" Introduction to
MIUSIL

SE00

—

(-

Introduction to VIUSIL

Revised Edition
A/S REGNECENTRALEN August 1976
Marketing Department RCSL 42 - i 0386

Author: Joan Rosenstein

Editor: Joan Rosenstein

KEY WORDS: MUSIL, coding, programming, source language.

ABSTRACT: This manual gives a summary of MUSIL, the RC 3600 source
language.

Users of this manual are cautioned that the specifications
confained herein are subject to change by RC at any time
without prior notice. RC is not responsible for typographi-
cal or arithmetic errors which may appear in this manual
and shall not be responsible for any damages caused by

reliance on any of the materials presented.

Copyright ® A/S Regnecentralen, 1976
Printed by A/S Regnecentralen, Copenhagen

Table of Contents

INTRODUCTION

ABOUT MUSIL

THE CONSTANT SECTION
ASCIl Code Table

THE TYPE SECTION

THE VARIABLE SECTION

THE MAIN PROGRAM

HANDLING EXCEPTIONS

SPECIAL WORDS

TABLES

2.1 Release Table

9.2 Kind Table

2.3 Operation Code

9.4 Operation Mode Table
9.4.1 Paper Tape Reader Driver
9.4.2 Paper Tape Punch Driver
9.4.3 Line Printer Driver
9.4.4 Magnetic Tape Driver
9.4.5 Card Reader Driver
9.4.6 Card Reader Punch Driver

10 MUSIL ERROR MESSAGES

MUSIL PROGRAM EXAMPLE

page

13

21

24

35

46

47

47

47

47
47

E& &5 &%

49

50

52

- < Z -
—_— — — —_— — —

Introduction

MUSIL is a programming language that was designed for the specific purpose
of facilitating input/output information processing. Therefore, it is primarily
concerned with data in its aspect as text, rather than in its aspect as numeric-

al values. MUSIL is, thus, not designed for computational purposes.

MUSIL is, secondly, designed to facilitate communications between the pro-
grammed operation and the machine operator. Th'; means that it is designed

to satisfy realtime programming needs,

Finally, MUSIL is suitable for data communications. lts instruction set in-

cludes a considerable repertory of error-handling instructions.

The purpose of this booklet is to introduce the reader to MUSIL programming.

It assumes that the reader is already familiar with some other programming lan-
guage, whether a language of the assembly type or of the h jher level type.
The booklet does not, therefore, descritie all the possible MUSIL instructions,
and it does not discuss the interaction of MUSIL with the underlying MUS oper-
ational system. For advanced MUSIL programming, the reader should refer to
the MUSIL reference manual and to the MUS manuals.

There is a text editor program that can be used by the programmer to change

or correct his programs sitting at the console device of the RC 3600 machine.
The use of this program for such purposes is described in the RC 3600 MUSIL

Text Editor Manual.

6

2 About VIUSIL

MUSIL is a language that can operate both on whole files and on individual
characters within files. Thus, it shares some of the characteristics of assembly
languages and also of higher-level languages. The programmer with previous
experience with /O programming in an assembler language should be able

to learn MUSIL in a day or two. The programmer whose previous experience
has been with languages such as FORTRAN or ALGOL may find it advisable
initially to write programs that handle whole files, and then progress to the
full set of MUSIL instructions.

Whatever the level of knowledge of the programmer, certain programming con-
ventions should be followed when using MUSIL, so that programmers other

than a program's original author will find it easy to understand, up-date, mod-
ify, and/or correct the original program. This is a very important point to re-
member, as it is estimated that up to fifty percent of programmer time at any
programming installation is occupied with work on old programs. Following
correct programming conventions will also help you to write error-free pro-

grams more quickly.

The first principle of good programming technique is that programs should be
written in modular fashion. MUSIL provides facilities to help you follow this
principle easily. A MUSIL program is written in sections. The first section is

the constant section. This is followed by the type section, the variable sec-

tion, and the main section. Within the main section procedures are first de-
fined. In the final part of the main section there should be - as far as prac-
tical - only calls to procedures. Programs written this way are easy to read,

modify, and document.

The second principle of good programming technique is full, clear, and ade-
quate documentation. Each program should begin with a comment section
which describes the purpose and operation of the program. Each procedure
should be proceded by a comment section that describes the purpose of the
procedure and the conditions under which it will be called. Each line of the
main program (and of very long procedures, too) should be explained by

comments,

In MUSIL comments are written within two exclamation signs:

: THIS IS A COMMENT!

Thus, the overall structure of a MUSIL program should resemble this model:

. comments describing program

.

constant section
type section

variable section

. description of first procedure !
first procedure
. description of second procedure!

second procedure

.

. description of last procedure!
last procedure

main program . comments to main program!

The third principle of good programming practice is readability. That is, many
different people may have to read your program, or you may have to read it
long after you have written it (and forgotten it). Thus, it is advisable to
write the main program in such a way that only one instruction, or two close-
ly related instructions, appears on each line, with the remainder of the line
being used for comments. Longer procedures should be written in this way

also.

Modularity, documentation, and readability will not only make your programs
more useful. They will also help you to write better programs faster, and they
will allow you to achieve a maximum of error-free coding. They are well

worth the time they take.

(o]

The Constant Section

The first part of @ MUSIL program is the Constant Section. In it several dif-
ferent sorts of constants can be defined. The simplest is the definition of a

simple numerical value:
ALPHA = 45,

is such an example. This statement assigns the value decimal 45 to the word
ALPHA. ALPHA's value could have been set in octal or in binary, as well as
in decimal, but at any rate, the value of ALPHA must not exceed 16 bits.
That is, ALPHA must be a value between decimal -32768 and +32767. The
name of the value, in this case ALPHA, can be as long as you like. The sys-
tem will identify it by its first seven characters and the total number of char-
acters in it. The name of the value must, furthermore, begin with a letter
and include no symbols other than letters and numbers. Notice that each as-
signment in the Constant Section must close with a comma, and that the sys-

tem will ignore spaces.

Some other examples of numerical values might be:

NUMI123 = 2'011001, . a binary number.
NUM555 = =8'775, ! an octal number!
ACT88B = +23005, ' a decimal number.

Decimal points cannot be used.

The Constant Section begins with the keyword
CONST
not followed by any punctuation. As stated above, every definition is fol-

lowed by a comma:

ALPHA = 45,
BETAT = 67,

and the last entry in the section is followed by a semicolon:

CONST
ALPHA = 45,
BETAI -8'377,
GAMMA = +2'0011;

Though the system will ignore spaces that occur between parts of a statement,
blanks must not occur within the name of the value or within the numerical

value itself. The following statements are not allowed:

GA MMA = +2'0011, . error in name!
BETA = - 8'377, . error after sign.
PHI = =2'00 11, . error in value!

Besides integers, other sorts of constants can be defined in this section. The
most common one is the string of characters representing an ascii text. For

example,
ALPHA2 = 'THIS IS ALPHAZ2',
which gives the name ALPHA2 to the text THIS IS ALPHA2, Such a text can-

not, obviously, be operated on numerically, but it can later on be assigned
to a variable as its current value. It can also be used in text comparisons.

And it can be output on the operator's console.

Strings can be enclosed with either singie or double quotes, and no error oc-

curs if the single and double quotes are mixed. Thus, it is all right to write

ALPHA3 = "THIS IS ALPHAS SECOND VALUE",
ALPHA4 = "THIS IS OK',
ALPHAS5 = 'THIS IS OK TOQ",

String constants defined in this section are stored in their locations left-justi-
fied and with a binary zero at the end of the text. When they are read out

to another location, or to an output device, the binary zero is stripped off.
Therefore, it is important to remember that this terminal zero will not be car-
ried with the text when it is later on assigned to a variable and then out-
put to the console. The absence of this binary zero will cause the console de-
vice to keep on printing after the output text has been completed. To avoid
such a situation, you should place a binary zero after each text that will be
assigned to a variable and then output from that variable. This is done

in the following way:

ALPH = 'THIS WILL BE OUTPUT <0>',

Strange things can happen if the above method is not employed. Say, | have
in ALPHA20 the text THIS MESSAGE IS WRONG. If somewhere in my pro-

10

gram, | move into ALPHA20 the text THIS IS ALPHA, then on outputting
ALPHA20 | would get

THIS IS ALPHAIS WRONG

The use of the final zero will eliminate such situations. Of course, string con-
stants that will not be moved around in the program need not have the binary
zero put after them, for the compiler will do this automatically in the execu-

tion of the Constant Section.

Text strings may be defined for strings of ASCII values. If we write
ALPHA ='<45>',

we have a text string, and though we cannot perform arithmetic on it, it can
be assigned to a variable, compared with another text string, or output to a
device. For this sort of statement the binary value 45 goes into the location.

Since the ASCII code for decimal 45 is a minus sign, @ minus sign is put into
ALPHA | If we write

BETA = '<8'126>"',

then the ASCII code for V goes into BETA (left-justified). Similarly, we can
define ASCII representations for carriage return, end of text, or whatever.
This is the only way to include control characters in a

text.
Using this method any symbol can be output, including ' and ",

An ASCII code table follows for your reference.

