RC BASIC
Programming Guide

3600 /7000

- RC BASIC

Reserved Words in the RC BASIC Language

The use of the words is denoted by the following abbreviations: AD (arithmetic
operator), C (command), F (function), LO (logical operator), NI (not
implemented), and S (statement).

The section (chapter) number indicates where the sole, first, or principal

explanation of the word will be found.

Word

ABS
AND
ATN
AUTO

BATCH
BYE

CALL
CASE
CHAIN
CHR.
CLOSE
CON
CON
CONL
CONNECT
CopY
cos
CREATE

DATA
DEF
DELAY
DELETE
DET
DIM
DIV

ELSE

ENDCASE
ENDIF
ENDPROC:
ENDWHILE
ENTER
EOF

EOJ

ERR

ESC

EXEC

Use

0'118'!1

g,

5,C
AQ

mmmmnmpmmmmmm
w

Section Word Use
4.2 FALSE NI
2 FILE s,C
4,3 FNA - FNA& P
9.3 FOR s
9.4 GOSUB s
9.5 GOTO s
3.7 IDN s,C
3.3 IF s,C
5.2 INIT C
8.2 INPUT s,C
6.7 INT F
9.6 NV S,C
9.6
7:2
7.3 LEN F
4.4 LET s,C
8.3 LIST 5

LOAD e
3.4 LOCK €
3.5 LOG F
3.6 LOOKUP C
8.4
6.6
3.7 MAT s,C
2 MOD 20
3.36

NEW C,S
3.16 NEXT s
3.8 NOT o
3.2
3.15 OF s
3.26 N 3
3.36 OPEN S,C
9.7 OR 10
8.5 ORD F
B.4
3.20 PAGE c,s
3.21 PRINT s,C
3.10 PROC s
4.5 PUNCH &

Section Word
RANDOMIZE
8 READ
3.5 RELEASE
319 REM
RENAME
3.1 RENUMBER
C o REPEAT
RESTORE
RETURN
6.8 RND
3.14 RUN
7.4 RUNL
3:17
4.7
6.10 SAVE
SCRATCH
SGN
5.3 SIN
3.48: SIZE
9.9 SOR
9.10 STEP
75 STOP
4.8 SYS
7.6
TAB
6 TAN
2 THEN
TIME
9.11 TINPUT
3,14 TO
2 TRN
TRUE
3.2
Ja22 UNTIL
8.11 USERS
2 USING
5.4
WHEN
9.12 WHILE
3.24 WRITE
3.26
9.13 ZER

©

M= OoOm g 0o

Section

3.27
3.28
7.7

3.29
8.15
9.14
3.30
331
312
4.9

9.15
9.15

9.16
B.5

4.10
4.1
9.18
4.12
3.1
3.33
4.13

RC BASIC
A Structured Educational Language (COMAL)
PROGRAMMING GUIDE

A/S REGNECENTRALEN First Edition
Development Division September 1977
Documentation Department RCSL 42-i 0671

Authors:

Keywords:

Abstract:

Supporting
documents:

Stig Mgllgaard and Pierce Hazelton

RC. 3600, RC 7000, MUS, DOMUS, RC BASIC,
Programming Guide

This guide describes the RC BASIC language implemented
for RC 3600 and RC 7000 minicomputers.

RC BASIC System Logical Disc Formatting Program
Operating Guide (RCSL 43-G 45069).

Users of this manual are cautioned that the specifications
contained herein are subject to change by RC at any time
without prior notice. RC is not responsible for typographi-
cal or arithmetic errors which may appear in this manual
and shall not be responsible for any damages caused by
reliance on any of the materials presented.

Copyright © A/S Regnecentralen, 1977
Printed by A/S Regnecentralen, Copenhagen

Foreword

RC BASIC is a structured educational language, implemented by
A/S Regnecentralen to run on RC 3600 and RC 7000 minicomputers.

The education sector has long felt the need for a suitable
programming language: one which is simple and comprehensible,
yet sufficiently advanced to permit demonstration of important
programming principles.

Until now the BASIC language has generally been used, for
despite its deficiencies as regards advanced programming, BASIC,
precisely because of its comprehensibility and convenient
conversational form, has fulfilled a basic requirement in
educational applications.

In recent years proposals have been put forth for better
educational languages, among them COMAL (Common Algorithmic
Language) .

COMAL possesses all the features that have made BASIC popular;
in fact, OOMAL includes almost all of the facilities found in
existing versions of BASIC, and users can therefore run almost
any program written in BASIC on a computer that runs COMAL.

COMAL, however, contains significant extensions to the BASIC
language.

COMAL was proposed primarily to accommodate users desiring more
advanced control facilities than those found in BASIC. Thus the
designers of COMAL, inspired by the PASCAL language, have intro-
duced five new control structures: REPEAT-UNTIL, WHILE-DO-
ENDWHILE, IF-THEN-(ELSE)-ENDIF, and CASE-OF-WHEN-ENDCASE.

COMAL also contains several other important extensions, such as
the possibility of using long variable names (as many as eight
characters), all of which contribute to making COMAL programs
clearer and more readable than programs written in BASIC.

Thé COMAL language, which was designed by Bgrge Christensen,
Government Teachers' College, Tgnder, Denmark, in collaboration
with Benedict Lgfstedt, Arhus University, is incorporated in RC
BASIC.

Contents

1 INTRODUCTION Page
1.1 General information
1.2 RC BASIC programs
1.3 ESCape key
1.4 Descriptions of statements, commands,
. and functions
1.5 Formats used in descriptions

2 RC BASIC ARITHMETIC
2.1 Numbers
2.2 Internal representation of numbers
2.3 Variables
2.4 Arrays
2.4.1 Array elements
2.4.2 Declaring an array
2.5 Expressions
2.5.1 Numeric expressions
2.5.2 Arithmetic operators
2.5.2.1 DIV operator
2.5.2.2 MOD operator
2.5.3 Priorities of arithmetic operators during
program execution
4 AND, OR, and NOT operators
5 Relational expressicns
.6 Relational operators
7 Priorities of arithmetic, Boolean, and
relational operators
2.5.8 String expressions

3 RC BASIC STATEMENTS
3.1 BYE

2 CASE-WHEN-ENDCASE

3 CHAIN

-4 DATA

5 DEF

6 DELAY

7 DIM

3.8 END

3.9 ENTER

3.10 EXEC

3.11 FOR-NEXT

3.12 GOSUB and RETURN

3.13 GOTO

3.14 IF-THEN

O O W

10

11
12

15
15
15
16
16
16
17
17
17
17
18
18

18
19
20
20

21
21

22
22
22
28
30
31
33
33
35
36
37
38
42
43
44

3.15
3.16
3.17
3.18
3.19
3.20
3.21
Jedd
3:23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34
3.35
3.36

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

4.10

4.1

4.12

4.13

4.14

IF-THEN-ENDIF -
IF-THEN-ELSE-ENDIF
INPUT

LET

NEW

ON-ERR

ON-ESC
ON-GOTO/GOSUB
PAGE

PRINT

PRINT USING
PROC~ENDPROC
RANDOMIZE

READ

REM
REPEAT-UNTIL
RESTORE

SAVE

STOP

TAB

TAB(X) function
WHILE-ENDWHILE

RC BASIC FUNCTIONS

Introduction
ABS(X)
ATN(X)
COS(X)
EXP(X)
FNa(d)
INT(X)
LOG(X)
RND(X)
SGN(X)
SIN(X)
SOR(X)
SYS(X)
TAN(X)

5 STRING INFORMATION

541

String concept

5.1.1 String literals

5.1.2 String variables

5.1.3 Dimensioning string variables

5.1.4 Substrings

5.1.5 Assigning values to string variables
5.1.6 Concatenation of strings

Page 46
48
50
53
54
54
55
58
59
59
63
71
73
75
76
77
79
80
80
81
81
83

87
87
88
88
89
89
90
90
91
B
94
94
95
96
97

98
98
98
98
99
99
100
100

5.1.7 Relational string expressions Page 102

5.2 CHR(X) function 103
5.3 LEN(XS$) function 104
5.4 ORD(X$) function 105
6 MATRIX MANIPULATION 107
6.1 Matrix operations 107
6.2 Dimensioning matrices 107
6.3 Matrix assignment statement 108
6.4 Matrix addition/subtraction statement 109
6.5 Matrix multiplication statement 111
6.6 DET(X) function ' 113
6.7 MAT CON statement 114
6.8 MAT IDN statement 115
6.9 MAT INPUT statement 117
6.10 MAT INV statement 117
6.11 MAT PRINT statement 119
6.12 MAT READ statement ‘ 121
6.13 MAT TRN statement 122
6.14 MAT ZER statement 122
7 LOGICAL DISCS AND RELATED COMMANDS 124
7.1 Introduction 124
7.2 CONNECT 126
7.3 COPY ' 127
7.4 INIT 128
7.5 LOCK 128
7.6 LOOKUP 129
7.7 RELEASE 131
7.8 USERS 131
8 FILES AND RELATED. STATEMENTS 133
8.1 Introduction 133
8.1.1 Disc files and devices 133
8.1.2 Standard devices and reserved names 133
8.1.3 Block sizes 134
8.1.4 Filenames and file sizes 134
8.1.5 How files are used 134
8.1.6 Random access files 135
8.1.7 Sequential access files 135
8.1.8 Write protéction 135

8.2 CLOSE FILE 136
8.3 CREATE 137
8.4 DELETE 138
8.5 EOF(X) function 139
8.6 INPUT FILE 140
8.7 MAT INPUT FILE 141

8.8 MAT PRINT FILE
8.9 MAT READ FILE
8.10 MAT WRITE FILE
8.11 OPEN FILE

8§.12 PRINT FILE

8.13 PRINT FILE USING
8.14 READ FILE

8.15 RENAME

8.16 WRITE FILE

9 SYSTEM COMMANDS
Introduction
Command to delete program statements
AUTO
BATCH/BATCH "SLPT"
BYE
CON/CONL
ENTER

EQJ

LIST

9.10 LOAD

9.11 NEW

9.12 PAGE

9.13 PUNCH

9.14 RENUMBER
9.15 RUN/RUNL
9,16 SAVE

9.17 SCRATCH
9.18 SIZE

9.19 TAB

9.20 TIME

O W Ww Y w w o\
L]
00~ oUW =

(Vo]
°
(Ve

APPENDICES

A ERROR MESSAGES
A.1 Introduction
A.2 Error messages
A.3 I/0 error messages

Page 141
142
143
143
145
146
147
148
149

151
151
151
153
155
155
156
158
159
159
161
162
163
164
166
168
170
172
173
173
174

175
175
176
184

A.3.1 I/0 error messages 0100 through 0119, 0135, 184

and 136
A.3.2 1I/0 error messages 0120 through 0134

B BATCH MODE AND PROGRAMMING ON MARK-SENSE CARDS
B.1 Batch jobs
B.2 Mark-sense cards

187

192
192
194

B.2.1 STATEMENT NUMBER Page 195

B.2,2 STATEMENT 1 196

B.2.3 STATEMENT 2 197

B.2.4 FORMULA 198

B.2.4.1 Even numbered columns 198

Bi2.4.2 Odd numbered columns 198

B.2.4.3 Writing characters 199

B.3 Batch mode 202

B.3.1 BATCH/BATCH "$LPT" command 202

B.3.2 Illegal statements and commands 202

B.3.3 Time limit on jobs 203

B.3.4 ESCape key 203

B.3.5 Return to interactive mode 203

B.4 EOJ command 204

B.5 SCRATCH command 204

B.6 TIME command 205

C COTHER INTERACTIVE USES OF RC BASIC 206

C.1 Commands derived from RC BASIC statements 206

C.2 Desk calculator functions 207

C.3 Program debugging 207

C.4 File input/output 208

D ASCII CHARACTER SET 209
D.1 ASCIT characters with their decimal and octal

values 209

D.2 Output of non-printing characters 210

E RESERVED WORDS 211

F SUMMARY OF STATEMENTS, COMMANDS, AND FUNCTIONS ‘ 212

F.1 RC BASIC statements (Chapter 3) 212

F.2 RC BASIC functions (Chapter 4) 217

F.3 String functions (Chapter 5) 219

F.4 Matrix statements (Chapter 6) 219

F.5 Logical disc commands (Chapter 7) 221

F.6 File statements (Chapter 8) 222

F.7 System commands (Chapter 9) 224

F.8 Batch mode commands (Appendix B) 227

G ADVANCED PROGRAMMING EXAMPLES 228

H CALLING AN ASSEMBLY LANGUAGE SUBROUTINE FROM RC BASIC 229

INDEX 230

1.1

1.2

Introduction

General information
The RC BASIC programming language provides facilities for:

Writing structured programs.

Executing programs in interactive mode.
Running jobs in batch mode.

Performing file input/output.
Performing matrix operations.
Manipulating strings.

Formatting output.

Performing desk calculator functions.

RC BASIC runs under the RC operating system MUS (Multiprogram-
ming Utility System) or DOMUS (Disc Operating Multiprogramming
Utility System).

This programming guide describes the syntax and semantics of RC
BASIC statements, commands, and functions.

Those who have access to terminals can use RC BASIC in inter-
active mode, but it is also possible to execute programs written
on mark-sense cards in batch mode (see App. B).

RC BASIC programs

An RC BASIC program consists of a number of statements. Each
statement begins with a line number, in the range 1 to 9999,
which determines the order in which the statement will be
executed. The rest of the statement is made up of one or more
RC BASIC words (see below), with or without arguments. Each
statement is written on a separate line.

The user terminates each statement line by pressing the RETURN
key. This generates an automatic line feed in addition to the
carriage return. (Note: The "carriage return" separator referred
to in this guide is the RETURN key, not the ASCII character
Carriage Return). If the user discovers a typing error before he
has pressed the RETURN key, he can delete the last character
typed by pressing the RUBOUT key (repeatedly, if need be) or
delete the entire line by pressing the ESCape key.

1.3

10

Some RC BASIC words, such as END, STOP, or CLOSE, can be used
alone to perform an operation; others require one or more
arguments, on which the operations are performed. Thus the

word READ, for example, cannot be used alone; READ must have at
least one argument, viz. the name of a variable to which a value
is to be assigned (e.g. READ PRICE).

The user may enter program statements in any order. The system
will arrange them by ascending line numbers.

When a program is run, the statements are executed one by one

in ascending line number order, usually beginning with the
lowest numbered statement. The sequential execution of state-
ments may be interrupted by a "control transfer statement," such
as ENDWHILE, EXEC, ENDPROC, or GOTO.

Many of the RC BASIC statements, which are described in Chapters
3, 6, and 8, may also be used as keyboard commands (see App. C).
When a statement is used as a command, it is entered without a
preceding line number and terminated by pressing the RETURN key,
whereupon the system executes it immediately.

Still other RC BASIC words can only be used alone, i.e. they
cannot be part of a statement, but are used solely as commands.
LIST and RUN are examples of such words.

When a program has been entered, it will remain in core
memory until the user clears it by means of a NEW command.

New statement lines can be inserted anywhere in a program.
Existing statements can be deleted, by typing the statement
line number and pressing the RETURN key, or corrected,
simply by entering a new statement with the same line number.

The currently loaded program can be executed by means of a
RUN/RUNL command.

ESCape key

Pressing the ESCape key during program execution will cause
interruption of the program, unless an ON-ESC statement has been
executed (see Ch. 3). Control will be returned to interactive
mode, and the system will output the following on the user's

1.4

11
terminal:

shop

Al <xxxx>
i

where <xxxx> is the line number of the statement at which the

‘program was interrupted. The asterisk (*) prompt indicates that

the user may enter a command or a program statement. Program

execution can be resumed by means of a CON/CONL or RUN/RUNL
<line no.> command.

Pressing the ESCape key on an idle terminal (e.g. after system
start-up or a BYE command) will place the terminal in inter-
active mode.

When a terminal is in batch mode, the ESCape key has a special
function (see App. B).

Descriptions of statements, commands, and _functions

Descriptions of the statements, commands, and functions in the
RC BASIC language will be found in Chapters 3 through 9. These
descriptions have the following form:

X.y RC BASIC WORD

Format
Use
Remarks
Example
where
X.Y : Chapter.Section
RC BASIC WORD : One or more reserved RC BASIC words
Format : The generalized format (syntax) of the

statement, command, or function.

This format, which is explained in detail
below, must be used when the statement,
command, or function is entered from the
terminal, otherwise an error message
(usually 0002: SYNTAX ERROR) will result.

1.5

12

Use : Indicates whether the RC BASIC word is
used as a statement, command, or function,
and describes the operation or operations
which it performs.

Remarks : Contains remarks concerning the use of the
statement, command, or function, including
rules, precautions, program operation, and
the like.

Example ¢ The use of most of the statements,

commands, and functions is illustrated by
one or more examples, which usually
consist of small programs, followed by
the output produced when the program was
executed.

As many of the programs were listed on
the line printer, and the resulting
output was directed to the line printer,
the commands used (viz. LIST "SLPT" and
RUNL) do not appear in these examples.

In a few examples, for clarity's sake, the
text entered by the user is underlined and
followed by the symbol) to denote that the

user has terminated the line by pressing
the RETURN key, e.g. ? 5,6,7,8)

Formats used in descriptions

Capital letters in the generalized format denote literal
entries.

Any parentheses should be inserted as indicated.
Braces ({}) indicate a choice of the items enclosed.
Brackets ([]) indicate that the enclosed items are optional.

An ellipsis (...) indicates that the preceding argument may be
repeated.

13

Several abbreviations are used in the formats to represent
common terms. All abbreviations in a format are explained
immediately beneath it, while the terms represented are defined
in the appropriate chapters of this guide. The most frequently
occurring abbreviations are:

{var>
{svar>
<{expr>

<slit>

<val>

<line no.>

<{statements>
<mwvar>
<ldname>
<filename>
<device>

<file>

°
®

The name of a numeric variable, with or
without subscripts.

The name of a string variable, with or
without subscripts.

A numeric, relational (Boolean), or string
expression (see Ch. 2).

A string literal (string constant), i.e.
a sequence of characters enclosed within
quotation marks (").

A numeric constant.

A statement line number in the range
1 to 9999,

: One or more RC BASIC statements.

The name of a matrix variable.

: The name of a logical disc.

The name of a disc file or a device.

The name of a device.

: A numeric expression which evaluates to a

number in the range 0 to 7 (the number of
a user file).

14

As an example, consider the generalized format of the PRINT
statement (see Ch. 3):

<{expr> {expr>
: <slit> . <slity .
IPRINT’ <svar> l;] <svar>| fe.. [l:‘]
1 125 56 7 7 6 234 43

The PRINT statement begins with the word PRINT., As PRINT is
frequently used, one can write a semicolon (;) instead of the
word PRINT. This is indicated by the pair of braces 1-1.

The pair of brackets 2-2 indicates that the PRINT statement need
not have an argument. PRINT may optionally (brackets 3-3) be
followed by a comma or a semicolon (braces 4-4).

An argument may be of the type <expr>, <slit>, or <svar>, as
indicated by the pair of braces 5-5. If there is more than one
argument (brackets 6-6 and the ellipsis), the arguments should
be separated by a comma or a semicolon (braces 7-7).

2.1

2.2

15

RC BASIC Arithmetic

Numbers

An RC BASIC number may be in the range:
=79
5.4 * 10 <m £ 1.2 % 1075

Numbers may be expressed as integers, as floating-point
numbers, or in exponential form (E-type notation).

In the conversion of numeric data, e.g. by a PRINT statement
(see Ch. 3), any floating-point or integer number that
contains six digits or less is formatted without using
exponential form. A floating-point or integer number that
requires more than six digits is printed in the following
E-type notation:

<sign>n.nnnnnE<sign>XX

where n.nnnnn is an unsigned number carried to five
decimal places with trailing zeroes suppressed, E means
"times 10 to the power of," and XX represents an
unsigned exponential value.

Number Output format
2,000,000 2E+06

108.999 108.999
.0000256789 2,56789E-05
24E10 2.4E+11

Internal representation of numbers

Internally, floating-point numbers are stored in two
consecutive 16-bit words having the form:

0 1 78 15

s| ¢ @Q&e‘i‘?‘

16 3

2.3

2.4

2.4.1

16

where: S is the sign of the mantissa (0 = positive,

1 = negative); the mantissa is a normalized six-digit
hexadecimal fraction; and C is the characteristic and
an integer expressed in excess 64 code.

