"skip" actions, the corresponding bit configurations and
consequent effects are given in the following list:

00
Z 01
0 10
C 11

Leaves carry bit unaltered
Sets carry bit to zero
Sets carry bit to one

Sets carry bit to the complement of its present value




Shift:

00

Skip:
000
SKP 001

SzC 011

SNC 011
SZR 100

SNR 101

SEZ 110

SBN 111

46

No shift operation performed

Shifts the result of the operation one bit to the left
before placing it in the destination accumulator

Shifts the result of the operation one bit to the right
before placing it in the destination accumulator

Exchanges the two 8-bit halves of the result of the
operation before placing it in the destination
accumulator

No skip - proceed with the next sequential instruction

Always skip next seguential instruction

Skip next sequential instruction if carry bit equals

Zero
Skip next
Skip next

Skip next
zero

Skip next
operation

Skip next
operation

sequential
sequential
sequential
sequential
result (or

sequential
result are

instruction if carry bit equals one
instruction if result equals zero
instruction if result unequal to
instruction if either carry or
both) equals zero

instruction if both carry and
unequal to zero

More detailed information on the organization of
arithmetic and logical operations and the associated
instructions can be found in: RC 3603 Programmer's
Reference Manual




47

3.3.2 Program Flow Control Instructions
The source format of program flow control instructions may be
...... given either of the following two forms:

mnemonic A displacement A mode
mnemonic A address

In these formats the individual fields characterized are:

mnemonic one of the following semi-permanent

‘‘‘‘‘‘‘ symbols:

JMP JSR ISZ DSZ

displacement any legal expression which will produce an

eight-bit integer between —2008 and
+1778
,,,,, mode one of the digits 0, 1, 2 or 3 indicating

which mode of effective address calcula-
tion is to be applied

address any legal expresion which will produce an
eight-bit integer in either of the fol-
lowing two intervals: 0 to +3'778 or
—2008 to +177

8

Not included in the above description of format, the character @

may be used as a break character anywhere in the source line. If
_ this is done, the assembly procees will result in the digit 1
being placed in bit position 5 of the assembled word instead of
the digit 0. Bit 5 is the indirect addressing bit, and the digit
1 in this position will mean, that the address given in the
instruction contains in itself the address to be used during
execution of the instruction. (This address may also be an
indirect address, thus continuing the addressing chain.)

The word containing the assembled instruction will be structured
in the following way:

0O o o operati-l o1 . ode displacement/address
on code

| 1 | | I I I A
O 1 2 3% 4 5 6 97 & 9 10 11 12 13 14 15




3.3.2.1

48

The operation code and effect of the four program flow control
instructions are:

JMP 00 ILoads the effective address into the program counter,
and thus executes an unconditional jump to this address.

JSR 01 Increments current value of program counter by one and
loads this into accumulator 3; subsequently loads the
effective address into the program counter and thus
executes a jump to this address. '

ISz 10 Increments contents of effective address by one. If the
result of this incrementation is zero, the next sequen-
tial instruction is skipped.

DSZ 11 Decrements contents of effective address by one. If the
result of the decrementation is zero, the next sequen—
tial instruction is skipped.

Addressing The action of program flow control instructions
depends in all cases on the result of a calculation of effective
address according to the information contained in the instruc-
tion. Calculation of effective address may be carried out in
slightly different ways as outlined in the following section.

If the format of the source instruction corresponds to the first
of the two forms given on the preceding page, the addressing mode
will be directly included in the instruction, and will have the
following effect:

mode = 0: Page zero addressing. Index bits will be 00. In this
addressing mode the number given in displacement is
taken directly to be the effective address. Thus the
effective address will lie in the range from 08 to
3778. This first block of 256 (4008) words in
the CPU memory is known as page zero.

mode Relative addressing. Index bits will be 01. In this
addressing mode the effective address is found by
adding the number given in displacement to the contents
of the program counter. As the program counter contains
the address of the instruction currently being execu-
ted, the effective address calculated will lie in a
block of 4008 words distributed evenly on either side

of the current instruction.

]
—
.




49
mode = 2: Index register addressing. Index bits will be 10. In
this addressing mode the effective address is found by
adding the value of displacement to the contents of
accumulator 2. As the contents of accumulators are not
subject to any limitation, the effective address may be
any address inside 64K words of core memory.

mode = 3

Index register addressing. Index bits will be 11. In
this addressing mode the effective address is found by
adding the value of displacement to the contents of
accumulator 3.

If the format of the source instruction corresponds to the second
of the two forms given previously, the addressing mode will
depend on the value of address and will be determined according
to this by the assembler.

If the value of address lies in the interval (program counter
-200_,) < address <(program counter +1778), the assembler will

set 1ndex to 01 and proceed as outlined for addressing mode = 1,
that is: the displacement field of the assembled instruction word
will be given the value (address - value of program counter). If
address is not in the interval as stated above, but is a value
between 0 and 3778’ the assembler will set the index bits to 00 and
determine the displacement field of the assembler instruction
according to the following rules:

If address is absolute, the displacement field is set to address

If address is assembled with the directive .ZREL, and thus page
zero relocatable, the displacement field is set to address with
page zero reloaction. The line will be flagged with a minus sign
in column 16 of the program listing

If address is assembled with the directive .EXTD, that is:
externally defined, the displacement will be set to the
externally specified value. The line will be flagged with a
Dollar sign in column 16 of the program listing.

All addressing mentioned above tacitly assumes, that indirection
is not in force. If it is, the information will still apply with

the modifications consequent of indirect addressing.

If the expressions yielding address or displacement of the source




3.3.3

50

instruction does not produce a value within the ranges mentioned
above, the assembly will produce an A code (addressing error) in
the error listing.

NOTE: Further information about addressing can be found in:
RC 3603 Programmer's Reference Manual.

Data Transfer Instructions
The source format of data transfer instructions may be given
either of the following two forms:

mnemonic A accumulator A displacement A mode
mnemonic A accumulator A address

In these formats the individual fields characterized are:
mnemonic one of the following semi-permanent symbols:
LDA STA
accumulator one of the digits 0, 1, 2 or 3 indicating the
accumulator to receive or provide the data to be

transferred

displacement same as for program flow control instructions

mode same as for program flow control instructions

address same as for program flow control instructions

As in the description of the program flow control instructions,
the character @ may be used as a break character anywhere in the
source line of data transfer instructions and with the same
effect.

The word containing the assembled instruction will be structured
in the following way:

OPera- . ccum-
0 tion <>] index displacement
[ lator
code ] I l | l I | I |

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15




3.3.4

3I3I4I1

51

The operation code and effect of the two data transfer
instructions are:

LDA 01 Loads the contents of the memory location identified by
the effective address calculation into the accumulator
specified in the instruction

STA 10 Stores the contents of the accumulator specified in the
instruction in the memory location identified by the
effective address calculation.

As previously mentioned, addressing follows the same rules as
those given for program flow control instructions.

Input/Output Instructions

Input/output instructions come in four different forms, viz.:

Input/output instructions with accumulator
Input/output instructions without accumulator
Input/output instructions without device code
Input/output instructions without arguments

The various forms of I/O instructions will be discussed in the
following section.

Input/output instructions with accumulator. The source format of

instructions of this type is:

mnemonic<flag> A accumulator A device-code

In this format the individual fields characterized are:

mnemonic

flag

accumulator

device-code

one of the following semi-permanent symbols:
DIA DIB DIC DOA DOB DOC

an optional memonic indicating the device status
one of the digits 0, 1, 2 or 3 indicating the
accumulator to receive or provide data for

input/output

any legal expression which will produce a six-bit
integer specifying the input/output device




52

The word containing the assembled instruction will be structured

in the following way:

0 1 1 accumu- | operation flag device=-code
lator code
L | P | | I I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The operation code and effect of
instructions of this type are:

DIA 001 Places the contents of
selected device in the
instruction

DIB 011 Places the contents of
selected device in the
instruction

DIC 101 Places the contents of
selected device in the
instruction

DOA 010 Places the contents of
instruction in the "A"
device

DOB 100 Places the contents of
instruction in the "B"
device.

DOC 110 Places the contents of

instruction in the "C"
device

the six input/output

the "A" input buffer on the
accumulator specified in the

the "B" input buffer on the
accumulator specified in the

the "C" input buffer on the
accumulator specified in the

the accumulator specified in the
output buffer of the selected —

the accumulator specified in the
output buffer of the selected

the accumulator specified in the
output buffer of the selected

The optional mnemonics controlling the device status flag, the
bit configuration and the consequent effects are given in the

following list:




3.3.4.2

53
00 Does not affect the device status
s 01 Starts the device
c 10 Idles the device

P MM Pulses the special in-out bus control line. The actual
effect will depend on the device selected

The device codes for various peripheral devices are listed in
appendix B.

NOTE: If input/output instructions are used with the device
code 778, the instructions will lead to some special
functions being performed, among other things involving
the state of the interrupt system. For more detailed
information of this refer to the RC 3603 Programmer's
Reference Manual.

Input/output instructions without accumulator. The source format
of instructions of this type is:

mnemonic<flag> A device—code

In this format the individual fields characterized are:
mnemonic one of the following semi-permanent symbols:
SKPBN SKPBZ SKPDN SKPDZ  NIO

flag an optional memonic controlling device status (only
applicable to NIO symbol)

device—code any legal expression which will produce a six-bit
integer specifying the input/output device.

The word containing the assembled instruction will be structured
in the following way:

operation | control
code code

R N N N N T N S N N O T

device~code

0 1 25456789101112151415

The operation code, control bits and effect of the five




3.3.4.3

instructions

SKPBN 111 00

SKPBZ 111 01

SKPDN 111 10

SKPDZ 111 11

NIO 000 xx

The optional
which can be

54
of this type are as follows:

Tests the state of the Busy flag of the peripheral
device indicated in the instruction. If the device
is currently in operation (Busy = 1) the next
sequential instruction will be skipped

Tests the state of the Busy flag of the peripheral
device indicated in the instruction. If the device
is currently not in operation (Busy = 0) the next

sequential instruction will be skipped

Tests the state of the Done flag of the peripheral
device indicated in the instruction. If the Done
flag equals one the next sequential instruction will

be skipped

Tests the state of the Done flag of the peripheral,
device indicated in the instruction. If the Done
flag equals zero the next sequential instruction
will be skipped

Sets the Busy and Done flags according to the
optional mnemonic and corresponding control code.

memonics controlling the device status flag and
used in conjunction with the NIO instruction, the

corresponding control code and resultant effects are as follows:

00 Does not affect the device status

s O Starts the device by setting Busy = 1 and Done = 0

c 10 Idles the device by setting Busy = 0 and Done = 0

P 11 Pulses the special in—out bus control line. The actual
effect will depend on the type of device selected.

Input/output

instructions without device codes. Among the device

codes 778 refers to the Central Processing Unit (CPU) and will

- when used with some of the previously mentioned instructions -
lead to certain special functions being performed. Some of these
special functions do occur with such regularity, that equivalent

instructions

dispensing with the need for the device code have




55

been defined, i.e. these instructions will always be assembled
with digits 1 in position 10 to 15 of the instruction word.

Of these instructions three uses an accumulator during execution,
which means, that the accumulator must be specified in the source
instruction, while four do not require any arguments at all. The
source formats of instructions of these different types are
accordingly:

for the first type:

mnemonic A accumulator

In this format the individual fields characterized are:

mnemonic one of the following semi-permanent symbols:
READS INTA  MSKO

accumulator one of the digits 0, 1, 2 or 3 indicating the
accumulator used to receive or provide data during
execution

and for the second type:

mnemonic

This field must contain one of the following semi-permanent

symbols:
INTEN INTDS IORST HALT

The word containing the assembled instruction will be structured
in the following way:

o 1 2 accu- 1 1 1 1 1 1
mulator operation code

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The operation codes and associated effects of these seven instruc-
tions are as follows:

READS 00100 Places the current setting of the data switches
situated on the front frame of the CPU board in the




56
accumulator specified in the instruction

INTA 01100 Places the six bits of the device code of that inter-
rupting peripheral device, which is physically
closest to the CPU on the I/0 bus, in position 10 to
15 of the accumulator specified in the instruction.
The remaining bits in the accumulator are set to 0.

MSKO 10000 Transfers the mask bits in the accumulator specified
to the peripheral devices in accordance with their
priority level, thereby allowing program control of
the interrupt system response

INTEN 00001 Sets the Interrupt flag digit
interrupts to take place

1, thus permitting

0, thus preventing

INTDS 00010 Sets the interrupt flag digit
interrupts from taking place

IORST 10110 Resets all connected input/output controllers to an
idle state.

HALT 11000 Suspends all processing in the CPU

In the case of the last four instructions the accummulator field
will contain the bits 00. The special instructions referred to
above are equivalent to the general I/0 instructions, although as
issued with specific values of the various fields. The equi-
valents are given below:

READS equivalent to: DIA accumulator, CPU
INTA - -: DIB accumulator, CPU
MSKO - —-: DOB accumulator, CPU
INTEN - -: NIOS, CPU

INTDS. - —: NIOC, CPU

IORST - -: DICC O, CPU

HALT - -: DOC O, CPU




4.1

57

Permanent Symbols

Permanent symbols are as previously mentioned an integral part of
the assembler and they cannot be altered in any way. The majority
of permanent symbols are directives, that is: their purpose is to
direct the assembly process in some predetermined way. Those
permanent symbols, that are not directives, are used to represent
numerical values of internal assembler variables, but is should
be noted, that a large propotion of directives may also perform
this function in addition to their primary duty.

This chapter describes the individual permanent symbols and the
syntactic rules pertaining to their application in the program,
as well as the oconsequent effects of this.

The chapter falls in two parts: a general outline of the various
classes of permanent symbols and a listing in alphabetical order
of the individual permanent symbols. If a directive may also be
assigned a value, this will be included in the description of the
directives.

The general outline section of the chapter dealing with the
various classes of permanent symbols is subdivided according to
the function of the symbol as follows:

Source interpretation

Program structure
Semi-permanent symbol definition
External reference

Macro definition

Source Interpretation

Permanent symbols of this class make it possible for the pro-
grammer to ensure, that the assembler interprets the source pro-
gram file in a predetermined way - and especially so where it is
desired, that this interpretation should deviate from the inher-
ent assembler interpretation.

In addition to this, permanent symbols of this class are used to
determine the source input structure and to influence the various
possible options available for assembler output.




4.2

4.3

58

The permanent symbols of this class are the following:

TITL «RDX RDXO
«TXT «TXTM «TXIN
+END LEOT

LIST EJEC JMSG
«NOCON .NOLOC «NOMAC

Program Control

Permanent symbols of this class make it possible for the pro-—
grammer to exert control over the final logical structure of the
program as assembled, for instance by allowing him to define
requirements in terms of the internal CPU configuration and to
utilize features of the internal CPU structure.

Furthermore permanent symbols of this class will enable repeti-
tive and conditional assembly to be prescribed, and finally they
will make it possible to call into effect variations of the re-
location characteristics.

Permanent symbols of this class are the following:

«BIK LOC .
«NREL «ZREL

.DO .IF .GOTO
+ENDC

.PUSH .POP .TOP
.PASS

Semi-permanent Symbol Definition

Permanent symbols of this class make it possible for the pro-
grammer to define his own semi-permanent symbols - including the
possibility of re-defining or deleting existing semi-permanent
symbols, both his own and those pre—defined by RC.

All permanent symbols of this class (except .DUSR) correspond to
a definite type of semi-permanent symbol; consequently those
semi-permanent symbols defined by application of permanent
symbols belonging to this class must be used with the appropriate
formatting of the type in question. Otherwise a format error will
be indicated during assembly.




4.4

4.5

59

As this formatting involves specific fields in the machine word
being produced during assembly, care must also be taken to ensure,
that the values assigned to the fields can be accommodated in
those fields. Otherwise overflow will similarly be indicated dur-
ing assembly.

If a specific user-symbol is defined as a semi-permanent symbol
more than once in the same source program, the symbol table (see
section 3.1.3) will contain the semi-permanent symbol in the form
defined the latest.

In the alphabetic section of this chapter the description of per-
manent symbols of this class will include a description of the

inherent format.

Permanent symbols of this class are the following:

.DALC .DIO .DIOA
.DIAC DICD .DISD
«DMR .DMRA

.DXOP DUSR

«XPNG

External Reference

Permanent symbols of this class make it possible for the program-—
mer to define symbols that can be referenced from several, separa-
tely assembled, programs thus establishing a means of communica-
tion between individual programs.