5 5 5
e] = [e)]
s 8& |58 88 | 5% 312
-E%:EE .gg-—aﬁ fg’ﬁd.—cﬁ
Vg my O Vg myg 8 Vg my ©
82 0T 82 L0 O 82 N0 O
— 0 000 NUL 43 053 + 86 126 V
1 001 SOH 44 054 87 127 W
2 002 STX 45 055 - 88 130 X
3 003 ETX 46 056 . 89 131 Y
4 004 EOT 47 057 / 90 132 Z
5 005 ENQ 48 060 0 91 133 |
6 006 ACK 49 061 1 92 134 #xx
7 007 BEL 50 062 2 93 135 |
8 010 BS 51 063 3 94 136 t
9 011 HT 52 064 4 95 137 «
10 012 LF 53 065 5 96 140 -
11 013 VI 54 066 6 97 141 a
12 014 FF 55 067 7 98 142 b
13 015 CR 56 070 8 99 143 ¢
14 016 SO 57 071 9 100 144 d
«x 15 017 Sl 58 072 : 101 145 e
16 020 DLE 59 073 102 146 f
17 021 DCI 60 074 < 103 147 g
18 022 DC2 61 075 = 104 150 h
19 023 -DC3 62 076 > 105 151 i
20 024 DC4 63 077 2 106 152 j
21 025 NAK 64 100 @ 107 153 k
22 026 SYN 65 101 A 108 154 |
23 027 ETB 66 102 B 109 155 m
24 030 CAN 67 103 C 110 156 n
25 031 EM 68 104 D 111 157 o
26 032 SUB 68 105 E 112 160 p
27 033 ESC 70 106 F 113 161 q
28 034 FS 71 107 G 114 162 r
29 035 GS 72 110 H 115 163 s
30 036 RS 72 Y1 7 116 164 t
| 31 037 US 74 112) 117 165 v
32 040 SP 75 113 K 118 166 v
33 041 | 76 114 L 119 167 w
34 042 " 77 115 M 129 170 x
35 043 # 78 116 N 121 171 y
36 044 $ 79 117 O 122 172 =z
37 045 % 80 120 P 123 173 7]
38 046 & 81 121 Q 124 174 #xx
39 047 82 122 R 125 175 |
40 050 (83 123 S 126 176 ~
41 051) 84 124 T 127 177 DEL
42 052 * 85 125 U

* %

Special control characters.

Will be interpreted in accordance with actual device
specifications.

*** Reserved for national characters.

ASCII code table

11

12

You can also write strings of ASCII characters:
ALPHA31 = '<45><0><10>',
which sets into ALPHA31 the string meaning

minus sign NUL Line feed

One can also define tables of constants in the Constant Section. These con-
stants are also text, that is, string constants, and the items in the table can-
not be operated on arithmetically. A constant table might be set up in this

way:

LPTABLE = # 14 0 64 89 56 8'377 0 65 #,

Notice that the punctuation used between the elements of a table is the blank.

Note also that the two following statements are equivalent:

ALPHA = #45#, and ALPHA = '<45>',

The numerical sign is a shorthand notation that allows the programmer to avoid

cumbersome forms such as

LPTABLE = '<14><0><64><89><56><8'377><0><65>",

Finally, constants useful in error routires can be defined, for example,

STATUS = 'DISCONNECTEL <10><0>
OFFLINE <10><0><0><0>
<0><0><0><0><0> EOF
<10><0> B8 <10><0> PARITY
<10><0> EM<10><0><0><0>
<0><0>7,

which will, when used with certain instructions, display the appropriate mess-

ages on the operator's console.

13

The Type Section

The second section that might appear in a MUSIL program is the Type Section,
but this is not, sirictly speaking, a necessary part of a MUSIL program. The
Type Section in fact is only a place where a kind of shorthand notation is pro-
vided for defining variable types, or categories, so that several variables that
have the same structure can later on be defined more easily in the third sec-
tion of the program, the Variable Section. There this is done by referring to
the type definition that applies to all of them. In this section, then, vari-
ables are not defined, but categories of variables are defined for later refer-

ence in the next section.

Variable types are defined in the Type Section by identifying them, e.g., by
specifying that they are to be integers, files, or records, etc., by associating
them with an identifier and by describing their structure, if any. In the last
case an example might be a situation in which we describe the structure of a
file by saying how many records it contains and what the records look like.

Many examples will be found below.

The Type Section begins with the word
| TYPE

not followed by any punctuation.

We may define scalar types. These may be integers or strings. Such an integer

type definition might look like this:
| = INTEGER;

which sets up a category, called I, whose members will all be 16-bit signed

binary integers.

Each statement in the Type Section is terminated by a

semicolon.

We may define string types here, viz.,

LINE = STRING(20);

This defines the category called LINE and specifies that it shall have as mem-
bers strings consisting of twenty 8-bit bytes.

Besides scalar types, we may also define record types here.

TYPE
PLINE = RECORD
L1: STRING(20);
L2: STRING(15);
L3: STRING(45)
END;

defines a record type, to be called PLINE, which consists of strings of 20, 15,
and 45 bytes in sequence, and called respectively, L1, L2, and L3. We

might have written this definition in an equivalent way:

TYPE

LINET = STRING(20);

LINE2 = STRING(15);

LINE3 = STRING(45)

PLINE = RECORD
L1:LINET;
L2: LINE2;
L3: LINE3
END;

or we might have used a mixture of the two equivalent forms:

PLINE = RECORD
L1: LINET;
L2: STRING(15);
L3: STRING(45)
END;

Note that punctuation cannot come before an END.

Such record definitions are useful in situations in which control characters

will be used.

15

TYPE

S = STRING(1);

INREC = RECORD
CCW:S;
TEST:S;
LINE: STRING(132);
STOPF: STRING(2) FROM 1
END;

sets up a record type definition for a record whose first two characters are
text strings of one character each and called, respectively, CCW and TEST.
These are followed by a string of 132 characters. We furthermore define a
name for the first two characters taken together. We call them STOPF., One

may also write

CCW, TEST:S;

Finally, we can define file types in the Type Section. The coding

IN = FILE
'MTO', 14, 1, 600, F3
OF PLINE;

sets up a file of records with the record structure previously defined when we
described PLINE above. (In this coding we might have replaced PLINE by

its definition.) The coding further tells us that the device is called MTO.

This name must have been defined in the device's driv-

er program.

One is permitted to use single (' ') or double (" ") quotes around the device

name, which can be up to six characters in length.

Following the device name, appears the decimal representation for the binary
code that tells the central unit what to expect from the device and its oper-
ation. At present the following kind bits are defined:

bit 15 char is set if the device transfers information character-by-
character; ‘
bit 14 blocked is set if full blocks are transferred as units;

bit 13 positionable is set if positioning is effectual on the device;

bit 12 repeatable s set if an operation can be repeated.

16

For example, binary 1110 equals decimal 14, so that our MTO is not charac-
ter-oriented, but is block-oriented and positionable, and can also repeat

I/O operations.

Further examples might be

0001 line printer 0001 teletype
0011 line printer 0001 paper tape punch
0010 card reader 0001 paper tape reader

In our example, MTO is, obviously, a magnetic tape station.

Following the kind definition, we find the decimal representation for the num=
ber of buffers. The maximum that can be used is 64. One determines the num-
ber of buffers for the device by trading off execution time against space in
core. You will probably want to try a number of possibilities for each of the
programs you write, as the determination of this number can influence severe-

ly the speed with which your programmed operation proceeds.
Our example, then, uses one buffer for the device MTO.

Next comes the blocklength in number of bytes. In our example there are 600

characters per block. This number is limited by core size.

The next slot is filled by a character or by two characters. These represent

the record format. The possibilities for this slot are:

]} undefined, blocked
undefined
F fixed
FB fixed, blocked
A% variable (IBM format)
VB variable, blocked (IBM format)

That takes care of our example, but two more file type definers are possible.

17

Consider the example

LPT = FILE
‘WP, 1,2, 50, U;
GIVEUP LPTERRORS, 2'1100001111111111;
CONV LPTTABLE
OF STRING(50),

Files of the type called LPT, then, operate on the device named LPT. (As de-
fined in the device's driver program.) Two buffers are set up for it. Block
length is 50 characters, and it is unblocked. Furthermore, there will be a
procedure, called LPTERRORS and defined later on in the program, that will
specify some action to be taken by the operator and/or the machine if there

is an error, an end of file, or any other special situation. What the machine
will do is defined by the binary mask, which is described in the device's driv-

er program.

If there is a conversion table related to the file, then it is called here
LPTTABLE, and it was defined previously in the Constant Section, or it will
be defined in the Variable Section.

If we had previously defined something like
ZLINE = STRING(50);
then the last line of the LPT definition could have been written

OF ZLINE,

Note that OF is not preceded by punctuation.

Conversion is provided for in the Type (and in the Variable) Section, because
doing the conversions outside the main program saves execution time and pro-

grammer's time,

When conversion is done, it proceeds in the following way: Say, we have
paper tape input and line printer output. Then if we did no conversion, then
whenever an ASCII character came in that was unknown to the line printer,
it would be printed out as a space. For example, if a lower case letter was

read in, then it would be printed out as a space. If we have a conversion

table, then when the machine receives a character, it looks it up in the

table and outputs the character it finds there.

Example: If a lower case a is read in. This symbol has the ASCII represen-
tation decimal 97. Therefore, the driver program looks for the 97th entry in
the table. It prints what it finds in this location. Say, that the 97th entry in
the table was 65. This is the ASCII decimal representation for capital A.

Therefore, a capital A is printed out.

Suppose in the Constant Section we had

Oth LPTTABLE=# 0 0 0 0 0 O 0 O 0 010 01213 0 O

16th 0 00O0O0OOOO032 00O0O0O0CTO
33rd 33 34 35 36 37 38 39 40 41 42 43 44

45th 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
60th 40 61 62 63 64 65 66 67 68 69 70 71 72 73 74
75th 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
90th 90 91 92 93 94 95 96 65 b6 67 68 69 70 71 72 73
106th 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
122nd 90 00 00 00 00 D0 00 00 #

Refer now to your ASCII table. Comparing the ASCII table with this conver-
sion table, we can see that we must not ignore the character for zero in any
case. If a NUL is input, then we look it up in the first place in the table.

That is, in counting table entries, start with zero.

19

Continuing, we have the following examples for our table:

input output
NUL blank
SOH blank

$;

a A

b B

A A

B B

m blank

If the conversion table is too small an error message will occur.

The Type Section interacts with the other sections of the program. For example,

if in the Type Section we have
I = INTEGER;

then later on in the Variable Section we can make A, B, and C integer vari-

ables by setting
A, B CI;

20

Similarly, we can take a file type defined in the Type Section and use it in a
kind of shorthand notation to set up any number of files of similar types. For
example, we have defined the file type IN above. If we want to have sev-

eral files of this type, then in the Variable Section, we might say
INFILE1, INFILE2 : IN;
This gives the structure of IN to both INFILET and INFILEZ.