Variables

A numeric variable name (shown in the statement descriptions

as <var>) consists of a single letter followed by from 0 to 7
digits or letters, for example:

Legal names Illegal names
I SPRICE
INTEREST 61

AMOUNT MEANVALUE
PRICE

In addition to numeric variables, string variables (shown in
the statement descriptions as <svar>) are also permitted in RC
BASIC (see Ch. 5).

Arrays

An array represents an ordered set of values. Each member of

the set is called an array element. An array can have either one
or two dimensions. An array name consists of a single letter
followed by from 0 to 7 digits or letters.

Array elements

Each of the elements of an array is identified by the name
of the array followed by a parenthesized subscript, for
example:

ITEMNO(1), ITEMNO(2), ..., ITEMNO(8), ITEMNO(9)

For a two-dimensional array, the first number gives the
number of the row and the second gives the number of the
column for each element. Thus the elements of the array
C(2,3) would be:

C(1,1) C(1,2) C(1,3)
C(2,1) C(2,2) C(2,3)

2.4.2

2.5

2.5.1

2.5.2

17

Declaring an array
An array must be declared in a DIM statement (see Ch. 3),
which gives the name of the array and its dimensions.

The lower bound of a dimension is always 1. The upper bound is
given in the DIM statement, two upper bounds being separated by a
comma (,). Dimensional information is enclosed in parantheses

immediately following the name of the array in the DIM statement,
for example:

5 DIM SET(15), AMOUNT(2,3)

The total number of elements in an array may not exceed 32 767.
Available memory will normally impose a limit, however.

Expressions

An expression (shown in the statement descriptions as
<expr>) may be composed of parentheses, constants and
variables (numeric or string), and functions, linked

together by operators.

Numeric expressions
A numeric expression may be composed of numeric variables and

constants and (numeric) functions, linked together by arithmetic
operators.

Arithmetic operators

The arithmetic operators are as follows:

<4

monadic + (A+(+B))
- : monadic — (A+(-B))
t exponentiation (AtB)
* : multiplication (A*B)
7 : division (A/B)

MOD : modulus calculation (A MOD B)
DIV : integer division (A DIV B)
+ : addition (A+B)

- : subtraction (A-B)

The operators +, —, *, /, and | are familiar to most, but DIV
and MOD may require some explanation.

LS

2:5.242

2:5.3

18

DIV operator. The result of an integer division A DIV B is equal
to:

SGN(A/B)*INT(INT(ABS(A))/INT(ABS(B)))

The SGN(X), INT(X), and ABS(X) functions are described in
Chapter 4.

Examples
11 DIV 4 =4+ x2 =2
-11 DIV 4 =-1%x2==2

MOD operator. The result of a modulus calculation A MOD B is
equal to:

SGN(A)*INT(ABS(A))-A DIV B*SGN(B)*INT(ABS(B))

The SGN(X), INT(X), and ABS(X) functions are described in
Chapter 4.

Examples
1M MOD 4 =11 -2x4 =3
-11 MOD 4 = =11 - (-2) x 4 = =3

Priorities of arithmetic operators during program execution

As a general rule, numeric expressions are evaluated from left
to right.

The arithmetic operators, however, have different priorities,
for which reason the following exceptions to this rule apply:

1. Numeric expressions enclosed within parentheses are always
evaluated before non-parenthesized expressions. If expres-

sions are nested, the innermost expression is evaluated first.

2. Functions are evaluated next.

3. The ?riorities of the arithmetic operators are as follows:

First: monadic plus and monadic minus
Second: exponentiation
Third: multiplication, division, modulus

calculation, and integer division

19
Fourth: addition and subtraction

4. When two operators have the same priority, evaluation
proceeds from left to right.

The following two examples should help clarify the principles
according to which numeric expressions are evaluated.

1+2—3x4_[_201v5+6
1: 1+2-3x 16 DIVS5+6
2: 1+ 2 - 48 DIV 5 + 6
Br AH@= g _ + 6
4 3 - 9 + 6
5: -6 + 6
6: 0
(1+(2-3)x41t2)DIV5+6
1t (1 + (-1) x4t 2)DIV5+ 6
2: (1 -1 x41 2)DIVS5+6
3: (1 -1 x 16) DIV 5 + 6
4: (1 - 16) DIV 5 + 6
5: -15 DIV 5 + 6
6: -3 + 6
7: 3

2.5.4 AND, OR, and NOT operators
The operators AND, OR, and NOT are analogous to *, +, and
-; but whereas *, +, and - have numeric arguments, AND, OR,
and NOT have Boolean arguments. A Boolean argument can have
two values: true, corresponding to 1 (or <> 0), and false,
corresponding to 0.

NOT operates on one argument only, and means logical ne-—
gation, for example:

A NOT A
TRUE FALSE
FALSE TRUE

2=5:5

2:5.6

20

AND operates on two arguments, and means logical multi-
plication (logical and), for example:
A B A AND B
FALSE (0) FALSE (0) FALSE (0 x 0 = Q)
FAISE (0) | TRUE (1) FALSE (0 x 1 = 0)
TRUE (1) FAISE (0) FALSE (1 x 0 = 0)
TRUE (1) TRUE (1) TRUE (1 x 1 = 1)

OR operates on two arguments, and means logical addition
(logical or), for example:

A B A OR B
FALSE (0) | FALSE (0) FAISE (0 + 0 = 0)
FALSE (0) | TRUE (1) TRUE (0 + 1 = 1)
TRUE (1) FAISE (0) | TRUE (1 + 0 = 1)
| TRUE (1) | TRUE (1) TRUE (1 + 1 <> 0)

The priorities of these three operators are:

First: NOT
Second: AND
Third: OR

Relational expressions

A relational expression is composed of two expressions of
the same type, i.e. both numeric or both string, linked
together by a relational operator.

Relational operators

The relational operators are as follows:

< : less than

{= : less than or egual to

= ¢ equal to

= ¢ greater than or equal to
> : greater than

<3 : not equal to

As mentioned above, all relational operators have two arguments.
The arguments are compared, and the result of the comparison is
always either true or false. Thus the notation

0 <X< 10

21
is illegal, as this would result in a comparison of
0 and X (true or false)
followed by a comparison of
(true or false) and 10
which is meaningless. The correct notation is:

0 <X AND X < 10

Ex les
1< 10 is true.
1> 10 is false.
"JOHN" < "PETER" is true (see Ch. 5).
1 < 10 AND 20 < 30 is true (1 x 1 = 1).
10 < 50R 2 < 1 i is true (0 + 1 = 1),
NOT 1 < 4 is false.
24541 Priorities of arithmetic, Boolean, and relational operators

In compound expressions, the priorities of arithmetic,
Boolean, and relational operators are as follows:

First: monadic plus and monadic minus
Second: exponentiation
Third: multiplication, division, modulus calculation, and

integer division
Fourth: addition and subtraction :
Fifth: relational operators (<>, <, <=, =, >=,; >)
Sixth: NOT '
Seventh: AND
Eighth: OR

2.5.8 String expressions
A string expression (see further Ch. 5) may be any of the
following:

1. A string variable, e.g. ANSWERS

2. A string literal, e.g. "PETER"

3. The CHR(X) function, e.g. CHR(65)

4. A concatenation of the above items, e.g.
"JOHN SMITH",ADDRESSS$

22

3 RC BASIC Statements

3.1 BYE

For description, see Chapter 9.

3.2 CASE-WHEN-ENDCASE

Format

CASE <expr> OF
[<statements-0>]

WHEN <expr> [,<expr>] ...
<{statements-1>

WHEN <expr> [,<expr>] ...
<{statements-n>
ENDCASE [<comment>]

<expr>: an expression.
<{statements-0>: a block of statements.

<{statements-n>: a block of statements.
<comment>: a text comment.

Use

As a statement to execute one of several block of statemenfs
depending on the value of an expression.

Remarks
1. Rules
a. <expr> may be an expression of any kind.

b. For every CASE statement there must be at least one
corresponding WHEN statement and one ENDCASE statement.

4.

23

If a block of statements belonging to a CASE construc-
tion is entered from outside the construction, the error
message 0062: WHEN WITHOUT CASE or 0061: ENDCASE
WITHOUT CASE will be output when WHEN or ENDCASE is
encountered.

Program operation

al

The expression in the CASE <expr> OF statement is
evaluated.

The expressions in the WHEN <expr> [,<expr>] statements
are evaluated one by one until a value is found which is
equal to the value obtained in step a. If this value is
found in the ith WHEN statement, <statements-i> is
executed.

Execution continues until a WHEN or ENDCASE statement is
encountered; after this, control is transferred to the
first statement following the ENDCASE statement.

If a matching value is not found in step b,
<statements-0> is executed. If <statements-0> is not
present, the error message 0059: CASE WITHOUT WHEN, CASE
ERROR will be output.

Nested constructions

CASE-WHEN-ENDCASE constructions may be nested to any
depth.

The word ENDCASE may be followed by a comment.

24

Example 1 Comment (1)
0010 FOR I=1 TO 5 Shows a nested CASE con-
0020 CASE I OF struction.
0030 PRINT "CASE ERROR - I"

0040 WHEN 1,3+1,6

0050 FOR J=3 TO 5

0060 CASE J OF

0070 PRINT "CASE ERROR - J"

0080 WHEN 3

0090 PRINT "I,J =";I;J

0100 WHEN 4

0110 PRINT "J,I =";J:1

0120 ENDCASE

0130 NEXT J

0140 WHEN 2

0150 PRINT "I =";1I

0160 WHEN 3

0170 PRINT "I =":1

0180 ENDCASE

0190 NEXT I

0200 sTOP

I,J=1 3

J, I =4 1

CASE ERROR - J

I =2

I=3

I,J=4 3

J, I =4 4

CASE ERROR - J
CASE ERRCR - I

25

Example 2

0010 DIM MONTHS$(10)
0020 FOR MONTHNR=1 TO 13

0030
0040
0050
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0186
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320

CASE MONTHNR OF
PRINT "ILLEGAL NUMBER: " :MONTHNR
GOTO 0330

WHEN 1
LET MONTHS="JANUARY"; DAYS=31

WHEN 2
LET MONTHS="FEBRUARY"; DAYS=28

WHEN 3 ,

LET MONTHS$="MARCH": DAYS=31

WHEN 4
LET MONTHS="APRIL"; DAYS=30

WHEN 5
IET MONTHS="MAY"; DAYS=31

WHEN 6
LET MONTHS="JUNE": DAYS=30

WHEN 7
LET MONTHS$="JULY"; DAYS=31

WHEN 8
LET MONTHS="AUGUST"; DAYS=31

WHEN 9 :

LET MONTH$="SEPTEMBER"; DAYS=30

WHEN 10
LET MONTHS="OCTOBER";: DAYS 31

WHEN 11
LET MONTHS="NOVEMBER"; DAYS 30

WHEN 12
LET MONTHS="DECEMBER"; DAYS 31

ENDCASE

PRINT TAB(10-LEN(MONTHS)) ; MONTHS;

PRINT " HAS":DAYS;"DAYS."

0330 NEXT MONTHNR
0340 STOP

JANUARY
FEBRUARY
MARCH
APRIL
MAY

JUNE
JULY
AUGUST
SEPTEMBER
OCTOBER
NOVEMBER
DECEMBER

HAS

3
28
31
30
31
30
31
31
30
31
30
31

ILLEGAL NUMBER:

DAYS.,
DAYS.
DAYS.
DAYS.
DAYS,
DAYS.
DAYS.
DAYS.
DAYS.
DAYS.
DAYS.
DAYS.
13

26

27

Example 3

0010 DIM ANSWERS(20)

0020 PROC GETANSWR

0030 REM THE PROCEDURE ACCEPTS ONE OF THREE POSSIBLE
0040 REM ANSWERS: YES, NO, OR DON'T KNOW

0050 REPEAT

0060 LET ERROR=0

0070 INPUT ANSWERS

0080 PRINT ANSWERS

0090 CASE ANSWERS OF

0100 PRINT "ERROR, RETYPE"
0110 LET ERROR=1

0120 WHEN "YES"

0130 LET YES=YES+1

0140 WHEN "NO"

0150 LET NO=NO-+1

0160 WHEN "DON'T KNOW","DO NOT KNOW"
0170 LET DONTKNOW=DONTKNOWH- 1
0180 WHEN "END"

0190 LET FINIS=1

0200 ENDCASE

0210 UNTIL NOT ERROR

0220 ENDPROC

0230 REM

0240 REM MAIN PROGRAM

0250 REM PRINT QUESTION, CHECK ANSWER
0260 REM BY MEANS OF THE PROCEDURE

0270 REM GETANSWR

0280 REM

0290 LET FINIS=0; YES=0; NO=0; DONTKNOW=0
0300 REPEAT

0310 PRINT "QUESTION"

0320 EXEC GETANSWR

0330 UNTIL FINIS

0340 PRINT "<13><10><10>"," YES"," NO","DON'T KNOW"
0350 PRINT ,YES,NO,DONTKNOW

0360 STOP

3.3

28

QUESTION Comment (3)
NO
QUESTION For PROC-ENDPROC,
YES see Section 3.26.
QUESTION
YES
QUESTION
DO NOT KNOW
QUESTION
NO
QUESTION
DON 'T KNOW
QUESTION
NOT
ERROR, RETYPE
NO
QUESTION
YESE
ERROR, RETYPE
YES
QUESTION
END
YES NO DON '"T KNOW

CHAIN

Format
CHAIN <filename> [THEN GOTO <lineno.>]

<filename>: a disc file or a device expressed as a string
literal or by means of a variable.

<line no.>: the line number in the program referred to by
<filename> from which execution is to begin.

Use

As a statement or command to run the SAVEd program referred to by
<filename> when the CHAIN statement is encountered in the user's

program.

29

Remarks

1.

When a CHAIN statement is encountered in a program, it stops
execution of that program, loads a previously SAVEd program
(see SAVE, Ch. 9) from the disc file or the device specified
by <filename>, and begins execution of the SAVEd program.

2. If the SAVEd program is on disc, the system searches the
logical disc to which the terminal is connected for <filename>
(see Ch. 8). If <filename> is not found, the system outputs
the error message 0100: FILE UNKNOWN.

3. If <filename> is found, the user's currently running program
is cleared from core memory and the SAVEd program is loaded
into core memory from <filename>. If <filename> is not found,
the current preogram remains in core memory.

4. The newly loaded program is run from its lowest numbered
statement, unless the THEN GOTO <line no.> argument is given
in the CHAIN statement to specify another line number from
which execution is to begin.

5. The CHAIN statement is typically used to divide a large program
into smaller programs or to run independent programs from a
main program on the basis of conditional statements.

6. CHAIN may also be used as a command, in which case it has the
same effect as LOAD (see Ch. 9), i.e. the SAVEd program is
loaded, but not executed.

Example 1 Comment (1)

0010 INPUT "SELECT PROGRAM NUMBER : ",NUMBER The user selects a

0020 CASE NUMBER OF ‘ program by typing a

0030 PRINT "ILLEGAL NUMBER" number .

0040 WHEN 1

0050 CHAIN "PROGRAM1"

0060 WHEN 2

0070 CHAIN "PROGRAM2"

0080 WHEN 3
0090 CHAIN "PROGRAM3"
0100 ENDCASE

3.4

30

Example 2 Comment (2)

0010 DIM NAMES(10) The user selects a
0020 INPUT "SELECT PROGRAM : ",NAME$ program by typing its
0030 CHAIN NAMES name, i.e. the name of
0040 END the disc file or the

device from which the
program is to be
CHAINed.

DATA

Format

<val> ’ [{ y<vald>
<slit> <slit>

| ..

<val>: a numeric value.
<slit>: a string literal.

DATA

Use

As a statement to provide values to be read into variables
appearing in READ statements.

Remarks

1. The DATA statement is non-executable,

2. The values appearing in a DATA statement or statements form a
single list. The first element in this list is the first item
in the lowest numbered DATA statement. The last element in the
list is the last item in the highest numbered DATA statement.

3. Both numbers and string literals may appear in a DATA

statement. Each value in a DATA statement list must be
separated from the next value by a comma.

Example
100 DATA 1, 17'“AB,CD“f_1 03E"'13

See further READ (Sect. 3.28).

3.5

31

DEF

Format

DEF FN<a>(<d>) = <expr>

Use

<a>: a letter.

<d>: a dummy numeric variable, which may appear in
<expr>.

<expr>: a numeric expression, which may contain the
variable <d>.

As a statement to permit the user to define as many as 29
different functions, which can be referenced repeatedly
throughout a program. Each function returns a numeric value.

1.

4.

Remarks

The name of the defined function must be the two letters FN
followed by a single letter, viz. A, B, ..., %, ¥, @, or A,

The dummy variable named in the DEF statement is not related
to any variable in the program having the same name; the DEF
‘statement simply defines the function and does not cause any
calculation to be carried out.

In the function definition, <expr> may be any legal numeric
expression and may include other user-defined functions.
Functions may be nested to a depth of seven.

Function definition is limited to a single-line DEF
statement. Complex functions that require more that one
program statement should be constructed as subroutines or
procedures.

Example 1

* LIST

0010 DEF FNP(X)=X12+2*X+2
0020 FOR I=1 TO 5

0030 PRINT FNP(I):

0040 NEXT I

* RUN
5 10 17 26 37
END

AT 0040
*

Example 2

* LIST

32

0010 DEF FND(X)=X*SYS(14)/180
0020 DEF FNS(X)=SIN(FND(X))
0030 DEF FNC(X)=COS(FND(X))
0040 FOR DEGR=0 TO 45 STEP 5

0050 PRINT DEGR,FNS(DEGR) ,FNC(DEGR)

0060 NEXT DEGR

0070 STOP

* TAB=12

* RUN
0 0
5 8.71556E~2
10 .173648
15 .258819
20 .34202
25 .422618
30 5
35 .573576
40 .642787
45 .707107

STOP

AT 0070
*

1
.996195
.984808
.965926
.939693
.906308
.866025
.819152
.766045
.707107

Comment (1)

Calculates
P(X) = X{242*x+2 for
different values of X.

Comment (2)

Shows the nesting of
functions.

3.6

3.7

33
DELAY

Format
DELAY = <expr>

<expr>: a numeric expression, which is evaluated to an
integer in the range 0 < <expr> <= 60.

Use

As a statement to interrupt program execution for a specified
number of seconds. ‘

Remarks

1. <expr> is the number of seconds for which the program is
stopped.

2. When <expr> seconds have passed since the DELAY statement was
encountered, program execution will continue from the first
statement following the DELAY statement.

DIM
Format
<svar>(<m>) <svar>(<m>)
DIM j<array>(<m>) gi<array>(<m>) e

<array>(<row>,<col>) <array>(<row>,<col>)
<svar>: a string variable.
<m>: a numeric expression, which evaluates to the
length of a string variable or the number of
elements in a one-dimensional array.

{array>: an array name.-

{row>: a numeric expression, which evaluates to the
number of rows in an array.

<col>: a numeric expression, which evaluates to the
number of columns in an array.

34

Use

As a statement or command to define explicitly the size of one
or more numeric variable arrays or string variables. (For the
dimensioning of string variables, see Chapter 5).

Remarks

1. Array elements

2.

For the concept of arrays, see Chapter 2. The DIM statement
is used to declare the size of an array to be a specified
number of elements for each dimension, for example:

10 DIM A(13),B(7,7),C(20,5)

Until a value is assigned by the user ‘s program, the value of
all elements in an array is zero.

Any variable or expression that is used for a subscript must
evaluate to a value in the range

1 <= value <= upper bound declared in the DIM statement
for example:

15 X=2
20 PRINT B(1,X12)

If the variable or expression subscript does not evaluate to
an integer, RC BASIC will convert it using the INT(X)
function (see Ch. 4).

If a subscript evaluates to an integer greater than the upper
bound of the dimension for the array or less than 1, the

error message 0031: SUBSCRIPT ERROR will be output.

Redimensioning arrays

One can redimension a previously defined array during
execution of a program by declaring the array in another DIM
statement. The total number of elements in the redimensioned
array must not exceed the previous total number of elements,
for example:

35

100 DIM A(3,3)

200 DIM A(2,3)

300 DIM A(2,2)

The values assigned to elements in the array A(3,3) are re-
assigned to elements in the array A(2,3) and then to elements
in the array A(2,2):

1 2 3 C 23) (12)
4 5 6 4 5 6 3 4

7 8 9

Al1,1) =1 A{1,1) =1 A(1,1) =1
A(1,2) =2 A(1,2) =2 A(1,2) =2
A(1,3) =3 A(1,3) =3 A(2,1) = 3
A(2,1) = 4 A(2,1) =4 A(2,2) =4
A(2,2) =5 A(2,2) =5

A(2,3) =6 A(2,3) =6
A(3,1) = 7

A(3,2) = 8

A(3,3) = 9

3. Total number of elements

The total number of elements in an array may not exceed 32 767.
Available memory will normally impose a limit, however.