Permanent symbols of this class are the following:

+ENT EXTA
<EXTD LEXTN EXTU

Macro Definition

Permanent symbols of this class are used to control the structur-—
ing of macro definitions inside the assembled program and contains
the following permanent symbols:

MACRO «ARGCT MCALL




4.6

60

Alphabetic List of Permanent Symbols

Symbol: .

Type: Symbol

Class: Program control

Syntax: .

Effect: -

Value: The numeric value assigned to the symbol . will be egual
to that of the program counter. Similarly the relocation
characteristic of . will be equivalent to that of the
program counter in its current state.

Default: -

Example:

00000 000000 . ;  VALUE OF CURRENT PC

00001 000004 JMP +3 5 JUMP WITHOUT LABEL




61

Symbol: +ARGCT

Type: Symbol

Class: Macro definiton

Syntax: <ARGCT

Effect: -

Value: This symbol will have a value equal to the number of
arguments actually employed in the most recent macro
call.

If the .ARGCT symbol is used in situations, where it

has not been specified in a macro definition, the value
of the symbol will be -1

444444 Default: -
Example:
00000 177777 ( «ARGCT) ; OUTSIDE MACRO
.MACRO LIST ; DEF. MACRO
I= 1 XX
.DO .ARGCT  ;*¥ FOR EACH ARG. DO
. i1 ;¥*  STORE ARG.
= I+1 ;**
. ENDC JE¥
- yA ; END OF MACRO DEF.
LIST 1,2 ; CALL LIST WITH 2 PARMS.
B 000001 = 1 R
000002 .DO LARGCT  ;** FOR EACH ARG. DO
00001 000001 1 ;¥¥ - STORE ARG.
000002 = I+1 JRx
- ' .ENDC J 6
00002 000002 2 ;¥%  STORE ARG.
000003 = I+1 Rl
.ENDC JEx
LIST 1,2,3,4,5 ;CALL LIST WITH 5 PARMS.
000001 = 1 JE¥
000005 .DO ARGCT  ;¥* FOR EACH ARG. DO
- 00003 000001 1 ;¥¥  STORE ARG.
000002 = I+l JE¥
.ENDC JEE
00004 000002 2 :*¥¥  STORE ARG.
000003 = I+l *%

we we W

**




62

00005 000003 3 ;¥¥  STORE ARG.
000004 = I+1 S
+ENDC (X
00006 000004 4 ;¥# STORE ARG.
000005 = I+1 JE%
.ENDC J*
00007 000005 5 ;¥*%  STORE ARG.
000006 = I+1 SR
-ENDC JR*
LIST ; CALL LIST WITH NO PARMS.
000001 = 1 JEX
000000 .DO .ARGCT ;** FOR EACH ARG. DO
;% STORE ARG.
= I+l X3

v

*%




63

Symbol:  .BIK

Type: Directive

Class: Program control
Syntax: .BLK A expression

- Effect: This directive will ensure reservation of a block of

consecutive words in core memory. The value of expres-—

sion indicates the actual number of words in the block;

this value will also be used for incrementation of the

program counter, thus ensuring that the continuation of

...... assembly does not lead to interference with the reserved
i block.

""" Value: None

Default: -
Example:
.NREL
00000' 010402 182 CNTRS 5 COUNTERS(OQ) := COUNTERS(0)+1;
00001'024403 LDA 1 CNTRS+2 ; ACl:= COUNTERS(2);

00002'000007 CNTRS: .BLK 7 ;  INTEGER ARRAY: COUNTERS(7);




Symbol:

Class:

Syntax:

Effect:

64
«DALC
Directive
Semi-permanent symbol definition

DALC A user-symbol =((instruction):(expression))

This directive will define user—symbol as a semi-perma-
nent symbol to which is assigned the value of either
instruction or expression. Furthermore use of the

semi-permanent symbol will imply the use of a format
corresponding to that of an arithmetic and logical in-
structions:

<Aexpr.>

semi-perm-symbol A expr A expr 3

2

which will be assembled in the following way:

expressionl expression

! exgre581on2

(A T T T T 11T
01 2 % 4 5 6 7 8 9 1011 12 13 14 15

3

NOTE: The character # can be included as a break char-
" acter when using the semi-permanent symbol. If
so, the assembly process will place a digit 1 in
bit 12 of the word, thus inhibiting load into the
destination accumulator.

NOTE: A user-symbol defined once may be re—defined in a
subsequent application of the .DALC directive.
The latest definition will always be the one

applying to user-symbol.

NOTE: If the symbol defined as semi-permanent by the
use of this directive consists of three charac-
ters these may be followed by a fourth character
as an optional mnemonic corresponding exactly to
the rules pertaining to arithmetic and logical
instructions as outlined in section 3.3.1 and
having the identical consequences with regard to
the state of the "carry" and "shift" bits.




Value: None
Default: -
Example:
101220 .DALC

00000 125220
00001 135225
00002 063077

65

>

>

; ACl:

; DEFINE 1/2 OPERATION

ACl / 2;
AC3:= ACl / 2;
IF AC3=0 THEN STOP EXECUTION;




Symbol:

Class:
Syntax:

Effect:

Value:
Default:

Example:

020040 .DIAC

00000 030040

66
.DIAC
Directive
Semi-permanent symbol definition

.DIAC A user-symbol = ((instruction):(expression))

This directive will define user-symbol as a semi-perma-
nent symbol to which is assigned the value of either
instruction or expression. Furthermore use of the
semi~permanent symbol will imply the use of a format of
a Central Processor Function (1st type) instruction,
i.e. requiring one accumulator:

semi-permanent-symbol A expression

which will be assembled in the following way:

expression
SES/ EEEEEEEEEEE
0 1 2 3 5 6 7 8 9 1011 1213 14 15

None

LDCUR= LDA 0 CUR ; DEFINE LOAD CUR;

IDCUR 2 . LOAD AC2 WITH CUR;




Symbol:
Type:
Class:
Syntax:

Effect:

Value:
Default:

Example:

67
.DICD
Directive
Semi-permanent symbol definiton

DICD A user—symbol = ({instruction):(expression))

This directive will define user—symbol as a semi-per-
manent to which is assigned the value of either instruc-—
tion expression. Furthermore the use of the semi-per-
manent symbol will imply the use of a format embody-

ing two fields of which one will be that corresponding
to the destination accumulator, while the other is a
numeric counter:

counter
I acd
HEEEEREEREN

01 2 3 4 5 6 7 8 9 1011 1213 14 15

None

102414 .DICD SKPEQ= SUB # 0,0 SZR ; DEFINE "SKIP IF EQUAL";

00000 112414

SKPERQ 1,2 ; IF ACl=AC2
; THEN THIS
; ELSE THAT;




68

Symbol: .DIO
Type: Directive
Class: Semi-permanent symbol definition
Syntax: .DIO A user-symbol = ((instruction):(expression))
Effect: This directive will define user-symbol as a semi-per-—
manent symbol to which is assigned the value of either
instruction or expression. Furthermore, use of the
semi-permanent symbol will imply the use of a format
corresponding to that of an Input/Output instruction
without accumulator field:
semi-permanent-symbol A expression
which will be assembled in the following way:
expression
)
01 2 % &k 5 6 7 8 9 1011 12131415
NOTE: If the symbol defined as semi-permanent by the use
of this directive oonsists of three characters
these may be followed by a fourth character as an
optional mnemonic corresponding exactly to the
rules pertaining to Input/Output instructions as
outlined in section 3.3.4.2 and having the iden-
tical consequences with regard to the state of
the "busy" and "done" bits.
Value: None
Default: -
Example:
060100 .DIO GOI.0= NIOS 0 ; DEFINE "GO INPUT/OUTPUT"
000076 MYDEV= 62. ; DEFINE MYDEF DEVICE CODE

00000 060176

GOI.O MYDEV ; START(MYDEV) ;




Symbol:
Type:
Class:
Syntax:

Effect:

Value:

Default:

Example:

69
.DIOA
Directive
Semi~-permanent symbol definition

.DIOA A user-symbol = ((instruction):(expression))

This directive will define user-symbol as a semi-perma-—
nent symbol to which is assigned the value of either
instruction or expression. Furthermore use of the semi-

permanent symbol will imply the use of a format corre-
sponding to that of an Input/Output instruction with an
accumulator field:

semi-permanent-symbol A expression1 A expression2

which will be assembled in the following way:

expressio exEression<w~ww«www-1
nﬂ )

V2 )

01 2 3 4 5 6 7 8 9 1011 1213 14 15

Note: If the symbol defined as semi-permanent by the
use of this directive consists of three charac-
ters these may be followed by a fourth character
as an optional mnemonic corresponding exactly to
the rules pertaining to Input/Output instructions
as outlined in section 3.3.4.1 and having the
identical consequence with regard to the state of
the "busy" and "done" bits.

None

062000 .DIOA  MYOUT= DOB 0 O ; DEFINE "MY OUTPUT"

000076
00000 066076

MYDEV=  62. ; DEFTNE "MY DEVICE"

MYourT 1 MYDEV ; OUTPUT(ACL1,MYDEV);




Symbol:
Type:
Class:
Syntax:

Effect:

Value:
Default:

Example:

70
JDISD
Directive
Semi-permanent symbol definition

DISD A user-symbol = ((instruction):(expression})

This directive will define user-symbol as a semi-per-
manent symbol to which is assigned the value of either
instruction or expression. Furthermore, use of the
semi-permanent symbol will imply the use of a format
corresponding to that of an Arithmetic and Logical in-
struction, except that the "carry", "shift" and "skip"
fields are not permitted:

semi-permanent—-symbol A acs A acd

which will be assembled in the following way:

acs acd

e oA

01 2 3 4 5 6 7 8 9 1011 12 1% 14 15

NOTE: Use of the semi-permanent symbol as defined does
not allow the inclusion of the no-load character
# (whereas this character may of course appear
in instruction).

None

101015 .DISD SKPNZ= MOV # 0,0 SNR ; DEFINE "SKIP NON-ZERO"

00000 151015

SKPNZ 2,2 . IF AC2<>0
. THEN THIS
. ELSE THAT;




Value:

Default:

71
«DMR
Directive
Semi-permanent symbol definition

.PMR A user-symbol = ((instruction):(expression))

This directive will define user-symbol as a semi-per—
manent symbol to which is assigned the value of either
instruction or expression. Furthermore, use of the

semi-permanent symbol will imply the use of a format
corresponding to that of a Program Flow Control instruc-
tion:

semi-permanent-symbol A displacement A mode

mode } displacement/address

or:

semi-permanent-symbol A address

which will be assembled in the following way:

01 2 3 4 5 6 7 8 9 1011 12 13 14 15

When the semi-permanent symbol thus defined is used the
fields indicating displacement, mode and address will
conform to the addressing rules as outlined in section
3.3.2.1.

NOTE: The character @ can be included as a break char-
acter when using the semi-permanent symbol. If
so, the assembly process will place a digit 1 in
bit 5 of the word indicating indirect addressing.

None




Example:

010000 .DMR

00000 010002
00001 013003

00002 000000 TOTAL:
00003 000000 VECTO:
00004 000000
00005 000000

72

COUNT= ISZ 0

COUNT TOTAL
COUNT @  VECTO,2

0
0
0
0

>

; DEFINE "COUNT"

; TOTAL:=TOTAL+1;

3

Ve we W W

; VECTO(AC2):= VECTO(AC2)+1;

INTEGER: TOTAL;
INTEGER ARRAY: VECTO (3);




Symbol:
Type:
Class:
Syntax:

Effect:

Value:

Default:

73
DMRA
Directive
Semi-permanent symbol definition

DMRA A user-symbol = (({instruction):(expression))

This directive will define user-symbol as a semi-per-
manent symbol to which is assigned the value of either
instruction or expression. Furthermore, use of the
semi-permanent symbol will imply the use of a format
corresponding to that of a Data Transfer instruction:

semi-permanent-symbolAaccumulatorAdisplacementAmode

or:

semi-permanent-symbolAaccumulatorAaddress

which will be assembled in the following way:

mode
accumulator: displacement/address

3

4 5 6 7 8 9 1011 12 13 14 15

0O 1 2

When the semi-permanent symbol thus defined is used,
the fields indicating accumulator, displacement, mode
and address will conform to the rules outlined in
section 3.3.3 (including the addressing rules in
section 3.3.2.1).

NOTE: The character @ can be included as a break
character when using the semi-permanent symbol.
If so, the assembly process will place a digit 1
in bit 5 of the word, thus indicating indirect
addressing.

None




74

Example:
020000 .DMRA  LOAD=  IDA 0 0 ; DEFINE "LOAD"
00000 024111 LOAD 1 .128 ; ACl:= 128;

ion

00001 023407 IOAD @ 0 EVENT,3 ; ACO:= CUR.NEXT EVENT;




Symbol:

Class:

Syntax:

Effect:

75
.00
Directive
Program Control
DO A expression
This directive will cause repetition of specific source
program lines. Repetion will affect those lines follow-
ing the .DO directive and until the terminating direc-

tive .ENDC occurs. The lines in question will be re-

peated the number of times given by the value of expres-
sion.

NOTE: Repetition can be nested to any depth, in which
case the innermost .DO directive will correspond
to the innermost .ENDC directive and so forth.

Value: None
Default: -
Example:
; INPUT SOURCE TO THE FOLLOWING REPETITION
5 I1S:
; .DO 3
; I ;
. ; I= I+l 5
; .ENDC ; END OF REPETITION
000000 = 0 . CREATE A TABLE
B 000003 .DO 3 ; OF NO'S 0 TO 2.
00000 000000 I ;
000001 = I+1 ;
.ENDC : END OF REPETITION
00001 000001 I ;
000002 = I+l ;
.ENDC : END OF REPETITION
00002 000002 I ;
000003 = I+1 ;
.ENDC ; END OF REPETITION
000000 .DO I==0 ; .DO USED AS CONDITIONAL
2

.ENDC




76
Symbol:  .DUSR
Type: Directive
Class: Semi-permanent symbol definition

Syntax: .DUSR A user-symbol = ((instruction):(expression))

Effect: This directive will define user-symbol as a semi-per-
manent synbol to which is assigned the value of either
instruction or expression. In contrast to other semi-
permanent symbols defined by directives of this class,
the use of a semi-permanent symbol defined by the .DUSR
directive does not imply any specific format. The semi-
permanent synbol thus defined may be used as an
ordinary operand in single precision.

Value: None

Default: -

Example:

000016 .DUSR DISP= 14. ; DEFINE "DISPLACEMENT"
00000 031416 LDA 2 DISP,3 ; AC2:= DISP(AC3);

00001 000022 DISP+4 ; CONST: DISP+4;




Symbol:

Class:
Syntax:

Effect:

Value:
Default:

Example:

77
DXOP
Directive
Semi-permanent symbol definition

.DXOP A user-symbol = ((instruction):(expression))

This directive will define user-symbol as a semi-perma-
nent symbol to which is assigned the value of either
instruction or expression. Furthermore, use of the

semi-permanent symbol will imply the use of a format
containing three fields, of which the first two are ac-
cumilator fields, while the last is an operation field:

semi-permanent-symbol A acs A acd A operation

which will be assembled in the following way:

acs acd F———~—«~«~operation
L %/,N\\\\\\\\\\\

o 1 2 7 8 9 10 11 12 13 14 15
None




Symbol:
Type:
Class:
Syntax:

Effect:

Value:
Default:

Example:

78

EJEC

Directive

Source interpretation

EJEC

This directive will cause ejection of the remainder of
the current page of printer output conforming to the

start of a new page

None

of listing output.




79

Symbol: .END

Type: Directive

Class: Source interpretation

Syntax: END <Aexpression>

Effect: This directive will indicate termination of the source
program input file simultaneously providing an end of
program indication to the loading program. Expression
is an optional argument, the value of which can be used
to specify a starting address for the object program or
a descriptor address for a MUS/DOMUS procesS.

Value: None

Default: -

Example:

00000 000000 END: 0
00001 000001 1

.END END ; END WITH START-ADDRESS




80
Symbol: «ENDC
Type: Directive
Class: Program control
Syntax: «ENDC <Auser-symbol >

Effect: The effect of this directive will depend on the actual
syntax used.

If the syntax used is: .ENDC, then the directive will
terminate repetitive assembly of the lines following a
.DO directive or it will terminate conditional assembly
of the lines following an .IF directive.

If the syntax used is: .ENDC A user-symbol, then the
directive will have the same effect as outlined above,
but it will have the additional effect of suppressing
assembly of the lines following the .ENDC directive.
Suppression of assembly will remain in force until
user-symbol - enclosed in square brackets - is re—en-
countered in a source input line. If user-symbol does
not reappear before end of current source file,sup—
pression will be terminated at that point.