We have defined INREC above. Let us now define
QOUTREC = RECORD
CCW:S§S;
LINE: STRING (132)
END;

Later on in the main program we can put the contents of the first character of
INREC into the first character of OUTREC, for example, if we have
first set up variable of the corresponding types. We

would do this in the Variable Section, for example

VAR
IN: INREC;
OUT: OUTREG,

main program

OUT1.CCW: = INt.CCW;

Two final cautions: Where in the example above we used the FROM expres-

sion, if we have

then n cannot be greater than 255.

Also, if you have a line of coding
....STRING...FROM...
then later on you cannot have something like

AB, CD : STRING...FROM...

because then you will have defined the string twice.

21

The Variable Section

The third part of a MUSIL program is the Variable Section. Here variables
are defined and space is set aside for them in core. If the Variable Section
has been preceded by a Type Section, then the process of setting up file vari-
ables can be much simplified in the Variable Section. If not, then all the

structuring discussed above must be done here, in the Variable Section,

The Variable Section begins with the keyword

VAR

not followed by any punctuation.

We may define integer variables:
D: INTEGER;

This sets up a location called D, which can accomodate 16-bit signed binary

integers.

We may define text string variables:
TEXT1 : STRING(20),

sets up a location called TEXT1, which can accommodate 20 bytes.

We can define and structure record variables:

PRINTLINE: ~ RECORD
HEAD: STRING(4),
TAIL: STRING(4)
END;

which sets up an eight-character record called PRINTLINE in which the first

four characters have the name HEAD and the last four have the name TAIL,

We can define and structure a maximum of eight file variables:
LPT: FILE
‘LPT', 1,2, 50, U;
GIVEUP procedure name, mask
OF STRING (50);

where the meaning of this example was explained in the previous section.

22

Or records within files can be structured within the file definition:

MTO : FILE
'MTO', 14, 48, 1000, FB;
GIVEUP procedure name, mask
OF RECORD
COL1: STRING(1);
COL10: STRING(9)
END;

Some notes on the above examples: After a variable has been defined, you
cannot operate on any part of that variable, unless you have given that part

a name. Thus, if we have
TEXT1: STRING(20);

we cannot later perform operations on individual characters within TEXT1.

Similarly, in our example PRINTLINE above, we can operate on the part of
PRINTLINE called HEAD, but we cannot operate on parts of HEAD. Similar-
ly, we cannot operate on parts of records of LPT, but we can operate on those

parts of MTO called COL1 and COL10.

‘Secondly, when a block size has been assigned to a file, then output to that

file, and assignments to it, must be in blocks of corresponding size. For ex-

ample, input to, and output from, LPT must be in blocks of 50 characters.

Third, it is most convenient to write mask descriptions in binary, but this is

not prerequisite. They may be written in octal or in decimal.

In the Variable Section, variables of the same sort can be defined together:

D, E, F, G, H: INTEGER;
TEXT1, TEXT2, TEXT3: STRING(40),

defines D, E, F, G, and H as integers and TEXT1, TEXT2, and TEXT3 as

strings of 40 characters each.

Finally, we had an example in the Type Section of how that section can inter-

act with the Variable Section.

23

When we later get to the main program, we will want to do certain things
with our previously defined variables. Some of them we might want to do
arithmetic with, others we might want to use to compare with the contents
of other variables. We will want to make assignments to others. Looking again

at the examples given above, we have the following:

- Variables defined as INTEGER can be used for arithmetic, comparison, or

assignment,

- Variables defined as STRING or RECORD can be used for comparison or as-

signment.

- Variables defined as FILE can be used only for |/O procedures. You can
not use them for comparison or assignment (or obviously arithmetic) di-

rectly.

Comparison and assignment, with respect to record and file variables, that will

be performed in the main program is done with respect to the following facts:

When a file is set up in core, room is reserved for a zone descriptor, which
contains |/O information, for information about operator communications, and
for the actual data that will be coming into, and going out of, this location.

To refer to any particular part of the data in a file, we use an arrow, thus:
MTOt.COLI

refers to the current contents of COL1 in MTO. If we have no arrow, we are

referring to a part of the zone descriptor, for example
MTO. ZREM

which is something that will be explained later, when we are discussing 1/O

procedures.

When structuring records and files, it is possible to give the same name to
parts of different records or files. The computer will not get confused, for ex-

ample, if you refer to
MT0t.COLT and CDRt.COLI

as long as these elements have been previously defined.

24

The Main Program

The Main Program section is divided into two parts. The first part contains
the coding for the various procedures that will be used during program exe-
cution. The second part contains the coding that will call these various pro-
cedures and inter-relate them with respect to the operation that the program
was written to perform. There is no difference between the instruction set
that may be used in procedures and the instruction set that may be used in

the body of the main program.

In MUSIL procedures are defined first. The structure of a procedure is as fol-

lows:

PROCEDURE name of procedure;
BEGIN

END;

Note that every statement except the one before an END is terminated by a
semicolon. That is, everything between BEGIN and END is a statement. In
fact, the entire main program section can be looked at as one compound state-
ment. After a procedure has been defined, it can be referred to by its name,

for example by a statement

procedure name;

It can be seen, then, that procedures in MUSIL are the analogy of subroutines

in assembly language programming.

We shall now define the MUSIL instructions that the beginning MUSIL pro-

grammer should know.

OPMESS (string name)

This instruction outputs the string fext contained in the string variable or

string constant specified in the instruction to the operator's console. That is,

25

it outputs the string text until a <0> is reached. At most 80 bytes will be
output, and if there is no final binary zero in the string, then the output will
go on for the full 80 bytes anyway, outputting whatever is in core following
the text. The output should be in ASCII text.

OPIN (string variable name)

This instruction allows the operator to input a text string of up to 80 bytes
into the string variable specified. This instruction should always be followed

by

OPWAIT (LENGTH)

which makes the system wait for the operator input. The number of characters
input will be placed automatically into the system-defined variable LENGTH.
The use of the instruction OPIN will determine the value of a system-defined

function variable.

OPTEST

'If OPIN has been called and if a text has in fact been input, then this func-

tion will take a non-zero value. Otherwise, its value will be zero.

The RC 3600 system operates in binary. Therefore, all input that is not in bin-
ary must be converted to binary before it can be operated on arithmetically.
Similarly, all output which is not to be in binary must be converted before it
is output. The conversion instructions, which follow, should be used close
enough to the corresponding |/O statements to make it easy for the reader of

the program to see what is happening.

BINDEC (binary value name, decimal value name);

takes the binary number found in the first variable and puts its decimal value
into the second variable of the instruction. The decimal value variable must
be previously defined as a string with a minimum of 6 bytes. It will have no

sign. If a sign is to be output, then it must be defined separately. The bin-

26

ary value contained in the binary value variable will be converted to 5 deci-

mal digits. The opposite instruction is

DECBIN (decimal variable name, binary variable name);

Here, too, the decimal value being converted should have no sign. The deci-
mal value will be converted into a 16-bit binary number. Note that
there is no check for overflow. The conversion process will

stop at the first non-numeric symbol, for example, a plus or minus sign.

If we wish to construct a compound statement, we can do so by using the in-
struction pair BEGIN and END:

BEGIN

END;

‘Note that there is no semicolon after BEGIN or before

END.

GOTO label;

This is the ordinary jump instruction found in many programming languages,
but in MUSIL certain peculiarities should be observed. If we say, for ex-
ample, GOTO 31, then there must be a line of code labelled thus:

Bl 255 e oo o

Note the colon after the statement label. There are certain logical restric-
tions on the GOTO statement. You may not GOTO a location inside a
procedure, if you are not already inside that procedure, but you can GOTO
a location in the main program from within a procedure. The use of the
GOTO in combination with the BEGIN/END compound statement usage is

as follows:

27

GOTO may be used to jump outside a compound statement, but it may not
be used to jump into a compound statement. If the GOTO is used to jump to

an END statement, then the END statement must be preceded by a semicolon:
H
¥
r
GOTO 60,
y . note semicolon.

60: END;

Assignment instructions move the contents of one location into another loc-
ation, or move a numerical constant into an appropriate location. In MUSIL
you cannot move fext strings into a location unless the text string has been de-

fined previously. Thus, you can have
INT1: = 5;
if INT1 was previously defined as an integer variable, but you cannot have

TEXT3: = 'THIS IS THE END';

‘even if TEXT3 had been previously defined as a string variable. Instead you

must in the Constant Section have something like
T3 = 'THIS IS THE END',
and then in the main program you can have

TEXT3: = T3;

You can assign the contents of one location to a location of the same type:
TEXT1: = TEXT2,
but you may not do the following:

INT1: = TEXTI1; or TEXTI: = INTI;

where INTI is an integer variable and TEXTI is a text variable.

You may also not make multiple assignments in one statement. The following

are not allowed:

INT1, INT2: = 0; or INTI: = INT2: = 0y

28

When text strings are moved, the number of characters that are moved is
equal to the minimum of characters in the two values. Thus, if TEXT1 has
10 characters and TEXT2 has 20 characters, then

TEXT1: = TEXT2; or TEXT2: = TEXTI;

will move only the first 10 characters of TEXT2 in the first case, and in the
second case TEXT1 will be moved into the 10 left-most positions of TEXT2,

leaving the remainder of TEXT2 unchanged.

iF s THEW ..
MUSIL has the usual IF statement THEN statement construction. For example,

IF TEXT1 = TEXT2 THEN GOTO 35;

The IF may be followed by any relational expression, and the THEN may be
followed by any statement, including compound statements. If the relational
expression is not true, then the program skips to the next executable state-

ment, and the THEN statement is ignored.

WHILE ... DO ...

This instruction allows the repetition of an operation as long as the WHILE

statement remains true. E.g.,

WHILE X>Y DO
BEGIN

END;

If X is never greater than Y, then the DO statement will never be executed.