3.8 END

Format
END [<comment>]

<comment>: a text comment.
Use

As a statement to terminate execution of the program and to
return control to interactive mode.

3.9

Remarks

1. RC BASIC includes the END statement, but does not require its
use to declare the physical end of a program. If control
passes through the last executable statement of the program
and if that statement does not change the flow of control,
i.e. is not a GOTO or similar statement, then the program
will transfer control to interactive mode.

2. Multiple END statements may appear in the same program, and
when encountered will terminate execution of the program

followed by a prompt (*) output on the user's terminal.

3. The word END may be followed by a comment.

Example

*20 PRINT "PROGRAM DONE"
*30 GOTO 60

*50

*60 END

* RUN
PROGRAM DONE

END

AT 0060
*

ENTER

For description, see Chapter 9.

37
3.10 EXEC
Format
EXEC <name>

<name>: the name of a procedure. <name> may also be a
simple numeric variable.

Use

As a statement to execute a procedure defined by PROC-ENDPROC
(see Sect. 3.26).

Remarks

1. Rules
<name> .is the name of the procedure to be executed. If <name>
is a simple numeric variable, it may be assigned a value
before the procedure is called; it may also be assigned a new
value by the procedure before control is returned to the main

program,

2. Program operation

a., When the EXEC statement is encountered, a search is made
for the procedure named <name>.

b. If <name> is not found, the error message 0046: PROCEDURE
DOES NOT EXIST will be output.

c. The statements in the procedure are executed until an
ENDPROC or RETURN statement is encountered. Control is
then returned to the first statement following the EXEC

statement.
Example

See PROC-ENDPROC (Sect. 3.26).

38

3.11 FOR-NEXT

Format

FOR <control var> = <expr1> TO <expr2> [STEP <expr3>]
{statements>
NEXT <control var>

<{control var>: an unsubscripted numeric variable.

<expr1>: a numeric expression defining the first or
initial value of <control var>.

{expr2>: a numeric expression defining the
terminating value of <control var>.

<expr3>: a numeric expression defining the
increment added to <control var> each time
the loop is executed.

{statements>: a block of statements, which may also
contain FOR-NEXT loops.

Use

As a statement to establish the initial, terminating, and
incremental values of a control variable, which is used to
determine the number of times a block of statements contained in
a FOR-NEXT loop is to be executed. The loop is repeated until
the value of the control variable meets the termination
condition,

Remarks
1. Rules

a. The control variable <control var> must not be
subscripted.

b. For every FOR or NEXT statement there must be a matching
NEXT or FOR statement, otherwise an error message (0021:
FOR WITHOUT NEXT or 0022: NEXT WITHOUT FOR) will be
output.

c. The expressions <expri1>, <expr2>, and <expr3> may have

39
positive or negative values; <expr3> must not be zero.

If the STEP <expr3> argument is omitted in the FOR
statement, <expr3> is assumed to be +1.

The termination condition for a FOR-NEXT loop depends on
the values of <expr1> and <expr3>. The loop will terminate
if <expr3> is positive and the next value of <control var>
is greater than <expr2>, or if <expr3> is negative and the
next value of <control var> is less than <expr2>.

Note: If the value of <expr1> (the initial value) meets
the termination condition, <statements> will not be
executed even once. :

If the body of a FOR-NEXT loop is entered at any point
other than the FOR statement, the error message 0022:
NEXT WITHOUT FOR will be output when the NEXT statement
corresponding to the skipped FOR statement is
encountered.

When the termination condition is met, the loop is
exited.

Program loop operation

d.

<expr1>, <expr2>, and <expr3> are evaluated. If <expr3> is
not specified, it is assumed to be +1.

<control var> is set equal to <expri>.

If <expr3> is positive (negative) and <control var> is
greater than (less than) <expr2>, the termination
condition is satisfied and control passes to the first
statement following the corresponding NEXT statement;
otherwise step e is performed.

If <expr3> is positive (negative) and <control var> +
<expr3> is greater than (less than) <expr2>, the
termination condition is satisfied and control passes to
the first statement following the corresponding NEXT
statement; otherwise <control var> is set equal to
<control var> + <expr3>.

<{statements> is executed.

40
f. Step d is repeated.

3. Nested loops

FOR-NEXT loops may be nested to a depth of seven. The FOR
statement and its terminating NEXT statement must be
completely contained within the loop in which they are nested,
for example:

Legal nesting Illegal nesting
—— FOR X = ... ——FOR X = ...
FORY=--- '—“_EORY=tl-
[FORZ=... NEXT X
NEXT % L_NEXT y
NEXT Y
—— NEXT X
Example 1 Comment (1)

0010 FOR I=1 TO 25

0020 FOR J=1 TO 25 STEP 7
0030 NEXT J

0040 NEXT I

0050 PRINT I,J

0060 STOP

25 22 Final values of I and J
before their terminating
values were exceeded.

41

Example 2

0010 LET 2=10
0020 FOR I=A TO 1 STEP -1
0030 PRINT TAB(I):
0040 FOR J=A TO I STEP —1
0050 PRINT "#**",
0060 NEXT J
0070 PRINT
0080 REM NEW LINE
0090 NEXT I
0100 STOP

01234567890123456789

*%
kkkk
kkkkdk
kkkkkkkk
kkkkkkkkkk
kkkkkkkkkkkk
khkkkkkkkkkkkkk
kkkkkkkkhkkikkkk
kkkkkkkkkikkkkkkkki
kkkdhkkhkkkkkhkhkkkk

Example 3

0010 DIM TEXT$(30)

Comment (2)

Shows nested FOR-NEXT loops.

0020 LET TEXTS$="TEXT1TEXT2TEXT3TEXT4TEXTS5TEXT6"

0030 FOR I=5 TO 0 STEP -1

0040 PRINT TEXTS(I*5+1,(I+1)*5)

0050 NEXT I
0060 STOP

TEXT6
TEXT5
TEXT4
TEXT3
TEXT2
TEXT1

Comment (3)

A string array can be imple-
mented by means of a FOR-NEXT
construction.

3.12

42

GOSUB and RETURN

Format

GOSUB <line no.>

{statements>
RETURN [<comment>]

<line no.>: the first statement of a subroutine.
<{statements>: a block of statements.
<{comment>: a text comment.

Use

As a statement to direct program control to the first statement
of a subroutine. RETURN exits the subroutine and returns control
to the first statement following the GOSUB statement that caused
the subroutine to be entered.

Remarks

1. A subroutine is a convenient means of executing the same
block of statements at different places in a program. Sub-—
routines may be nested to a depth of seven. Nesting occurs
when a subroutine is called during the execution of another
subroutine.

2. A subroutine may be entered only by means of a GOSUB state-
ment, otherwise the error message 0019: RETURN WITHOUT GOSUB
will be output when the RETURN statement is encountered.

3. A subroutine may contain more than one RETURN statement,
should program logic require the subroutine to terminate at
one of a number of different places.

4, Although a subroutine may appear anywhere in a program, it is
good practice to place the subroutine distinctly separate
from the main program. In order to prevent inadvertent entry
of the subroutine by other than a GOSUB statement, the sub-
routine should be preceded by a STOP statement (see Sect.
3.33) or a GOTO statement (see Sect. 3.13) that directs
control to a line number following the subroutine.

5. The word RETURN may be followed by a comment.

43

Example 1

0010 LET I=144

0020 GOsUB 0060

0030 LET I=169

0040 GOSUB 0060

0050 STOP

0060 PRINT "THE SQUARE ROOT OF";I;"IS:";SQR(I)
0070 RETURN

THE SQUARE ROOT OF 144 IS: 12
THE SQUARE ROOT COF 169 IS: 13

Example 2

0010 GOSUB 0040
0020 PRINT "EXAMPLE"
0030 GOTO 0140
0040 PRINT "NEST";
0050 GOsuB 0080
0060 PRINT "INE ";
0070 RETURN

0080 PRINT "ED ";
0090 GOSUB 0120
0100 PRINT "ROUT";
0110 RETURN

0120 PRINT "SUB";
0130 RETURN

0140 STOP

NESTED SUBROUTINE EXAMPLE

3.13 GOTO

Format
GOTO <line no.>

<line no.>: a line number.
Use

As a statement to transfer control unconditionally to a
statement that is not in normal sequential order.

3.14

44

Remarks

1. If control is transferred to an executable statement, that
statement and those following it will be executed.

2. If control is transferred to a non—-executable statement, such
as DATA, program execution will continue at the first execut-
able statement following the non-executable statement.

Example

0010 READ NUMBER

0020 PRINT NUMBER;

0030 IF NUMBER<>0 THEN GOTO 0010
0040 sTOP

0050 patA 10,9,8,7,6,5,4,3,2,1,0

M 9 8 7 6 5 4 3 2 1 0

IF-THEN

Format
IF <expr> [THEN] <statement>

<expr>: an expression which, when evaluated, has
the value true (<> 0) or false (= 0).

<{statement>: any RC BASIC statement except CASE-WHEN-
ENDCASE, DATA, DEF, END, FOR-NEXT, ENDIF,
ELSE, PROC-ENDPROC, REM, REPEAT-UNTIL, and
WHILE-ENDWHILE.
Use

As a statement or command to execute a single statement de-
pending on whether the value of an expression is true or false.

Remarks

Program operation

1. If the value of <expr> is true (<> 0), <statementy is exe-
cuted. If <statement> does not cause transfer of control to

45

another part of the program, execution will then continue at
the first statement following the IF-THEN statement.

2. If the value of <expr> is false (= 0), <statement> is not
executed.

Note: Since the internal representation of non-integer
numbers may not be exact (.2 cannot be represented exactly,
for example), it is advisable to test for a range of values
when testing for a non-integer. If, for example, the result
of a computation, A, was to be 1.0, a reliable test for 1
would be

IF ABS(A-1.0)<1.0E-6 THEN ...
If this test succeeded, A would be equal to 1 to within 1

part in 1016. This is approximately the accuracy of single-
precision floating-point calculations.

Example 1 Comment (1)
0010 LET I=10 The statement GOTO 40
0020 IF I>5 THEN GOTO 0040 is executed only if I > 5.

0030 PRINT "DON 'T ENTER HERE"
0040 PRINT "PRINT THIS"
0050 sTOP

PRINT THIS

Example 2a

0010 LET A=5; B=5

0020 PRINT "A AND B ARE";

0030 IF A<>B THEN PRINT " NOT";
0040 PRINT " EQUAL"

0050 sTOP

A AND B ARE EQUAL

46

Example 2b

0010 LET A=5: B=7

0020 PRINT "A AND B ARE":

0030 IF A<>B THEN PRINT " NOT";

0040 PRINT " EQUAL"
0050 STOP

A AND B ARE NOT EQUAL

3.15 IF-THEN-ENDIF

Format
IF <expr> [THEN] [DO]
<{statements>
ENDIF [<comment>]
<expr>: an expression which, when evaluated, has the
value true (<> 0) or false (= 0).
<{statements>: a block of statements.
{comment>: a text comment.

Use

As a statement to execute a block of statements depending on
whether the value of an expression is true or false.

Remarks
1. Rules

a. For every IF-THEN/ENDIF statement there must be a matching
ENDIF/IF-THEN statement.

b. If <statements> is entered at any point other than the
IF-THEN statement, the error message 0056: ENDIF WITHOUT
IF will be output when the ENDIF statement is encountered.

2. Program operation

a. If the value of <expr> is true (<> 0), <statements> is
executed once.

47

b. Execution will then continue at the first statement

following the ENDIF statement.

3. Nested constructions

IF-THEN-ENDIF/IF-THEN-ELSE-ENDIF constructions may be nested

to a depth of seven.

4. The word ENDIF may be followed by a comment.

Example 1

0010 LET I=1

0020 IF I THEN

0030 PRINT "I<>Q"

0040 LET I=I+1

0050 ENDIF

0060 PRINT "AFTER ENDIF, I=";I
0070 sTOP

IS0
AFTER ENDIF, I= 2

Example 2

0010 LET I=0

0020 IF I THEN

0030 PRINT "DON'T ENTER HERE"
0040 LET I=I+1

0050 ENDIF

0060 PRINT "AFTER ENDIF, I=";I
0070 sTOP

AFTER ENDIF, I= 0

Example 3

0010 LET I=26

0020 IF I/2>=13 THEN

0030 PRINT "SHOULD ENTER HERE"
0040 ENDIF

0050 sTOP

SHOULD ENTER HERE

Comment (1)

The block of statements
between IF-THEN and ENDIF is
executed only if I is true
(I <> 0).

3.16

Example 4

0010 DIM NAMES(4)
0020 LET NAMES="JOHN"
0030 IF NAMES$(2,3)="OH"

48

THEN

0040 PRINT "NAMES CONTAINS 'OH' "

0050 LET NAME$(2,3)="
0060 PRINT NAMES
0070 ENDIF

0080 STOP

NAMES CONTAINS 'OH'

J N

IF-THEN-ELSE-END

Format

IF <expr> [THEN] [DO]
<{statements-1>

ELSE [<comment>]
<{statements-2>

FRDIF [<comment>]

<exprh:
<statements-1>:
<statements-2>:

<{comment >

Use

As a statement to execu

IF

an expression which, when evaluated, has
the value true (<> U) or false (= 0).

a block of statements which is executed
if the value of <expr> is true (<> 2).

a block of statements which is executed
if the value of <expr> is false (= 0).

a text comment.

te one of two blocks of statements

depending on whether the value of an expression is true or

false,

49
Remarks
1. Rules
If <statements-1> or <statements-2> is entered at any point
other than the IF-THEN/ELSE statement, an error message
(0051: ELSE WITHOUT IF or 0056: ENDIF WITHOUT IF) will be

output when the ELSE/ENDIF statement if encountered.

2. Program operation

a. <expr> is evaluated.

b. If the value of <expr> is true (<> 0), <statements-1> is
executed.

c. If the value of <expr> is false (= 0), <statements-2> is
executed.

d. When <statements-1> or <statements-2> has been executed
and if neither has caused transfer of control to another
part of the program, execution will continue at the first
statement following the ENDIF statement.

3. Nested constructions

IF-THEN-ENDIF/IF-THEN-ELSE-ENDIF constructions may be nested
to a depth of seven.

4, The words ELSE and ENDIF may be followed by comments.

50

Example Comment

0010 DIM PRICE(4),NUMBER(4) If ITEMNO = 1 or 3, the
0020 FOR ITEMNO=1 TO 4 statements in lines 40
0030 IF (ITEMNO=1) OR (ITEMNO=3) THEN and 50 are executed:
0040 LET PRICE(ITEMNO)=10 otherwise the statements
0050 LET NUMBER(ITEMNO)=7 in lines 70 and 80 are
0060 ELSE executed.

0070 LET PRICE(ITEMNO)=25

0080 LET NUMBER({ ITEMNO)=9

0090 ENDIF

0100 NEXT ITEMNO

0110 PRINT “"ITEMNO","NUMBER","PRICE"
0120 FOR I=1 TO 4

0130 PRINT I,NUMBER(I),PRICE(I)

0140 NEXT I

0150 STOP

ITEMNO NUMBER PRICE

1 7 10

2 9 25

3 7 10

4 9 25
3.17 INPUT

Format

l <var> } [<var> ”
INPUT [<slit-0>,] | <svar> L,<slit—n>]l,<svar> ces

<slit-0, slit-n>: string literals.
<var>: a numeric variable.
{svar>: a string variable.
Use

As a statement or command to assign values entered from the
user 's terminal during program execution to a list of numeric or
string variables.

Remarks

1. When an INPUT statement is executed, the system outputs a
question mark (?) as an initial prompt unless the INPUT

5t

statement contains <slit-0>, in which case <slit-0> is
output.

The user responds by typing a list of data items, each of
which is separated from the next by a comma. The last item is
followed by a carriage return.

Data items will be read as long as the arguments in the INPUT
statement are <var> or <svar>. If a string literal, <slit-n>,
is encountered in the argument list, <slit-n> will be output
and any remaining items entered by the user will be skipped.

'If the data list is terminated (by pressing the RETURN key)

before values have been assigned to all of the variables in
the argument list, the system will output a question mark as
a prompt, indicating that further items are expected.

Data entered in response to a prompt must be of the same type
(numeric or string) as the variable in the argument list for
which the data is being supplied. Variables in the argument
list may be subscripted or unsubscripted.

If the entered data does not match the type of a variable

in the argument list, the system will output / ? in response
to the erroneous input. The user can then enter data of the
correct type.

A comma may not be used as a separator between string data
items. These items must be separated either by a carriage
return or, if typed on the same line, by a quotation mark (")
followed by a comma.

52

Example 1

* LIST

0010 DIM NAMES$(20) ,ADDRESS$(20)
0020 INPUT NAMES,ADDRESSS

0030 PRINT NAMES ,ADDRESSS

Comments (1)

0040 INPUT "NAME " ,NAMES,"ADDRESS " ,ADDRESSS

0050 PRINT NAMES,ADDRESSS$

* RUN

? ROBERT CLARK)

? 9 MAIN STREET)

ROBERT CLARK 9 MAIN STREET
NAME RAYMOND CLARKE)
ADDRESS 61 HIGHWAY)
RAYMOND CLARKE

61 HIGHWAY

END
AT 0050

Example 2

* LIST
0010 INPUT N1,N2,N3,N4
0020 PRINT N1;N2;N3;N4

— PRINT output.
~ PRINT output.
The underlined texts are

those entered by the user.

Comments (2)

The underlined texts are
those entered by the user.

A question mark is output
as a prompt until data
has been supplied for all
arguments.

All data items can be
typed on a single line
when separated by commas.

53

? U ~ The type of the entered data
/ ?8) items must match the type of

?27) the arguments.

?

3.18 LET

Format

{<var> } '<var>]
[LET] [<svar>| = <expr> |;i<svar>) = <expr>| ...

<var>: a numeric variable.

<gsvar>: a string variable.

<expr>: a numeric, relational, or string expression.
Use ‘

As a statement or command to evaluate an expression and assign
the resultant value to a variable.

Remarks
1., Use of the mnemonic LET is optional.
2. The variables may be subscripted.

3. Numeric or relational expressions may be assigned to numeric
variables.

4, String expressions may be assigned to string variables.

54

Example 1 Comment (1)

10 LET A=A+1 The variable A is assigned a
value one greater than it was
before.

Example 2 Comment (2)

20 A(2,1)=Bt2+10 The element in row 2, column 1

of the array A is assigned
the value of the expression

Bf2+10.
Example 3 Comment (3)
0010 LET I=3 One line may contain several
0020 LET J=4 assignments as shown in line
0030 LET K=I+J; L=I*J 30.
0040 PRINT I,J,K,L
0050 STOP
3 4 7 12
3.19 NEW

For description, see Chapter 9.

3.20 ON-ERR

Format
ON ERR THEN <statement>

<{statement>: any RC BASIC statement except CASE-WHEN-
ENDCASE, DATA, DEF, END, FOR-NEXT, ENDIF,
ELSE, ON, PROC-ENDPROC, REM, REPEAT-UNTIL,
and WHILE-ENDWHILE.,

Use

As a statement to enable the programmer to take special action,
if an error occurs during program execution.

3.21

55

Remarks

1. Usually a program is interrupted and an error message output,
if an error occurs during program execution. If an ON-ERR
statement has been executed, however, a run-time error will
cause <statement> to be executed.

2. The ON-ERR statement closely resembles the ON-ESC statement;
see, therefore, Section 3.21, Remarks 2 to 5, for further
details.

Example Comment

0010 ON ERR THEN EXEC OUTERROR If an error occurs, the
0020 LET A=10/0 error code will be output
0030 LET B=D and execution will continue.

0040 LET C=S¥YS(18)

0050 PROC OUTERROR

0060 PRINT "ERROR :";SYS(7)
0070 ON ERR THEN EXEC OUTERROR

0080 ENDPROC

ERROR : 16 0016: ARITHMETIC ERROR

ERROR : 17 0017: UNDEFINED VARIABLE

ERROR : 34 0034: ILLEGAI, FUNCTION
ARGUMENT

ON-ESC

Format

ON ESC THEN <statement>

<{statement> : any RC BASIC statement except CASE-WHEN-
ENDCASE, DATA, DEF, END, FOR-NEXT, ENDIF,
ELSE, ON, PROC-ENDPROC, REM, REPEAT-UNTIL,
and WHILE-ENDWHILE.