Value: None

Default: -
Example:
000000 .DO 2<>2 ; FALSE
1 5 NOT GENERATED
.ENDC  ELSE 5
00000 000002 2 ; THEREFORE GENERATED
(ELSE] ;
000001 .DO ==2 ; TRUE

00001 000001 1 GENERATED

SO NOT GENERATED

e e W

{(ELSE]




Symbol:
Type:
Class:
Syntax:

Effect:

Value:
Default:

Example:

00000'000012 ENTR1: 10.
00001'000000 ENTR2: O

81
ENT
Directive
External reference

.ENTAuser—symbol1<Auser—symb012....Auser-symbol >

This directive will cause a user—-symbol to be accepted
as globally defined, which means, that a user-symbol
defined within one program can be referenced by other,
separately assembled programs.

Each of the user-symbols appearing in the .ENT directive
must be defined within the program containing this di-
rective. Additionally it must be unique in relation to
other user-symbols defined in programs referencing the
globally defined user—symbol. If this is not the case,
the loader will produce an error message indicating
illegal multiplicity of definitions. Referencing glo-
bally defined user-symbols in other programs is accom—
plished by use of the directives .EXTA, .EXTD, .EXIN or
«EXTU

None

JENT ENTR1 ; DECLARE ENTRIES
JENT ENTR2
NORMAL RHL.

THESE TWO LOCATIONS MAY
BE ADDRESSED FROM OTHER
PROGRAM MODULES

Ve b e e W




Symbol:
Type:
Class:
Syntax:

Effect:

Value:

Default:

Example:

82
EOT
Directive
Source interpretation
JEOT
This directive will indicate the end of a file, but ter-
mination of the complete source program input file will
not be implied.

None

Physical end-of-file or the EM character implies the
.EOT directive, if other source files follow.




Symbol:
Type:
Class:
Syntax:

Effect:

83
EXTA
Directive
External reference

.EXTA A user—symbol A expression

This directive will enable a program to reference a
user-symbol which has been defined in another program,
while it will simultaneously generate a storage word
containing the sum of user-symbol and expression.

The user symbol must be unique in relation to other
user-symbols defined in the program (and in other pro-
grams as well), whereas expression may have any legal
value. Negative values of expression will of course mean,
that the value of user-symbol and expression are actu-
ally subtracted.

Following linkage editing of the programs referencing
each other, the memory location involved will contain
the following value:

(A+R]) + (sign(B)*(abs(B)+R2))

where

A is the value of the external user—symbol de-
fined as an entry in another program

and R2 are the relocation con-
stants used during linkage editing

B is the value of expression
The relocation characteristic of the value as given

above will be in accordance with the rules listed in
the following table:




Default:

Example:

84

Relocation quality of:

user-symbol expression result
absolute any any
any absolute any
positive .NREL positive .NREL byte .NREL
positive .NREL negative .NREL absolute
positive .ZREL positive .ZREL byte .ZREL
positive .ZREL negative .ZREL absolute

All other combinations are illegal.

Note, that by adding a negative .NREL value to an exter-
nal positive .NREL value the result will be an absolute
value, i.e. a size.



85
Symbol: EXTD
Type: Directive
Class: External reference

Syntax: .EXTDAuser-symbol1<Auser-symb012...Auser-symbolq>

Effect: This directive will enable a program to reference one
or more user-symbols which have been defined in other
programs.

The user-symbol must have been declared by use of the
.ENT directive in the programs where they are defined;
they must be unique in relation to other user-symbols
appearing in the different programs.

Globally defined symbols may be used as an address or a
displacement of Program Flow Control instructions or
Data Transfer instructions; they may also be used to
specify the contents of an ordinary 16-bit memory word.
If the symbol is used as a page zero address or as a
displacement care must naturally be exercised to ensure
that its value corresponds to the restrictions pertain-
ing to this particular use (cf. sections 3.3.2 and
3.3.3).

Value: None

Default: -
Example:
LEXTD  DISP ; DECLARE EXTERNAL
JXTD  ADR ; DISPLACEMENTS
. NREL
00000' 000002%.ADR: ADR ; EXTERNAL ADDRESS
00001' 032777 IDA @ 2,.ADR ; EXTD USED AS EXTN

00002'041001% STA 0,DISP,2; EXTD USED AS DISPLACEMENT




86

Symbol: EXIN
Type: Directive
Class: External reference
Syntax: +EXTNAuser-symbol 1<Auser-synbol2 .o .Auser—symbolq>
Effect: This directive will enable a program to reference one
or more user-symbols which have been defined in other
programs.
The user-symbols must have been declared by use of the
«ENT directive in the program where they are defined;
they must be unique in relation to other user-symbols
appearing in the different programs.
Symbols referenced through the .EXIN directive can be
used solely to specify the contents of an ordinary
16-bit memory word; the value of such symbols must
therefore at load time lie in the range from 0 to
177777 .
8
Value: None
Default: -
Examples
JEXTN  PROC ; DECLARE EXTERNAL
LEXTN  VALUE ; NORMALS
«NREL
00000'177777 .PROC:  PROC 3 POINTERS FOR
00001'177777 .VALU: VALUE ; INDIRECT ADDRESSING
00002' 026777 IDA @ 1,.VALU ; LOAD VALUE

00003'006775 JSR @ .PROC ; CALL PROC




87
- Symbol:  JEXTU
Type: Directive
Class: External reference
Syntax: EXTU

— Effect: This directive will affect all symbols which are still
undefined after pass one of the assembly process; such
symbols will - by inclusion of this directive - be trea-

ted by the assembler as if they were listed in a .EXID
directive,

- NOTE: Great care must be exercised when use of this
directive is contemplated, as its inclusion in
- the program will have the consequence of making
the error indication "undefined" (error code: U)
irrelevant. Thus undefined symbols may actually
- be present in the program without any outward
indication thereof.

Value: None

- Default: -
Example:

h .EXTU ; SET EXTU MODE
00000 000001% A ; IMPLICIT .EXTD A

" 00001 024002% LDA 1B ; IMPLICIT .EXTD B




88

Symbol: .GOTO
Type: Directive
Class: Program control
Syntax: GOTO A user-symbol
Effect: This directive will unconditionally suppress assembly
of the lines following the directive. Suppression of
assembly will remain in force until user-symbol - en—
closed in square brackets - is re—-encountered in a
source input line. If user-symbol does not reappear
before the end of current source file, suppression will
be terminated at that point.
Value: None
Default: -
Example:
00000 000001 1 ; NORMAL GENERATION
.GOTO  UNCON
2 3 SKIPPED
3 ; SKIPPED
00001 000004 [UNCON] 4 ; NORMAL GENERATION
00002 000005 5 5 AGAIN




Symbol:

Class:
Syntax:

Effect:

Value:

Default:

89
JIF((E):(G):(L):(N))
Directive
Program control
JF((E):(G):(L):(N)) A expression

These four alternative directives will cause suppression
of assembly of the lines following the .IF directive if
the condition specified in the directive is not satis-
fied.

The condition specified in the directive will depend on
the choice of alternative form as indicated below:

.IFE Assemble if expression is equal to zero
.IFG Assemble if expression is greater than zero
.IFL Assemble if expression is less than zero
.IFN Assemble if expression is unequal to zero

(The data field of the program listing (columns 10 to
15) will be 1 if the condition is true and 0 if the
condition is false).

Conditional assembly will be terminated by the appea-
rance of the .ENDC directive in a subsequent source
input line.

NOTE: Conditional assembly can be nested to any depth,
in which case the innermost .IF directive will
correspond to the innermost .ENDC directive and
so forth.

None




Example:

000007

000000

000001
0000 000002

000001
00001 000003

000000

I=

JIFE

90

I
t+e

.+2

; FALSE

; TRUE

; TRUE

; FALSE




Symbol:
Type:
Class:
Syntax:

Effect:

Value:
Default:

Example:

91
LIST
Directive
Source interpretation
LIST A expression

This directive will control the extent of source list-
ing by the assembler depending on the value of expres-
sion. If the value of expression equals zero listing of
all subsequent lines of source file will be suppressed.
This state will be maintained until an end-of-file mar-
ker appears in the input source file, or until a new
LIST directive with a non-zero value of expression

appears.

If the value of expression does not equal zero the in-
put source file will be listed by the assembler.

NOTE: The .LIST directive will be overridden by a N
switch in the source specification of the DOMAC
command., Both the .LIST directive and the N
switch will be overridden by specifying MODE.O
in the DOMAC command. (cf. Operating Procedures,
chapter 7).

None

Listing of input source file will be produced.




92
Symbol:  ,LOC -
Type: Directive/symbol
Class: Program control
Syntax: .LOC A expression

Effect: This directive will change the current value of the
program counter to that given by expression. Simul-
taneously the relocation characteristic of the program
counter will be made equivalent to that of expression.

Value: When used as an ordinary symbol, the numeric value and
the relocation characteristic assigned to (.LOC) will be -
equal to the current value and relocation characteristic
of the program counter. _

NOTE: An exception to this exists, namely if .LOC is
used in conjunction with the .PUSH directive, thus -
placing the program counter in the assembler
variable stack (cf. .PUSH) and later being
restored.

In this case the value of (.LOC) will be ignored
and only the relocation characteristic will be
affected. The reason for this must be seen in
conjunction with the macro facility; the relative —
value of the program counter may have been alter-
ed within the macro definition and should not be
changed when the program counter relocation cha-
racteristic is restored after exit from the macro.

Default: Zero, absolute

Example: _

001000 LOC 1000 5 SELECT ABS PC:= 1000;
01000 000001 1 > -
001004 LOC  .LOC+3  ; INCREMENT PC WITH 3;



93

Symbol:  MACRO
Type: Directive

Class: Macro definition

Syntax: .MACRO A user-symbol

Effect: This directive will define user-symbol as the name of a
macro definition.

The macro definition must be contained in the lines im-
mediately following the .MACRO directive.

The macro definition is terminated by the appearance of
the character %.

The user-symbol thus used to name the macro definition
can then be used to call the macro in subsequent lines
of the program.

Value: None

Default: -~

Example:
""" MACRO MAC . MACRO DEFINITION
b1 D MAC 11 12 13
{2 5
- 13 ;
7 . END OF MACRO DEF.
B MAC 1,2,3 3 MACRO CALL
| 00000 000001 1 S MAC 1 2 3
00001 000002 2 ;
...... 00002 000003 3 ;
MAC 142, .PASS,3*%4 ; MACRO CALL
00003 000003 142 MAC 1+2 .PASS 3*4
“““ 00004 000001 .PASS :

00005 000014 3*Y 5




94

Symbol: MCALL

Type: Symbol

Class: Macro definition

Syntax: «MCALI

Effect: -

Value: This symbol will have a value which depends on whether
or not that macro definition, in which the symbol ap-
pears, has been called during the current pass of the
assembler. On the first call of the macro definition,
the value of .MCALL will be 0, while on all subsequent
calls its value will be 1.

If the .MCALL symbol is used in situations, where it has
not been specified in a macro definition, the value of
the symbol will be -1.
Default: -
Example:
00000 177777 (.MCALL) ; OUTSIDE MACRO
.MACRO MC ; DEFINE MACRO
( .MCALL) ; DISPLAY .MCALL VALUE
%

MC ; FPIRST CALL

00001 000000 ( MCALL) ; DISPLAY .MCALL VALUE
MC ; SECOND CALL

00002 000001 (.MCALL) ; DISPLAY .MCALL VALUE
MC ; THIRD CALL

00003 000001 ( .MCALL) ; DISPLAY .MCALL VALUE




Symbol:
Type:
Class:
Syntax:

Effect:

Value:
Default:

Example:

000001

000000

95
MSG
Directive
Source interpretation
MSG A string

This directive will cause a message to be displayed on
the console during assembly.

string is any sequence of characters (except null, line
feed or rubout), which the assembler will treat as if

it is an ordinary comment with the added feature of this
being displayed on the console when the carriage return
character is encountered.

The message will be displayed during both passes of the
assembly unless precautions are taken to avoid this.

None

No messages displayed

.DO .PASS ; PASS 2 ONLY
MSG  PASS 2 NOW

.ENDC ; FND PASS 2 ONLY
.DO .PASS==0; PASS 1 ONLY

JMSG PASS 1 NOW
- FENDC ; IND PASS 1 ONLY




Symbol:

Class:

Syntax:

Effect:

Value:

Default:

Example:

96
«NOCON
Directive/synbol
Source interpretation
NOCON A expression

This directive will determine the extent of listing of
input source file containing conditional parts. If such
conditional parts of a program do not meet the condi-
tions permitting assembly, they may be listed or not
depending on the value of expression.

If the value of expression equals zero listing will be
included. If the value of expression does not equal ze-
ro listing will be suppressed.

Those conditional parts of a program, that do meet the
conditions permitting assembly will not be affected by
the .NOCON directive.

When used as an ordinary symbol, the numeric value as-
signed to (.NOOON) will be equal to the value of the
expression occurring in the latest use of the .NOCON
directive.

Listing of conditional parts included.




Symbol:

Class:

Syntax:

Effect:

Value:

Default:

Example:

97
NOLOC
Directive/symbol
Source interpretation
NOLOC A expression

This directive will determine the extent of listing of
input source file containing lines without a location
field, Such lines may be listed or not depending on the
value of expression.

If the value of the expression equals zero such lines
are included in the listing. If the value of expression
does not equal zero listing of such lines will be sup-
pressed.

When used as an ordinary synbol, the numeric value as-
signed to (.NOLOC) will be equal to the value of the
expression occurring in the latest use of the .NOLOC
directive,

All lines will be included in the listing.




Symbol:
Type:
Class:
Syntax:

Effect:

Value:

Default:

Example:

98
NOMAC
Directive/symbol
Source interpretation
NOMAC A expression

This directive will determine the extent of listing of
macro expansions depending on the value of expression.
If the value of expression equals zero macro expansions
will be included in the listing. If the value of expres-
sion does not equal zero listing of macro expansions
will be suppressed.

When used as an ordinary symbol, the numeric value as-
signed to (.NOMAC) will be equal to the value of the
expression occurring in the latest use of the .NOMAC
directive.

Macro expansions are included in the listing.




99

.NRIL RESUME, NREL

Symbol: NREL

Type: Directive/symbol

Class: Program control

Syntax: NREL

Effect: This directive will cause assembly of all subsequent
source program statements to take place in accordance
with normal relocation characteristics and consequently
cause utilization of the program counter associated
herewith.

Value: When used as an ordinary symbol the numeric value assig—
ned to (.NREL) will be equal to the current value of
the normal relocation counter.

Default: -

Example:

.NREL ; SELECT NREL PC

00000' 020100 LDA 0 TWO ; LOAD ABS. ADR.

000011101520 INCZL 0,0 ;

000100 LOC 100 ; SELECT ARS PC:= 100

00100 000002'TWO: ( NRELY ; VALUE OF NREL PC

00002' 040100 STA 0 WO




100
Symbol: PASS
Type: Symbol
Class: Source interpretation
Syntax: PASS

Effect:

Value: The value of this symbol will depend on the assembly
stage currently in effect.

During pass 1 of the assembler the symbol .PASS will
have the value zero, while during pass 2 of the as-
sembler it will have the value one.

Default: -
Example:
000000 .DO .PASS==0; 1 WILL BE DEFINED IN
= 1 ; PASS 1 AND SKIPPED IN
.ENDC ; PASS 2

00000 000001 I ; 1 IS DEFINED




Symbol: .POP

Type: Symbol

101

Class: Program control

Syntax: «POP

Effect: Although not a directive, the use of the symbol .POP

will be associated with the effect of removing the

latest element to be stored in the variable stack from
the stack (and hereby "exposing" the next element in
the stack).

Value: The value and relocation characteristic of this symbol
is equal to the value and relocation characteristic of
the latest expression stored in the internal variable

stack by application of the .PUSH directive.

If no values have been stored in the stack, the symbol

.POP will have zero absolute value. In that case a

field overflow will furthermore be indicated in the
listing.