REPEAT ... UNTIL ...

The REPEAT statement may be any statement, including compound statements.

The UNTIL statement is any relational expression. For example,

29

REPEAT
BEGIN

END
UNTIL X =Y;

Note that there is no semicolon after the END. If X is in fact equal to Y

when END is reached, then the statement will be executed once.

Relational Symbols. The allowed symbols are

X=Y The contents of X and Y are equal.

X>Y The contents of X are greater than the contents of Y. (For texts
the comparison is done byte by byte, starting from the left, and
the comparison is lexicographic.)

X<Y The contents of X are smaller than the contents of Y. Comparisons
of texts is as above. |

X <> Y The contents of X and Y are not the same.

K=Y The contents of X are less than or equal to the contents of Y.

X=zY The contents of X are greater than or equal to the contents of Y.

Comparison as above.

Arithmetic. MUSIL uses these arithmetical operations:

() Parentheses
+ Addition
= Subtraction

*

Multiplication

/ Division
AND Masking
SHIFT Logical shift left

EXTRACT Bit extraction from the right

30

MUSIL executes arithmetic operations from left to right, with operations of
the same precedence level being executed together. The precedence sequence

is:

monadic operators
multiplying operators
adding operators

relational operators.

The programmer is encouraged, however, to make good use of parentheses

to avoid error and enhance program readability.

Operators. There are two monadic operators. After they have operated on
something, the result is an integer, and this result can then be used as any

other integer can,

BYTE, followed by a text, yields the integer value of the first character of
that text. Example,

BYTE TXT

where TXT was previously defined in the program.

WORD, followed by a text, yields the integer value of the first and second

characters of that text, where these two characters are taken together. Thus,

if TXTis
1001000111110011

then
BYTE TXT

yields the integer value of 10010001, and
WORD TXT

yields the integer value of 1001000111110011,

The multiplying operators are multiplication and division.

31

The adding operators are plus, minus, and the three logical operators SHIFT,
EXTRACT, and AND,

SHIFT

A SHIFT 2

shifts A two places to the left, filling the empty right hand positions of A

with zeroes.

A SHIFT (-2)

shifts A two places to the right, filling the empty left hand positions with
zeroes. SHIFT is not a wrap-around operation. Bits shifted out of the word

are lost.

EXTRACT allows the programmer to take a part of the current contents of an

integer variable and make that part into an integer.
VAR2: = VAR1 EXTRACT §;

takes the last eight bits of the variable VARI contents and places them in
VAR2. VAR1 EXTRACT 8 can also be used by itself as an integer.

AND is the logical 'and'.
VART AND VAR2

yields the integer value of the logical 'and' operation, as performed on the

current contents of the previously defined integer variables VAR1 and VAR2.

The programmer should note that division by zero, or
the division of zero by zero, will NOT give an error

message.

When text strings are compared, the comparison takes place only on the num-
ber of characters that is minimum for the pair of strings. That is, in the com-

parison

IF ALPHA > BETA THEN ...
where ALPHA is occupied by
TR

32

and BETA is occupied by
TRANS

the comparison will consider only the first two characters of BETA, so that in
this example ALPHA and BETA are equal.

The programmer should note that the following is NOT allowed:

IF 'THIS IS THE END' = 'THIS IS IT" THEN ...

Comparisons can be made only on named items.

1/O Handling

|/O operations are performed on files and on parts of those files. In order to

identify the file being operated upon, as well as the part of the file that is

currently being used, a place is reserved for file descriptors. This description

is called the 'zone descriptor'.

Document name

‘Kind

Operation

GIVEUP mask and address
Blockcount and File count

Used Share and Sharelength
Record Format and Length
First Byte, Top Byte,

Remaining Bytes

Conversion Table

In the zone descriptor we find

The name of the driver process, e.g., MTO.

Informcition on the type of device. See the
Kind Table.

Defined in the OPEN file instruction. See
Operation Mode Table.

This is defined in the file declaration.
The current block and file number.

Tells what the current share is and the length
of the buffer.

Contains pointers to the first byte of the cur-
rent record, the first byte after the current

record, the rest of the bytes of the share.

The conversion table address.

33

In addition to the Zone Descriptor, the Zone contains Share Descriptors, and
a Buffer Area. The Share Descriptors contain information about the current
activities in the buffers which they describe, and the Buffer Area contains
the descriptors and the associated buffers. Certain symbols are provided for
operating on the Zone Descriptor. By choosing integers to set into these
areas, one can assume total control over /O operations. The way this is done
is described in the MUS manual, which the programmer should read before at-
tempting to use these expressions, which are to be considered as items avail-

able only in advanced MUSIL programming.

The contents of the Zone Descriptor which can be reset by the programmer are:

filename . ZMODE gives the mode of operation, see Operation
Mode Table.

filename . ZMASK is the giveup mask for device errors,

filename . ZFILE is used differently for different devices, see
MUS manual.

filename . ZBLOCK may be the current block or the number of

blocks done, see MUS manual.

filename . ZFIRST is the byte address of the first byte of the
current record.

filename . ZTOP points to the first byte after the current rec-
ord.

filename . ZLENGTH is the length in bytes of the current record.

filename . ZREM is the length in bytes of the remaining part

of the current block.

filename . Z0 can occur only inside a GIVEUP procedure,
where it tells which errors got you into the

procedure.
The beginning MUSIL programmer will use only these last three.
In sum, then, the documents that we input to, or output from, our job are de-

scribed inside the zone descriptor by the document name (which is the process

name of the driver that controls the device the document will be on), the

34

operation code that is sent to the driver (telling whether we are operating
with input or output, etc., as defined in the Operation Code Table), and
device kind (which tells if the device is character or block oriented, if pos-

ition or repetition are possible, see Kind Table).

35

Handling Exceptions

In the /O procedures, the programmer can choose to determine what should

be done at End of Tape, End of File, when parity errors occur, etc. Or the

programmer can let the system handle exceptions in its standard way. If it is

not desired to let the system do this, then the programmer must write a
GIVEUP procedure. In the absence of a GIVEUP procedure, the STATUS

word that determines exception handling will be set up in the following way

automatically by the system:

bit event action
0 device disconnected hard error
1 device off-line hard error
2 device busy operation is repeated
3 device mode 1 ignored, defined in Operation Mode Table
4 device mode 2 ignored, defined in Operation Mode Table
5 device mode 3 ignored, defined in Operation Mode Table
6 illegal instruction hard error
7 EOF hard error
- 8 block length error hard error
9 data late if kind bit 12 is 1, then the operation is re-
peated, otherwise, hard error
10 parity error same as for bit 9
11 end medium error is hard, except for certain conditions
that the MUSIL beginner should not take into
account
12 position error hard error
13 rejected hard error
14 timer hard error
15 repeat error hard error

If bits 8 and 15 are both set, then there is an error in a PUTREC or GETREC

instruction.

When a hard error occurs, processing stops and the error number and unit

name are displayed on the operator's console. If the operation is repeated

36

when an error occurs, then there will be a maximum of five repetitions, after

which time the error becomes a Repeat Error, and is hard.

In error handling, the system will perform the treatments described for bits 0
through 11, plus bit 14 first. Then it will look to see if there are 1 bits in the
GIVEUP procedure. If there are, then control will be given to the GIVEUP

procedure. If not, then a hard error will occur.

The GIVEUP procedures are arranged in a hierarchy of instructions, as fol-
lows: For example, the programmer may use an instruction to make space for
a record in an output buffer. When the programmer issues this command,
which happens to be PUTREC, described below, then the following hierarchy

of commands (also described below) becomes involved automatically:

PUTfEC
OUIBLOCK
TRANSFER WAIRTRANSFER

GIVEUP procedure, if
specified

Here, it should be noted that in MUSIL certain of the I/O instructions can

be redefined by the programmer. The instructions TRANSFER and WAITTRANS-
FER are used in this way. For the beginning MUSIL programmer, in the ex-~
ample above the operations specified by TRANSFER and WAITTRANSFER can

be left to the system to perform automatically.

If the programmer wishes to have the operator informed of what is in the
STATUS word, or in part of it, then the use of the OPSTATUS command is

recommended.

Assuming that there is in the Constant Section a definition of what is to be

displayed, the instruction is
OPSTATUS(IN.Z0,ERRORS);

where we have previously defined, for example,

37

ERRORS = 'DISCONNECT<10><0>
OFFLINE<10><0>

TIMER <10><0>
BIT 15 ?7? <10>'

IN.ZO is the system-defined expression that contains the STATUS word for
the file called IN, For this example, if IN.Z0 contains 1000000000000000,
then DISCONNECT will be printed on the operator's console, along with
skipping to a new line. If IN.Z0 contains 1000000000000010, then

DISCONNECT
TIMER

will be output to the console, along with skipping to a new line, etc.

I/O Instructions

-OPEN (filename, mode)

The file name should have been defined in the Variable Section, and the
mode can be defined by reference to the Operation Mode Table, for it will

be different for different devices.,

This instruction opens the file and sets various pointers. If in the body of the

program we wish to identify or change the mode, then we can access it by

filename . ZMODE

CLOSE (filename, release)

If release is not equal to zero, then the device will be released to another
program. If, for example, we are working with magnetic tapes then the tape

will first be rewound and set off-line.

If we do not want the tape to be rewound, then we set release to 0. This re-

38

sults in a file mark being written. The exact sequence of events for other de-

vices can be found in the MUS manual.

WAITZONE (filename)

This command allows one to interrupt |/O processing in an orderly way. The
information needed for continuing with the processing later on is stored, so

that one can resume processing whenever one wants to. Suppose we have

IF operator action THEN
BEGIN
WAITZONE (filename);

interrogate operator
END;

The WAITZONE lets the communication take place in such a way that pro-

cessing can be resumed in an orderly way after the communication.