Use

As a statement to enable the programmer to take special action,
if the ESCape key is pressed during program execution.

56

Remarks

1.

Usually a program is interrupted, if the ESCape key is
pressed during program execution. If an ON-ESC statement has
been executed, however, pressing the ESCape key will cause
<{statement> to be executed.

If the ESCape key has been pressed once and <statement> has

been executed, the program will be interrupted if the ESCape
key is pressed again, unless a new ON-ESC statement has been
executed (see Example).

" If <statement> is a GOSUB or EXEC statement, then when a

RETURN or ENDPROC statement is encountered, control will be
transferred to the statement following the last statement
executed before the ESCape key was pressed.

ON-ESC statements may be placed anywhere in a program, so
that different actions may be taken in different parts of the
program.

Execution of the statement ON ESC THEN STOP will in all
circumstances cause restoration of the normal ESCape key
function.

57

Example

* LIST

0010 ON ESC THEN GOSUB 0060
0020 FOR I=1 TO 20

0030 PRINT I;

- 0040 NEXT I

0050 sTOP

0060 PRINT

0070 PRINT "ESCAPE PRESSED, I =

0080 RETURN

* RUN

1.2 3 4 5
ESCAPE PRESSED, I = 6
7 8 9 10 11 1
STOP

AT 0030

* LIST

0010 ON ESC THEN GOSUB 0060
0020 FOR I=1 TO 20

0030 PRINT I;

0040 NEXT I

0050 STOP

0060 PRINT

0070 PRINT "ESCAPE PRESSED, I =

0075 ON ESC THEN GOSUB 0060
0080 RETURN

* RON
1 2 3 4 5

ESCAPE PRESSED, I = 5
6 7 8 9 1

ESCAPE PRESSED, I = 10
11 12 13 14 15 16

ESCAPE PRESSED, I = 16
17 18 .19 20

STOP

AT 0050

*

Comment

ll;I

-—When ESC is pressed a
second time, the program
is interrupted.

“'I

7
-—This statement has been
inserted in the program
above.

58

3.22 ON-GOTO/GOSuB

Format

=y
ON <expr> [THEN] |GOSUB| <line no.> [,<line no.>] ...

<expr>: a numeric expression which is evaluated to an
integer.
<line no.>: a line number in the current program. The
positions of line numbers in the argument list
are numbered in sequence from 1 to n.

Use

As a statement to transfer control to one of several lines in a
program depending on the computed value of an expression when
the ON statement is executed.

Remarks

1. <expr> is evaluated. If it is not an integer, the fractional
part is ignored.

2. The program transfers control to the line whose sequence
number in the argument list corresponds to the computed value
of <expr>.

3. If <expr> evaluates to an integer that is greater than the
sequence number of the last line number in the argument list
or that is less than or equal to zero, the ON statement is
ignored and control passes to the next statement.

4. The ON-GOSUB statement must contain a list of line numbers
each of which is the first line of a subroutine within the
current program.

3.23

3.24

59

Example Comment

10 ON'M-5 GOTO 500,75, 1000 If M-5 evaluates to 1, 2, or
3, control will be trans-
ferred to line number 500,
75, or 1000, respectively.
If M-5 evaluates to any
other value, control will be
transferred to the next
sequential statement in the
program,

PAGE

For description, see Chapter 9.

PRINT

Format
<expr> <expr>

{; } <slit> {,} <slit> v

PRINT <svar> || |;]|<svar> || ... [{;}]
<expr>: a numeric or relational expression.
<slit>: a string literal.
<svar>: a string variable.

Use

As a statement or command to perform any of the following output
operations at the user's terminal:

1. Print variables and constants (numeric or string).
2. Print the result of a computation.
3. Print a combination of 1 and 2.

4, Print a blank line (skip a line).

60

Remarks

Te

Printing numbers

Numbers (integer, decimal, or E-type) are printed in the
following form:

<{sign><number>{space>

The sign is either minus (=) or a blank space for plus; the
number is always followed by a blank space (see Ch. 2).

‘Zone spacing of output

The print line on a terminal is divided into print zones. The
width of a print zone can be set by means of the TAB command
(see Ch. 9). The default zone spacing is 14 columns. This
spacing is used in the examples below. The first column on a
print line is column number O.

0 13 | 14 a7 | 28 41 | 42 55 || 56 69
—~ 14 —~|+—14 |14 |14 — |14 —

columns | columns | columns | columns | columns

A comma (,) between items in the argument list causes the
next print element to be output starting from the leftmost
position of the next zone. If there are no more zones on the
current line, printing continues in the first zone on the
next line. If a print element requires more than one zone,
the next element is printed in the next free zone (see Exx.
1 and 3).

Before each print element is output, its length is compared
with the space remaining on the current line. If the space is
insufficient, the element is moved to the next line. If the
length of an element is greater than the length of the print
line (see the PAGE command, Ch. 9), the error message 0036:
PRINT ELEMENT TOO LONG is output.

Compact spacing of output

A semicolon (;) between items in the argument list causes the
next print element to be output starting from the next
character position.

Note: A blank space is always printed after a number. A blank

61

space is also reserved for the plus (+) sign, even though the
sign is not printed (see Ex. 2).

4, Spacing to the next line

When the last element in a PRINT statement argument list has
been printed, a carriage return and line feed are output
unless this last element is followed by a comma or a semi-
colon, in which case the carriage return and line feed are
suppressed and the elements in the next PRINT statement
argument list are printed on the same line in accordance with
the comma or semicolon punctuation (see Exx. 2 and 3).

5. Printing blank lines

A PRINT statement with no arguments or punctuation causes a
carriage return and line feed to be output (see Ex. 4).

6. Additional printing versatility

See the TAB(X) function (Sect. 3.35), the PAGE and TAB
commands (Ch. 9), and the PRINT USING statement (Sect. 3.25).

Example 1 Comment ‘(1)

0010 LET X=25 If a print element
0020 PRINT "THE SQUARE ROOT OF X IS:",SQR(X) requires more than
0030 sSTOP one zone, the next

element is printed
in the next free
012345678901234567890123456789012345678901 zZone.

THE SQUARE ROOT OF X IS: 5

62

Example 2

0010 LET X=5

0020 PRINT X;X!X;X*X;xt2;
0030 PRINT SQR(X):SOR(X)12
0040 PRINT -X:(-X)!3

0050 STOP

012345678901234567890123456789012345678901

5 3125 25 25 2.23607

=5 =125
Example 3

0010 LET X=100

0020 PRINT X,Xx12,SQR(X),
0030 PRINT X13

0040 PRINT "END"

0050 STOP

Comment (2)

Shows the use of
the semicolon as

a spacing charac-
ter. The semicolon
terminating line
20 suppresses a
carriage return
and line feed.

Comment (3)

Shows the use of

the comma as a
spacing character.
The comma termina-
ting line 20 sup-
presses a carriage
return and line feed.

01234567890123456789012345678901234567890123456789012345

100 10000 10
END

Example 4

0010 LET %=10
0020 PRINT X,
0030 PRINT Xt2,
0040 PRINT

0050 PRINT X,
0060 PRINT X12
0070 PRINT "END"
0080 STOP

0123456789012345678901234567

10 100
10 100
END

1E+6

Comment (4)

The PRINT statement
in line 40 causes a
carriage return

and line feed to

be output.

63

Example 5 ' Comment (5)

0010 DIM AS$(10) If a print ele-

0020 LET AS="ABCDE" ment is a rela-

0030 PRINT AS="ABCDE" ; A$<"ABCDEF";AS>"B";1=1:2>5 tional expres-—

0040 sTCP sion, either
the word TRUE

TRUE TRUE FALSE TRUE FALSE or the word

- FALSE will be

printed.

3.25 PRINT USING

Format
<expr> <expr>

PRINT USING <format>, {<slit> s11<slity aee ’
<svar> {:] <svar> [1;}]

{format>: a string literal or string variable that
specifies the format (see Remarks) for printing
the items in the argument list.

<{expr>: a numeric or relational expression.
<slit>: a string literal.

<{svar>: a string variable.
Use

As a statement to output the values of items in the argument
list using a specified format.

Remarks

1. The occurrence of a separator other than a comma, e.g. a
semicolon or TAB, between items in the argument list will
cause the remaining items to be printed as if no format had
been specified (see the PRINT statement, Sect. 3.24).

2. The PRINT USING statement is executed as a PRINT statement
(see Sect. 3.24); however, if the system does not include the
PRINT USING facility, execution of a PRINT USING statement
will cause the string <format> to be printed, followed by the
items in the argument list.

3. The <format> expression may have more than one <format>

64
field and may include string literals as well as the
following special characters, which are used to format

numeric output:

[} + = $ r ’

Note: The character A is used in the following descriptions
to indicate a blank space.

a. Digital representation (#)

For each # in the <format> field, a digit (0-9) is substi-
tuted from the <expr> argument.

<format> {expr> Output Comments
4 25 AAA25 The digits are

right justified in
the field with
leading blanks.

-30 AAA30 Signs and other non-
; digits are ignored.

H 4 1.95 DANA2 Only integers are
represented; the
number is rounded
to an integer.

#h444 598745 Kkkkk 1f the number in
<expr> has more
digits than speci-
fied by <format>,
a field of all as-
terisks is output.

b. Decimal point (.)

The decimal character (.) places a decimal point within the
string of digits in the fixed position in which it appears in
<format>. Digit (#) positions which follow the decimal point
are filled; no blank spaces are left in these digit
positions. When <expr> contains more fractional digits than
<format> allows, the fraction will be rounded to the limits
of <format>. When <expr> contains less fractional digits than
specified by <format> , zeroes are output to fill the
positions.

65

<format> <expr> Qutput Comments
HH#4E 4 20 AMMA20.00 Fractional posi-

tions are filled
with zeroes,

#HE 29.347 AAA29.35 Rounding occurs on
fractions.
. 789012.34 *kkkickkk When <expr> has

too many signi-
ficant digits to
the left of a de-
cimal point, a
field of all aste-
risks, including
the decimal point,
is output.

Fixed sign (+ or =)

A fixed sign character appears as a single plus (+) or
minus (=) sign either in the first character position or
in the last character position in the <format> field.

A fixed plus (+) sign prints the sign (+ or -) of <expr>
in the position in which the fixed plus (+) sign is placed
in <format>.

A fixed minus (-) sign prints a minus (=) sign for
negative values of <expr> or a blank space for positive
values of <expr> in the position in which the fixed minus
(=) sign is placed in <format>.

When a fixed sign is used, any leading zeroes appearing in
<expr> will be replaced by blanks, except for a single
leading zero preceding a decimal point.

<format>

+HHE
+H# . #

+Hi
+i#
Fid -
Bk

-
$. 44—

Floating sign (++ or —)

66

<exgr >

20.5
1.01

=1.,236
-234.0
205

000.01

-1.236
-234.0

Output

Comments

+20.50
+A1.01

*kkkkk
£420.50A
AA0.01A

AA1.24-
234.00-

Blanks precede the
number .

One leading zero
before the decimal
point is printed.

A floating sign appears as two or more plus (++) or minus
(—) signs at the beginning of the <format> field.

A floating plus (++) sign outputs a plus or minus sign
immediately before the value of <expr> with no separating
blank spaces as would occur with a fixed sign.

A floating minus (—) sign outputs either a minus or a
blank (for plus) immediately preceding the value.

Positions occupied in <format> by the second sign and any
additional signs can be used for numeric positions in the
value of <expr>.

67

<format> <expr> Output Comments
— =20 -20.00 The second and

third minus signs
are treated as #
on output.

—.## =200 R X Too many digits
to the left of the
decimal point.

—.## 2 MN2.00

Note that <format> may include a floating sign (++ or

-—) or a floating dollar sign ($$), as described below,
but not both.

Fixed dollar sign ($)

A fixed dollar sign appears as a single dollar ($) sign in
either the first or the second character position in the
<format> field, causing a dollar ($) sign to be output in
that position. If the dollar sign ($) is in the second
position, it must be preceded by a fixed sign (+ or -).

A fixed dollar sign ($) causes leading zeroes in the value
of <expr> to be replaced by blanks.

<format> {expr> Output Comments
=SHi# .44 30,512 ASA30.51

SHEH . #H+ -30.512 SA30.51=

Floating dollar sign ($S)

A floating dollar sign appears as two or more dollar ($$)
signs beginning in either the first or the second
character position in the <format> field. If the dollar
signs ($$) start in the second position, they must be
preceded by a fixed sign (+ or -).

A floating dollar sign ($$) causes a dollar ($) sign to be
placed immediately before the first digit of the <expr>
value,

68

Note that <format> may include a floating dollar sign ($$)
or a floating sign (++ or --), as described above, but not

both.

<format> <expr>
+S55# ## 13.20
SS## . HH— -1.0
Separator (,)

Output

Comments

+AA$13.20

Additional
dollar signs
may be replaced
by #, as with
floating signs
(++ and --).

Leading zeroes
are not sup-
pressed in the #
part of the
field.

The comma separator (,) places a comma in the fixed
position in which it appears in a string of digits in the

<format> field.

If a comma would be output in a field of suppressed
leading zeroes (blanks), a blank space is output in the

position for the comma.

<format> <expr>

+S4 i B4 30.6

+5# HiH R 2000

+Hi 00033

Output

+$AAA30.60

+$2,000.00

A+00,033

Comments

A blank space
is output for
the comma.

A comma is
printed when
leading zeroes
are not
suppressed.

69

h. Exponent indicator (1tt1)

Four consecutive up—-arrows (f{1t}) are used to indicate an
exponent field in <format>. The four arrows will be output
as E+nn, where each n is a digit.

If the exponent field in <format> does not contain exactly
four up-arrows, a run-time error will result.

<format> <expr> Qutput Comments
R 170.35 +17.03E+01
it 6002.35 +600,24E+01

4, A <format> expression, as previously remarked, may have more
than one <format> field and may include string literals as
well as the special formatting characters just described.
Values of items in the argument list of the PRINT USING
statement are sequentially assigned to <format> fields.

RC BASIC distinguishes string literals from <format> fields
by the characters that appear in the latter, for example:

"TWO FOR $1.25" $1.25 is part of the string
literal.
"TWO FOR $SS.#4" $$S.## is a <format> field

in the <format> expression.

"ANSWER IS -85" -85 are characters of a
string literal.

"ANSWER IS —###" -### is a <format> field in
the <format> expression.

5. A <format> expression may be specified by referencing a
previously defined string variable, for example:

15 DIM S$(10)
20 LET SS="##.##"
30 PRINT USING S$,1.5,2

6. <format> fields in a <format> expression are delimited by the
use of a non-formatting character before or after the <format>

70
field, for example:

field delimiter field delimiter

[
"HHHHHAFORASSHHE . 44 "
l I

format field format field

string literal

String literals may appear in the argument list of the PRINT
USING statement and will be superimposed on a <format> field

‘in the following manner:

a. Each character of the string literal replaces a single
<format> field character, which may be any of the special
formatting characters, i.e. #, decimal point, +, -, $,
comma, and 1.

b. Strings are left justified in the <format> field, and
filled with spaces, if necessary.

c. If the number of characters in the string is greater than
the number of characters in the <format> field, the string
will be truncated to fit the field, for example:

5 PRINT USING "###,###.#4","TEST", "CHARACTER" , "SEVENTY-FIVE"
RUN

TESTAMAAACHARACTERASEVENTY—-FI

When there are more items in the argument list than <format>
fields in the <format> expression, the <format> fields will
be used repetitively. Thus, for example, in

"HHHHACSHHE . #HHAPERAF#H"

the first, fourth, seventh, etc. items will be formatted using
the <format> field ####; the second, fifth, eighth, etc. items
using the <format> field S###.##; and the third, sixth, ninth,
etc. items using the <format> field ###. The embedded blank
spaces, @ sign, and PER are string literals and delimit the
<format> fields.

3.26

71
Ex les Comments

100 PRINT USING "A(#)A=A##.#",I,A(I)

RUN

A(1)A=A17.9 Possible output includes two
<format> fields and two
string literals.

100 PRINT USING "###.##2",I,A,B

®

°

RUN

AM1.008A17.200A25.774 Possible output with the
<format> expression repeated
for each item in the
argument list.

PROC-ENDPROC

Format

PROC <name>
<{statements>

ENDPROC [<comment>]

<name>: the name of a procedure. <name> may also be
a simple numeric variable.

<statements>: a block of statements.
<comment>: a text comment.
Use

As a statement to define a procedure which can be called by

means

72

of an EXEC statement (see Sect. 3.10).

Remarks

1. A procedure is a convenient means of executing the same
block of statements at different places in a program.
Procedures may be nested to a depth of seven. Nesting occurs
when a procedure is called during the execution of another
procedure.

2. Rules

al

For every PROC/ENDPROC statement there must be one and
only one ENDPROC/PROC statement.

A procedure may be placed anywhere in the program. When a
PROC statement is encountered, a search is made for the
corresponding ENDPROC statement, and program execution
continues from the first statement following this ENDPROC
statement.

If the body of a procedure is entered without use of an
EXEC statement, the error message 0019: RETURN WITHOUT
GOSUB will be output when the ENDPROC statement is
encountered.

A procedure may contain one or more RETURN statements.
When encountered, RETURN has the effect of an ENDPROC
statement.

If the name of the procedure, <name>, is a simple numeric
variable, it may be assigned a value before the procedure
is called; it may also be assigned a new value by the

procedure before control is returned to the main program.

Program operation

When the procedure is called, execution starts at the
first statement following the PROC statement.

Execution continues until a RETURN or ENDPROC statement is
encountered; after this, control is passed to the first
statement following the EXEC statement that called the
procedure.

4, The word ENDPROC may be followed by a comment.

73

Example

0010 PROC GCD

0020 REM THE PROCEDURE FINDS THE GREATEST COMMON DIVISOR IN A AND B
0030 PRINT "GCD IN";A;"AND";B;":",

0040 WHILE A<B DO

0050 IF A>B THEN

0060 LET A=A-B
0070 ELSE

0075 LET B=B-A
0080 ENDIF

0090 ENDWHILE

0100 LET GCD=A

0110 REM A AND B DESTROYED

0120 ENDPROC

0130 REM

0140 REM MAIN PROGRAM, A AND B ARE READ FROM THE TERMINAL
0150 REM

0160 INPUT A,B

0170 IF (A<=0) OR (B<=0) THEN STOP
0180 EXEC GCD

0190 PRINT GCD

0200 GOTO 0160

GCD IN 1 AND 1 : 1
GCD IN 2 AND 4 : 2
GCD IN 24 AND 68 : 4
GCD IN 24 AND 16 : 8
GCD IN 16 AND 24 : 8
GCD IN 345 AND 27 : 3
GCD IN 345 AND 344 : 1
GCD IN 6 AND 11 : 1
GCD IN 11 AND 66 : 1
GCD IN 1 AND 100 : 1
GCD IN 56 AND 7 : 7
GCD IN 56 AND 8 : 8

3.27 RANDOMIZE

Format

RANDOMI ZE

74
Use

As a statement or command to cause the random number generator
to start at a different point in the sequence of random numbers
generated by the RND(X) function (see Ch. 4).

Remarks

1, Normally, the same sequence of random numbers is generated by
successive use of the RND(X) function. This feature is useful
in debugging programs. If, when the program has been found to
run successfully, different starting points in the sequence
are desired, the RANDOMIZE statement should be included in
the program before the first occurrence of an RND(X)
function.

2. The RANDOMIZE statement resets the random number generator
based on the time of day, thereby producing different random
numbers each time a program using the RND(X) function is run.

Example Comment

* LIST This program produces

0010 LET I=0 different results each time
0015 RANDOMIZE it is executed.

0020 REPEAT

0030 PRINT RND(I);
0040 LET I=I#1
0050 UNTIL I=4

0060 STOP

0070 GOTO 0010

* RUN
.921699 .341465 .710697 .816505
STOP
AT 0060
* RUN
.249755 .980187 .616137 .890037
STOP
AT 0060
* CON
.159747 .605283 .118429 .322262
STOP
AT 0060

*

3.28

75

READ

Format

{<var> } [{,(var)]]
READ |<svar> <svar> awe

{var>: a numeric variable.
{svar>: a string variable.