Default: -

Example:

000001
000002
000003

00000 000003

00001 000003

00002 000003

00003 000002

00004 000002

00004 000001

LPUSH 1
LPUSH 2
.PUSH 3
.TOP
.TOP
.POP

.POP
.POP

M W s WY M M e W M

SAVE 1'ST ELEMENT
SAVE 2'ND ELEMENT
SAVE 3'RD ELEMENT
SHOW 3'RD ELEMENT
AND AGAIN

REMOVE 3'RD FELEMENT
SHOW 2'ND ELEMENT
REMOVE 2'ND ELEMENT
REMOVE 1'ST ELEMENT




102

Symbol: .PUSH
Type: Directive
Class: Program control
Syntax: PUSH A expression
Effect: This directive will save the value and relocation cha-
racteristic of a legal expression by storing it in an
internal variable stack.
Repetitive stacking of expressions is permissible as
long as the variable stack is not exhausted. A maximum
of 20 consecutive entries to the stack will be accepted.
Restoration of an expression value stored in the stack
is accomplished by means of the .POP symbol.
The stack is operated on the "last in - first out" prin-
ciple.
Value: None
Default: -
Example:
000000 .PUSH LTXTM ; SAVE TEXT-MODE
000000 .PUSH .TXTN ; SAVE TEXT-NODE
000001 JXM 1 ; SET LOCAL TEXT-MODE
000001 JXIN 1 ; AND LOCAL TEXT-NQDE
00000 040502 JIXT YABCD"
041504
000000 JTXTN .POP ; RESTORE GLOBAL

000000 JXT™M  .POP ; VALUES (LAST FIRST)




Symbol: .RDX

Type: Directive/symbol

103

Class: Source interpretation

Syntax:  .RDX A expression

Effect: This directive will define the radix of representation
which will be applied for conversion of all numeric in-
put in the source file subsequent to the appearance of
the directive.

expression will be evaluated to radix 10, and must yield
a mumber in the interval: 2<= expression <=20

Value: When used as an ordinary symbol, the numeric value as-
signed to (.RDX) will be equal to the current input ra-

dix.

Default: Conversion of inmput will by default take place to radix

8.

Example:

000010
00000 00G011
000012
00001 000013
000002
00002 000003
00003 000002

.RDX
11
.RDX
11
.RDX
11
(.RDX)

10

INPUT RADIX NOW 8

= § (DECIMAL)

INPUT RADIX NOW 10

= 11 (DECIMAL)

INPUT RADIX NOW 2

= 3 (DECIMAL)

VALUE = CURRENT INPUT RADIX




Symbol: .RDXO

104

Type: Directive/symbol

Class: Source interpretation

Syntax: .RDXO A expression

Effect: This directive will define the radix of representation
which will be applied for conversion of all numeric out-
put in the listing subsequent to the appearance of the

directive.

expression will be evaluated to radix 10, and must yield
a number in the interval: 8 <= expression <= 20

Value: When used as an ordinary symbol, the numeric value as-
signed to (.RDXO) will be equal to the current output

radix.

Default: Conversion of output will be default take place to ra-

dix 8.

Example:
000012
00000 000012
00010
00001 00010
0010
00002  000A
00003  001E
00004 0010

RDX 10
10

.RDXO 10
10

JDXO 16
10

30

( .RDX0)

; INPUT RADIX 10
; QUTPUT RADIX 8
; OUTPUT RADIX 10

; OUTPUT RADIX 16
s
>

3 VALUE = CURRENT OUTPUT RADIX




105
"""" Symbol:  JTITL
. Type: Directive
Class: Source interpretation

Syntax: LTITL A user-symbol

- Effect: This directive will assign the name "user-symbol" to
the program being assembled.

The name does not necessarily have to differ from other
symbols defined by the program.

The name is used for identification of the relocatable
binary output produced by the assembler; for inst. the
"""" loading program or the library files will refer to the
program by its name.

Value: None
,,,,,, Default: L MAIN

Example:

JTITL  MYPGM




Symbol:
Type:
Class:
Syntax:
Effect:

Value:

Default:

Example:

106
.TOP
Symbol
Program control

[ ] 'IOP

The value and relocation characteristic of this symbol
is equal to the value and relocation characteristic of
the latest expression stored in the internal variable
stack by application of the .PUSH directive.

If no values have been stored in the stack, the symbol
.TOP will have zero absolute value.

NOTE: The symbol .TOP differs from the symbol .POP in

that the use of .TOP will not remove the latest
element of the stack from the stack.

see POP




Symbol:

Class:

Syntax:

Effect:

107
JIXT
Directive
Source interpretation
:TXT<E>A/§E£152/

p is an optional memonic indicating the status of the
parity bit (leftmost bit) of each byte containing the
individual character code. The optional mnemonics and
their effects are as follows:

Sets parity bit to zero unconditionally
F Sets parity bit to one unconditionally
E sets parity bit for even parity
0 Sets parity bit for odd parity

/ is a delimiting character, but it is not itself part
of the string. Any character (except null, line feed or
rubout) may be used as delimiter, but to avoid misin-
terpretations is should not be any of the characters
appearing in the string proper.

This directive will make the assembler scan the input
following the delimiter in string mode until the first
re-occurrence of the delimiter.

Carriage return and form feed characters appearing i
side the string will fulfil their normal purpose of
continuing the string from line to line or from page to
page, but these two characters will not themselves be
stored as part of the text string.

Storage of one character requires seven bits and conse-
quently takes up one 8-bit byte; the eighth bit is used
as parity bit in accordance with the optional memonic

specified in the directive. Two consecutive characters

will thus occupy one word of storage.

Arithmetic expressions can be included in the string by
using angle brackets to enclose the expression. The ex-
pression will be evaluated, masked to seven bits and

filled up to eight bits in accordance with the optional
mnemonic specified. Note however, that logical operators




108

are not allowed in expressions inside a string. If it
is desired to incorporate in the text string a carriage
return or a form feed charater, this must be done by
means of an expression within the string, as these cha-
racters are otherwise ignored. Thus to store for inst.
a form feed character the following directive is issued:

JTXT +PAGE 1< 14>+

Value: None

Default: Bytes will be packed right/left, and a terminating byte
containing zeroes exclusively will be added.

Example:

000001 XM 1

00000 030061 JTXT n0123" ; ZERO PARITY BIT
031063
000000

00003 030261 TXTE  "0123" 3 EVEN PARITY BIT
131063
000000

00006 130261 TXTF "0123" ; FORCED PARITY BIT
131263
000000

00011 130061 TXTO  "0123" ; CODD PARITY BIT
031263
000000




Symbol:
Type:
Class:
Syntax:

Effect:

Value:

Default:

Example:

000000 XM 0
00000 030460 - JTKT "ola2"

109
«IXTM
Directive/symbol
Source interpretation
.TXTM A expression

This directive will change the packing of bytes as gen—
erated through the use of the .TXT directive (or its
optional forms). Packing will depend on the value of
expression as follows:

Value of expression equal to zero: bytes packed right/
left

Value of expression not equal to zero: bytes packed
left/right

when used as an ordinary symbol, the numeric value as-
signed to (.TXTM) will be equal to the value of the ex-
pression occurring in the latest use of the .TXTM direc-

t iVec

Bytes will be packed right/left

: PACK RIGHT/LEFT

000062

000007 LJOXTM 7 ; PACK LEFT/RIGHT
00002 030061 LIXT "o12" 5

031000

00004 000007 (.TXTM)

; VALUE LAST SET




Symbol:
Type:
Class:
Syntax:

Effect:

Value:

Default:

110
JTXIN
Directive
Source interpretation
JIXIN A expression

This directive will determine how a character string
input by the .TXT directive (or its optional forms)
will be terminated. The termination of the string will
depend on the value of expression according to the
following rules:

If the value of expression equals zero the last storage
word used will contain at least one zero byte (i.e. a
byte where all eight bits are equal to zero) according
to the number of characters in the string. If the string
contains an even nunber of characters, the last storage
word will contain two zero bytes; if the string con-
tains an odd number of characters, the last storage
word will contain one zero byte.

If the value of expression is not equal to zero the
last storage word used will contain at most one zero
byte according to the number of characters in the
string. If the string contains an even number of char-
acters, the last storage word will contain no zero
bytes (i.e. this word will contain the last two char-
acters of the string); if the string contains an odd
number of characters, the last storage word will con-—
tain one zero byte.

when used as an ordinary symbol, the numeric value as-
signed to (.TXIN) will be equal to the value of the ex-
pression occurring in the latest use of the .TXIN direc-
tive.

Termination with at least one zero byte. (expression
= 0.)




Example:

000880
00000 030460
031462
000000

001750
00003 030460
031462

00005 001750

LTXTIN 0
JTLT 10123"
JTXTN 1000.
JIXT Q123"

(.TXTN)

. FOLLOW BY AT LEAST
; ONE ZERO BYTE.

; DO NOT DO.

; LAST VALUE SET.




Symbol:

Class:

Syntax:

Effect:

Value:

Default:

112
«XPNG
Directive
Semi-permanent symbol definition
+XPNG

This directive fulfils a special duty among directives
of this class as it will not in reality cause any de-
finition to take place. On the contrary, this directive
will erase all semi-permanent symbol definitions (and
all macro definitions) from the assembler program's
table of symbols. It will thus clear the symbol table
of all previously defined symbols (except of course the
permanent symbols) and thus create a background for un-
complicated re—definition.

Use of the .XPNG directive normally involves the follow-
ing steps:

a) A program is written, which contains the XPNG di-
rective followed by statements intended to re—define
any semi-permanent symbols desired.

b) This program is assembled in the normal way, except
that the DOMAC command is given in a form specifying
MODE.S (cf. section 7.2). In doing this the assem-
bler will create a new symbol table containing the
re-defined symbols during pass 1, after which it
will terminate assembly.

c) The assembler will now be ready for use in assembl-
ing programs involving those semi-permanent symbols

re—defined in stage a).

None




Example:

020000
040000

.DMRA
.DMRA

Mt W M e e e e

113

TITL  MYDEF

. XPNG ;  REMOVE ALL SYMBOLS
LOAD= 020000 ;  DEFINE "LOAD"
STORE= 040000 ;  DEFINE "STORE"

TO CREATE A NiW SYMBOL TABLE FILE CONTAINING
ABOVE TWO SYMBCLS, USE THE FOLLOWING LOAD-
COMMAND TO DOMUS (SEE SECTION 7.2):

DOMAC MODE.S MYDEF PERM.NIHIL SYMB.MYPS MACRO.MYPM




Symbol:
Type:
Class:
Syntax:

Effect:

Value:

Default:

Example:

114
«ZREL
Directive/symbol
Program control
«ZREL
This directive will cause assembly of all subsequent
source program statements to take place in accordance
with page zero relocation characteristics and conse-
quently cause utilization of the program counter asso-
ciated herewith,
when used as an ordinary symbol the numeric value as-

signed to (.ZREL) will be equal to the current value of
the page zero relocation counter.




5.1

115

Macro Programming

It has previously been mentioned, that the DOMUS Assembly Language
incorporates a feature — known as Macro Programming - which may
considerably simplify the programming procedure by replacing re-
petitive sequences of the program with one single formal subsec-
tion, which may then be referenced at the appropriate points in
the program. Thus employment of the macro feature involves two
distinct stages in the source program: defining of the macro and
subsequently referencing the macro.

Macro Definition
The macro definition consists of two or more program lines initi-
ated by the directive .MACRO and terminated by the character %.

The definition must comply with the following format:

.MACRO A user-symbol |
macro-definition-string%

In this format user-symbol must conform with the rules pertaining
to symbols in general as outlined in section 3.1. The actual user-
symbol applied in conjunction with the .MACRO directive will be
the name by which the macro definition will be referenced at those
points in the program where it is desired to call it into use.

The carriage return character following user-symbol in the def-
inition serves to separate the string of characters, which forms
the macro name, from that string, which forms the proper contents
of the macro definition.

The macro-definition-string contains the actual program subsec—
tion to be taken into account whenever the macro name is refer-

enced in the program. It consists of a string of characters from
among the full ASCIT character set and it must conform to the
actual program structure in the program subsection implied by the
string; i.e. if the intended subsection consists of several
source program lines, the macro definition string must incor-
porate the necessary carriage return characters to reproduce this
subdivision into lines.

Macro-definition strings appearing in the source input to the
assembler will be read in string mode (cf. section 1.2.2) and




116

will consequently not be subject to any interpretation at this
stage except for three specific characters, which will each have
its definite meaning whenever it may appear in the macro defini-
tion string. (The actual effect of these three characters will be
discussed below). Although the macro definition string will be
read by the assembler in string mode, the actual contents of the
string will eventually be interpreted at a later stage in the
assembly process; a fact, which will be dealt with in due course.

The character % appearing after the macro definition string is a
terminating character and indicates the end of the string to the
assembler. It is not itself a part of the macro definition. The %
character must appear in either of two positions relative to the
macro definition string depending on the actual program structure
implied in the macro—definition-string according to the following
rules:-

If the macro definition string contains a program section, which
is not in itself a complete program line (for inst. if it
concerns a single expression to be substituted for an operand),
then the macro definition string cannot contain a carriage return
or form feed character and consequently the terminating character
(%) must be the last character of the line forming the macro
definition string. (A further consequence of this is, that the
macro definition string in this case cannot exceed the assem—
bler's maximum line length of 132 characters.)

If the macro definition string contains a program section, which
consists of one or more complete program lines, then the
terminating character must be the first character of the final
line of the macro definition as such.

Examples of this are:

MACRO ARG
(((15+X)+Y) /3+Y)*7%

and

.MACRO DIV2
MOVL# 2,2,S7C
MOVOR 2,2,SKP
MOVZR 2,2,SKP
MOVOR 2,2,SKP
MOVOR 2,2,

%




5.1.141

5.1.1.2

5.1.1.3

117

Interpretation

The three characters which will - as previously mentioned - be
interpreted even as the macro definition is being input to the
assembler are these:-

The character %, which as already explained terminates the macro-
definition-string and which therefore obviously cannot appear in—
side the string without interpretation.

The character!, to which has been assigned a special function in-
side macro definitions and which must consequently be interpreted
accordingly.

The special function allocated to this character is that of indi-
cating to the assembler, that the character immediately following
the } must be interpreted as a dummy argument of the definition.
This implies, that whenever the macro definition is invoked in
the program the actual value of the dummy argument will be speci-
fied by the macro call, whereby the usefulness of the macro
feature is greatly enhanced.

Dummy arguments appearing in the macro definition string must
take one of the following three forms:

where d may be any of the digits 1 to 9

where c may be any letter of the alphabet A to Z
where c may be either the character ? or any
alpha-numeric character A to Z or 0 to 9

w|Q

The effect of the different forms of dummy arguments will be
explained in section 5.2 (Macro Call).

The character - , which is in itself ignored, but whose appear-
ance in the macro definition string will cause interpretation of
the character immediately following the < to be suspended. This
means, that this character must be used, if the programmer wishes
to include either of the characters %, { or < in the macro de-
finition string as characters in their own right. As an example
of this consider, that the programmer wishes to incorporate the
symbol ERR% as an element of the macro definition string; to
avoid premature termination of the string the symbol must be
written in the source text as ERR-%. The character -« may
precede any character, but in the case of ordinary characters no
special significance attaches to this; thus the assembler will
regard SYMB and SY-—MB as identical symbols.




5.1.2

118

Nesting of Macros

Macros may be nested, i.e. one macro definition string may in—
clude one or more macro definitions as elements of the string.
Furthermore the "inner" macros may be temporarily terminated and
subsequently continued, whereby for inst. program flow control
instructions contained in the "outer" macro may be used to distin—
guish between different options in different calls of the "outer"
macro.

This particular feature depends on the general syntactical rule
for macro definitions, that if a macro definition has the same
name as the one last encountered, the later macro definition will
be considered to constitute a direct continuation of the previous
one and will be appended to it accordingly.

It should be noted, that whenever macro definitions are nested
use of the - character becomes imperative; for inst. termina-
tion of an "inner" macro will require use of the % character,
which character must however be preceded by the - character,
as failure to do so would prematurely terminate the "outer" macro
- thus rendering its definition string incomplete.

An example of nested macros is given in the second example of
section 5.5.

An additional capability of the macro feature - which is connected
with the nesting of macros - is the acceptance of the assembler
of recursive macro calls. This can be illustrated by the macro
CHE, which computes the value of the n—th order Chebyshev poly-
nomial in accordance with the recursive formula:

CHE(n,x) = 2*x*CHE(n-1,Xx) - CHE(n-2,x); GHE(O,x) =1; HE(1,X) = X.

The macro CHE is called with four arguments, the first of which
is the order, n; the second is the variable x and the third and
fourth are the values of the n-th and (n-1)-th Chebyshev polynom-—
ials respectively.

NOTE: The macro CHE as shown in the following example will not

T accept orders larger than n = 20. This limitation is a
consequence of the fact that the macro utilizes the vari-
able stack via the .PUSH directive. The limited stack
length must be taken into account - otherwise the number of
recursive calls may exhaust the stack.