SETPOSITION (filename, file number, block number)

This instruction automatically calls WAITZONE. Then it positions the /O
medium, such as MTO for example, and finds the number of the file and block

within it that processing will start on. For example,
SETPOSITION (MT0, 3, 8)

positions processing to the 8th block of the 3rd file within MTO.

GETREC (filename, variable name)
Example:

GETREC(INFILE, SIZE);

The events that this instruction cause depend on the record format:

For undefined (in file definition) format and unblocked.

This instruction gets the next physical block. It is much used for reading
cards, for in this case it reads the nexi card. When used, say, with pa-

per tape, it would read as much of the tape as there is room for in the

39

buffer. At call time SIZE is irrelevant. At execution time the system

will put the size of the block read into SIZE.

For undefined and unblocked.

The number of characters equal to SIZE will be read. This means that
you can read, say, the first byte of a magnetic tape block. This can be

done thus:

SIZE = 1;
GETREC(MTO, SIZE),

If during read-in the GETREC command is used with SIZE greater than
the remaining part of the block, then the system will begin to read the

next block. If we write

SIZE: = 1;

GETREC(MTO, SIZE);

IF BYTE MTO = binary code THEN
BEGIN
SIZE: = MTO0.ZREM;
GETREC(MTO, SIZE),

processing of block

END;

Then, what we have done is, first, inspected the first byte of the tape
block to see what sort of block it is, then, read in the remainder of the
block (ZREM) and processed it.

For fixed length and unblocked.

In this case the record has previously been defined. GETREC causes the
next physical block to be read, taking as many bytes as were specified
in the record definition and skipping the remaining bytes in the block.

The system will put into SIZE the number of bytes read in.

40

For

For

For

fixed length and blocked.

The system looks to see if the current block contains the next record. If
so, it reads it. If not, it goes to the next block. (Throughout, it should
be kept in mind that 'unblocked' means that the block is not divided in-

to records.)

variable length and unblocked.

The next block is read. The first four bytes, containing the block length,
are decoded. The next four bytes, containing the record length, are de-
coded. The record length is put into SIZE: For all practical purposes,

we are here talking about IBM V format magnetic tapes.

variable and blocked. IBM VB format.

The next record from the current block is read by decoding the first four
bytes. If there is no record left in the current block, the first record of

the next block is read.

PUTREC (filename, name or number or expression)

For

For

For

The events caused by this command depend on record structure.

undefined and unblocked.

The previous block is output. If we say PUTRE C(FILENAME,SIZE), then
space is reserved in core for SIZE bytes of the next block to be output
the next time PUTREC is called.

undefined and blocked.

The system looks to see if the current physical block in core can contain
yet another record of SIZE bytes. If so, it makes room for that addition-

al record. If not, it outputs the current block.

fixed and unblocked.

The current block is output and space is reserved for the next record.

SIZE is irrelevant, as it was given in the record definition.

41

For fixed and blocked.

Events are as in unformatted and blocked, except that SIZE is irrelevant,

having been given in the record definition.

For variable and unblocked.

Reserved for the next record. The four-byte block size and the four-byte
record size are computed and put into the block. This allows such output
to be read later on by a GETREC in V format.

For variable and blocked.

The system checks to see if there is room for the next record, as deter-
mined by SIZE. If so, it makes a four-byte record descriptor word and
puts it on the record. Then data can be put in. Finally, the block de-

scriptor word is up-dated. If not, the block is output.

If the file is undefined and unblocked, then the following two instructions

can be used.

INCHAR (filename, integer variable name)

puts the next byte from the file into the integer variable name. If there are

no bytes left in the current block, the first byte of the next block is used.

OUTCHAR (filename, constant)

checks. to see if there is room for a byte in the current block. If so, it puts
a byte into the block. If not, it puts the byte into the next block. The byte
that is put into the block is whatever is in the last byte of the constant. The
constant may be a number, the current contents of a variable, or the value

of an expression:

OUTCHAR(OFILE, 54);
OUTCHAR(UFILE, VAL);
OUTCHAR(FL, X+Y);

42

OUTTEXT (filename, string variable name)

outputs the string contained in the string variable until a final binary zero

is reached, which means that the string must contain such a binary zero.

MOVE (string name, from n+1th byte, to string name, from n+1th byte, for
number of bytes)

Example:
MOVE(INt, 1, OUTt, 0, LENGTH);

This example takes the current input record, starting with the second byte,
and moves it into the current output record, starting with the first byte. The
number of bytes moved is equal to the number in LENGTH. Note that if
LENGTH is too big, there will be no error message. Finally, MOVE cannot

be used to move bytes around within the same string.

CONVERT (string name, string name, table name, length)

This instruction is used to convert between media, such as between magnetic

tape and teletype, 7- and 9-track magnetic tape, etc. Example:
CONVERT(MTOt, OUTt, TABLE1, OUT: ZLENGTH);

This example takes the current record of MT0 and converts it according to
TABLE1, and puts the result into the current record of OUT. It does this for
as many bytes of the record as is the numerical value of length, which in
this case is the length of the current OUT record. Length could be an ex-

pression, a number, or a variable.

TRANSLATE (byte name, byte name, table name)

This instruction converts the first byte, using the table, and puts the result

into the second byte. Example:
TRANSLATE(IN't, CCW, OUTt, CCW,ANSITABLE);

which converts a byte of file IN and places the result in the appropriare byte
of file OUT. If the system cannot find an argument in the table, then it will

put out the default value. The table should have been organized thus:

43

CONST

ANSITABLE = # argl valuel

arg2 value2

0 0
0 default value #

Note the three zeroes which precede the default value. They are required.
Note also that it is good programming practice to put each argument/value

pair on a separate line for easy reading.

INSERT (byte name, record name, place)
Example:
INSERT (SP SHIFT 5-1, OUT ,OUT.ZLENGTH=-1);

This instruction takes the 8 least significant bits of the first-named byte and
puts them into the place specified in the second-named record. To put the

byte into the first place of the record, write something like

INSERT (A, B, 0);

REPEATSHARE (filename)

This instruction is used only within a GIVEUP procedure. In case of error,
it will repeat the operation that gave rise to the error message. Obviously,
its use can accidentally give rise to an unending operation, if the program-

mer is not careful. The following example illustrates its use.

PROCEDURE GENERALGIVEUP

BEGIN
OPMESS(SOMETHING WRONG);
message to operator console
OPIN(OPSTRING);
operator perform action
OPWAIT(OPSTRING);
wait for operator action
REPEATSHARE (filename)

END;

We have now completed the description of the MUSIL commands that the be-
ginning MUSIL programmer should be familiar with.

In addition to the commands described so far, there are additional commands
that can be used by the experienced MUSIL programmer. A complete descrip-
tion of the effects of these commands can be found in the MJSIL reference
manual. Before attempting to use these commands, however, the programmer
should familiarize himself with the MUS operating system and its instruction
set. For completeness's sake, we shall now mention four of the most common

advanced MUSIL commands.

INBLOCK (filename)

This instruction is used for coding one's own GETREC or INCHAR. It is not

meant for the beginner. The instruction GETs a block.

OUTBLOCK (filename)

This instruction is used to code one's own PUTREC or OUTCHAR. It is not

meant for the beginner. It readies a buffer for output.

TRANSFER (filename, length, operation)

This instruction should not be used by the beginner. It is used for coding one's
own INBLOCK and OUTBLOCK operations. "Length" is the maximum num-
ber of bytes to be input or output. "Operation" is a 16-bit code (found in

the MUS manual) telling the driver what to do.

45

WAITTRANSFER (filename)

This instruction is used with the above. It should not be used by beginning

MUSIL programmers.
Explanations for the four last instructions can be found in the MUS manual .
There is a preliminary release of a Disc Operating System Programming

Guide, which contains instructions to be used with disc cartridge operating

systems.

46

Special Words

The following words have special meanings in MUSIL. They should not be

used by the programmer for naming variables, constants, tables, or proce-

dures, even though in many cases no harm would be done.

AND

BEGIN
BINDEC
BYTE

CHANGEENTRY
CLOSE
CODEBODY
CONV
CONVERT
CONST
CREATEENTRY

DECBIN
DO

ELSE
END
EXTRACT

FILE
FROM

GETREC
GIVEUP

GOTO

IF
INBLOCK
INCHAR
INITCAT
INSERT
INTEGER

LOOKUPENTRY

MOVE

OF

OPEN
OPIN
OPMESS
OPSTATUS
OPTEST
OPWAIT
OUTBLOCK
OUTCHAR
OUTTEXT

PROCEDURE
PUTREC

RECORD
REMOVEENTRY
REPEAT
REPEATSHARE

SETPOSITION
SHIFT
STRING

THEN
TRANSFER
TRANSLATE
TYPE

UNTIL

VAR

WAITTRANSFER
WAITZONE
WHILE

WORD

L=] Tables

a1 Release Table

0 driver is not released for another program

1 driver is released

9.2 Kind Table

bit 15 set if device is character-oriented
14 set if full blocks should be transferred
13 set if positioning has any effect
12 set if an operation may be repeated
11 set if the device is a disc file accessed by area process
10 set for a disc file with sequential file organization. In this case

bit 11 will also be set.

Examples:

1110 Magnetic tape station
0001 Line printer

0011 Line printer

0010 Card reader

0001 Teletype

0001 Paper tape punch
0001 Paper tape reader

9.3 Operation Code

The operation code is the 2 least significant bits of the operation mode.

9.4 Operation VMlode Table

9.4.1 Paper Tape Reader Driver

1 binary, the input character is delivered
S5 odd parity, the most significant bit is removed

9 even parity, the most significant bit is removed

48

9.4.2 Paper Tape Punch Driver

3 binary, the converted character is output
7 odd parity, the converted character is augmented by the comple-
ment of its parity in the most significant position

11 even parity

9.4.3 Line Printer Driver

3 the conveted characters are output

7 the first byte of output is interpreted as a carriage control word

9.4.4 Magnetic Tape Driver

read packed, byte limit = 18
5 read packed, byte limit = 0
9 read unpacked, byte limit = 18
13 read unpacked, byte limit = 0

3 write
When using 7 track tape, if 4096 is added to any of the operation modes,
then the reading or writing will be done in even parity. If the number 8192
is added to any of the mode numbers, then the resulting number will cause

reading or writing to be done in the tape's lower density.