Use

As a statement or command to read in values from the list
defined by one or more DATA statements and to assign the values
to the variables listed in the READ statement.

1-

4.

Remarks

READ statements are always used in conjunction with DATA
statements (see Sect. 3.4).

The variables listed in the READ statement may be subscripted
or unsubscripted numeric or string variables.

The order in which variables appear in the READ statement is
the order in which values for the variables are retrieved
from the DATA statement list.

A data element pointer is moved to the next available value
in the DATA statement list as values are retrieved for
variables in the READ statement. If the number of variables
in the READ statement exceeds the number of values in the
DATA statement list, the error message 0015: NO MORE DATA FOR
READ is output.

The type (numeric or string) of the READ statement variable
must match the type of the corresponding data element value,
otherwise the error message 0066: TYPE CONFLICT is output.

The RESTORE statement (see Sect. 3.31) can be used to reset
the data element pointer to the first item of the lowest
numbered DATA statement or the first item of a particular
DATA statement.

3.29

76
Example

0010 DIM TEXTS(20),A(10)

0020 READ TEXTS,NUMBER

0030 DATA "READ DATA",25,1,2

0040 READ A(2),A(4)

0050 PRINT "TEXT","NUMBER","A(2)","A(4)"
0060 PRINT TEXTS,NUMBER,A(2),A(4)

0070 sSTOP

TEXT NUMBER A(2) A(4)
READ DATA 25 1 2
REM

Format

REM [<comment>]
<comment>: a text comment.
Use
As a statement to insert explanatory comments within a‘program.
Remarks
1. REM statements are non—executable, but are stored with the
program and output exactly as entered when LISTed (see LIST,

Ch. 9).

2. If control is transferred to a REM statement from a GOTO or
GOSUB statement, execution continues from the next executable

statement following the REM statement. If no executable state-

ment follows the REM statement, the program will act as if an
END statement (see Sect. 3.8) had been encountered and
control will return to interactive mode.

3. Optional text comments may also be inserted after the
words ENDCASE, END, RETURN, ENDIF, ELSE, ENDPROC, REPEAT,
STOP, and ENDWHILE, for example:

ENDWHILE END OF SEARCH

3.30

77

Example

10 REM REMARKS THROUGHOUT A PROGRAM CAN
20 REM HELP EXPLAIN THE PURPOSE OF STATEMENTS.
30 REM LINES 10, 20, and 30 ARE NOT EXECUTED.

REPEAT-UNTIL

Format

REPEAT [<comment)>]

{statements>
UNTIL <expr>

<comment>: a text comment.
<{statements>: a block of statements.
<expr>: a relational expression.

Use

As a statement to execute a block of statements repetitively
until the value of an expression is true.

Remarks
1. Rules

a. <expr> is a relational expression whose value is either
true or false, e.g. NAMES = "JOHN", I > 25,

b. If the body of a REPEAT-UNTIL loop is entered at any point
other than the REPEAT statement, the error message 0058:
UNTIL WITHOUT REPEAT will be output when the UNTIL state-
ment corresponding to the skipped REPEAT statement is
encountered.

2. Program loop operation

a. <statements> is executed.
b. <expr> is evaluated.
c. If the value of <expr> is false, step a is repeated.

d. If the value of <expr> is true, the termination condition

78

is satisfied and control passes to the first statement
following the corresponding UNTIL statement.

Note: <statements> is always executed at least once.

3. Nested loops

REPEAT-UNTIL loops may be nested to a depth of seven.

4. The word REPEAT may be followed by a comment.

Example 1 Comment (1)

0010 LET I=1 The block of statements
0020 REPEAT between REPEAT and

0030 PRINT I; UNTIL is repeated
0040 LET I=I+1 until I > 10.

0050 UNTIL I>10
0060 PRINT "<13><10>AFTER 'UNTIL', I=";I
0070 sTOP

12 3 45 6 7 8 9 10
AFTER 'UNTIL', I= 11

Example 2 Comment (2)

0010 LET I=20 The block of statements
0020 REPEAT between REPEAT and

0030 PRINT “"EXECUTED ONCE" UNTIL is always execu-
0040 LET I=I-1 ted at least once.

0050 UNTIL I>10
0060 PRINT "AFTER 'UNTIL', I=";I
0070 STOP

EXECUTED ONCE
AFTER 'UNTIL', I= 19

79

Example 3 Comment (3)

0010 LET A=10: B=1 Shows nested REPEAT-UNTIL
0020 REPEAT loops.

0030 PRINT

0040 PRINT "A=";A,
0050 REPEAT

0060 PRINT "B=";:B:
0070 LET B=B+1
0080 UNTIL B=5

0090 LET B=1; A=A-1
0100 UNTIL A<7

0110 PRINT

0120 PRINT "AFTER LAST 'UNTIL', A,B=";A;B
0130 STOP

A= 10 B= 1 B= 2 B= 3 B=4

A= 9 B= 1 B= 2 B= 3 B= 4

A= 8 B=1B=2B=3B=4

A= 7 B= 1B=2B=3B=4

AFTER LAST 'UNTIL’', A,B=6 1

3.31 RESTORE

Format
RESTORE [<line no.>]
<line no.>: a DATA statement line number.

Use

As a statement or command to reset the data element pointer
either to the beginning of the DATA statement list or to a
particular DATA statement.

Remarks

1, If the RESTORE statement is used without an argument, the
data element pointer is reset to the beginning of the DATA
statement list, i.e. to the first item in the lowest numbered
DATA statement (see Sect. 3.4).

2. If the RESTORE statement contains an argument, the data
element pointer is reset to the first item in the DATA

80
statement specified by <line no>.

3. If <line no.> does not exist in the program, the data element
pointer is reset to the beginning of the DATA statement list.

Example Comment

0010 DATA 1,2,3,4 One can choose among several
0020 READ I,J,K,L DATA statements by means of
0030 RESTORE RESTORE. In line 30, the
0040 REM RESET TO BEGINNING data element pointer is
0050 READ M,N ' reset to the beginning of
0060 RESTORE 0100 the DATA statement list.

0070 REM RESET TO LINE 100
0080 READ O,P,Q,R

0090 PRINT I;J;:K;L;M;N;0;:P;Q;R
0100 DATA 5,6,7,8

0110 STOP

1.2 3 4 1 2 5 6 7 8

3.32 SAVE

For description, see Chapter 9.

3.33 STOP

Format
STOP [<comment>]

<comment>: a text comment.
Use

As a statement to terminate execution of the current program and
to return control to interactive mode.

Remarks

1. STOP statements may be placed anywhere in the program. When
STOP is encountered, the system will terminate execution and

3.34

3.35

81

output the following on the user's terminal:

STOP

AT <xxxXx>
*

<xuxx¥x>: the line number of the STOP statement.

2. After control has returned to interactive mode, the program
may be restarted from the first line number (see RUN, Ch. 9)
or continued in its current state (see CON or RUN <line no.>,

Ch. 9).

3. The word STOP may be followed by a comment.

Example

* LIST

0010 REM TERMINATE PROGRAM BY STOP
0020 INPUT A

0030 IF A<O THEN STOP

0040 GOTO 0020

* RUN
? 1
T3
Pl

STOP

AT 0030
%

TAB

For description, see Chapter 9.

TAB(X) function

Format

TAB(<expr>)

<expr>: an expression which is evaluated to an integer.

82

Use

As a function in PRINT statements (see Sect. 3.24) to tabulate
the printing position for an item in the argument list to the
column number evaluated from an expression.

Remarks

1I

As the print line columns are numbered from 0, the position
indicated by the TAB(X) function is always relative tc 0,
e.g. the column number indicated by TAB(31) is 30.

A PRINT statement may contain several TAB(X) functions, each
of which affects only the item in the argument list that
immediately follows it. The printing position for this item

will depend on the value of <expr> and the punctuation (; or
,) following TAB(X).

If <expr> evaluates to a column number greater than or equal
to the current column number and less than the length of the
print line, the value of <expr> indicates the new column

position.

If TAB(X) is followed by a semicolon (;), the new column
position remains unchanged (see Example).

If TAB(X) is followed by a comma (,), the new column position
is changed to the leftmost position of the next print zone
unless the new column position coincides with the leftmost
position of a print zone (see Example).

After determination of the new column position, the item in
the argument list immediately following the TAB(X) function
is printed (see Remarks in Sect. 3.24).

. If <expr> evaluates to a column number less than the current

column number, the TAB(X) function is ignored and positioning
proceeds as in 3.

If <expr> evaluates to a column number greater than the
length of the print line, <expr> is reduced modulo the length
of the print line and positioning proceeds as in 3.

The length of the print line (width of the page) can be set
by means of the PAGE command (see Ch. 9).

83

6. If <expr> evaluates to 0, e.g. TAB(0), a carriage return and
line feed are output and positioning proceeds as in 3.

Example

0010 LET POS=5; NUMBER=-1048

0020 PRINT TAB(POS);NUMBER;TAB(7*POS) ; NUMBER
0030 PRINT TAB(POS),NUMBER,TAB(7*POS),NUMBER
0040 PRINT TAB(31);NUMBER

0050 STOP

01234567890123456789012345678901234567890123456789012345

-1048 -1048
-1048 -1048
-1048
Comment

Shows the use of the semicolon and the comma as spacing
characters in conjunction with the TAB(X) function.

3.36 WHILE-ENDWHILE

Format

WHILE <expr> [THEN] DO
<{statements>
ENDWHILE [<comment>]

<expr>: a relational expression.
{statements>: a block of statements.
<comment>: a text comment.

Use

As a statement to execute a block of statements repetitively
while the value of an expression is true.

Remarks
1. Rules

a. <expr> is a relational expression whose value is either
true or false, e.g. I <= 10, MONTH < 13.

b.

Co

84

For every WHILE statement there must be a matching
ENDWHILE statement, otherwise the error message 0053:
WHILE WITHOUT ENDWHILE is output.

If the body of a WHILE-ENDWHILE loop is entered at any
point other than the WHILE statement, the error message
0054: ENDWHILE WITHOUT WHILE will be output when the
ENDWHILE statement corresponding to the skipped WHILE
statement is encountered.

2. Program loop operation

de

b-

<expr> is evaluatd.

If the value of <expr> is false, the termination condition
is satisfied and step e is performed.

<{statements> is executed.
Step a is repeated.

Control passes to the first statement following the
corresponding ENDWHILE statement.

Note: If the value of <expr> is false the first time the
WHILE statement is encountered, <statements> is not
executed even once.

3. Nested loops

WHILE-ENDWHILE loops may be nested to a depth of seven.

4. The word ENDWHILE may be followed by a comment.

85

Example 1

0010 LET I=1

0020 WHILE I<10 DO
0030 PRINT I;
0040 LET I=IH1
0050 ENDWHILE

0060 PRINT "<13><10>AFTER 'ENDWHILE'

0070 STOP

1.2 3 4 5 6 7 8 9
AFTER 'ENDWHILE'

Example 2

0010 LET I=11

0020 WHILE I<10 DO

0030 PRINT "DO NOT ENTER HERE"
0040 LET I=I-1

0050 ENDWHILE

0060 PRINT "AFTER 'ENDWHILE' "
0070 STOP

AFTER 'ENDWHILE'

Comment (2)

If <expr> is false when
WHILE is encountered for the
first time, <{statements> is
not executed even once.

86

Example 3 Comment (3)
0010 LET I=1 Shows nested WHILE-ENDWHILE
0020 WHILE I<5 DO 7 loops.

0030 LET J=8
0040 PRINT "I=";I,
0050 WHILE J>I DO

0060 PRINT " J=";J;
0070 LET J=J-1

0080 ENDWHILE

10090 PRINT

0100 LET I=I#1
0110 ENDWHILE ,
0120 PRINT "AFTER LAST 'ENDWHILE' "

0130 STOP

I= 1 J=8 J=7 J=6 J=5 J=4 J=3 J=2
I= 2 J=8 J=7 J=6 J=5 J=4 J=3

I=3 J=8 J=7 J=6 J=5 J=4

I= 4 J=8 J=7 J=6 J=5

AFTER LAST 'ENDWHILE'

87
RC BASIC Functions

Introduction

RC BASIC provides a number of functions to perform various
calculations, thereby eliminating the need to write programs for
these calculations.

RC BASIC functions generally have a three-letter mnemonic name,
followed by a parenthesized expression as an argument, and may
be used as an expression or included as part of an expression.

Standard mathematical functions included in RC BASIC and the
values which they produce are as follows:

ABS(X) Absolute value of X.

ATN(X) Arctangent of X in radians.

COS(X) Cosine of X, where X is in radians.
EXP(X) e® (-178 <= X <= 175).

LOG(X) Natural logarithm of X (X > 0).
SIN(X) Sine of ¥, where X is in radians.
SOR(X) Square root of X (X >= 0).

TAN(X) Tangent of X, where X is in radians.-

In addition to these standard arithmetical and trigonometrical
functions, the RC BASIC system includes the following:

FNa(d) Functions defined by the user.
INT(X) Integer value of X.

RND(X) Random number between 0 and 1.
SGN(X) Algebraic sign of X.

SYS(X) System information functions.

Further RC BASIC functions, which are described in other
chapters, are these:

CHR(X) String function (see Ch. 5).

DET(X) Matrix function (see Ch. 6).
EOF(X) File function (see Ch. 8).

LEN(XS) String function (see Ch. 5).
ORD(XS) String function (see Ch. 5).

TAB(X) Printing function (see Ch. 3).

4.2

4.3

88
ABS(X)
Format
ABS(<expr>)
<expr>: a numeric expression.
Use

As a function to return the absolute (positive) value of <expr>.

Example

* LIST
0010 PRINT ABS(-10);ABS(10)

* RUN
10 10

END
AT 0010

*

ATN(X)

Format
ATN(<expr>)

<expr>: a numeric expression (-m/2 <= ATN(<expr>) <= 7/2).
Use

As a function to calculate the angle, in radians, whose tangent
is <expr>.

89

Example

* LIST
0010 PRINT ATN(0);ATN(1)*180/SYS(14)

* RUN
0 45

END

AT 0010
*

COS(X)
Format
COS(<expr>)
<expr>: a numeric expression specified in radians.

Use

As a function to calculate the cosine of an angle which is
expressed in radians.

Example

* LIST
0010 PRINT Q0S(0);COS(45*SYS(14)/180)

* RUN
1 .707107

END

AT 0010
*

EXP(X)

Format
EXP(<expr>)

<expr>: a numeric expression (-178 <= <expr> <= 175).

4.6

4.7

90

Use

As a function to calculate the value of e (2.71828) to the power

of <expr>.

Example

* LIST
0010 PRINT EXP(1);EXP(2);EXP(2.5)

* RUN
2.71828 7.38905 12,1825

END

AT 0010
*

FNa(d)

For description, see the DEF statement, Chapter 3.

INT(X)
Format
INT(<expr>)
<expr>: a numeric expression.
Use

As a function to return the value of the nearest integer
greater than <expr>.

not

91

Example

* LIST
0010 PRINT INT(4.567);INT(-4.567)

* RUN

LOG(X)
 Format
LOG(<expr>)
<expr>: a numeric expression.
Use

As a function to calculate the natural logarithm of <expr>.

Example

* LIST
0010 PRINT LOG(2);LOG(EXP(1))

* RUN
.693149 1

END

AT 0010
*

RND(X)
Format
RND(<expr>)

{expr>: a numeric expression (required, but not used).

92

Use

As a function to produce a pseudo random number, n, such that
0 <=n <1.

Remarks

1-

The RND(X) function requires an argument, although the
argument does not affect the resulting random number and the
function does not affect the argument.

Each time the RND(X) function is called, it produces a pseudo
random number in the range 0 to 1. The sequence in which
these numbers are generated is fixed. The length of the
sequence is 2116.

As the sequence of random numbers is fixed and the starting
point in the sequence is reset to the same point each time a
NEW or RUN command (see Ch. 9) is given, the sequence of
numbers generated by the RND(X) function is reproducible.

The RANDOMIZE statement (see Ch. 3) causes the random number
generator to start at a different point in the sequence of
random numbers generated by the RND(X) function.

Each occurrence of the RND(X) function yields the value of
the next random number in the list.

Example 1

* LIST

0010 LET I=0

0020 REPEAT

0030 PRINT RND(I);
0040 LET I=I#1
0050 UNTIL I=4

0060 STOP

0070 GOTO 0010

* RUN

21132
STOP
AT 0060
* RUN

«21132
STOP
AT 0060
* CON

. 162866
STOP

AT 0060
*

.14464 .852625"

.14464 .852625

.433095 .563933

Example 2

* LIST

0010 LET I=0

0020 WHILE I<4 DO

0030 PRINT INT(25*RND(I)
0040 LET I=I#1

0050 ENDWHILE

* RUN
5 3 21
END

AT 0050
*

23

93

.927054

.927054

.20965

):

Comment (1)

The RUN command resets the
sequence of random numbers;
the CON command does not.

Comment (2)

The program produces random
integers in the range 0 to
24,

94
4.10 SGN(X)
Format
SGN(<expr>)
<expr>: a numeric expression.
Use

As a function to return a +1 if <expr> is greater than 0, a 0 if
<expr> equals 0, and a -1 if <expr> is less than 0.

Example Comment
* LIST Note that SGN(0) = 0.

0010 PRINT SGN(-5);SGN(0);SGN(5)

* RUN
-1 0 1

END

AT 0010
*

411 SIN(X)
Format
SIN(<expr>)
<expr>: a numeric expression specified in radians.
Use

As a function to calculate the sine of an angle which is
expressed in radians.

4.12

95

Example

* LIST
0010 PRINT SIN(O0);SIN(45*SYS(14)/180)

* RUN
0 .707107

END

AT 0010
*

SQR(X)
Format
SQR(<expr>)
<expr>: a positive numeric expression.

Use

As a function to compute the sguare root of <ekpr>.

Example

* LIST
0010 PRINT SQR(25);SQR(25.734)

* RUN
5 5.07287

END

AT 0010
*

96
4.13 SYS(X)
Format
SYS(<expr>)
<expr>: a numeric expression.
Use

As a function to return system information based on the value of
<expr>, which is evaluated to an integer (0 to 15), as follows:

Function Information

SYS(0) Time of day (seconds past midnight).

SYS(1) Day of the month (1 to 31).

SYS(2) Month of the year (1 to 12). Current date.

SYS(3) Year as two digits (e.g. 77).

SYS(4) Terminal port number (32, if consolei.

SYS(5) Time used in seconds since the terminal was
logged on.

SYS(6) Number of file I/0 statements executed ((i.e.

every statement or command referring to a file,
e.g. PRINT FILE, LIST "SLPT").

SYS(7) Error code of the last run-time error.

SYS(8) File number of the file most recently
referenced in a file I/0 statement.

SYS(9) Page size (length of the print line).

SYS(10) Tab size (width of the print zone).

SYS(11) Hour of the day.

SYS(12) Minutes past the last hour. Current time
of day.

SYS(13) Seconds past the last minute.

97
SYS(14) Constant = (3.14159).

SYS(15). Constant e (2.71828).

4.14 TAN(X)
Format
TAN(<expr>)
<expr>: a numeric expression specified in radians.
Use

As a function to calculate the tangent of an angle which is
expressed in radians.

Example

* LIST
0010 PRINT TAN(0);TAN(45*SYS(14)/180)

* RUN
0 .999999

END
AT 0010

5.1

5.1.1

512

98

String Information

String concept

This chapter explains how strings are used in RC BASIC. The
string concept is described in the present section, while three
useful string functions, viz. CHR(X), LEN(X$), and ORD(XS$) are
described in the remaining sections.

String literals

A string is a sequence of characters, which may include letters,
digits, spaces, and special characters. A string literal (string
constant) is a string enclosed within quotation marks. String
literals are often used in PRINT and INPUT statements (see Ch.
3), for example:

100 PRINT "THIS IS A STRING LITERAL"
200 INPUT "X=",X

The enclosing quotation marks are not printed when the string
is output. Non-printing and special characters may be included
in string literals by enclosing the decimal value of the
character within angle brackets (<>), for example:

10 PRINT "USE DECIMAL 60 TO PRINT <60> IN STRINGS"
* RUN
USE DECIMAL 60 TO PRINT < IN STRINGS

The decimal values of all ASCII characters are given in
Appendix D.