5.2

5.2.1

119

MACRO CHE
DO tq==
t3= 1
<ENDC
.DO t1==
3= t2
t4= 1
.ENDC
.DO t1>1
CHE t1-1,12,13,14
PUSH i3
13 = 2% (t2)*13-14
ta = .pOP
<ENDC
$
Macro Call

The macro definition described in the preceding section of this
chapter is a formal, generalized program subsection, which is
then subsequently referenced at appropriate points in the program
by means of the macro call. A specific macro definition may be
referenced any number of times within a given program, but the
actual macro call must conform to the structure inherent in the
macro definition which the call references, i.e. the macro call
must specify whichever actual arguments are intended to replace
possible dummy arguments in the macro definition string.

While the macro definition is basically accepted by the assembler
without any interpretation, the macro call initiates the imple-
mentation of those specific instructions etc. which appear in the
macro definition string. This effect - termed macro expansion -

results in the incorporation into the object program of the coded
equivalents of the statements involved - simultaneously incor-

porating into these statements the actual arguments as specified
by the macro call. At this stage compliance with the syntactical
rules of the assembler language becomes imperative in respect of
the contents of the macro definition string (cf. section 5.1).

Syntax of Macro Call
The macro call may take either of the following three forms
depending on the structure of the corresponding macro definition:




5.2.2.

120

user-symbol |
user-symbol A string1 <Kstrin92£ « .. Kstringn>t
user—-symbol<A> lstring15 . e Kstringn]L

In these formats user-symbol is the name included in the macro

definition and by which the definition is referenced. Similarly
each string is the actual argument which will replace the cor-

responding formal one during expansion of the macro.

Of the macro call formats specified above, the first one is
obviously intended for use in those situations where no formal
arguments appear in the macro definition, while the other two
formats are intended for use in situations where formal arguments
do appear in the definition and where actual arguments consequent-
ly nust appear in the call. The two types of call with arguments
furthermore reflect a difference in the application of macros. If
the second format — in which the list of actual arguments is not
enclosed in square brackets - is used, a carriage return character
will be inserted before the first byte of the expanded macro,
while this will not be the case if the third format is used.

Thus use of the second format implies that the expanded macro
forms one or more separate individual lines of object program and
therefore should be used in instances where this is compatible
with the structure of the macro definition.

Correspondingly use of the third format implies, that the expanded
macro forms an integral part of a program line and consequently

it should be used in instances where this is relevant; an example

of this could be a case where a macro call is used to specify the

contents of an instruction field.

The strings appearing in the argument list of the macro call may
contain any ASCII character, but attention should be paid to the
fact, that the individual strings of the argument list must be
separated by one single break character; the first appearance of
a comma, space or tabulation character will terminate the indivi-
dual string, in consequence of which any succeeding commas,
spaces or tabulation characters will be regarded by the assembler
as leading characters of the next string in the list.

Substitution of Arguments

The list of actual arguments contained in a macro call (employing
the relevant formats given above) will always be accepted by the
assembler in strict numerical sequence as implied by the indices
of the format. The position in the sequence of the actual argu-




5.3

121

ment is the key, which will determine what actual argument should
replace a specified dummy argument of the definition.

If the dummy argument appearing in the definition employs the
format d - and where the d consequently is one of the digits 1
to 9 (cf. section 5.1.1.2) - the digit in question directly
refers to the position of the actual argument in the argument
list of the call; thus if the dummy argument !4 appears in the
definition, it will during expansion of the macro everywhere be
replaced by the actual argument string4. If the dummy argument
appearing in the definition employs either the format t c or the
format t?c (cf. section 5.1.1.2), the c or ?c will be a symbol;
during expansion of the macro the value of this symbol will be
established by the assembler and this value then will refer to
the position of the actual argument in the argument list of the
call.

The assembler will not accept more than 63 arguments in a macro
call arqument list. As a further consequence of this limitation
it should be noted, that a dummy argument of the form tc or t2c
must yield a value in the range: 1 <= value <= 63.

If the number of arguments in the argument list exceeds the number
of dummy arguments required by the definition the superfluous
arguments will be ignored. If however no dummy arguments at all
were specified by the definition, the appropriate format of the
call should be used.

Repetitive and conditional operations in Macros

A macro definition may include statements specifying repetitive
and/or conditional operations, i.e. statements employing the pro-
gram control directives .DO and/or .IF (this latter in its
various forms). Such program control directives must be termin-
ated by the directive .ENDC inside the macro where the correspond-
ing .DO or .IF directive first appear.

If the terminating .ENDC directive does not appear before the
character % - which will of course terminate the macro definition
- the repetitive or conditional operation aimed at will be dis-
regarded. An apparent exception to this rule is shown in the
following example:-—




5.4

122

.MACRO FIN

.MACRO REP
.DO 3

L] - L] L]

FIN

%

REP
It should be noted here, that the macro FIN is called inside the
macro REP thus providing the necessary terminating directive for
the .DO directive contained in the macro REP before that macro is
actually terminated by the % character. If the macro FIN is not
called inside REP, the .DO directive will be disregarded (and
incidentally the .ENDC directive in the macro FIN will be listed
with an error flag, as there will then be no corresponding .DQ or
IF directive for it to terminate).

Listing of Macro Expansions

In general the program listing produced during assembly will inm
clude macro definitions, macro calls and the expanded macros in
the program lines.

In contrast to this the binary object program file will only
contain the equivalent binary code of the actual expanded macro
including the appropriate actual arguments.

It should be borne in mind that output of a program listing or of
an object file is an optional feature of the assembler, i.e.
either or both can be suppressed if the programmer so wishes. In
addition to this the programmer may selectively suppress listing
of macro expansions by application of the .NOMAC directive; if
this is done the program listing will solely contain the actual
source progam line, in which the macro is referenced, in its
original form as written in the source text. The object file will
of course still include the complete expansion of the macro.

The special character ** has no effect on listing if it appears
inside a macro definition (cf. section 2.4.3). However, a kind of
exception to this rule does exist, namely that if the first line
of a macro definition contains this special character and if a




5.5

5.5.1

123

macro call employing the third format (i.e. arguments enclosed in
square brackets) involves an argument list reaching beyond one
line, then the listing will only contain the first line of
arguments.,

Note also, that if a macro call is followed by a comment, then
the listing of the comment will not appear till after the expanded
text of the macro.

Examples of Macros

This section contains two examples of macro usage and is mainly
concentrated around actual output listings produced by the assem—
bler. The first of these examples concerns a relatively small
macro definition, which has been designed for the purpose of
generating an input/output zone compatible with the MUS/DOMUS
operating systems implemented on the RC 3600 series computers.

The second example shows the nesting of macros, while it simul-
taneously shows how this feature can be utilized to provide
increased programming flexibility.

Macro ZONE

A zone is in principle a collection of information and associated
storage areas necessary for the handling of data sets and con-
sists of three parts: a zone descriptor, a number of share
descriptors and a buffer area.

The zone descriptor contains information about the data set and
the peripheral device, on which it is physically present; the
share descriptors hold information about the current activities
in the various sections of the buffer area; the buffer area is
that part of CPU memory, which physically contaihs the descript-
ors and associated buffers. (cf. MUS System Introduction, Part
I).

Referencing a zone is effected by allocating a name to it, which
name then appears as an argument where input/output operations
are oconcerned. The zone is not explicitly connected to any spe-
cific peripheral device, but even so the selection of zone and
share size will usually have to be tuned to the requirements of
the device actually being used as well as to the structure of the
data being transferred in the operation. This is conveniently




124

accomplished by a zone generating procedure, where the desired
structure can be reflected in variable quantities used as para-
meters during the actual generation. Thus the macro feature
becomes an obvious instrument for this purpose.

When a zone is generated, the shares must be linked together in
cyclical fashion; whereas the shares occupy consecutive positions
inside the zone, the linking of the first and the second share
(and so further on) is easily accomplished by incrementing a
pointer, but to complete the cycle, the pointer must be reset to
the original value - indicating the starting address of the first
share - when it has reached the last share.

The macro in this first example is given the name ZONE and is
called as follows:-

ZONE [name,kind,bufs,size,form,reclgt,giveup,mask,conv]

where:-

name 1is the zone name; it must consist of 5 characters

kind is an integer specifying the type of peripheral
device

bufs 1is the number of shares

size is the size of the share (in words)

form is an integer specifying the record format

reclgt is the record length (in bytes)

giveup is the name of the giveup action procedure, which is
called if error conditions arise during transfer

mask is the giveup mask

conv is the name of the conversion table (by default: zero)

The macro definition of ZONE is as follows:




125

.MACRO ZONE

JOXT O Ui ; NAME

Z+{ (43)%(( t4)+SSIZE)) ; ZONE SIZE

0 ; MODE

t2 . KIND

t8 ; GIVEUP MASK

t7 . GIVFUP PROCEDURE

1 3 FILE

1 . BLOCK

(19)B14 ; CONVERSION TABLE BYTE ADR.

.+7-7BUFF s BUFFER

((14)+SSIZE) ; BUFITR SIZE

{5 ; FORMAT CODE

16 ; RECORD LENGTH

( .+Z+SSIZE~ZFIRST)B14  ; FIRST BYTE

( +7+SSIZE-ZTOP)B14 ; TOP BYTE

.+Z-7UUSED : USFD SHARE

(t4)B1Y . SHARE BYTE LFNGTH

0 ; REMAINING BYTES

.BIK ZAUX ; AUXTLLIARY WORDS
?NO= 1 ; SHARE COUNTER
?FSH= . ; LOCATION OF FIRST SHARE
.DO 13 ; GENERATE SHARES

.BLK 4 ; SHARE MESSAGE
.DO 2NO==13 :

?FSH ; LAST POINTS TO FIRST
.ENDC  NOTLAST :

«+SSTZE+( t4) ~SNEXT ; NEXT SHARE
NOTLAST 5

0 . SHARE STATE

(.+1)B14 : FIRST SHARE BYTE

.BLK ty ; SiARE BUFVER
2NO= ?NO+1 . NEXT SHARE NUMBER
.FNDC ; END GENERATE SHARES

% END ZONE MACRO

The definition of the macro ZONE falls in two parts, the first of
which contains the non-variable part of the zone description such
as the establishing of correlation between the dummy arguments of
the definition and the position of the specific parameters in the
call. The second part of the definition contains the necessary
instructions for the actual generating of the shares, which is
performed by manipulation of the share descriptors in the nested
.DO loops. In this second part of the definition two variables -
?NO and ?FSH - appear, which variables are used to ensure, that
the proper linking of the shares, as previously described, is
obtained. The variable ?NO is a count of the number of shares
that have been generated, while the variable ?FSH contains the
address of the first share thereby providing the necessary link.

When the macro ZONE is called, the resulting expansion will be




126

listed as shown below. The extent of the listing may be con-
trolled by application of the .NOLOC directive; this feature is
incorporated in the listing shown by including in the example two
listings corresponding to two separate calls of ZONE. The first
of these two calls — concerning the zone named "PTRK0><0>" - has
been preceded by the directive .NOLOC 0, whereby a full listing
of the expansion will be output. The second of the two calls -
concerning the zone named "INPUT" - has been preceded by the
directive NOLOC 1, whereby a compressed listing of the expansion
will be output.

In addition to the two examples - and following these - is -
included the cross-reference listing produced during assembly.




00000

C0003
00004
60005
00006
00007
00010
00011
00012
00013
00014
00015
00016
00017
00020
0021
00022
00023
00024

Ue032

00036
00037

00040
00041

00161

00165
00166
00167
00170
00310

00314

00315
00316
00317

Example 1

ZONE1 :
052120

000122
000000
000437
000000
000001
177776
001507
000001
000001
000000
000032
000127
000000
000000
000102
000102
000032
000240
000000
000006
000001 ?NO=
000032 ?FSH=
000003 .DO
000004
000000 .DO

127

ZONE
JIXT "PTR<O><0"

Z+((3)*((80.)+SSIZE))
0

1

-2

PTRGU

1

1

(0)B1Y4

+2-ZBUFE
((80.)+SSIZE)

0

0
(.+Z+SSIZE-ZFIRST)B14
(.+Z+SSIZE-ZTOP)B14
.+Z2-ZUSED

(80.)B14

0

.BLK ZAUX

1

3

BLK 4

2NO==3

2FSH

.ENDC NOTLAST

000161 .+SSIZE+(80. )-SNEXT
[NOTLAST]
000000 0
000102 (.+1)B1Y
000120 .BLK 80.
000002 ?NO= 2NO+1
.ENDC
000004 .BLK 4
000000 .DO 2NO==3
2FSH
.ENDC NOTLAST
000310 «+SSIZE+(80. )-SNEXT
[NOTLAST]
000000 0
000360 (.+1)B1Y4
000120 .BLK 80.
000003 ?NO= 7NO+1
LENDC
000004 .BLK 4
000001 .DO 2NO==3
000032 2FSH
<ENDC NOTLAST
«+SSIZE+(30. )-SNEXT
[NOTLAST]
000000 0
000636 (.+1)B14
000120 .BLK 80.
000004 ?NO= 2NO+1
.ENDC

.

3

3
3
b
b
.
b
b
>
3
b
>
3
>
>
.
2
3
2
b
>
.
b
-
3
>
>
b
3
3
.
3
3
>
>
3
.
2
.
3
.
2
3
.
)
3
3
.
3>
b
2
b4
3
.
>
.
3
3
.
3
3
2
3
>
>
>

PTR<0><0>,1,3,80.,0,0,PTRGU,-2,0
AME

ZONE SIZE

MODE

KIND

GIVEUP MASK
GIVEUP PROCEDURE

; FILE -

BLOCK

; CONVERSION TABLE BYTE ADR.
; BUFFER

; BUFFER SIZE

; FORMAT CODE

; RECORD LENGTH

; FIRST BYTE

TOP BYTE

; USED SHARE

SHARE BYTE LENGTH

; REMAINING BYTES
; AUXILLIARY WORDS

SHARE COUNTER

; LOCATION OF FIRST SHARE

GENERATE SHARES

SHARE MESSAGE

; LAST POINTS TO FIRST

NEXT SHARE

SHARE STATE

; FIRST SHARE BYTE

SHARE BUFFER

; NEXT SHARE NUMBER
; END GENERATE SHARES

SHARE MESSAGE
LAST POINTS TO FIRST

NEXT SHARE

; SHARE STATE

FIRST SHARE BYTE

; SHARE BUFFER

NEXT SHARE NUMBER

; END GENERATE SHARE

SHARE MESSAGE
LAST POINTS TO FIRST

NEXT SHARE

; SHARE STATE
; FIRST SHARE BYTE

SHARE BUFFER

; NEXT SHARE NUMBER
; END GENERATE SHARES




128

Example 2

ZONE2: ZONE  INPUT,32.,2,256.,3,32.,INERR,-2,0

01104 000471 ?FSH

01105 000000 0

01106 002216 (.+1)Bl4
01107 000400 .BLK 256.

LAST POINTS TO FIRST
; SHARE STATE

FIRST SHARE BYTE

SHARE BUFFER

00437 047111 TXT "INPUT" ; NAME

00442 001050 Z+((2)%((256.)+SSIZE)) ; ZONE SIZE

C0443 000000 0 ; MODE

00444 000040 32. ; KIND

00445 177776 -2 ; GIVEUP MASK
00L46 001507 INERR ; GIVEUP PROCEDURE
00447 000001 1 ; FILE

00450 000001 1 ; BLOCK

00451 000000 (0)B14 ; CONVERSION TABLE BYTE ADR.
00452 000471 .+Z-ZBUFF ; BUFFER

00453 000407 ((256.)+SSIZE) ; BUFFER SIZE
00454 000003 3 ; FORMAT CODE
00455 000040 32. ; RECORD LENGTH
00456 001200 (.+Z+SSIZE-ZFIRST)B14  ; FIRST BYTE

00457 001200 (.+2+SSIZE~-ZTOP)B14 ; TOP BYTE

00460 000471 .+Z-ZUSFD ; USED SHARE

00461 001000 (256.)B14 ;. SHARE BYTE LENGTH
00462 000000 0 ; REMAINING BYTES
00463 000006 .BLK ZAUX ; AUXILLIARY WORDS
00471 000004 .BLK 4 ; SHARE MESSAGE
00475 001100 +SSIZE+(256. )~SNEXT ; NEXT SHARE

00476 000000 0 ; SHARE STATE
00477 001200 (.+1)B14 ; FIRST SHARE BYTE
00500 000400 .BLK 256. ; SHARE BUFFER
01100 000004 .BLX 4 ; SHARE MESSAGE




Cross-reference listing

INERR 001507
PIRGU 001507
ZONE 000000
ZONEL1 000000
ZONE2 000437
?FSH 000471
?NO 000003

MC

4/08
3/10
2/26
3/02
402
3/25
3/24
by22

5/01
5/01
3/02

3/29
3/28
423

129

4702

3740
3/36
421

3/51 422 4/23
3/39  3/47  3/50
428 4/32

L4/28
3/58




5.5 .2

130

The macro ZONE used in this example has for reasons of clarity
been restricted somewhat. It exhibits all necessary primary
features, but in case of actual practical application it should
be supplemented in such a way, that control of the number of
parameters specified as well as control of the value of each
parameter can be exercised. In further consequence of this -
should the number or value of parameters exceed limits ~ provi-
sion must be made for descriptive error messages to be produced
and output to the console.