For example, 4099 signifies write with even parity, for 4099 = 3 + 4096.

9.4.5 Card Reader Driver

1 read binary byte
5 read binary punched cards
21 read decimal punched cards
33 read decimal punched cards and skip trailing blank columns (@ mini=-

mum of ten columns are read)

49

9.4.6 Card Reader Punch Driver

1
5
9
21

1
19
27
47

read binary bytes

read decimal word

read binary word

read decimal bytes, skip trailing blanks (a minimum of ten col-
umns are read)

punch decimal byte

print decimal byte

punch and print decimal byte

punch binary word

If 256 is added to any of the read mode numbers, then the resultant sum used

as an operation mode causes Hopper # 2 to be selected. Adding 64 causes the

card to be released and a new card to be fed.

Adding 256 to any of the punch mode numbers causes Stacker # 2 to be sel-

ected. Adding 64 causes a card to be fed before the operation is performed.

For example, 257 =1 + 256 means Read binary bytes from a card in the sec-

ond hopper.

The operation mode designators for the other available RC 3600 1/O devices

can be found in the MUSIL reference manual. The above devices are the

only ones that the beginning MUSIL programmer should concern himself with.

50

10

MUSIL Error Messages

MUSIL provides the programmer with a variety of error messages, indicated

by error numbers on the compilation printout. The significance of those error

numbers is as follows:

020202
020301
030102
030202
030302
030403
030503
040105
040205
040302
040405
040506
040602
040702
050102
050202
050302
050402
050502
050604

050702
051002
051102
051205
051304
051405%
060206
060302
060402
060504

Number overflow, a numeric constant exceeds 65535, or 16 bits.
Illegal character in input.

< appearing within a string is not followed by a numeric literal.
The construct < number is not followed by a >,

The number between < and > exceeds an 8-bit byte value.

Core overflow, produced code exceeds available space.

Core overflow, code contains too many relocation bits.

Name conflict in Constant Section.

Name conflict in Type Section.

Syntax in Type Section, no = following an ident.

Name conflict in Variable Section.

File variable with 0 buffers.

Procedure head not followed by ,

Procedure without legal identifier or with name conflict.

Type is no identifier,

(is missing after string.

Length undefined for string.

String with length 255 declared.

) is missing after string.

Undefined type identifier. Note that no forward declarations are
allowed.

Improper termination of type specification.

Field of type different from string.

Incorrect use of FROM,

Name conflict in GIVEUP procedure.

Conversion table undeclared.

Conversion table type error.

Double defined label.

Variable is no identifier. Or undeclared.

. is not followed by identifier or by undeclared field.

Identifier undeclared.

060606
060702
061002
061102
061306
061406
061506

51

Type error with BYTE or WORD.
Relational operator missing.
Procedure statement with missing)
Type error in procedure parameter.
Illegal number of parameters.

Type error with operator.

Overflow of work registers. Expression too complex.

Error Messages which cause skipping of program parts:

000040
000041
000042
000043
000044
000045
000046
000051
000052
000063
000064
000065

Syntax in section delimiter.

Syntax in constant declaration.

Syntax in table declaration.

Type specification incorrectly terminated.

Variable declaration incorrectly terminated.

Syntax in field list.

Syntax in file declaration.
Incomprehensible statement.
Incorrect label declaration.

Incomprehensible expression.

52

11 MUSIL Program Example

The following program should help you to see how the various MUSIL in-

structions can be put together to form a complete program.

MUSIL. CUOMPILER/]

nQno !

noni

nyoe

n003

0004

0005

0006

0007

0008

0009

0010

0011

0012

0013

0014

0015

note

no17

0018

0019

0020

0021

nop2e

0023

0024

0025

0026

noet

0028 _

0029 FROGRAM KC36=00001,00
0030

0031 MUS PRINIT IMAGE

0032 '

0033

0034

0035

0036

0037

0038

N039

0040

o041l

nouae

no4s

0044

NQ4s

0046

047

004db

0049 KEYWURDS: MUSTL,CONVERSTUN,MTA, LLPT,LISTING
0050

0051 ABSTRACT: THLIS PROGRAM HANDLES Nu LABEL TAPES WITH A
0052 MAXTMUM BLOCK STZE OF 1340 ByTeS, tACH nsLOLK
0053 CONSISTING OF FIXEL LENGIH RECURLS WITH CCw
0054 CONTROL CHARACTERS AND EnCoIC COUE DATA,
0055 UUTPUT On RC3600 SERIFS PRINIEKRS wITH o4
0056 CHARACTER ASCTI oRUH,

0057 THE PRUGRAM MAY GF NFERATED FROM FITHER UCP uRk T1YVY
0058

0059 RCSL 43=5L103: ASCLTL S0NURCE TAPE !

AVECYY;

0061 | RC36=00001
0062

0063 TITLE: MUS PRINT [MAGE,

0064

N06S5 ABSTRACT: THIS PROGRAM HANDLES NO LABEL TAPES WITH A MAXIMUM
D066 BLOCK SIZE OF 1340 ByYTES, EACH BLOCK CUNSISTING OF
0067 FIXED LENGTH RECORDS WITH CCw CONTROL CHARACTEKS
0068 AND EBCDIC CODE DATA, QUTPUT UN RC3600 SERIES PRIN=-
0069 TERS WITH 64 CHARACTER ASCLII DRIM,

0070 THE PROGRAM mMAY BE OPERATED FROM EITHEK UOCP OR TI1Y,
0071

0072 SIZE: 5674 BYTES,

0073 DATE: JULY P9TH 1974,

0074

0075 RUNTIME PARAMETERS:

0076 BLOCK NO * 00001 NEXT BLOCK TO BE READL FRUM CURRENT FILE,
0077 FILE NO : 00001 THE FILE FROM wHICH THE BLOCK 1S READ,
0078 REWIND : + INDICATES I[F REWINL UF TAPE AT EOQF,

np79 MARGIN : 00000 SPACES TO THE LEFT OF THE PRINT LINE,

0080 SELECT : 00999 DEFAULT CCw SWITCH, SELECT MOUDE/VALUE,
0081 RECSIZE : 00133 LENGTH 0OF INPUT RECOKD,

0082

0083 OTHER QUTPUT MESSAGES:

NOoB4Y CONTSTATE: +/ - STATE OF CUNTINUE SWITCH (TTY OUNLY),

0085 PROG NO H | PRUGRAM EXECUTION IS SI10OPPED,

0086 RUNNING PROGRAM EXECUTION LS STARTED,

0087 SUSPENDED DRIVERS RELEASED, PRUGRAM EXECUTION IS STOPPED,
0088 MOUNT DATA TAPE MT=UNIT [S NUT On=LINE,

0089 MT ERROR 00022 MT=UNI1 IS REWINDING,

0090 MT ERROR 00023 NOISE RECORD,

0091 MT ERROR 00026 MT DRIVER RESERVED.,

0092 MT ERROR 00028 BLUCK LENGTH ERROQR,

0093 MT ERROR 00029 DATA LATE,

0094 MT ERROR 00030 PARITY ERROR,

0095 MT ERROR 00034 TIME 0OUT A1 wAITINTERRUPT,

0096 LP ERROR 00021 LP IS5 OFF=LINE,

0097 LP FRRQR 00026 LP DRIVER RESERVED,

0098 LP ERRQOR 00028 HLUCK ERROR, PAPER FAULT, PAPER RUN AWAY,
0099 LP ERROR 00029 UATA LATE,

0100 LLP ERRQR 00030 CCw PARITY ERROR,

0101 LP ERROR 0u0s1 PAPER LOW,

0102 LP ERROR 00034 TIME OQuUT AT wALTINTERRUPT,

0103 eND JOb PRUOGRAM EXECUTION IS TERMINAJTED,

0104

0105 INPLIT MESSAGES:

0106 sSToP STUPS EXECUTION wWRITING PROG NU . 1
0107 SUSPEND STUPS EXECUTION RELEASING URIVERS (TTY ONLY).
0108 INT NEXT PARAMETER [5 DISPLAYED

0109 (ESCAPE BUTTON ON [Ty HAS SAME EFFECT).
0110 STATE ALL PARAMETERS ARE DISPLAYED (TTY UNLY).
0111 "VALUE" CURRENTLY DISPLAYED PARAMETER 1S CHANGED
0112 TO "VALUE",

0113 "TEXTU="VALUE"Y THE PARAMETER LIDENTIFIED 8y wTeXI®m IS

0114 CHANGED T0 "vaALUE",

nN11s CONT STATE OF CONTINUE SWITChH IS INV%HTtU

0116 START PRUGRAM EXECUTION 1S SIARTED.,

0117 NOTE: AFTER MT ERRUR STAKT MEANS ALCEPTING
0118 THE ERRONEUUS INPUT, AFTER LP £RROK STAR]
0119 MEANS REPEATING THE PRIN| OPERATION,

0120

0121 SPECIAL REGUIREMENIS: NONE o

0122 |

0123

0124
0125
0126
0127
0128
0129
0130
0131
ai3e
01355
0134
0135
0136
0137
0138
0139
0140
0141
014de
0143
0144
0145
n1de
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162

CONST
NOQ=

OPTXTS=
1€<1d><H>
<10>PRQG Np
<10>BLUCK NO
<10>FILE NO
<{0>REWIND
<10>SELECT
<{0>MARGIN
<10>RECSIZE

START=
STUP=
SUSPEND=
CONT=
INT=
STATE=
MINUS=
PLUS=
FIVE=
FIFTEFN=
NL=
NEXTPARAM=
SP1A=
ENDLINE=
RETURN=

RUNTXT=
MTTXT1=
LPTXT=
EOJTXT=
SUSTXT=
MTMOUNTTAPE=
CONTSTATE=

! RC36-00001 PAGE 01

14

1<0>
<Q>
<)>
<(>
<>
<0>
<(>!',

'START!,
'STOP',
'SUSPENDT,
'CONTY,
'INT"
'STATE !,

-t

141,
1<h><0>,
1<18><(>,
1<10>',
'<27>1,
|<g>l'
'<13><(>!,
'<13>1,

'<8><U4><] 0>RUNNING<13><0>",
1<7><10>MT ERRUR 'y

1<7><10>LP EKRQOR ',
1<14><7><10>END JOB<13><0>",
'<7><10>SUSPENDED<13><(0>",
'<14><T><10>MOIUNT DATA TAPE<13><(>!,
'<10>CUNTSTATE : <Q>1!,

!