String variables

RC BASIC permits the use of string variables as well as string
literals. A string variable name consists of a letter, followed

by from 0 to 7 letters or digits, followed by a dollar sign ($),
for example:

ANSWERS, TEXTS$

String values are assigned to string variables, as described
below, by means of LET, READ, and INPUT statements, for example:

INPUT ANSWERS
LET TEXT$="THIS IS A TEXT"

5.1.4

99

Dimensioning string variables

All string variables must be dimensioned before they are used.
By dimensioning the variable, the user sets an upper bound for
the number of characters that can be stored in it. Dimensioning
is accomplished by means of the DIM statement (see Ch. 3), for
example:

DIM ANSWERS(20)
DIM TEXTS(15),STRINGS(5)

If the user attempts to assign a string literal that is too long
to a string variable, the string literal will be truncated, for
example:

10 DIM TEXTS(6)

20 LET TEXTS$="LONG STRING"
30 PRINT TEXTS

* RUN

LONG S

A string may be of any length, the sole limitation being
available memory.

Substrings ‘
One can also reference a portion of a string variable. The

general form of such substrings is the following:

<i>]
<svar>([<j,k>])

<svar>: a string variable name.

<i>: a numeric expression indicating
that the ith character in <svar>
is to be referenced.

<j,k>: numeric expressions indicating
that the jth through the kth
characters in <svar> are to be
referenced.

Example 1 shows how substfings can be referenced.

100

Example 1

0010
0020
0030
0040
0050
0060
0070
0080
0090
0100

DIM TEXT$(20)

LET TEXTS="AAAAAAAAAAAAAAAAAAAA"
PRINT TEXTS

LET TEXTS$(5)="B"

PRINT TEXTS

LET TEXTS$(10,13)="BCDE"

PRINT TEXTS

LET TEXTS$(15,17)="BCDEFG"

PRINT TEXTS '

PRINT TEXTS$(1),TEXTS(8,13),TEXTS(20)

AAAAAAAAMAARAAAAAAAA
AAAABAAAAARAAAARRANA
AAAABAAAABCDEAAAAARA
AAAABAAAABCDEABCDAAA

A

Note

AABCDE A

: When a value is to be assigned to a substring (i,j), a

value must first be assigned to the substring (1,i-1). This can
be done by initializing the entire string with blanks.

Assigning values to string variables

Values can be assigned to string variables by means of LET,
READ and DATA, and INPUT statements (see Ch. 3) and RERD FILE

uses

~and INPUT FILE statements (see Ch. 8). Example 2 shows various

of LET, READ and DATA, and INPUT.

Concatenation of strings

Any number of strings (variables or literals) can be concate-
nated by means of a LET statement having the following syntax:

{<svar>}[{(svarﬁ}]
[LET] <svar> =|<slit>] L,|<slit>]]...

<{svar>: a string variable.
<slit>: a stripg literal.

See Example 2, lines 50, 80, and 90.

101

Example 2 Comment (2)

* LIST

0010 DATA "THIS"," A"

0020 DIM TEXTS(23),TEMPS(5)

0040 READ TEXTS(1,4)

0050 LET TEXTS=TEXTS," I1S"

0060 READ TEXTS(LEN(TEXTS)+1,20) For LEN(XS$), see
0070 INPUT TEMPS Sect. 5.3.

0080 LET TEXTS$=TEXTS$," ",TEMPS

0090 LET TEXTS=TEXTS," TEXT"

0100 PRINT TEXTS

* RUN

7 SHORT) The underlined
THIS IS A SHORT TEXT texts are those
entered by the user.
END
AT 0100
* RUN
? LONG)

THIS IS A LONG TEXT

END

AT 0100
¥*

Note: When a value is assigned to a substring, the number of
characters in the source string must not be less than the number
of characters in the substring referenced: otherwise, the rest
of the characters in the substring and any remaining characters
in the string will be truncated. Example 3 provides an
illustration of this.

102

Example 3 Comment (3)

* LIST

0010 DIM TEXTS(10)

0020 LET TEXTS="AAAAAAAAAA" The underlined

0030 PRINT TEXTS texts are those
0040 INPUT TEXTS(3,7) entered by the user.

0050 PRINT TEXTS

* RUN
AARAAARARA
? 123) ; - Source string.
ARA123 -—TEXTS(6,10) has
been truncated.

* LIST

0010 DIM TEXTS(10),TEMPS$(10) The desired result
0020 LET TEXTS="AAAAAAAAAA" can be achieved in
0030 PRINT TEXTS this way.

0040 INPUT TEMPS

0050 LET TEMPS=TEMPS," "
0060 LET TEXTS(3,7)=TEMP$
0070 PRINT TEXTS

* RUN
AAAAAAAAAA
? 123)
AA123 AAA

Relational string expressions

Strings (literals and variables) may be compared. The result of
a comparison is either true or false. The strings are compared
character by character, on the basis of their decimal values
(see App. D), until a difference is found or the end of one or
both strings is met.

1f a character in a given position in one string has a higher
decimal value than the character in the corresponding position
in the other string, the first string is the greater of the two.

If the characters in corresponding positions are identical, but
one string contains more characters than the other, the shorter
string is the lesser of the two. Thus, for example, the

" expression "ABC" < "ABCD" is true.

5.2

103

Example 1

IF NAMES(1)="J" THEN

®

Example 2 Comment (2)

CASE ANSWERS="YES" OF

®
@

WHEN 1 1 corresponds to true.
WHEN 0 0 corresponds to false.
ENDCASE

CHR(X) function

Format
CHR(<expr>)

<expr>: a numeric expression.
Use

As a function to return the character corresponding to the
number .specified in the argument.

Remarks

1. The correspondence between numbers (decimal values) and
characters is shown in Appendix D.

2. The number is found as <expr> modulo 128.

3. The CHR(X) function may be used in any string expression.

5.3

104

Example

0010 TAB=4

0020 PAGE=32

0030 FOR I=65 TO 74
0040 PRINT I,CHR(I),
0050 NEXT I

65 A 66 B 67 C 68 D

69 E 70 F 71 G 72 H
13 1 74 J

LEN(X$) function

Format

{(svar)]
LEN([<slit>])

{gvar>: a string variable.
<slit>: a string literal.

Use

Comment

The characters corresponding
to the numbers 65-74 are A-J.

As a function to return the current length (number of

Remarks

‘characters) of the string specified in the argument.

1. The LEN(XS) function may be used in any numeric expression.

2. If the string argument is empty, the value returned is 0.

Example

0010 DIM TEXT$(10)

0020 TAB=12

0030 PRINT TEXTS,LEN(TEXTS)
0040 FOR I=1 TO 10

0050 LET TEXT$=TEXTS,CHR(I+64)

0060 PRINT TEXTS,LEN(TEXTS)
0070 NEXT I

Comment

For CHR(X), see Sect. 5.2.

54

105

A

AB

ABC

ABCD
ABCDE
ABCDEF
ABCDEFG
ABCDEFGH
ABCDEFGHI
ABCDEFGHIJ

= Yo N W = O

ORD(X $) function

Format

{<svar>}
ORD([<slit>])

<svar>: a string variable.
<slit>: a string literal.

Use

As a function to return the number of the first character of the
string specified in the argument.

Remarks

1, The number returned is the character's decimal value, which
is equivalent to its internal representation. (This number is
also the ordinal number of the character; thus the character
A, for example, which has the decimal value 65, is the 65th
character in the ASCII character set). The correspondence
between numbers and characters is shown in Appendix D.

2. The ORD(X$) function may be used in any numeric expression.

106

Example Comment

0010 TAB=4

0020 PAGE=32

0030 DIM AS(10)

0040 LET A$="0123456789"

0050 FOR I=1 TO 10

0060 PRINT ORD(AS(I));AS(I),

0070 NEXT I
48 0 49 1 50 2 51 3 The characters 0-9 have the
52 4 53 5 54 6 - 55 7 internal decimal wvalues

56 8 51 9 48-57.

6.1

6.2

107

Matrix Manipulation

Matrix operations

RC BASIC includes a special set of statements which allows the
user to manipulate two-dimensional arrays (see Ch. 2) as
matrices. Among the available matrix operations are the
following:

Addition, subtraction, and multiplication.

Scalar multiplication.

Formation of a zero matrix (all elements set to 0).

Formation of a constant matrix (all elements set to 1).

Formation of an identity matrix (major diagonal elements set
to 1, remaining elements set to 0).

Calculation of the inverse of a matrix.

Calculation of the determinant of a matrix.

Transposition of a matrix.

Input/output of a matrix via the user's terminal.
All of the above operations are described in the present
chapter, while matrix file input/output statements are described

in Chapter 8.

All statements involving matrix operations are introduced by the
reserved word MAT.

Dimensioning matrices

A matrix is dimensioned as a two-dimensional array by means of
the DIM statement (see Ch. 3). Thus the statement

10 DIM MATRIXA(10,20)

defines a matrix variable named MATRIXA, which has 10 rows and

6.3

108
20 columns (or a total of 10 x 20 = 200 elements).

A previously dimensioned matrix may be redimensioned by means of
a new DIM statement, provided that the total number of elements
does not exceed the previously declared total number of
elements.

Matrix elements are stored by rows in ascending memory
locations.

As a one-dimensional array containing i elements is considered
al x i matrix, the matrix operations described in the following
sections also apply to one-dimensional arrays.

Matrix assignment statement

Format
MAT <mvari1> = <mvar2>

<mvar1, mvar2>: matrix variables.
Use

As a statement or command to copy the elements of one matrix to
another matrix.

Remarks

1. The matrices must have been dimensioned before the statement
is executed.

2. The number of elements in <mvar2> must not exceed the number
_of elements in <mvari>.

3. After the assignment, <mvar1> will have the same dimensions
and values as <mvar2>.

109

Example Comment

0010 DIM MATA(3,2),MATB(2,3)
0020 FOR I=1 TO 3
0030 FOR J=1 TO 2

0040 LET MATA(I,J)=I*10+J
0050 NEXT J
0060 NEXT I

0070 PRINT "MATA : "

0080 MAT PRINT MATA

0090 PRINT "<13><10>MATB : "
0100 MAT PRINT MATB

0110 MAT MATB=MATA

0120 PRINT "<13><10>NEW MATB : "
0130 MAT PRINT MATB

MATA :
11 12
21 22
31 32
MATB
0 0 0
0 0 0
NEW MATB : Note that the dimensions of
11 12 MATB have been changed.
21 22
31 32

Matrix addition/subtraction statement

Format
]
MAT <mvari> = <mvarz> - | <mvar3>
<mvar1, mvar2, mvar3> : matrix variables.

Use

As a statement or command to perform the scalar addition or
subtraction of two matrices.

110

Remarks

1. The matrices must have been dimensioned before the statement
is executed.

2. <mvar2> and <mvar3> must have the same dimensions.

3. The number of elements in <mvar2> (and <mvar3>) must not
exceed the number of elements in <mwar1>.

4, The arithmetic is performed element by element with the
resultant value assigned to the element in <mvar1i>.

5. <mvar1> may appear on both sides of the equal sign.

6. After the addition or subtraction, <mvari1> will have the same
dimensions as <mvar2> (and <mwvar3>).

Example Comment

0010 DIM MATA(3,2),MATB(3,2)
0020 FOR I=1 TO 3
0030 FOR J=1 TO 2

0040 LET MATA(I,J)=I*10+J
0050 LET MATB(I,J)=2*(I*10+J)
0060 NEXT J

0070 NEXT I

0080 PRINT "MATA : "

0090 MAT PRINT MATA

0100 PRINT "<13><10>MATB : "

0110 MAT PRINT MATB

0120 MAT MATB=MATA+MATB MATB appears on both sides
0130 PRINT "<13><10>MATA + MATB :" of the equal sign.

0140 MAT PRINT MATB

6.5

MATA :

11 12

21 22

31 32
MATB :

22 24

42 44

62 64

MATA + MATB :

33 36 ; The addition of MATA and
63 66 MATB is performed element
93 96 by element.

Matrix multiplication statement

Format

{<mvar2>
MAT <mvari1> = |(<expr>)| * <mvar3>
<mvar1, mvar2, mvar3>: matrix variables.
<expr>: a numeric expression
(parenthesized).

Use

As a statement or command to perform the multiplication of one
matrix either by another matrix or by a scalar (the value of a
numer ic expression).

Remarks

1. The matrices must have been dimensioned before the statement
is executed.

2. The number of columns in <mvar2> must match the number of
rows in <mvar3>.

3. If <mvar2> is an n x p matrix (i.e. with n rows and p
columns) and <mvar3> is a p x m matrix, then <mvar1> will be
an n x m matrix.

112

4. <mvar1> may not appear on the right-hand side of the equal
sign, unless it is a scalar multiplication.

5. <mvar2> and <mvar3> may represent the same matrix (i.e. a
square matrix, in which the number of rows matches the
number of columns).

6. The product of <mvar2> and <mvar3> is calculated as follows:

Each row of <mvar2> is multiplied by each column of <mvar3>
such that the corresponding elements are multiplied and their
products added together to provide the resultant value
assigned to the element in <mvar1> (see Example).

Row number i of <mvar2> * column number j of <mvar3> will,
accordingly, result in element number (i,j) of <mvar1>.

7. If a matrix is multiplied by a scalar, each element in <mvar3>
is multiplied by <expr> to give the corresponding element
value in <mvar1>. In this case, the number of elements in
<mvar3> must not exceed the number of elements in <mvar1>.
After the multiplication, <mvar1> will have the same dimen-
sions as <mvar3>. ' '

Example

0010 DIM MATA(3,2),MATB(2,3),MATC(3,3)
0020 FOR I=1 TO 3

0030 FOR J=1 TO 2

0040 LET MATA(I,J)=I*10+J

0050 LET MATB(J,I)=I*20+J
0060 NEXT J
0070 NEXT I

0080 PRINT "MATA : "

0090 MAT PRINT MATA

0100 PRINT "<13><10>MATB : "

0110 MAT PRINT MATB

0120 MAT MATC=MATA*MATB

0130 PRINT "<13><10>MATA * MATB :"
0140 MAT PRINT MATC

6.6

MATA :

11 12

21 22

31 32
MATB :

21 41

22 42

MATA * MATB :

495 955
925 1785
1355 2615

DET(X) function

Format

<var> = DET(<expr>)

{var>: a numeric variable.

61
62

1415
2645
3875

Comment

495

L}

1]

21
2
e 12) x (22)

(11 % 21) + (12 % 22)

<expr>: a numeric expression (required, but not used).

Use

‘As a function to return the determinant of the last matrix

inverted by a MAT INV statement (see Sect. 6.10).

Remarks

1. The DET(X) function requires an argument, although the
argument does not affect the resulting determinant and the
function does not affect the argument.

2. For .calculation of the determinant of a matrix, see Section

6.10.

Example

See the MAT INV statement (Sect. 6.10).

6.7

114

MAT CON statement

Format
MAT <mvar> = CON

<mvar>: a matrix variable.
Use

As a statement or command to initialize a matrix such that all
elements are set to one.

Remarks

1. The matrix must have been dimensioned before the statement is
executed.

2. All elements of <mvar> are set to one regardless of any
previously assigned values.

3. The resulting matrix is often called a constant matrix.

115

Example

0010 DIM MATA(3,2)
0020 FOR I=1 TO 3
0030 FOR J=1 TO 2

0040 LET MATA(I,J)=I*10+J
0050 NEXT J
0060 NEXT I

0070 PRINT "MATA : "

0080 MAT PRINT MATA

0090 MAT MATA=CON

0100 PRINT "<13><10>NEW.MATA :"
0110 MAT PRINT MATA

MATA :

11 12
21 22
31 32
NEW MATA :

1 1
1 1
1 1

MAT IDN statement

Format
MAT <mvar> = IDN

<mvar>: a matrix variable.
Use

As a statement or command to initialize a matrix such that all
elements (i,i) are set to one and the remaining elements are set
to zero.

Remarks

1. The matrix must have been dimensioned before the statement
is executed.

2, If <mvar> is an n x p matrix (i.e. with n rows and p

116

columns), then all elements (i,i), 1 <= i <= minimum (n,p),
are set to one and the remaining elements are set to zero
(see Example).

3. If <mvar> is a sguare matrix (i.e. where n = p), then the
resulting matrix will be the identity matrix, in which all
elements of the major diagonal are set to one and the
remaining elements are set to zero (see Example).

Example

0010 DIM MATA(3,2),MATB(6,6)
0020 FOR I=1 TO 3
0030 FOR J=1 TO 2

0040 LET MATA(I,J)=I*10+J
0050 NEXT J
0060 NEXT I

0070 PRINT "MATA : "

0080 MAT PRINT MATA

0090 MAT MATA=IDN

0100 PRINT "<13><10>NEW MATA :"
0110 MAT PRINT MATA

0120 MAT MATB=IDN

0130 PRINT "<13><10>MATB :"
0140 MAT PRINT MATB;

MATA :

11 12
21 22
31 32
NEW MATA :

1 0
0 1
0 0
MATB
1000 0 0
010000
001000
000100
000010
0000 0 1

6.9

6.10

117

MAT INPUT statement

Format

MAT INPUT <mvari1> [,<mvar2>, ... ,<mvar-n>]

<mvar1, mvar2, mvar-n>: matrix variables.

Use

As a statement or command to assign numeric values entered from

the user's terminal during program execution to the elements of
one or more matrices.

Remarks

1. The matrices must have been dimensioned before the statement
is executed.

2. When a MAT INPUT statement is executed, the system outputs a
question mark (?) as an initial prompt.

3. The user responds by typing a list of numeric data items,
each of which is separated from the next by a comma. The last
item is followed by a carriage return.

4, If the data list is terminated (by pressing the RETURN key)

before values have been assigned to all of the matrix
elements, the system will output / ? as a prompt, indicating
that further items are expected.

MAT INV statement

Format

MAT <mvari> = INV(<mvar2>)

<mvar1, mvar2»: matrix variables.

Use

As a statement or command to invert a matrix and assign the
resultant element values to another matrix.

118

Remarks

1.

The matrices must have been dimensioned before the statement
is executed.

The inverse, B, of a matrix, A, is defined such that the
products of A x B and B x A are both equal to the identity
matrix,

<mvar2> must be a square matrix.

The determinant (see Remark 6) of <mvar2> must not equal
Zero.

After the inversion of a matrix, the determinant of that
matrix can be obtained by means of the DET(X) function (see

Sect. 6.6).

Matrix determinants

In order to calculate the inverse of a matrix, one must first
calculate the determinant of that matrix.

The calculation of the determinant of a 2 x 2 matrix is
described in the following. For larger matrices, consult a
mathematics text.

The determinant of a 2 x 2 matrix

ab
cd

£2)

c d/ is written as
The determinant is the scalar

(axd) - (bxc)

i.e.-multiplication along the diagonals and subtraction of

the product of the second diagonal from the product of the
major diagonal.

6.11

119

MAT PRINT statement

Format

|7

MAT PRINT <mvar> [l,}(mvan] san 2]

<mvar>: a matrix variable.

Use

As a statement or command to output the values of the elements
of one or more matrices on the user's terminal.,

Remarks

1. The matrices must have been dimensioned before the statement
is executed.

2. If a semicolon is used after a matrix variable in the
argument list, the elements of that matrix will be output
with compact spacing, i.e. each element will be output
starting from the next character position. (Note: A blank
space is always printed after an element and a blank space is
reserved for the plus sign, even though this sign is not
printed).

3. If a coma or carriage return is used after a matrix variable
in the argument list, the elements of that matrix will be
output with zone spacing, i.e. each element will be output
starting from the leftmost position of a print zone. The
width of the print zones can be set by means of the TAB
command (see Ch. 9).

4. The values of the elements are output by rows in ascending
order. If a row cannot be contained on a single print line, a
carriage return and line feed are output and the row is
continued on the next print line.

Example

0010 TABR=10
0020 PAGE=72

0030 DIM MATA(3,2),MATB(2,3),ARRAY(10)
0040 FOR I=1 TO 3

0050 FOR J=1 TO 2

0060 LET MATA(I,J)=I*10+J
0070 LET MATB(J,I)=J*10+1
0080 NEXT J
0090 NEXT I
0100 PRINT "<13><10>"

0110 MAT PRINT MATA,MATB
0120 PRINT "<13><10>"

0130 MAT PRINT MATA;MATB;
0140 PRINT "<13><10>"

0150 MAT PRINT MATA,MATB;
0155 TAB=5
0160 PRINT "<13><10>"
0170 MAT PRINT ARRAY
0180 MAT ARRAY=CON
0190 PRINT "<13><10>"
0200 MAT PRINT ARRAY;

11 12

21 22

31 32

11 12 13

21 22 23

11 12

21 22

31 32

1M1 12 13

21 22 23

11 12

21 22

31 32

11 12 13

21 22 23

0 0 0 0 0 0

120

Comments

Statement 110.
Zone spacing

is used (comma
or carriage
return as sepa-
rator).