Macro NDEF

The assembler language is often used for programming large data
processing systems intended for the management of such tasks of a
general nature, that - although they will be performed on behalf
of several independent customers — they can conveniently be
carried out by application of the same basic program. It will
clearly be recognized, that such a situation obtains in very many
instances oconcerning ordinary business administration -
accounting etc.

In such systems the source program will usually consist of one or
more general parts common to all users combined with subsections
of a variable nature, which will allow each individual user to
adapt the complete program to the circumstances peculiar to his
own Situation. An obvious example will be that of providing the
option for the user of referring to his own, previously defined,
filenames inside the program.

The example of the macro NDEF illustrates how such flexibility
may be obtained by means of the macro feature - or even more
specifically; the macro continuation feature.

The source program of the example is considered to consist of two
fixed (general) parts, between which an optional (variable) part
appears. The first fixed part contains a macro definition of the
macro NDEF. Nested inside the definition of NDEF is a further
macro definition of the macro NAMES.

The optional part contains exactly one call of the macro NDEF
with a list of arguments in the shape of text strings. These text
strings then are the actual filenames which it is desired to
employ in the program proper.

During expansion following the call of NDEF the macro NAMES will




131

then be defined - including in the definition the actual filenames
as they appeared as parameters of the call of NDEF.

It is now possible to call NAMES in the second fixed part of the
program, in which call a single digit is used as argument - this
single digit indicating the position of the filename wanted in
which it ocurred in the argument list of the macro NDEF. For con-
venience this digit should be identical with the channel number
of that specific device, where the file with the corresponding
name is to be found; if so, calling NAMES with the appropriate
channel number will during expansion automatically create corres—
pondence between the program, the specific peripheral device and
that particular file, which is supposed to be available on that
device.

The example as given below shows the definition of the macro
NDEF, the expansion due to the call of NDEF in the optional part
of the program and the expansion due to three successive calls of
the macro NAMES in the second fixed part of the program. It should
be noted, that for reasons of clarity all features of the complete
program but the abovementioned have been omitted.

As with the previous example the listing below is given in two
forms. The first listing is a full listing which has been obtained
by calling the assembler with the command MODE.O (cf. chapter 7)e

The second listing is a compressed, normal listing, in which case
the majority of the listing has been suppressed by the inclusion
of the special character **.




Example 1

~7

000000
000001

000001 X=

000003

000002

132

-************************************************

e Ve e

FIXED PART 1

-**************************************************

ws o

%
b
3
b

.
b
b
3

%

.MACRO NDEF
¥¥% PUSH .NOMA
*¥% _NOMA 1

1l

.DO +ARGCT

= X+l
.ENDC

*¥* NOMA .POP

OPTION PART

MACRO NAMES
**¥_PUSH .NOCO
* XY= 1

MACRO NAMES
** DO -t1==Y
JIXT i
** .mm

¥ Y= Y+1

MACRO NAMES
#* _NOCO .POP

o***************************************************

-*****************************************************

NDEF ABC DEF LONGNAME

** PUSH .NOMA
** NOMA 1
1

DO +ARGCT

= X+1
.ENDC

MACRO NAMES
%% PUSH .NOCO
#% NOCO 1
*¥Y= 1
MACRO NAMES
##.D0  t1==
. I'IYXYI\ IIABC"
#% ENDC

*Fy= Y+l
.MACRO NAMES
#%.D0  11==Y
.TXT  "DEF"
#% ENDC

¥AY= - Y+l




00000

00002

000003

000004

000000

000000
000001
000001
000001
041101
000103

000002
000000

000003
000000

000004
000000

000000

000001
000001
000000

000002
000001
02504
000106

000003
000000

000004
000000

%

%

- e

-****************************************************

e W W

v*****************************************************

-

CALLl:

CALL2:

133

= X+1
.ENDC

= X+l

.ENDC

*% _NOMA .POP

FIXED PART 2

NAMES 1

NAMES 2

.MACRO
*¥*.DO

*%  ENDC
*¥Y=

MACRO
¥% ,NOCO

¥* PUSH
¥* NOCO
F¥Y=

*¥*% DO
.TXT

%% .ENDC
®¥Y=

** DO
LIXT

*% ENDC
*¥¥Y=

%% .00
JTXT

*¥* ENDC
%Y=

*¥% [NOCO

*% PUSH
*¥* _NOCO
*¥Y=

** .DO
JTXT
%%, ENDC
*¥%Y=

**%¥ .DO
LIXT

*¥ ,ENDC
*%¥Y=
**.m
"Irxfr

#*%* ENDC
¥¥Y=

#* _NOCO

NAMES
t1==Y
"LONGNAME"

Y+1

NAMES
.POP

.NOCO
1
1

||ABCI!

Y+1
1==
"DEF‘"

Y+1
==Y :
"LONGNAME"

Y+1
.POP

.NOCO
1

1
2==Y
"ARCH

Y+1

" DEF"

Y+1
2==
"LONGNAME"

Y+1
.POP




00004

000000
000001
000001
000000

000002
000000

000003
000001
047514
043516
040516
042515
000000

000004
000000

CALL3: NAMES

3

134

¥# ,PUSH .NOCO

¥¥ NOCO 1
**Y: l
#¥.D0 3::
LTXT "ABC"
%% .ENDC

¥¥Y= Y+1
¥% DO 3::
TXT  "DEF"
*% ,ENDC

*¥%Y= Y+1
**.DO ==Y

TXT "LONGNAME"

#% ENDC
$%Y= Y+l
*% NOCO .POP




135

Example 2 CRRERERFRFRRERRERNRERREFRXXRRRRERRRANKR R RRRRRRXX

FIXED PART 1

e W we W

Y I 2233 2223232232332 2233322233223 32ttt

“e

.MACRO NDEF
*% PUSH .NOMA
*% NOMA 1
X= 1
.MACRO NAMES
*% PUSH .NOCO
%% NOCO 1
,,,,,, x*Y= 1
~%
.DO .ARGCT
.MACRO NAMES
- #%.D0  -—t1==Y
] STXT X
#% ENDC
,,,,,,, **Y: Y+l
~%
= X+
.ENDC
.MACRO NAMES
. %% NOCO .POP
#% NOMA .POP
%

e

CRRREREEREREREEREREREXEEXRRRRRREERERRXREEXRRRRRRRRH

OPTION PART

Nt ws W W

CARFEEEEERRRERERR KRR ERRRERRRRRRRRERRRRRRERRRRRKRRRRR
NDEF ABC DEF LONGNAME

Ve we s

- ;***************************************************
; FIXED PART 2
- ;*****************************************************
CALL1: NAMES 1
- 00000 041101 JIXT  MABC
000103
- CALL2: NAMES 2
' 00002 04250k JTXT  "DEF
000106
-~ CALL3: NAMES 3
00004 047514 JTXT  "LONGNAME"
0U43516
- 040516
| 042515
- 000000




136

Extended Capabilities

Generation of Numbers and Symbols

The DOMAC Assembler includes the possibility of generating numbers
or symbols during the assembly process. This capability is espe-
cially convenient when handling tables or other similar arrays of
information.

Bringing this particular capability into operation is accomplished
by including the format:

\ symbol

in the source program file. During assembly the string of char-
acters \symbol will - wherever they appear - be replaced by a
three-digit number. The actual number used will be equal to the
current numerical value of symbol - expressed in the current
input radix; if this value should exceed the limitations imposed
by the available three digits, the number will be truncated so
that only the three rightmost digits will be utilized.

The format \ symbol may appear anywhere in the source line -
subject to the context in which it is employed - and may either
appear on its own or may immediately follow one or more numeric
or alphabetic characters. If \ symbol appears on its own it will
after assembly constitute an integer number; if it immediately
follows a sequence of numeric characters these two groupings will
together constitute a number - integer or floating point; if the
format immediately follows a sequence of alphabetic characters
these two groupings will together constitute a symbol. The
sequence of characters immediately preceding the format may
contain any number of characters.

As an illustration of the rules given above consider the
following examples:-

X = 37351

TAB\X: o« o o o (Assembled as TAB351: o « o « )
Y = 4.\ X (Assembled as Y = 4.351 )
2= Y+ \X (Assembled as Z = Y+351 )

When the format \ symbol is used according to the rules given
above the listing produced by the assembler will include the \,




137

the actual characters which constitute the symbol and the numeri-
cal value assigned to symbol. The object file produced by the
assembler will however only contain the actual numerical value of
symbol ; consequently, if the format has been used in conjunction
with one or more preceding alphabetic characters - thus assembling
into a user-symbol - only the actual combination of letters and
digtis forming the user-symbol will appear in the optional cross-
reference listing of the symbol table output at the end of the
program listing. As an example of this consider the following
source program:-

RDX 8

*o INDEX=0
.DO 16.
AX\INDEX=0

** INDEX=INDEX+1
«ENDC

which will produce the following program listing and — shown on
the right of the listing - the corresponding entries of the
cross-reference listing:-

.RDX 8

.DO 16,

AX\INDEX000=0 AX000
AX\INDEX001=0 AX001
AX\INDEX002=0 AX002
AX\INDEX017=0 AX017
AX\INDEX020=0 AX020
«ENDC

Note in the above example the use of the decimal point in the .DO
directive to obtain interpretation of the numerical value in

radix 10 instead of current input radix.

A further example follows showing the use of the symbol generation
facility; this example - which includes colums 4 to 16 of the
program listing - shows the storing of symbol values which will
be referenced by the differing, generated, symbol names.




Example:

00000 ' 000001
00001' 000001

000123
000010
00002' 001230
000124

00003' 001240
000125

000041001250
000126

00005001260
000127

G0006'001270
000130

00007' 001300
000131

00010'001310
000132

00011'001320
- 000133

00012'021401
000131000777
00C14' 006004

EX\I123:

EX\I124:

EX\I125:

EX\I126:

EX\I127:

EX I130:

EX\I131:

EX\I132:

138

.ENT EX124
LEXTN  EX888
EXTD EX889,EX999
. NREL
.MACRO EXMAC
1
EXMAC
1
EXMAC
1
= 123
.DO 8.

(I)B12
= T+1
.ENDC

(I)B12
= I+1
.ENDC

(I)Bl12
= T+1
.ENDC

(I)B12
= I+1
.ENDC

(I)B12
= T+1
.ENDC

(I)Bl12
I= I+1
.ENDC

(I)B12
= T+l
.ENDC

(I)B12
= I+l
.ENDC
IDA 0 +1,3
JMP —1
SENDMESSAGE




6.2

139
Generation of Labels

Another extended capability of the DOMAC assembler, which closely
resembles the generation of numbers previously mentioned, is the
possibility of generating individual labels during the assembly
process. The labels generated will be associated with the actual
number of macro calls in the program, and this facility is
consequently of particular usefulness where labels inside macros
are concerned.

This particular facility is brought into operation by including
the character $ in the source program file. Under the provision,
that this character is not read by the assembler in string mode,
the assembler will on occurrence of the $ replace it with three
characters from the alphanumeric set: 0 to 9, A to Z.

The assembler maintains a count of the number of macro calls made
in the program; this number is converted to radix 36 representat-
ion - which representation requires 36 digits to express the
number corresponding exactly with the 36 characters of the above-
mentioned alphanumeric set — and thus are determined the actual
three characters, which will be used to replace the $.

If macros are nested, the replacement characters for $ in the
outer macro will be saved and subsequently restored upon comple-
tion of expansion of the inner macro.

NOTE: The character $ should not be used as the initial
character of a label as replacement might result in the
occurrence of a numeric character in the first
character position of the label. This would mean that
the label would be illegal.

As an example of the use of this capability consider the follow-
ing example of a macro definition:

«MACRO BREAK
DSZ  AXX1
L$= .

%

If and when BREAK is called - and presupposing a sixfold
repetition of the call - the assembler would generate the
following:




140

L$001= .

DSZ AXX1
L$002= .

DSZ AXX1
L$003= .

DSZ AXX1
L$004= .

DSZ AXX1
L$005= .

DSZ AXX1
L$006= .

DSZ AXX1

The above shows the listing produced by the assembler. As in the
case of generation of numbers and symbols, the object file will
not contain the character $ in the actual labels.




7.1

7.2

141

Assembler Operation

External Requirements

In order to operate the DOMAC assembler program it is necessary
to have access to a computer installation comprising as a minimum
the following elements:

An RC3600 series CPU with 32K words core store
A console device

A direct access storage medium

A magnetic tape unit or a paper tape reader
The DOMUS operating system

Call of DOMAC Assembler

The DOMAC assembler program is called into operation by the DOMUS
operation system S, to which is issued a utility program load
command specifying DOMAC.

The load command must conform to the following format:
DOMAC<AMODE .modespec ><ALIST,.listfile ><ABIN.binfile;<ALINES,lines>

<APERM.permfile><ASYMB. symbflle ><XAMACRO.macrofile>
<AXREF.xreffile>Asourcespec

The optional parameters to the call must - if included in the
call - contain user—defined specifications as indicated below:

modespec is a name containing a maximum of five characters. These
characters and their resultant effect have been defined
by RC as follows:

A causes all semi-permanent symbols to be added to the
cross reference listing

O directs the assembler to ignore all source-program in-
dications of listing suppression, i.e. to list all
source lines unconditionally

R causes those semi-permanent symbols, which are referred
to in the source program, to be added to the cross-re-
ference listing

S directs the assembler to skip the second pass of the
assembly and to create instead a new permanent symbol




142

table with filename symbfile and macro definition
filename macrofile

X directs the assembler to omit the cross-reference
listing

listfile is the name of the file (or entry) to which the program
listing should be output by the assembler. The listing
itself is optional, and consequently no listing will be
produced if listfile is omitted.

binfile is the name of the file (or entry) to which the binary
object program should be output by the assembler. The
object program itself is an option, and consequently
none will be produced if binfile is omitted.

lines is an integer number indicating the number of lines to
each page of output. The maximum number of lines per
page is 63; if a larger number is specified, this
maximum will actually be used. If lines is not speci-
fied, output will be produced with 60 lines per page.

permfile is the name of that file from which the assembler
should read the semi-permanent symbols. If permfile is
omitted, the assembler will read semi~-permanent symbols
from the file named DOMPS.

symbfile 1is the name of that file which should be used as the
symbol table file, If symbfile is omitted, the assembler
will use the file named DOMST for this purpose.

macrofile is the name of that file onto which the assembler

should write macro definition strings. If macrofile is
omitted, the assembler will use the file named DOMMC

for this purpose.

xreffile is the name of that file onto which the assembler should
write entries for the cross-reference listing. If
xreffile is omitted, the assembler will use the file
named DOMXF for this purpose.

The three files indicated by symbfile, macrofile and xreffile are
normally intended as internal workfiles only. When the assembly
has been carried out these files will be deleted.




143

NOTE: The filenames specified in the parameter list of the call
must not coincide with the letter strings of the assembler
commands

If the DOMAC assembler is called without any parameter list
(except sourcespec) assembly will proceed as if the call had been:

DOMAC LINES.60 PERM.DOMPS SYMB.DOMST MACRO.DOMMC XREF.DOMXF

The final parameter in the call of DOMAC - sourcespec - is not
optional, as it supplies information to the assembler about those
source programs which are to be assembled.

The parameter sourcespec consists of a list of source program
filenames, which must comply with the following format:

filename. <cc>Afilename

<cc>A. . o filename <cc>
1 2 = e i

In this format cc indicates a choice of cptional command charac-
ters to be specified by the operator. The options available are:

/S in which case the assembler will skip the file
indicated on pass 2.

/N in which case the assembler will suppress the
program listing of the file indicated.

If the option is not taken up, the assembler will proceed accord-
ing to the specifications of the DOMAC call and the contents of
the source file itself.

The sourcespec parameter list may contain any number of file-
names; if it contains more than one filename, the source files
will be assembled in sequence from left to right.