0163 ! RC36=00001 PAGE @2 !

0164 LPTABLES= | EBCDIC TO 64 CHARACTER ASCII DrUM
0165 0 1 2 3 4 5 b 71
0166 #

0167 | 0 4 255 255 2%% 255 255 255 25% 255
0168 | 8§ § 255 255 255 255 253 255 257 25>
0169 | 16 | 255 255 255 255 255 255 255 255
0170 | 24 | 25% 255 255 255 2855 255 255 255
G171 | 32 1 255 255 255 P55 258 255 255 255
0172 1| 449 1 #55 255 255 255 2L8 g55 255 255
Q178 | 48 ¢ 255 255 @55 255 255 255 25% 255
0174 | S6 | 255 255 255 255 255 255 255 255
0175 | 64 | 255 255 255 255 255 255 255 255
0176 1 T2 | 255 255 91 46 60 40 43 92
0177 + 80 ! 38 245 255 255 255 255 255 255
0178 |+ 88 | 255 255 33 36 42 41 59 93
0179 | 96 ! 45 H71 255 255 255 255 255 255
0180 1 104 | PSS 255 255 44 37 94 62 63
0181 ! 1312 ¢t 255 255 259 25% 255 255 255 25%
0182 | 120 1 255 255 5B 35 64 39 61 34
0183 | 128 | 255 65 66 67 6B 69 70 71
0184 | 136 | 72 T3 255 255 255 255 255 255
018S | 144 |} 255 74 75 76 77 78 79 80
0186 | 152 | 81 82 2%% 255 255 2658 255 255
0187 1 160 ! 255 255 83 484 85 86 87 88
0188 | 168 | 89 40 255 255 255 2595 255 255
FIBY L 176 1T 255 £25% 255 255 25% 253 &5 2455
0190 ! 184 | 255 255 255 255 255 255 255 255
0191 | 192 | 255 65 66 007 68 69 70 71
0192 { 200 ! T2 73 259 255 253 2%5 253 255
0193 | 208 | 255 74 15 76 77 78 79 80
0194 | 216 | 81 B2 255 255 255 255 255 255
0195 | 224 | 255 255 83 84 85 86 87 88
0196 | 232 | 89 90 255 255 255 255 253 255
0197 1 240 | 48 49 50 S1 52 53 54 55
0198 | 248 | 56 57 255 255 255 255 253 .255
0199 =&;

0200

0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0eas
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
024e

VAR

OPDUMMY 2
PROGNO
BLOCKND:
FILENO:
REWIND:
SELECT:
MARGIN:
KRECSIZE:

OPTEXT:
OPSTRING:
OPDFC:

OPCONT:
NEXTCONT
GLCONT:
CURZZZ:
SELX:
SELY:
SELZZZ:

UATAINDEX:
SELECTINDEX:

ERRORNOQ:
MASK:
TOM:
SIGN:

Q:

PAR:®
LENGTH:

RECLENGTH:

LPLENGTH:

LPDATALENGTH:

P1:
P2:
P3:
St
§2:
NEXTLP:

STRING(2):

INTEGER;
INTEGER
INTEGER:
INTEGER?
INTEGER?:
INTEGER;
INTEGER;

STRING(20);
STRING(20):
STRING(10)3

STRING(

STRING(

STRING (1
INTEGER?
INTEGER?
INTEGER?
INTEGER?
INTEGER
INTEGER?
INTEGER?
INTEGER:?

INTEGER?
INTEGER?
INTEGER?
INTEGER
INTEGER;

INTEGER;

INTEGER:
INTEGER?
INTEGER?
INTEGER:
STRING(2)
STRING(2)
INTEGER?

2);
STRING(1);
1)

)i

!

!

! RC36=-00001 PAGE 03

RUNTIME PARAMETERS !

COMMUNICATION AREA |

INTERNAL VARIABLES !

!

0243 | RC36=00001 PAGE 04 |

0244

0245 IN: FILE I INPUT FILE DESCRIPTIUN !
0246 tMTO!, ! NAME OF INPYUT ULRIVER !
0247 18y | KIND= REPEATABLE, |
0248 ! POSITIONABLE, |
0249 ! BLOCKED,. !

0250 1, ! BUFFERS }

0251 1340, ! SHARESIZE |

0252 FB; ! FIXED BLOCKED !

0255

0254 GIVEUP

0255 MTINERROR, ! MT ERROR PROCEDURE !
0256 2'0110001111011011 ! GIVE UP MASK |

0257 1 ALL REPEATABLE BITS QFF !
0258 1 AND BIT 15 ON |

0259

0260 0OF RECURD I RECORD STRUCTUKE !
D261l CCwW: STRING(1)?

0262 SELECT1: STRING(1) FRUM 1;

0263 DATA: STRING(1) FROM 1;

0264 SELECT2: STRING(1) FROM 2

0265 END3

0266

0267 0DUT: FILE I UUTPUT FILE DESCRIPTION |
0268 'LPT?, ! NAME OF OQUTPUT DRIVER !
0269 e i RIND= BLOUCKED |

0270 8, ! BUFFERS |

0271 1353, 1 SHARESIZE |

0272 Uz ! UNDEFINED |

0273

0274 GIVEUP .

0275 LPERROR, ! LP ERRUR PROCEULDURE !
0276 2'1100001011110010; ! GIVE UP MASK |

0277 ’

0278 CONV o

0279 LPTABLE ! CONVERSIUN TABLE !
0280)

0281 OF RECORD ! RECORD STRUCTUKE !
0282 CCwe CSTRING(1):

0283 DATA: STRING(1)

0284 ENL

0285

0286
0287
0288
0289
0290
0291
0292
02935
0294
0295
0296
0297
0298
0299
0300
0501
0302
0303
0304
0305
0300
0307
0308
0309
0310
0311
0512
0313

! RC36=00001 PAGE

PRUCEDURE INITPOSTTION;

BEGIN
IF IN,ZMODE=0 THEN OPEN(CIN,1):
IF DUT,ZMODE=0 THEN OPEN(OUT,7):
SETPOSITIONCIN,FILENO,BI.UCKNO);
SETPOSITIONCOUT ,MARGIN,0)
IN,ZLENGTH2=RECSIZE;
SELX:s=SELECT/10000;
SELY:=(SELECT=SELXx10000)/1000;
SELZZZ:=(SELECT=SELX*10000)=SELY*1000;
DATAINDEX:=1=SELX?
IF SELz77Z<256 THEN DATAINDEX:=DATAINDEx+1;
SELECTINDEX:=DATAINDEX=1;
LPLENGTH:=RECSIZe=DATAINDEX+1?
IF LPLENGTH+#MARGIN>133 THEN LPLENGTH:=133=-MARGIN;
LPDATALENGTHI=LPLENGTH=1;

END?

PRUCEDURE CONTINUE:
dEGIN
GLCONT:=UPCONT;
OPCONT :=NEXTCONT;
NEXTCONT :=GLCONT?
UPMESS (OPCUNT) ;
eND;

05

03514
0315
0316
0317
03138
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
N34}l
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354

! RC36-00001 PAGE 06

PROCEDURE DIxECTUPDATE;

END?

REPEAT

I INDEX IN INPUT STRING |

! INDEX IN CONSTANT STRING !

! PARAMETEK NUMBER IN CONSTANT SIRING !
REGIN

MOVE (OPTEXT,P1,S1,0,1);
MOVE (OPTXTS,P2,52,0,1);
WwHILE BYTE S1 <> RBRYTE S2 DO
BEGIN

IF BYTE S2 = 0 THEN P3:=P3+1;
P2:=P2+17

MOVE (OPTXTS,P2,52,0,1)7

IF P3>N0J THEN Sg2:=S1;

END
IF P4<=NUQ THEN
BEGIN

wHILE BYTE S1 = sYTE S2 DO
BEGIN
Ple=P1+1;
P2e=P2+1;
MOVE (DPTEXT,PL1,SL,0,1);
MOVE (OPTXTS,P2,52,0,1);
IF BYTe S1 = 61 THEN
BEGIN
MOVE (OPTEXT,P1+1,0PTEXT,0,10)7
LENGTH:=LENGTH=P1=1;
Ne=P3}
MOVE (COPDUMMY, Qx2, IPDUMMY, 0,2)
PAR:= WORD OFDUMMY;
P3:=NON?
END?

T m

=N
P2

ss e T

i H

P2=P141:
0;

i
—

END
ENUD UNTIL F3>=N0OQ7

.

0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0379
0371
037¢
0375
0374
0375
0376
0377
0378
0379
03890
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395
0396
0397
0398
0399
0400
0401
o4done
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413

10003
10103

1015
1020z

10402

1050:

10602

10702

| RC36=00001 PAGE 07

PROCEDURE OQPCOM;
BEGIN
We=0;

REPEAT BEeGIN

END?¢

END

IF OPTEXT=STATE THEN

BEGIN W:=1; OPMESS(CONTSTATE); IF OPCONT=FIVE THEN

UPMESS(PLUS); IF OPCUNT=FIFTEEN THEN
UPMESS(MINUS)? GOTO 1040;

END?