Statement 130.
Compact spacing
is used (semi-

colon as sepa-
rator).

Statement 150,

Statement 170,

Statement 200.

6.12

121

MAT READ statement

Format
MAT READ <mvar> [,<mvar>] ...

<mvar>: a matrix variable.
Use
As a statement or command to read in numeric values from the
list defined by one or more DATA statements (see Ch. 3) and to
assign the values to the elements of one or more matrices.

Remarks

1. The matrices must have been dimensioned before the statement
is executed.

2. Values are assigned to matrix elements by rows in ascending
order.

Example

0010 DIM MATA(3,2),MATB(Z2,3)

0020 DATA 1,2,3,4,5,6,7,8,9

0030 MAT READ MATA

0040 PRINT "MATA :"

0050 MAT PRINT MATA

0060 RESTORE

0070 MAT READ MATB

0080 PRINT "<13><10>MATB :"
0090 MAT PRINT MATB

MATA :
1 2
3 4
5 6
MATB :
1 2 3

4 5 6

6.13

6.14

122
MAT TRN statement
Format
MAT <mvar1> = TRN(<mvar2>)
<mvar1, mvar2>: matrix variables.
Use

As a statement or command to transpose a matrix and assign the
resultant element values to another matrix.

Remarks

1. The matrices must have been dimensioned before the statement
is executed.

2. A matrix is transposed by reversing the row and column
assignments of the matrix elements, i.e. row number 1 in
<mvar2> becomes column number 1 in <mvar1> and column number
1 in <mvar2> becomes row number 1 in <mvar1>.

3. If <mvar2> is an n x m matrix, <mvar1> will be an m x n
matrix.

4, <mvar1> and <mvar2> must be two distinct matrices.

MAT ZER statement

Format
MAT <mvar> = ZER

<{mvar>: a matrix variable.
Use

As a statement or command to initialize a matrix such that all
elements are set to zero.

123
Remarks

1. The matrix must have been dimensioned befcre the statement is
executed.

2. All elements of <mvar> are set to zero regardless of any
previously assigned values.

3. The resulting matrix is often called a zero matrix.

Example

0010 DIM MATA(3,2)
0020 FOR I=1 TO 3
0030 FOR J=1 TO 2

0040 LET MATA(I,J)=I*10+J
0050 NEXT J
0060 NEXT I

0070 PRINT "MATA : "

0080 MAT PRINT MATA

0090 MAT MATA=ZER

0100 PRINT "<13><10>NEW MATA :"
0110 MAT PRINT MATA

MATA :

11 12
21 22
31 32
NEW MATA :

0 0
0 0

7.1

124

Logical Discs and Related Commands

Introduction

An RC BASIC disc file (see the introduction to Chapter 8)
comprises a number of consecutive blocks in a logical disc.

Any system device may in principle contain logical discs, but in
practice only such read/write devices as flexible discs and
moving-head disc files are used for this purpose. (Note that
here a moving-head disc file is considered a device).

Logical discs are created in a device by means of a special
formatting program (described in the separate publication

RC BASIC System Logical Disc Formatting Program Operating

Guide).

A device, i.e. a flexible disc or moving-head disc file,
containing logical discs (LD's) is structured as follows:

f device formatted with logical discs

block 1
\ \ \ 7
' N &___\,E\ 2
LD r LD —’ LD T
subcatalogs main catalog —-

The main catalog describes the logical discs contained in the
device. Each main catalog entry has the following structure:

USERS

KEY

LENGTH

NAME

The subcatalog in each

125

Number of logical disc users.
Protection key of the logical disc.
Not used.

Number of blocks allocated to the
legical disc.

Name of the logical disc (1 to 8
-characters).

logical disc describes the files

contained in that logical disc. Each subcatalog entry has the

following structure:

USERS

LAST BLOCK

LAST BYTE

LENGTH

NAME

Number of file users.

Last block written in the file
(sequential access) or number of records
in the file (random access).

Last byte written in the last block
(sequential access) or record length in
bytes (random access).

Number of blocks allocated to the file.

Name of the file (1 to 8 characters).

A subcatalog always contains an entry in which NAME is S$SFREE and
LENGTH indicates the number of unused blocks in the logical

disc, for example:

user file

free blocks SFREE entry

N

number indicated
by LENGTH field
in SFREE entry

~
N
Jj—-/
subcatalog

entry describing user file

1.2

126

A user can connect his terminal to one logical disc at a time.
This is done by means of the CONNECT command, which gives him
read access, possibly together with other users, to the files in
that logical disc.

If, however, the user correctly specifies the protection key of
a logical disc in the CONNECT command, the logical disc is
reserved for writing and he becomes its exclusive user. He may
now CREATE, DELETE, RENAME, or write to files in that logical
disc, and no other user may connect his terminal to it.

CONNECT and other commands related to the use of logical discs
are described in the remaining sections of this chapter, while
CREATE, DELETE, RENAME, and other statements related to the use
of files are described in Chapter 8.

CONNECT

Format
CONNECT <ldname> [,<expr>]

<ldname>: a logical disc expressed as a string literal or
by means of a variable.

<expr>: a numeric expression which evaluates to the
protection key.

Use

As a command or statement to connect the user's terminal to a
logical disc.

Remarks

1. If the user CONNECTs without specifying a protection key, he
may only read from the logical disc <ldname>.

2. If the user specifies a protection key and the value is
correct, he becomes the exclusive user of <ldname> and may
now write to as well as read from <ldname>, whereas no other
user may CONNECT his terminal to <ldname>.

3. If a CONNECT command is given from a terminal which is
already connected to a logical disc, a RELEASE command (see
Sect. 7.7) will be automatically executed.

7.3

Ex

127

les

* CONNECT "DISC1"
* CONNECT “SUBAREA",637
10 CONNECT LDNAMES,KEY

COPY

Format

COPY "<ldname>:<filenamei>","<filename2>"

<ldname>: a logical disc.
<filename1>: a file in <ldname> to be copied.

<filename2>: a file in the logical disc to which the
terminal is connected.

Use

As a command to copy a file from any logical disc to a file in
the logical disc to which the user"s terminal is connected.

Remarks

1.

A file can be copied to a logical disc only if the user
correctly specified the protection key of that logical disc
in the CONNECT command (see Sect. 7.2).

The COPY command copies the file <filename1> in the logical
disc <ldname> (provided that <ldname> is not reserved for
writing by another user) to a file, <filename2>, in the
logical disc to which the terminal is connected.

If <filename2> does not exist, a file will be created with
the name <filename2>.

Example

* COPY "LIB:PROG1","PROG2"

7.4

15

128

INIT

Format
INIT <device>

<device>: a device expressed as a string literal.
Use

As a command to initialize the main catalog in a device
containing logical discs.

Remarks
1. The INIT command can only be given from the master terminal.

2. Users may CONNECT their terminals to logical discs in <device>
as soon as the INIT command has been executed.

3. When the INIT command is executed, the UNIT ID is output on
the master terminal. (For a description of the UNIT ID, see

the NEW function in the separate publication RC BASIC System
Logical Disc Formatting Program Operating Guide.)

Example Comment

* INIT "S$FDO"
FORMATTING EXAMPLE 77.02.09 -—UNIT ID.

LOCK

Format
LOCK <device>

<device>: a device expressed as a string literal.

Use

As a command to lock a device, when changing discs or closing
down the system, so that no user can CONNECT his terminal to a
logical disc in that device.

7.6

129

Remarks

1=

2,

The LOCK command can only be given from the master terminal.

When the LOCK command has been executed, no user can CONNECT
his terminal to a logical disc in <device>. Connected users
may continue to access <device> until they RELEASE their
terminals (see Sect. 7.7).

When the LOCK command is executed, a 4-digit number is output
on the master terminal indicating the number of users whose
terminals are still connected to logical discs in <device>.

IMPORTANT: The device, i.e. the flexible or moving-head disc
that contains the logical discs, must never be removed from
its drive unit until it has been LOCKed and the number of
users is 0.

Example Comment
* LOCK "SFDO" Do not remove the disc from drive
0001 unit 0, as the number of device

users is 1.

Ask the user who is still
connected to RELEASE his terminal
and then LOCK the device once more
before removing the disc.

LOOKUP

Format

LOOKUP ["SLPT"]

Use

As a command to return a listing of the files (names and
attributes) in the logical disc, if any, to which the user's
terminal is connected at the moment.

130

Remarks

1.

The first column in the listing contains the name of each
file.

The second column indicates whether the file is a sequential
access file (S) or a random access file (R).

The third column gives the number of the last block written
in the file (sequential access) or the number of records in
the file (random access).

The fourth column gives the number of the last byte written
in the last block (sequential access file) or the record
length in bytes (random access file).

The fifth column indicates the number of blocks allocated to
the file. The number of bytes per block will depend on the
device that contains the logical disc. If the device is a
flexible disc, there are 125 bytes per block. If the device
is a moving-head disc file, there are 512 bytes per block.

The listing will always include the file $FREE, where the
fifth column indicates the number of unused blocks in the
logical disc.

If the LOOKUP "SLPT" form of the command is used, the listing
will be output with headings on the line printer.

The listing will be interrupted, if the user presses the
ESCape key.

Example Comment

* LOOKUP

SORT . SR
SORT .SV
INDATA
LAES.SV
DATA.BN

00006 00077 00006

00005 00080 00010 The length in used bytes
00002 00040 00002 of the file SORT.SV is
00002 00008 00002 (5-1) x 128 + 80.

00001 00061 00030

nnunwn b n

SFREE 65479 (00000 00444

1.7

1.8

131
RELEASE
Format
RELEASE

Use

As a command or statement to disconnect the user's terminal from
the logical disc, if any, to which it is connected.

Remarks

1. If the terminal is not oonnected to a logical disc, the
RELEASE command will have no effect.

2. If a CONNECT command (see Sect. 7.2) is given from a terminal

which is already connected to a logical disc, a RELEASE
command will be automatically executed.

3. If any of the files in the logical disc are open, the error
message 0115: OPEN FILES ON LD will be output and the
terminal will not be disconnected.

Example

* RELEASE
100 RELEASE

USERS

Format
USERS <device>

<device>: a device expressed as a string literal.
Use

As a command to return the number of users whose terminals are
connected to any logical disc in a device at the moment.

132
Remarks

1. The USERS command is intended as an aid in closing down the
system (see the LOCK command, Sect. 7.5).

2. If the number of device users is 0, <device> can be LOCKed
and the disc containing <device> can be removed from its
drive unit.

Example Comment
* USERS "SFDO" : ‘See the LOCK command.

0001

8.1

133

Files and Related Statements

Introduction

The present section describes the file concept itself, while
statements related to the use of files are described in the
remaining sections of this chapter. For the catalog structure
in RC BASIC, i.e. logical discs, see the introduction to
Chapter 7.

Disc files and devices

Several of the statements described in the following sections
have <filename> as an argument. A filename may be the name of a
disc file or the name of a device. In many respects, a disc file
and a device are one and the same, and most of the explanations
in this chapter apply to both. Devices, however, cannot be
CREATEd, DELETEd, or RENAMEd. A device, moreover, is used either
for input or for output, whereas a disc file can be used for
both.

Standard devices and reserved names

The system devices which can be used in RC BASIC are listed
below. The names in parentheses should be used when the device
is referenced as a file.

Line printer (SLPT)

Paper tape punch ($PTP)

Paper tape reader ($PTR)

Card reader (SCDR or S$SMCDR)

Flexible disc ($FDO, SFD1)

The card reader has two names, as it can be used in two
different ways.

The flexible disc is referenced directly when the INIT, LOCK,
and USERS commands are executed (see Ch. 7); otherwise, discs
are only referenced indirectly, by a disc filename.

8.1.4

8.1 .5

134

Block sizes

An RC BASIC disc file comprises a number of consecutive blocks
in a logical disc. Each disc file is described separately by an
entry in the subcatalog of the logical disc (see Ch. 7). The
size of the blocks in the file depends on the type of device
used to contain the logical disc and, hence, the file. If the
device is a flexible disc, the block size is 128 bytes. If the
device is a moving-head disc file, the block size is 512 bytes.
One byte (8 bits) corresponds to one character, so that a string
containing 10 characters will occupy 10 bytes, whereas numeric
data will occupy 4 bytes per item.

Filenames and file sizes

A disc file can be CREATEd with a name and a size. A filename
may contain from 1 to 8 characters. All characters are legal,
but the first character in a disc filename must not be a dollar
sign ($). The size of a file is the number of blocks allocated
to the file, expressed as a number greater than or equal to
Zero.

A disc file can also be DELETEd or RENAMEd.

How files are used

Files can be used for many purposes. The user can SAVE/LOAD/
CHAIN/RUN or LIST/ENTER a program to or from a file (see Chs. 3

‘and 9).

A file can also be used for data. In order to read data from or
write data to a file, the user must first OPEN the file. The
data can be in binary or ASCII (character) format. When the file
is OPENed, the user must specify one of the following modes:

Mode 0 for binary input from or binary output to a random
access file (READ FILE or WRITE FILE statement).

Mode 1 for binary input from a sequential access file
(READ FILE statement).

Mode 2 for binary output to a sequential access file,
when data is to be appended to previously written
data (WRITE FILE statement).

Mode 3 for binary output to a sequential access file
(WRITE FILE statement).

8.1.6

8.1.8

135

Mode 4 for binary input (only) from a random access file
(READ FILE statement).

Mode 9 for ASCII input from a sequential access file (INPUT
FILE statement).

Mode 11 for ASCII output to a sequential access file
(PRINT FILE statement).

When the user no longer needs to access a file, he should CLOSE
ik,

Random access files

The data in a random access file is organized in individual
records, which can be accessed directly. If a random access file
is to be used for both reading and writing, it must be OPENed in
mode 0. This can be done only if the user correctly specified
the protection key of the logical disc in the CONNECT command
(see Ch. 7). If a random access file is to be used for reading
only, it can be OPENed in mode 4. In this case, the user does
not have to specify the protection key of the logical disc in
the CONNECT command.

Sequential access files

The data in a sequential access file can only be accessed in a
sequential manner. When a sequential access file is OPENed, the
system positions to the beginning of the file and the data is
read or written starting from there. If, however, a sequential
access file is OPENed in mode 2, the system will position after
the last item written to the file, so that data can be appended
to previously written data. Sequential access files can be
OPENed in mode 1, 2, 3, 9, or 1.

If a file is OPENed for reading (writing), it must be CLOSEd and
OPENed again before it can be used for writing (reading).

Write protection

A disc file can be accessed only if the user has CONNECTed his
terminal to the logical disc that contains the file (see Ch. 7).
If a disc file is to be CREATEd, DELETEd, RENAMEd, or written
to, the user must correctly specify the protection key of the
logical disc in the CONNECT command.

The remaining sections of this chapter contain separate
descriptions of the CREATE, DELETE, and RENAME statements,

8.2

136

statements related to file input/output, and the EOF(X)
function.

For the use of these statements as keyboard commands, see
Appendix C.

CONNECT and other commands related to the use of logical discs
are described in Chapter 7.

CLOSE FILE

Format
CLOSE [FILE(<file>)]
<file>: a numeric expression which evaluates to a user
file number that was previously associated with a
filename in an OPEN FILE statement (see Sect.
8.11).

Use

As a statement or command to dissociate a filename and a user
file number so that the file no longer can be referenced.

Remarks

1. The CLOSE FILE statement may be used to close a file so that
it can be re-opened by an OPEN FILE statement with a new mode
argument.

2. The CLOSE form of the statement closes all open files.

Examples

100 CLOSE FILE(1)
200 CLOSE FILE(X+3)
300 CLOSE

137

8.3 CREATE

Format

CREATE <filename>,<size>[,<recl>]

<filename>: the name (1 to 8 characters) of the disc file
to be created, expressed as a string literal
or by means of a variable.

<size>: a numeric expression specifying either the
* length of the file in blocks (sequential
access file) or the number of records in the
file (random access file).

<recl>: a numeric expression specifying the record
length in bytes. <recl> should be specified
if, and only if, the file is to be used as a
random access file.

Use

As a statement or command to create a file in the logical disc
to which the user's terminal is connected.

Remarks

1.

A file can be created only if the user correctly specified
the protection key of the logical disc in the CONNECT command
(see Ch. 7).

For files created in a logical disc contained in a flexible
disc, the block size is 128 bytes. For files created in a
logical disc contained in a moving-head disc file, the block
size is 512 bytes.

If the user does not know how large a file will be, he can
specify <size> equal to 0 when he creates it. This will re-
serve the remainder of the logical disc to which the terminal
is connected. The file can then be used for output, and when
it is CLOSEd (see Sect. 8.2), the system will truncate it.
<size> must be positive, if the file is a random access file.

No more than one file created with <size> equal to 0 can be
used, unless the files in question have already been CLOSEd

8.4

138

5. If <recl> is specified, the file can (only) be used as a
random access file. (See also the OPEN FILE, READ FILE, and
WRITE FILE statements.) <recl> must be positive and less than
or equal to the block size of the device (i.e. flexible disc
or moving-head disc file) containing the logical disc in
which the file is created. -

6. A random access file will be organized such that each
physical block in the device will contain an integral number
of records.

Example 1) Comment (1)

120 LET NAMES$="PROC1.SR"
130 CREATE NAMES,17

140 CREATE "PROCZ2.SR",0 CREATE used as a statement.
Example 2 Comment (2)

* CREATE "DATAFILE",15,52 CREATE used as a command.
DELETE

Format

DELETE <filename>
<filename>: the name of the disc file to be deleted,
expressed as a string literal or by means of a
variable.

Use

As a statement or command to delete a file in the logical disc
to which the user's terminal is connected.

Remarks

1. A file can be deleted only if the user correctly specified
the protection key of the logical disc in the CONNECT command
(see Ch. 7).

2. A file can be deleted only if all other files in the logical
disc are closed.

8.5

139
3. Note: The deletion of a file may require some time.

The figure below shows a logical disc containing four files.
FILE 1 was created first and FILE 4 was created last.

If, for example, FILE 2 is deleted, then FILE 3 and FILE 4
will be moved so that there will be no gaps in the logical
disc.

If the user wishes to delete more than one file, he should
always delete starting with the file most recently created,
as this will minimize the time required to move the files.

N\

FILE 1 FILE 2 | FILE 3 | FILE 4

EOF(X) function

Format

EOF(<file>)

<file>: a numeric expression which evaluates to the number
of a user file opened for reading (i.e. in mode
10r 9).

Use

As a function to detect the end of data when transferring data
from a file,

Remarks
1. The EOF(X) function returns an integer indicating whether or
not the last READ FILE or INPUT FILE statement included an

end of file delimiter.

2. If an end of file condition was detected, the function
returns a value of +1; otherwise, a value of 0 is returned.

Example

See the examples under READ FILE (Sect. 8.14).

8.6

140

INPUT FILE

Format

| <var> }[{<var> }]
INPUT FILE(<file>) [,]l<svar>|Lksvar>l] ...

<file>: a numeric expression which evaluates to the
number of a user file opened in mode 9.

{var, svar>: a list of one or more numeric or string
variables which are assigned values read from
a sequential access file.

Use

As a statement or command to read data in ASCII format from a
sequential access file for the variables in the argument list.

Remarks

1. BEach variable in the argument list must be of the same type
(numeric or string) as the corresponding data item in the
data file.

2. The data file must be formatted such that commas or carriage

returns are used to separate numeric data items and quotation
marks or carriage returns are used to separate string data
items.

3. If the length of a string in the data file is greater than
the length of the corresponding string variable in the
argument list, the last part of the string will be skipped.

Example

40 OPEN FILE(1,9)"INFILE"

70 INPUT FILE(1)Z,Y,X,A$,BS

8.7

8.8

141

MAT INPUT FILE

Format

MAT INPUT FILE(<file>) [,] <mwar> [,<mvar>] ...

<file>: a numeric expression which evaluates to the number

of a user file opened in mode 9.
<mvar>: a matrix variable.
Use
As a statement or command to read data in ASCII format from a

sequential access file for the matrix variables in the argument
list.