Below are given three examples of DOMAC calls:

1) The following call will assemble the source program
named TEXT and output the resulting binary object pro-
gram to the file named RLBIN, It will produce a program
listing - including a cross-reference list — on line-
printer. (The lineprinter driver is described by its
entry name on the direct access storage medium (disc)).
The call will be:

DOMAC BINLRLBIN LIST.SLPT TEXT




7.3

144

2) The following call will assemble the source programs
named PARM and PROG and output the resulting binary
object programs to the file named PROGR. It will pro-
duce a program listing - including a cross-reference
list - which will be output to the file named PROGL,

~ but this listing will only refer to the program PROG.
The object program PARM will only contain parameters
but no corestore locations due to the skip command
appended to the filename. The call will be:

DOMAC BIN.PROGR LIST.PROGL PARM/S PROG

3) The following call will not perform any assembly as
such, but it will create a permanent symbol table file
named DOMPS and a macro definition file named DOMPM;
these newly created files will contain the basic in-
struction definitions and the MUS system definitions
which will be transferred from the magnetic tape files
BIPAR and MUPAR respectively. The call must furthermore
specify a non—existing file (NIHIL) as a parameter to
the PERM. command; otherwise the call would endeavour
to read semi-permanent symbols from DOMPS. The call
will be:

DOMAC MODE.S SYMB.DOMPS MACRO.DOMPM PERM.NIHIL BIPAR MUPAR

Assembly Execution

To utilize fully all capabilities of the DOMAC assembler program
it is advantageous to obtain some understanding of the internal
structure of the assembler and hence also of its mode of opera-
tion. Such an understanding will furthermore lead to less difficul-
ties in comprehending the underlying reasons for the various

error messages output by the assembler and consequently make the
correcting of errors more easily performed.

The DOMAC assembler program - which operates under the overall
control of the DOMUS operating system S - is basically a program
designed for the handling of a number of files. These files can
be grouped into various categories, namely:

External files:
This group of files consists of the user—-defined source program
files, listing files and binary object program files.




145

Permanent symbol files:
This group of files consists of the RC-defined files:
DOMPS a file containing the semi-permanent symbols,
DOMPM a file containing the semi-permanent macro
definition strings.

User symbol files:
This group of files consists of the RC-defined files:

DOMST a file to which is added the semi-permanent
symbols and the user—defined symbols,
DOMMC a file to which is added the semi-permanent

macro definition strings and the user-defined
macro definition strings,

DOMXF a file to which is added the cross references
for all user symbols.

The DOMAC assembler is brought into operation by issuing a call
command to the operating system, which will then load the assem-
bler into core memory simultaneously arranging for the reservation
of resources for the assembler run.

When the assembler has been loaded, it will first of all carry
out a check of the parameters with which it has been called. The
source, list and binary (object) files are then opened, that is:
the assembler gains access to these files by employing an algor-
ithm similar to that used by the CONNECTFILE procedure (cf. DOMUS
User's Guide, Part II). While the source files must exist before
the assembler requests the opening of the files, the list and
binary files may or may not exist at this stage. If they do not
exist, they will be created in accordance with the parameters of
the DOMAC call; if they do exist prior to the loading of the
assembler, they should be catalogue entries to the direct access
storage area.

After opening the external files, the assembler will create the
user symbol files DOMST, DOMMC and - if the parameter specifying
cross-referencing has been included in the call of DOMAC - DOMXF,
The three user symbol files should not normally exist prior to
the loading of the assembler; if they do, they will at this stage
be deleted and subsequently re—created. It should be noticed,
that the DOMAC call may specify other filenames for these files;
those used here will be employed by default.




146

The assembler now copies the permanent symbol files to the appro—
priate user symbol files: DOMPS is copied onto DOMST and DOMPM
onto DOMMC. The file DOMPS, which contains the semi-permanent
symbols, may not exist. If this should be the case, the assembler
will execute an implied .XPNG assembler directive (g.v.) thereby
creating an empty symbol file in readiness for re—definition of
semi-permanent symbols,

Now the assembler is ready to perform the actual assembly, which
is executed in two passes of the source file.

During pass 1 the source file is scanned for user—defined semi-
permanent symbols and ordinary user symbols, adding in the process
such symbols to the user symbol file (DOMST). Similarly a scan of
macro definitions is carried out and the appropriate file (DOMMC)
receiving the necessary additions. Simultaneously the assembler
will during this first pass perform a check of source file syntax

During pass 2 of the source file the actual assembly into 16-bit
binary words is performed, while simultaneously the syntax error
messages, the program listing and the relocatable binary object

program is output to the appropriate peripheral devices.

When the assembly is completed, DOMAC will output the line:
nnnn SOURCE LINES IN ERROR

where nnnn is four digit number. This message will be output on
the console device and - optionally - on the device used for
program listing.

The assembler then concludes the run in the following manner:
If the mode indicated in the DOMAC call is S - or if a cross-
reference listing is to be produced - the core-resident parts of
the files DOMST, DOMMC and DOMXF are written back onto the user
symbol files. Furthermore, if a cross-reference listing is to be
produced, DOMAC sends an internal request to that process under
which it operates. The request takes the form of the command:
DOMXR symbfile and causes the operating system to output the
cross-reference listing on the appropriate peripheral device.

If a cross-reference listing is not wanted, a similar internal
request is sent by DOMAC, but this request will take the form of
an empty command: FINIS, which will cause the final termination
of the assembler run.




7.4.1

147
DOMAC Error Messages

Operation of the DOMAC Assembler is of course subject to the
condition that no faults are present during the run. Two types of
faults may occur, namely errors in the source file being supplied
as input to the assembler program and errors associated with the
actual execution of the assembly. Of these two error types the
second will usually be fatal and necessarily cause termination of
processing, whereas source input errors do not affect the assembly
as such, although they may of course prevent the ultimate pro-
duction of a meaningful object program.

Corresponding to the two types of errors the DOMAC assembler will
produce two types of error messages. The error messages, which
will be output either to the console device or to the (optional)
listing device, provide information for the programmer about the
source of the faults causing the error condition, thereby making
it much more easy to correct the faults. This applies particular-
ly to source input errors.

The various error messages and their implications are listed in
the following section.

Source Input Errors

Errors in the source file may concern either the syntax or the
semantics of the language. Erros in syntax will be discovered by
the assembler and the corresponding error messages output on the
appropriate peripheral device. This is possible because syntax
errors are related to the formal structure of the language;
discovering deviations from this formal structure can therefore
fairly easily be incorporated into the assembly process.

Semantic errors on the contrary need not necessarily be accom—
panied by any deviation from correct syntax; consequently no set
routine for detecting errors of this type can be maintained and
they will often be discovered only when the assembled object
program is actually run. It does of course happen that semantic
errors and syntax errors are interrelated, in which case correct-
ing the syntax will simultaneously cause correction of possible
semantic errors although this is by no means a certainty. In this
connection it should be realized, that quite often several syntax
errors likewise may be interrelated, so that correcting one will
automatically cancel others.




148

Syntax errors are indicated by a one-letter code in the first
three character positions of that line of the program listing
which corresponds to the source line in which the error occurs.
Consequently a maximum of three errors in any one source line may
be indicated. The syntax error indication will appear as a part
of the program listing as stated above. This program listing is
however optional - if it has been omitted, the error indications
will be output on the console device instead.

All syntax error codes are listed below together with a short
explanation of the probable cause of the error as well as an
example of source text containing that error.

A Addressing Indicates that a Program Flow Control
Error instruction or a Data Transfer instruc-
tion references an address outside the
possible addressing range.

Example:
ISZ TEMP ; addressing error
LOC +256.;
TEMP: 0
B Bad Indicates that an illegal character
Character appears in the line,
Example:
A%B: 1 ;% is illegal in a
label
C Macro Error Indicates either, that more than 64

arguments have been specified in a macro
call, or that nested macro continuation
has been attempted.

D : Radix Error Indicates either, that an attempt to
specify a current radix outside the
legal range (2 - 20) has been made, or
that an attempt to input a digit outside
current radix has been made.

Example:
«RDX 40 sradix error
«RDX 2 :
23 ;radix error




Equivalence
Error

Format Error

Global Error

Input Parity
Error

Conditional
Error

Location
Counter
Error

149

Indicates that an undefined symbol
appears to the right of an equals sign.
Example:

A=B ;If B is undefined
this will lead to
an equivalence
error.

Indicates the application of an illegal
format for a given type of operation,
for inst. too many or too few operands.
Example:
MOV 1,2,3,4 ; format error -~
too many operands

Indicates an undefined external or entry

symbol.
Example:
.ENT NIHIL ; NIHIL undefined
+EXTN LOCAL ; LOCAL defined
LOCAL: 0 ;
«END ;

Indicates that the character SUB (ASCII
code 0328) has been found in source
input. The character SUB will in the
listing appear as back slash: \.
Example:

IDA 1 T MP ; parity error

Indicates that an .ENDC directive occurs
without any corresponding .DO directive,

Example:
DO 14
«ENDC
«ENDC

~e we we W

conditional error

Indicates that a .ILOC or a .BIK direc-
tive has been issued in which the
expression is undefined or outside the
legal range. Example:
JOC -14
.LOC 30000.
.BLK 10000.

~e - -e

outside range




Multiple
Definition
Error

Number Error

Overflow
Error

Phase Error

150

Indicates that a symbol has been defined
more than once in the program
Example:

TWIN: 0

TWIN: 0 ; repetition -

-e

Indicates that a number has been speci-
fied in excess of the legal maximum (a
single precision integer must be less
than 65536).
Example:

«RDX 10 :

100000, ; above maximum
Indicates either, that an instruction
operation exceeds its legal maximum, or
that use of the directives .PUSH, .POP
and .TOP leads to over- or underflow.
Example:

LDA 5,TEMP ; operand too large

Indicates that an irregularity has been

detected in between pass 1 and pass 2 of

the assembly; typically such an irregular- _
ity could be a symbol with different

values in either pass.

Example: -
Consider the following two source files:

JTITL A TITL B
«NREL «NREL

0 PHASE: 1

.EOT .END

If those two source files are assembled —
by the call:

DOMAC LIST.SLPT A/S B
whereby the first file will be skipped
on pass 2, then the label PHASE will
cause phase error.




151

Q Questionable Indicates either, that improper use of
Line # or @ has been made, or that a page
zero relocatable value has been used

where an absolute relocatable value was

expected.
Example:
«ZREL H
A: 0 ;
«NREL ;
LDA 0 A,3 ; Improper displace-
ment
MOV # 2,3 ; Improper use of #
R Relocation Indicates either, that an expression will
Error not yield a legal relocation character-

istic, or that the expression contains
symbols with page zero as well as normal
relocation characteristics.

Example:
' +ZREL ;
Z: 0 ;
«NREL H
N: 1 ;
N+N+N ; Triple relocation
N+2Z ; Improper mixing
U Undefined Indicates that an un—defined symbol has
Symbol Error been used.
Example:
TITL UNDEF ;
JMP HOME ; label undefined
<END
\Y Assembler Indicates erroneous usage of the direc—

Label Error tive ,GOTO,

X Text Error Indicates an error in connection with an
expression inside the test string.
Example:

IXT/TEXT ERROR: <2+3+>/;

7.4.2 Run Time Errors
The second type of errors are those - usually fatal ones - which
may occur during assembly and which are associated with the
actual execution of the assembler program.




152

The majority of such errors will refer to faulty operation of
input/output devices, but in addition the following errors may
occur :

0270 *** INTERNAL ERROR: nnnnn
This message indicates, that an internal DOMAC error
condition has arisen. This situation is extremely
unlikely, but should it occur RC must be contacted.

0271 *** DOMAC BREAK, NO: nn

0272 *** INSUFFICIENT QORE

0273 *** PARAMETER ERROR
This message will usually indicate, that the DOMAC pre—
assembly check of all specified source files has shown a
discrepancy between the specification and the actual
files present. It may also indicate a syntax error in
the DOMUS load command.

0274 *** VIRTUAL CORE ERROR
This message indicates that an erroneous disc transfer
operation has been detected. This particular transfer is
a consequence of the fact, that the DOMAC assembler
places symbols used during assembly on a disc file which
is in reality functioning as a virtual core memory
(thereby saving space in the real core memory). Trans-—
fers to this special file are checked (as are all other
transfers to peripheral devices), and if that check
indicates an un-recoverable error, assembly will be
terminated and the above message output.




153

Appendix A
PREDEFINED SYMBOLS

A number of symbols used by the DOMAC assembler have been pre—
defined by RC. Two sets of predefined symbols exist: permanent
and semi-permanent symbols.

Permanent symbols ~ the majority of which are assembler direc—
tives - cannot be redefined by the user.

The list of semi-permanent symbols include the value of the
symbol (in octal); all have absolute relocation characteristic.

Permanent symbols

. +EQT NREL
«ARGCT EXTA «PASS
«BIK LEXTD .POP
«DALC «EXTN .PUSH
.DIAC EXTU «RDX
.DICD .GOTO RDXO
.DIO «IFE «TITL
.DIOA JIFG .TOP
.DISD «IFL «IXT
.DMR IFN -TXTE
«DMRA WLIST «TXTF
.DO LOC «TXTM
«DUSR MACRO «TXTN
«DXOP MCALL .TXTO
«EJEC MSG «XPNG
«END NOCON «ZREL
ENDC .NOLOC

«ENT «NOMAC




Semi-permanent symbols

ACO
AC1
AC2
AC3
ADC
ADD
ADDRE
AFIRS

BINDE
BIT

BREAD
BREAK
BSIZE
BUF

BUFFE
CAC1S

CBUFF
CCONV
CCORrRO
CDELA
CDEVI
CDISC

CERAS
CEXIT
CHAIN
CHANG
CIDEN
CLATO
CLEAN
CLEAR
CLINT
CLOSE
COM

COMLI
COMNO
COMON

000017
000020
000021
000022
102000
103000
000026
000065
103400
000064
006232
000101
000016
006012
000012
000025
000011
000004
006355
000054
000115
000041
006334
000050
000112
000077
000111
000001
000002
006350
177777
000002
006011
100166
000032
006220
100000
000362
000363
006354

154

CONBY
QONVT
CORE
CORES
OOROU
QOUNT
CPASS
CPOSI
CPRIN
CPU

CRESE

CSEND
CTERM
CTEST
crop

CTOUT
CUDEX

006173
000031
000361
000070
000017
000027
006345
000113
006341
000077
006346
000116
000003
006364
000114
006340
006367
006342
000053
000040
000112
006337
006233
000061
000370
060400
061400
062400
073101
006177
061000
062000
063000
014000
000057
000007
000056
000060
006210
000066

GETAD
GETBY
GETPO
GETRE

HACTT
HALT
HANSW
HDELA
IEQ
IGR
ILS

INC
INCHA
INE
ING
INITC
INL
INNAM
INTA
INTBR
INTDS
INTEN
INTGI
INTPR
IORST
ISz

JSR
LATIM

LOOKU

MASK

MCORO
MESSO
MESS1

006357
006174
006360
006200
006000
002000
006356
000043
063077
000044
000045
102415
102433
102032
006205
101400
006207
102414
102432
006352
102033
006223

061477

000230
060277
060177
000226

006225

062677
010000
000000
004000
000042
020000
006347
000040
000067
000052
000006
000007




MESS2
MESS3
MONIT

MSEM
MSKO
MUL
MULTI
MZSTA
NAME
NEG
NEXT
NEXTO
NIO

op
OPEN
OPMAS
OUTCH
OUTEN
OUTNL
OUTOC
ouTSP
OUTTE
PC
PCWSI
PFIRS
POWIN
PREV
PRIOR
PROCE
PROG
PROGR
PSPEC
PSTAR
PSw
PUTBY
PUTRE
PWSIZ

READS

000010
000011
000054
101000
006224
000051
062077
073301
006176
000234
000004
100400
000000
006164
060000
000025
000034
006221
177776
006212
006214
006213
006216
006211
006215
000033
000006
000052
000076
000001
000015
000054
000012
000071
000000
000001
000023
006175
006201
000014
000032
060477

155

RECEIL
RECHA

RESER
RETUR
RTIME
RINNTI
SADDR
SAVE
SAVE
SAVE2
SAVE3
SAVE4
SAVES
SBLOC
SBN
SBUSY
SCOUN
SDATA
SDEVA1
SDEV2
SDEV3
SDISC
SEARC
SEM
SENDA
SENDE
SENDM
SEOF
SEQ
SETCO
SETEN
SETIN
SETPO
SETRE
SEZ
SFIRS
SGR
SIGCH
SIGGE
SIGNA
SILLE

000005
006015
006351
000030
006165
000074
000054
000002
000024
000025
000026
000027
000030
000031
000111
000007
000103
000001
000112
000104
000105
000106
000101
006010
000114
006007
000004
006004
000110
102414
006172
006353
006170
006217
006171
000006
000006
102432
006344
006365
006343
000107