Ve=0+17

OPSTATUS(1 SHIFT(16=Q),0PTXT5); 1IF Q<>1 THEN BEGIN

MOVE (NPDUMMY ,Qx2, 0PDUMMY,0,2)}
PAR:= WORD OPDUMMY;

IF PAR = =1 [HEN DPMESS(PLUS);
IF PAR = =2 THEN OPMESS(MINUS);
IF PAR >= (THEN

BEGIN BINDEC (PAR,QOPDEC)? OPMESS(UPDEC); END;J

IF QPTEXT=STATE THEN GUTU 1060;
UOPMESS(ENDLINE)?

OPWALT(LENGTH);

OPTEXT3=0PSTRING;

UPIN(OPSTRING);

IF OPTEXT=STATE THEN BEGIN Q3=03 GUTU 1015;

IF LENGTH > 6 THEN DIRECTUPDATE?
IF LENGTH > 6 THEN GOTO 1020+

IF OPTEXT = START THEN GUTO 10707
IF OPTEXT = 3TOP THEN GOTO 10003
IF OPTEXT = SUSPEND THEN GOTO 93
IF OPTEXT = CONT THEN

BEGIN CONTINUE; GOTO 10407 END;

IF OPTEXT = INT THEN GOTOU 1060;

IF OPTEXT = NEXTPARAM THEN GOTO 1060:
IF OPTEXT = NL THEN GOTO 10203

IF OPTEXT = ENDLINE THEN GOTO 1020;
IF QPTEXT = RETURN THEN GOTO 10207
SIGN:=0?

IF OPTEXT = MINUS THEN SIGNz==1;

IF OPTEXT = PLUS THEN SIGN:=+1;

IF SIGN <> 0 THFN INSERT(48,UPTEXT,0):

DECBIN(OPTEXT,TOM);

IF PAR <€ 0 THEN

BEGIN IF SIGN=Q THEN GOTO 1020; PAR:I==23
IF SIGN=]1 THEN PAR:==1; GOTO 10507

END?

IF SIGiN=0 THEN

BEGIN SIGN:z=1; PAR:=0; END;

PAR:=PAR+TUM%xSIGN;

IF PAR<(0 THEN GOTO 10203

INSERT(PAR SHIFT(=8),0PDuUumMMY,0);

INSERT(PAR, OPDUMMY,1);

MOVE (OPDUMMY, 0, 0PDUMMY,Q%2,2);

IF OPTEST <> 0 THEN GOTO 10407%

GOTO tu2os

END;

END;

IF OPTEXT=5TATE THEN IF W<nNOW THEN GUTO 10157

UNTIL w>=N0d; 60TO 14007

OPMESS (RUNTXT) ¢

-

0414
0415
0416
0417
0418
0419
0420
0421
0u22
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474

! RC36=00001 PAGE 08

PROCEDURE OPSTQP;
BEGIN
OPNAIT(LENGTH);
OPTEXT:=0OPSTRING;
OPIN(COPSTRING)
IF OPTEXT=CONT THEN CONTINUE;
IF OPTEXT=STOP THEN GOTO 1;
IF OPTEXT=SUSPEND THEN GQTO 97
END?

PROCEDURE SHUWERROK;
BEGIN
ERRORNO3=207
WHILE MASK>0 Du
BEGIN
MASK:=MASK SHIFT 1{;
ERRORNO:=ERRORNO+1
END?
BINDEC (ERRURND,OPTEXT)
OPMESS(NPTEXT); OPMESS(ENDLINE)?
END;

PROCEDURE MTINERROR?
BEGIN
IF InN.Z20 AND 256 <> 0 THEN LEOF) GOTU 9:

IF InN,ZO <> 8'001000 THEN BLOCKNO:=IN,ZBLOCK;
IF IN.ZO SHIFT 1 < 0 TREN OPMESS(MTMUUNTTAPE);

IF ING,Z0 SHIFT 1 >= O THEN
BEGIN
OPMESS (MTTXT);
MASK:=IN,Z0?
SHUWERROR
END;
REPEAT OPSTQOP UNTIL OPTEXT=START;
OPMESS (RUNTXT)Y
END;

PROCEDURE LPERROR?:

BEGIN
NEXTLP:= 0UT,Z0) AND 8'000020;
UUT,Z0z:= OUT,Z0 = NEXTLP;

IF NUT,.Zo SHIFT 1 < 0 THEN QUT,Z0:= 0OUT,Z0 AND
IF DUT,Zy = 8'040000 THEN IF NEXTLP <> 0 THEN

QUT . £0:=NEXTLP;

IF OUT,Z0 ANUD 8'001342 <> (0 THEN

OUT.Z0:= OUT,Z0 AND 06'001342;

IF DUT.Zy <> 0 THEN

BEGIN
OPMESS (LPTXT)
BLOCKNO:=IN,ZBLOCK;
MASK:=0UT 207
SHOWERROR;
NEXTLP:=0;
REPEAT OPSTOP UNTIL UPTEXT=START;
OPMESS(RUNTXT)Y;
IF OUT.Z0 AND 8'141342 <> O THEN
REPEATSHARE (QUT) ?

END?

END?

B1041342;

0475
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0d8e
0487
0488
0489
0490
n4d91
0492
04953
0494
0495
0496
0497
0498
0499
0500
0501
0502
0503
0504
0505
0506
0507
0508
0209
0510
0511
051¢
0513
0514
0515
0516
0517
0518
0519
0520
0521
0522
0523
0524
0525
0526
0527
0528
0529
0530
0531
0532
SIZE:

02857

| RC36=00001 PAGE
BEGIN
IN,7BLOCK:=1; SLUCKNO:z=1; FILEND:=17 REWIND:==17
SELECT:=999; MARGLIN:I=0; RECSIZE:=133; NEXTLP:=0;
OPCONT:=FIFTEEN; NEXTCONT:=FIVE; OPINCOPSTRING);
OPCOM;
INITPOSITIQON; IF OPTEST<>0 THEN OPSTOP;

REPEAT BEGIN
GETREC(IN,RECLENGTH);
IF SELZZZ<256 THEN
HEGIN
MOVE(INT . DATA,SELECTINDEX,CURZZZ,0,1);
IF SeELY=(Q THEN

BEGIN
IF BYTE CURZZZ<>SELZZZ THEN GOTO 5;
GOTO 3;
END?
IF ByTt CURZZZ AND SELZZZ=0 THEN GUTO 5;
END

PUTREC(OUT,LPLENGTH)Y;
IF SELX=0 THEN
BEGIN
QUT*,CCWe=]INT CCwW;
GOTO 4;
ENVL’
QUT*,CLW:=SP1A;
MOVE(INT,DATA,DATAILNDEX,OUT* ,DATA, 0, LPDATALENGTH)
END UNTIL IN,ZREM<RECSIZE?
BLOCKNO:!=IN.ZBLOCK;
IF QPTEST=0Q THEN GOTO 27
WAITZONE (OUT);
OPSTOP; GOTO 27

CCLOSECOUT, 1)

IF OPTEXT=SUSPEND THEN
BEGIN ;
CLOSECLIN, 1)
OPMESS (SUSTXT);
GNTO0 107
END? :
BLOCKNO:=1; FILENO:=FILEND+1;
IF OPCUNT = FIVE THEN
BEGIN
CLOSE(IN,1);
FILENO:z=1?
OPMESS(MIMOUNTTAPE)
END;
IF OPCUNT = FIFTEEN THEN
BEGIN
CLOSECIN,REWIND+2);
IF REWIND==1 THEN FILENO:=1;
UPMESS(EQJTXT)Y:
END?
REPEAT OPSTOP UNTIL OPTEXT=START;
INITPOSITION; OPMESS(RUNTXT)Y; GOTQ 2;

END?

09

— — —_— —— ——— — = ———— P =% =] -1 ol

READER'S COMMENTS Introduction to MUSIL
RCSL 42 - i 0386

A/S Regnecentralen maintains a continuous effort to improve the quality and
usefulness of its publications. To do this effectively we need user feedback

- your critical evaluation of this manual.

Please comment on this manual's completeness, accuracy, orgonization,

usability, and readability:

Do you find errors in this manual ? If so, specify by page.

How can this manual be improved?

Other comments ?

Please state your position:

Name: Organization:

Address: Department:

Date:

Thank you!

Affix

postage
here

A/S REGNECENTRALEN
Marketing Department
Falkoner Allé 1

2000 Copenhagen F

Denmark

C C O

INTERNATIONAL

EASTERN EUROPE
A/S REGNECENTRALEN
Glostrup, Denmark, (02) 96 53 66

SUBSIDIARIES

AUSTRIA

RC - SCANIPS COMPUTER
HANDELSGESELLSCHAFT mbH
Vienna, (0222) 36 21 41

FINLAND
OY RC - SCANIPS AB
Helsinki, (90) 31 64 00

HOLLAND
REGNECENTRALEN (NEDERLAND) B.V.
Rotterdam, (010) 21 62 44

NORWAY
A/S RC - SCANIPS
Oslo, (02) 35 75 80

SWEDEN
RC — SCANIPS AB
Stockholm, (08) 34 91 55

SWITZERLAND
RC — SCANIPS (SCHWEIZ) AG
Basel, (061) 22 90 71

UNITED KINGDOM
REGNECENTRALEN LTD.
London, (01) 439 9346

WEST GERMANY
RC - GIER ELECTRONICS G.m.b.H.
Hannover, (0511) 6 79 71

REPRESENTATIVES

FRANCE
SORED S.a.r.l.
Nanterre, (1) 204 2800

HUNGARY
HUNGAGENT AG
Budapest, 88 61 80

TECHNICAL ADVISORY
REPRESENTATIVES

POLAND
ZETO

e HEGNECENTRALEN e

RUMANIA
I.LILR.U.C.
Bucharest, 33 21 57

HUNGARY
HEADQUARTERS: FALKONER ALLE 1; DK-2000 COPENHAGEN F : DENMARK NOTO-0SzZV
Phone: (01)10 S3 66 * Telex: 16282 rc hq dk : Cables: regnecentralen Budapest, 66 84 11