SIZE
SKP
SKPBN
SKPBZ
SKPDN
SKPDZ
SLS
SNC
SNE
SNEXT

SNL

SNR

SOFFL
SOPER
SPART
SSIZE
SSPEC
SSTAT
STA

START
STATE
STIME
STOPP
SUB

SZC

SZR

TABLE
TIMER
TLENG
TOPDE
TOPTA
TRANS
TREQO

WALIT

WAITA
WAITC
WAITE
WAITG
WAITI
WAITO

000003
000001
063400
063500
063600
063700
102033
000003
102415
000004
102433
102032
000005
000102
000000
000113
000007
000003
000005
040000
006014
000013
000117
006013
102400
000002
000004
000045
000014
000036
000464
000046
006204
000047
000046
006002
006005
006336
006006
006366
006003
006167




WAITS
WAITT
WAITZ

z0

21

Z2

Z3

24

25
ZAUX
ZBLOC
ZBUFF
ZOONV
ZFILE
ZFIRS
ZFORM
ZGIVE
ZKIND
ZLENG
ZMASK
ZMODE
ZN
ZNAME
ZREM
ZSHAR
ZS51ZE
ZTOP
ZUSED
.0

.10
1024
12
+PUTR
«REPE
«RETU
«RTC

006335
006202
006222
000032
000024
000025
000026
000027
000030
000031
000006
000011
000013
000012
000010
000017
000015
000007
000005
000016
000006
000004
000041
000000
000023
000022
000014
000020
000021
000055
000120
000126
000106
000127
002201
002203
002165
00127

«SETC

.SEPP
«SETR

000102
000101
000102
000113
000114
000115
000116
000117
000120
000103
000104
000105
000106
000107
000110
000111
000112
000117
000105
000132
000133
000143
000110
000121
000113
000101
000116
000134
000104
000135
000122
000107
000136
000123
002172
002170
002217
002171

.CLEA
.CLOS

.CR
JDIVI

000125
002166
002220
002173
000130
002177
000124
000124
000127
002210
002174
002200
002205
002207
000126
000146
000147
000114
000145
000123
002176
000116
002164
000126
002221
000035
002206
002212
002214

002213

002216
002211
002215
002175
000124
002204
002202
000150




Appendix B

I/0 DEVICE AND MNEMONICS

Decimal Octal
code Mnemonic Maskbit

code

01
02
03
04
05
06
07
08

09
10
11
12
13

14
15
16
17
18

19
20

21
22
23
24
25
26

27
28
29
30

31
32

33

01
02
03
04
05
06
07
10
1
12
13
14
15

16
17
20
21
22

23
24

25
26
27
30
31
32

33
34
35
36

37
40

41

ASI,

TTI
PTR
PLT

SPC2
CDR

DSC
SpC
SPC1

PTR1
AMX3

TMX10}

TMX11

T™MX0
T™X1

PTP1
TTI2

TTO2
TTI3

TTO3
DISP

LPS
REC
XMT

14
15
11
13
13
12

10
12

-
B> W20 -0

—

15

14

12
8
8

Device

Extended Memory

Automatic System Load

Teletype Input

Teletype Output

Paper Tape Reader

Paper Tape Punch

Real Time Clock
Incremental Plotter
Third Standard Parallel Controller
Card Reader

Line Printer

Disc Storage Channel
Standard Parallel Controller
Second Standard Parallel
Controller

Second Paper Tape Reader
Fourth 8 Channel Asynchronous
Multiplexor

Second 64 Channel
Asynchronous Multiplexor
64 Channel Asynchronous
Multiplexor

Magnetic Tape

Second Paper Tape Punch
Third Teletype Input
OCP-Function Button Out
Third Teletype Output
OCP-Function Button In
Fourth Teletype Input
OCP-Numeric Keyboard In
Fourth Teletype Output
OCP-Display
OCP-Autoload

Serial Printer

BSC Controller




158

Decimal Octal
code code Mnemonic Maskbit Device

34 42 REC1 8 Second BSC Controller
35 43 XMT1 8
36 44 MT1 5 Second Magnetic Tape
37 45 CLP 12 Charaband Printer
38 46 FPAR 3 Inter Processor Channel
Receiver
39 47 FPAX 3 Inter Processor Channel
Transmitter
40 50 TTI 14 Second Teletype Input
41 51 TTO1 15 Second Teletype Output
42 52 AMX 2 8 Channel Asynchronous
Multiplexor
43 53 AMX1 2 Second 8 Ch. Asynchronous Mpx.
44 54 HIC 8 HDLC Controller
FPAR2 3 Third Inter Processor Channel
Receiver
45 55 HLC1 8 Second HDIC Controller
FPAX2 3 Third Inter Processor Channel
Transmitter
46 56 CDR1 10 Second Card Reader
47 57 LPT1 12 Second Line Printer
LPS2 12 Third Serial Printer
48 60 SMX Synchronous Multiplexor
49 61 FDD 7 Flexible Disc Drive
50 62 CRP 10 Card Reader Punch
51 63 CLP1 12 Second Charaband Printer
52 64 FDD1 7 Second Flexible Disc Drive
53 65 LPS3 12 Fourth Serial Printer
54 66 DIC 9 Digital Cartridge Controller
LPS4 12 Fifth Serial Printer
55 67 LPS1 12 Second Serial Printer
56 70 DST Digital Sense
57 71 DOT Digital Output
58 72 CNT Digital Counter
Dial-up Controller
59 73 DKP 7 Moving Head Disc Channel
60 74 FPAR1 3 second Inter Processor Channel
: Receiver
61 75 FPAX1 3 Second Inter Processor Channel
Transmitter
62 76 AMX2 2 Third 8 Channel Asynchronous
Multiplexor
63 77 CPU Central Processor

NOTE: RC reserves the right to change codes and mnemonics with-
out prior notification.




159

Appendix C
Relocatable binary block types

The relocatable binary object program optionally output by the
DOMAC assembler must adhere to a specific format. Firstly, the
overall structure must conform to a segmentation into a number of
blocks, and secondly each block must conform to a format depend-
ing on the type of block in question.

The block structure must be as follows:

Title Block

Entry Blocks

Ext. Displ. Blocks

Relocatable Data
&

Ext. Addition Blocks

Normal ext. Blocks

Start Block

The actual number of these blocks present in a specific binary
object program will depend on the purpose, which the program is
intended to fulfil and which of course also is reflected in the
contents of the source program file. The binary object program
can however never consist of less than two blocks: the Title
block and the Start block.

Relocatable Data Blocks and External Addition Blocks are merged
and do not comply with any pre—described structure. The reason
for this is, that the value produced by application of the .EXTA
directive and held in the External Addition Block must be stored
in memory in the appropriate location corresponding to the posi-
tion of the .EXTA directive in the source program file. Conse-
quently it may be necessary to terminate one Data block to make
place for the External Addition block and then to continue the
object file with further Data blocks. This procedure may of
course repeat itself several times in any one object file de-
pending on the number of times the .EXTA directive is used.




160

The format of the blocks themselves depends on the type of block
in question and will for each type be described in the following.
Some features of the block format are however common to all types
and is thus conveniently described at first.

Each block consists of a number of 16-bit words; inside each
block the words are referred to by a consecutive numbering of the
words starting from 0. The total number of words is variable in
most blocks except in the Title, External Addition and Start
blocks.

In all blocks word 0 contains a number in the interval from
0000028 to 0000108 which indicates the type of block in gquestion;
the block type numbers will be apparent in the description of the
individual blocks at the end of the appendix.

In all blocks word 1 contains a negative number (i.e. a number in
two' s—complement notation), which indicates the total number of
words in the block. In the Title, External Addition and Start
blocks the word count will be -3 (1777758), -4 (177774,) and

-1 (1777778) respectively as indicated in the description of the
individual block formats; in Data blocks the word count will never
exceed -15 (1777618) while in all other block types the word
count will never exceed -45 (1777238).

In all blocks words 2 to 4 contain information about relocation
characteristics of addresses, data and symbols wherever applic-
able. This information is contained in groups of three bits each,
where the different relocation characteristics are represented by
the bit configurations shown in the table below:

Relocation characteristic Bit
configuration
Illegal 000
Absolute 001
Normal relocatable 010
Normal byte relocatable omn
Page zero relocatable 100
Page zero byte relocatable 101
Externally defired displacement 110
Illegal 11




161

Although strictly speaking not common to all block types, it is
nevertheless convenient here to detail the utilization of the
relocation flag words of the different block types:

In the Title block all bits of words 2 to 4 are zero.

In Entry blocks bits 0 to 2 of word 2 indicate the relocation
characteristic of the equivalence held in word 8; bits 3 to 5
indicate that of the equivalence held in word 11 and so forth.
The block will be able to contain a maximum of 15 equivalences
corresponding to a maximum of 45 bits necessitating the use of
three words. In all three words the superfluous bit 15 will be
set to zero; the same applies to those relocation flag bits not
utilized if the block length is less than its maximum.

In Relocatable Data blocks bits 0 to 2 of word 2 indicate the
relocation characteristic of the address held in word 6; bits 3
to 5 indicate that of the data held in word 7 and so forth. Data
blocks may as a maximum utilize 45 bits to indicate relocation
characteristics; superfluous bits will be set to zero.

In Normal External blocks bits 0 to 2 of word 2 indicate the
relocation characteristic of the address held in word 8 and so
forth - the situation being completely analoguous to that of
entry blocks.

In External Addition blocks bits 0 to 2 of word 2 indicate the
relocation characteristic of the load address held in word 6;
bits 3 to 5 indicate that of the value held in word 9 and all
remaining bits of words 2 to 4 are set to zero.

In the Title, Entry, External Displacement, Normal External and
External Addition blocks symbol entries are arranged in groups of

three words. The two words appearing at the beginning of each
group ocontain the name of the symbol and a flag indicating the
type of symbol. The symbol name is written into bits 0 to 15 of
the first word and bits 0 to 10 of the second word; condensing
the symbol name thus into 27 bits is accomplished by using nume-
rical representation to base 40 (cf. Appendix D). The remaining
five bits of the second word hold the type flag; the bit confi-
gurations representing the different types are given in the table
on the following page:




162

Type of symbol Bit
configuration
Entry symbol (.ENT) 00000
Normal External symbol (.EXTN) 00001
External Addition symbol (.EXTA) 00010
External Displacement symbol (.EXTID) 00011
Title symbol (.TITL) 00100

Title Block (.TITL)
The format of the Title block is as follows:

Word no.: 0 0000078
1 word count = -3
2 0000008
3 0000008
4 0000008
5 checksum
6 title in radix 40
__________ — e
7 represenation : flags
|
8 0000008




Entry Block (.ENT)

163

The format of Entry blocks is as follows:

Word no.: 0

3 - word count
4 - word count

5 = word count

0000038

word count

relocation flags 1

relocation flags 2

relocation flags 3

checksum

symbol in radix 40

equivalence

L] - . . L] -

symbol in radix 40

representation | flags

equivalence




164

External Displacement Block (.EXTD)
The format of External Displacement blocks is as follows:

Word no.: 0 0000048
1 word count
2 relolation flags 1
3 relocation flags 2
4 relocation flags 3
5 checksum
6 symbol in radix 40
__________ S ——
7 representation : flags
1
8 0777778
9 L] L ] L] L L] -
3 - word count symbol in radix 40
_________ S -
4 - word count representation | flags .
|
5 - word count 0777778

In External Displacement Blocks the relocation flag bit configu-
ration will invariably be 110 as previously indicated in the
table.




165

Relocatable Data Block
The format of Relocatable Data blocks is as follows:

: Word no.: 0 000002,
1 word count
2 relocation flags 1
3 - relocation flags 2
4 relocation flags 3
— 5 checksum
} 6 address
7 data
- 5 - word count data




166

Normal External Block (.EXTN)

The format of Normal External blocks is as follows:

Word no.: 0

3 - word count

4 - word count

5 = word count

0000058

word count

relocation flags 1

relocation flags 2

relocation flags 3

checksum

symbol in radix 40

PIPINIpIII I TE— —— R

representation : flags

address of last reference.




167

External Addition Block (.EXTA)
The format of External Addition blocks is as follows:

Word no.: 0 0000108
1 word count = —4
2 relocation flags 1
3 0000008
4 000000
8
5 checksum
6 load address
7 symbol in radix 40
mmmmmmmmmm = — ——]
8 representation | flags
}
9 value

Start Block

The format of the Start block is as follows:

Word no.: 0 0000068
1 word count = -1
2 relocation flags 1
3 » 0000008
4 0000008
5 checksum
6 address




168

Appendix D

Condensed representation of symbols

Symbols recognized by the DOMAC assembler must contain a maximum
of five characters chosen from the set: 0 to 9, A to Z, . and ?
(cf. section 3.1). If symbols are less than five characters in
length, the assembler will make up for this by adding the nec-
essary number of null characters.

Ordinarily representation of one character will require one byte
of 8 bits, and consequently the five characters of the symbol
requires five bytes, that is: two—and—-a-half words.

It is however possible to reduce this demand on space by adopting
transcription of symbols into a base 40 notation, i.e. each of
the 37 characters of the set mentioned above - plus the rnull
character as the 38th character - are regarded as individual
digits of a number to base 40. (Actually the base need only be
39, but this does not yield any further advantage).

In this ocontext then, the characters and the numerical values
which they represent as digits are as follows:

null is the digit representing 0
0 to 9 are the digits representing 1 to 10 respectively
A to Z are the digits representing 11 to 36 respectively
. is the digit representing 37
? is the digit representing 38

When the five-character symbol is interpreted as a five-digit
number to base 40, the maximum value is:

1 0
..... 38x40% + 38x40° + 38x40%+ 38x40  + 38x40

97 280 000 + 2432 000 + 60 800 + 1 520 + 38
99 774 358

)
)
J
N
J
non

]

This number is less than 22/ = 1 342 178 728, but it is

larger than 226, which means, that it can be represented

by precisely 27 bits in memory, which is camfortably within two
words of storage space. Using this representation, the first
three characters of the s¥2bol can then be held in 16 bits = one
word (as ??? = 62 358 < 2 "), while the remaining two characters
can be held in 11 bits of the second word (as ?? = 1558 < 2'1).
This representation is used in the binary object program blocks
as shown in appendix C.




169

Appendix E

References
(nm RC 3603 Programmer's Reference Manual, Copenhagen, 1977.
(2) MUS System Introduction, Part I, Copenhagen, 1976.

) (3) DOMUS Linkage Editor, Copenhagen, 1977.

) (4) DOMUS User's Guide, Part II, Copenhagen, 1977.




RETURN LETTER

Title: DOMAC, Domus Macro Assembler, User’s Guide RCSL. No.:  42-i 0833

A/S Regnecentralen maintains a continual effort to improve the quality and use-
fulness of its publications. To do this effectively we need user feedback, your criti-
cal evaluation of this manual.

Please comment on this manual’s completeness, accuracy, organization, usability,
and readability:

Do you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Name: Title:

Company:
Address:

Date:

Thank you




..................

4 REGNECENTRALEN
Information Department
Falkoner Alle 1
DK-2000 Copenhagen F.
Denmark

...................

..................

Affix
postage
here




RGN

INTERNATIONAL -

EASTERN EUROPE
A/S REGNECENTRALEN
Glostrup, Denmark

SUBSIDIARIES

AUSTRIA

RC - SCANIPS COMPUTER
HANDELSGESELLSCHAFT mbH s
Vienna

FINLAND
OY RC - SCANIPS AB —_
Espoo —_

FRANCE
RC - COMPUTER S.a.r.l.
Paris _

HOLLAND
REGNECENTRALEN BEEHER B.V.
Rotterdam

NORWAY
AIS RC - SCANIPS
Oslo

SWEDEN -
RC - SCANIPS AB
Stockholm

SWITZERLAND
RC- SCANIPS (SCHWEIZ) AG
ase

UNITED KINGDOM
REGNECENTRALEN LTD. —
London

WEST GERMANY
RC - COMPUTER G.m.b.H.
Hannover -

REPRESENTATIVES

HUNGARY
HUNGAGENT AG -
Budapest

KUWAIT
KUWAITI DANISH COMPUTER CO. S.AK.
Safat

TECHNICAL ADVISORY
REPRESENTATIVES

POLAND

REGNECENTRALEN &3

RUMANIA -

Secanins .

HUNGARY —

NOTO-0SzV
COMPUTER .
CZECHOSLOVAKIA

HEADQUARTERS: FALKONER ALLE 1; DK-2000 COPENHAGEN F - DENMARK KSNP KANCELARSKE STROJE N.P. -
Phone: (01)10 83 66 + Telex: 16282 rc hq dk ' Cables: regnecentralen Praha

i n