Remarks

1. The matrices must have been dimensioned before the statement
is executed (see Ch. 6).

2, Values are assigned to the matrix elements by rows in
ascending order.

3. The data file must be formatted such that commas or carriage
returns are used to separate the data items.

MAT PRINT FILE

Format
MAT PRINT FILE(<file>) [,] <mwvar> [,<mvar>] ...

<file>: a numeric expréssion which evaluates to the number
of a user file opened in mode 11.

<{mvar>: a matrix variable,
Use

As a statement or command to write matrix data in ASCII format
to a sequential access file.

8.9

142
Remarks

See the MAT PRINT statement (Ch. 6).

MAT READ FILE
Format
MAT READ FILE(<file>[,<recno>]) [,] <war> [,<mvar>] ...

<file>: a numeric expression which evaluates to the
number of a user file opened in mode 0, 1, or 4.

{recno>: a numeric expression which evaluates to the
number (> 0) of a record to be read from a
random access file. '

<mvar>: a matrix variable.

Use

As a statement or command to read data in binary format from a

sequential access file or record of a random access file for the
matrix variables in the argument list.

Remarks

1. The matrices must have been dimensioned before the statement
is executed (see Ch. 6).

2. Values are assigned to the matrix elements by rows in
ascending order.

3. If the attempt is made to read a record (from a random access
file} which is longer than the record length specified for
the file, the error message 0117: RECORD TOO LONG will

appear .

143

8.10 MAT WRITE FILE

Format

MAT WRITE FILE(<file>[,<recno>]) [,] <mwar> [,<mvar>] ...
<file>: a numeric expression which evaluates to the
number of a user file opened in mode 0 or 3.

{recno>: a numeric expression which evaluates to the
number (> 0) of a record to be written to a
random access file.

<mvar>: a matrix variable.

Use
As a statement or command to write matrix data in binary format
to a sequential access file or record of a random access file.

Remarks

1. The matrices must have been dimensioned before the statement
is executed (see Ch. 6).

2. The values of the matrix elements are output by rows in
ascending order.

3. If the attempt is made to write a record (to a random access
file) which is longer than the record length specified for
the file, the error message 0117: RECORD TOO LONG will
appear.

8.11 OPEN FILE

Format
OPEN FILE(<file>,<mode>) [,] <filename>

<file>: a numeric expression which evaluates to a
number in the range 0 to 7 (the number of a
user file). This number is associated with
<filename> and used whenever the file is
referenced in other file input/output
statements.

144

<mode>: a numeric expression which evaluates to a

number and specifies how the file is to be
used (see Remarks).

<filename>: a disc file or a device expressed as a string

Use

literal or by means of a variable.

As a statement or command to associate a disc file or a device
with a user file number and to specify how the file is to be

used.

Remarks

1. One of the following modes must be specified:

Mode 0O

Mode

Mode

Mode

Mode 4

Mode

Mode

11

for binary input from or binary output to a random
access file (READ FILE or WRITE FILE statement).

for binary input from a sequential access file
(READ FILE statement).

for binary output to a sequential access file,
when data is to be appended to previously written
data (WRITE FILE statement)

for binary output to a sequential access file
(WRITE FILE statement).

for binary input (only) from a random access file
(READ FILE statement).

for ASCII input from a sequential access file
(INPUT FILE statement).

for ASCII output to a sequential access file
(PRINT FILE or PRINT FILE USING statement).

2. A disc file must have been CREATEd (see Sect. 8.3) before it
can be opened.

3. Random access files can only be opened in mode 0 or 4.

4. When a sequential access file is opened in mode 1, 3, 9, or
11, the system will position to the beginning of the file.
When a sequential access file is opened in mode 2, the system

8.12

145

will position after the last item written to the file, so
that data can be appended to previously written data.

Example 1 Comment (1)
10 NAMES="DATA1"

20 OPEN FILE(O,0)NAMES

30 OPEN FILE(1,11)"DATA2" OPEN FILE used as a statement.
Example 2 Comment (2)

* OPEN FILE(6,9)"$PTR" OPEN FILE used as a command.
PRINT FILE

Format

<expr> /] | <expr> ’
PRINT FILE(<file>) [,] {<slit> {;] $Blit>: | wes {;]
{svar> <{svar>

<file>: a numeric expression which evaluates
to the number of a user file opened
in mode 11.

<expr, slit, svar>: a list of one or more numeric or rela-
tional expressions, string literals,
or string variables the values of
which are written to a sequential
access file.,

Use

As a statement or command to write data in ASCII format to a
sequential access file.

Remarké

1. The PRINT FILE statement is used to output data to an ASCII
device, such as a line printer, or to a disc file for
subsequent off-line printing.

2. BEach item in the argument list must be separated from the
next item by a comma or a semicolon. The argument list itself
must be terminated by a carriage return.

8.13

146

3. Output formatting is the same as that described under the
PRINT statement (see Ch. 3).

Example

10 OPEN FILE(2,11)"DATAFILE"
20 PRINT FILE(2)"RESULTS:"
30 PRINT FILE(2)X12,x13,x14

PRINT FILE USING

Format
<{expr> <expr>

PRINT FILE(<file>) [,] USING <format>, {<slit> r] 1<8lit> {,}
{svar> l,} {svar> :

<file>: a numeric expression which evaluates to the
number of a user file opened in mode 11.

<format>: a string literal or string variable that
specifies the format (see Remarks) for out-—
putting the items in the argument list.
{expr>: a numeric or relational expression.

<{slit>: a string literal.

{svar>: a string variable.
Use

As a statement to output the values of items in the argument
list using a specified format.

Remarks

See the PRINT FILE statement (Sect. 8.12) and the PRINT USING
statement (Ch. 3).

147

8.14 READ FILE

Format

{(var> }[{<var> }]
READ FILE(<file>[,<recno>]) [,] |<svar>/L, |<svar>|] ...

<file>: a numeric expression which evaluates to the
number of a user file opened in mode 0, 1, or 4.

<{recno>: a numeric expression which evaluates to the
number (> 0) of a record to be read from a
random access file.

{var, svar>: a list of one or more numeric or string
variables which are assigned values read
sequentially from a randomly accessed record
or sequentially from a file.

Use

As a statement or command to read data in binary format from a
sequential access file or record of a random access file for the
variables in the argument list.

Remarks

1. Each variable in the argument list must be of the same type
(numeric or string) as the corresponding data item in the
data file.

2. One can, however, read string data items into numeric
variables, (For each numeric variable, four bytes will be
read.) This facility can be used to copy a file (see Ex. 2).
Note: If the total number of bytes in the file is not
divisible by 4, the error message 0107: END OF FILE may
appear.

3. The EOF(X) function (see Sect. 8.5) can be used to detect an
end of file condition in the file (see Examples).

4, If the attempt is made to read a record (from a random access
file) which is longer than the record length specified for
the file, the error message 0117: RECORD TOO LONG will
appear.

148

Example 1 Comment (1)

0010 OPEN FILE(O,1)"DATA" This program uses the file
0020 DIM TEXTS(25) DATA, which is created in
0030 READ FILE(OQ)TEXTS the program shown as an
0040 PRINT TEXTS example of the WRITE FILE
0050 READ FILE(0)A statement (see Sect. 8.16).

0060 WHILE NOT EOF(0) DO
0070 PRINT A;

0080 READ FILE(O)A
0090 ENDWHILE

0100 CLOSE

THIS IS A DATA FILE
12 3 4 5 6 7 8 9 10

Example 2 Comment (2)
0010 CREATE "DATA1",5 This program copies the file
0020 OPEN FILE(O,1)"DATA" DATA to a new file, DATA1.

0030 OPEN FILE(1,3)"DATA1"
0035 READ FILE(0)A

0040 WHILE NOT EOF(0) DO
0050 WRITE FILE(1)A
0060 READ FILE(O)A

0070 ENDWHILE

0080 CLOSE

8.15 RENAME

Format

RENAME <filename1>,<filename2>
<filename1>: the name of the disc file to be renamed.
<filename2>: the new name of <filenamel>.

Both arguments are expressed as string literals or
by means of variables.

Use

As a statement or command to rename a file in the logical disc
to which the user's terminal is connected.

8.16

Remarks

149

A file can be renamed orily if the user correctly specified the

protection key of the logical disc in the CONNECT command (see
Ch. 7)s

Example 1

20 RENAME NAMES,"PROC3.SR"

Comment (1)

RENAME used as a statement.

Example 2 Comment (2)

* RENAME "DATAFILE","FILE-3" RENAME used as a command.
WRITE FILE

Format

<expr> {expr>

WRITE FILE(<file>[,<recno>]) [,]i<slit>(|,1<slit>}| ...

Use

As a statement or command

<file>:

<recno>:

<expr, slit, svar>:

{svar> {svar>

a numeric expression which evaluates
to the number of a user file opened in
mode 0 or 3.

a numeric expression which evaluates
to the number (> 0) of a record to be
written to a random access file.

a list of one or more numeric or
relational expressions, string
literals, or string variables the
values of which are written
sequentially to a randomly accessed
record or sequentially to a file.

to write data in binary format to a

sequential access file or record of a random access file.

150

Remarks

1.

A numeric data item is written as four bytes. A string data

item is written as a number of bytes corresponding to the

length of the string. The string is terminated by a NUL

character (see App. D).

The result of a relational expression is written as one

2
numeric item, the value of which is 1, if the expression is
true (e.g. 3 > 0), or 0, if the expression is false
(e.g. 0 > 3).

3. If the attempt is made to write a record (to a random access
file) which is longer than the record length specified for
the file, the error message 0117: RECORD TOO LONG will
appear.

Example

0010 CREATE "DATA",5

0020 OPEN FILE(1,3)"DATA"

0030 WRITE FILE(1)"THIS IS A DATA FILE"
0040 FOR I=1 TO 10

0050 WRITE FILE(1)I

0060 NEXT I

0070 CLOSE FILE(1)

9.1

9.2

151

System Commands

Introduction

The statements and functions that are used for writing programs
in RC BASIC are described in preceding chapters. RC BASIC, how-

- ever, may also be used interactively to perform such functions

as:

Maintenance of RC BASIC source programs
Desk calculator functions

Dynamic program debugging

File input/output

The present chapter describes commands for program development
and execution.,

Commands derived from RC BASIC statements, for desk calculator
functions, program debugging, and file input/output, are
described in Appendix C.

Commands used in conjunction with batch mode are described in

Appendix B.

Command to delete program statements

Format

<line n1>,<line n2>

<line n1>

<line n1>,

;<line n2>
<line n1>: the first statement to be deleted.
<line n2»: the last statement to be deleted.

Use

As a command to delete one or more statements in a program.

152

Remarks

The variations of the command have the following effects:

<line n1>,<line n2>

<line n1>

<line n1>,

,<line n2>

Example

* LIST

0010 PRINT
0020 PRINT
0030 PRINT
0040 PRINT
0050 PRINT
0060 PRINT
0070 PRINT
0080 PRINT
0090 PRINT
0100 PRINT

* 20,40

* LIST

0010 PRINT
0050 PRINT
0060 PRINT
0070 PRINT
0080 PRINT
0090 PRINT
0100 PRINT

Deletes all lines with

<line n1> <= line number <=
<line n2>.

Deletes only the single line
with line number = <line n1>.

Deletes all lines with
<line n1> <= line number.

Deletes all lines with
line number <= <line n2>.

Comment

Lines 20-40 (= 20, 30, 40)
are deleted.

9.3

153

* 60 Line 60 is deleted.
* LIST

0010 PRINT

0050 PRINT

0070 PRINT

0080 PRINT

0090 PRINT

0100 PRINT

* 90, Lines 90-9999 (= 90, 100)
* LIST are deleted.

0010 PRINT

0050 PRINT

0070 PRINT

0080 PRINT

* ,70 Lines 1-70 (= 10, 50, 70)
* LIST are deleted.
0080 PRINT

AUTO

Format

<line ni>
{STEP}
AUTO 7 <{line n2>
[STEP]
<line n1> - <line n2>
<line n1>: the initial line number in a program.
<line n2>: the increment between line numbers in a program.

Use

As a command to provide automatic line numbers in a program,
thereby making it easier to enter programs from a terminal.

154

Remarks

1. The terminal is released from
ESCape key.

AUTO can be used as a command

AUTO mode by pressing the

for a file that contains

statements; the statements can then be read into the current

program storage area by means
9.7).

The variations of the command

AUTO

AUTO <line n1>

STEP

AUTO |, }<line n2>

STEP

AUTO <line n1>{, }<line n2>

of the ENTER command (see Sect.

have the following effects:

Assigns numbers to a program
starting with the default line
number 0010 and with a default
increment of 10 between line
numbers.

Assigns numbers to a program
starting with line number <line
n1> and incrementing by <line n1>
between line numbers.

Assigns numbers to a program
starting with the default line
number 0010 and incrementing by
<line n2> between line numbers.

Assigns numbers to a program
starting with line number <line
n1> and incrementing by <line n2>
between line numbers.

9.4

9.5

155

Example Comment

* AUTO

0010 LET I=1

0020 An empty line is ignored.

0020 LET TOOLONGNAME=5

ERR : 0011

NAME TOO LONG

0020 LET Y=X If an error occurs, the line is
0030 repeated.

*

BATCH/BATCH " $LPT”

Format
BATCH ["SLPT"]
Use

As a command to place the terminal in batch mode and cause the
system to start reading cards from the mark-sense card reader.

Remarks

1. Output from the jobs executed, i.e. listings, output from
PRINT statements (see Ch. 3), and error messages, will appear
on the terminal or, if the BATCH "SLPT" form of the command

is used, on the line printer.

2, For a complete description of the batch mode of operation,
see Appendix B.

BYE

Format
BYE
Use

As a command or statement to log the terminal off the system.

45

another part of the program, execution will then continue at
the first statement following the IF-THEN statement.

2. If the value of <expr> is false (= 0), <statement> is not
executed.

Note: Since the internal representation of non-integer
numbers may not be exact (.2 cannot be represented exactly,
for example), it is advisable to test for a range of values
when testing for a non-integer. If, for example, the result
of a computation, A, was to be 1.0, a reliable test for 1
would be

IF ABS(A-1.0)<1.0E-6 THEN ...
If this test succeeded, A would be equal to 1 to within 1

part in 1016. This is approximately the accuracy of single-
precision floating-point calculations.

Example 1 Comment (1)
0010 LET I=10 The statement GOTO 40
0020 IF I>5 THEN GOTO 0040 is executed only if I > 5.

0030 PRINT "DON 'T ENTER HERE"
0040 PRINT "PRINT THIS"
0050 sTOP

PRINT THIS

Example 2a

0010 LET A=5; B=5

0020 PRINT "A AND B ARE";

0030 IF A<>B THEN PRINT " NOT";
0040 PRINT " EQUAL"

0050 sTOP

A AND B ARE EQUAL

157

Example Comment

* LIST

0010 DEF FNF(X)=21X+2*x+2

0020 DATA 5,6,0

0030 PRINT " X ";"FNF(X)"

0040 READ X

0050 WHILE X<>0 DO

0060 PRINT X;FNF(X)

0070 READ X

0080 ENDWHILE .
0090 PRINT "<13><10>SUPPLY NEW DATA (LINE 20)"
0100 STOP

0110 RESTORE 0020

0120 GOTO 0030

* RUN

X FNF(X)
5 44

6 78

SUPPLY NEW DATA (LINE 20)

STOP

AT 0100

* 20 DATA 1,2,3,4,5,6,7,8,9,0 New data is

* CON supplied to the
X FNF(X) program before
6 execution con-
10 tinues.

16

26

44

78

144

274

532

W o <J 0 U = Wk =

SUPPLY NEW DATA (LINE 20)

STOP

AT 0100
*

9.7

158

ENTER

Format
ENTER <filename>

<filename>: a disc file or a device expressed as a string
literal or by means of a variable.

Use

As a command or statement to merge the statement lines from the
disc file or the device specified by <filename> into the current
program storage area.

Remarks

1. If an error is detected during the reading of a statement,
the statement will be echoed on the terminal and an error
message output (see App. A).

2. Only those statements in the current program that have line
numbers equivalent to the line numbers of the ENTERed
statements will be deleted. If, therefore, the current
program (or a part of it) is not to be used, a NEW command
(see Sect. 9.11) should be given prior to the ENTER command.

Example 1 Comment (1)

* NEW The user's program storage area is
* ENTER "$PTR" cleared. The program on paper tape
* ENTER "PROG.SR" and the program in file PROG.SR

* LIST "$PTP" are merged. The resulting program

is listed on paper tape.

9.8

9.9

159

Example 2 Comment (2)

* LIST The current program and the

0010 PRINT program on paper tape are merged.
0020 PRINT

0030 PRINT

0040 PRINT

* ENTER "$PTR"

* LIST

0010 PRINT I
0015 PRINT I
0020 PRINT
0025 PRINT I
0030 PRINT
0040 PRINT I
0050 PRINT I

EOJ

Used only in batch mode. For description, see Appendix B.

LIST

Format

<line n1>

TO

{, I <line n2> [<filename>]
TO

<line ni> ’, } <line n2>

LIST

<{line n1>: the first statement to be listed.
<line n2>: the last statement to be listed.

<filename>: a disc file or a device expressed as a string
literal. '

110

Remarks

1. The matrices must have been dimensioned before the statement
is executed.

2. <mvar2> and <mvar3> must have the same dimensions.

3. The number of elements in <mvar2> (and <mvar3>) must not
exceed the number of elements in <mwar1>.

4, The arithmetic is performed element by element with the
resultant value assigned to the element in <mvar1i>.

5. <mvar1> may appear on both sides of the equal sign.

6. After the addition or subtraction, <mvari1> will have the same
dimensions as <mvar2> (and <mwvar3>).

Example Comment

0010 DIM MATA(3,2),MATB(3,2)
0020 FOR I=1 TO 3
0030 FOR J=1 TO 2

0040 LET MATA(I,J)=I*10+J
0050 LET MATB(I,J)=2*(I*10+J)
0060 NEXT J

0070 NEXT I

0080 PRINT "MATA : "

0090 MAT PRINT MATA

0100 PRINT "<13><10>MATB : "

0110 MAT PRINT MATB

0120 MAT MATB=MATA+MATB MATB appears on both sides
0130 PRINT "<13><10>MATA + MATB :" of the equal sign.

0140 MAT PRINT MATB

9.10

terminal.

Examples

* LIST

* LIST "SLPT"

* LIST 100,500 "PROG1.SR"

* LIST 50

LOAD

Format

LOAD <filename>

161

Comments

The entire program will be listed
on the terminal.

The entire program will be listed
on the line printer.

Lines 100 through 500 will be
listed to the file PROG1.SR.

Line 50 will be listed on the
terminal.

<filename>: a disc file or a device expressed as a string
literal.

Use

As a command to load a previously SAVEd program in binary format
from the disc file or the device specified by <filename> into
the user's program storage area.

Remarks

1. The LOAD command executes an implicit NEW command (see Sect.
9.11), thereby clearing any currently loaded program from

core memory.

2. When a previously SAVEd program (see Sect. 9.16) has been
LOADed, it can be LISTed (see Sect. 9.9), modified, or RUN

(see Sect. 9.15).

162
Examples Comments

* TOAD "$SPTR" <filename> is a device
(paper tape reader).

* TOAD "PROG1.SV" <filename> is a disc file.

9.11 NEW

Format
NEW
Use

As a command or statement to clear all currently stored program
statements and variables from core memory and to close any open
files (see Ch. 8).

Remarks

1. The user should clear his program storage area by means of a
NEW command (or statement) before entering a new program so
that statement lines from previous programs will not be
executed along with the new program.

2. A NEW statement may appear as the last executable statement
in a program, thereby clearing the program from core memory
after program execution.

3. When used with an ON-ERR or ON-ESC statement (see Ch. 3), the
NEW statement can be used to prevent unauthorized access to a
program.

163

Example Comment

* LIST

0010 LET NUMBER=5; I=0

0020 WHILE I<=NUMBER DO

0030 PRINT NUMBER;

0040 LET NUMBER=NUMBER+1; I=I+2
0050 ENDWHILE

0060 NEW NEW used as a statement.
* RUN
5 6 7 8 9 10
END
AT 0060
* LIST This LIST command shows that

the program has been cleared.

9.12 PAGE
Format
PAGE=<expr>

<expr>: a numeric expression in the range 0 <= <expr>
<= 132.

Use

As a command or statement to set the right-hand margin of the
terminal.

Remarks

1. The default page width (length of a print line) is 72
columns.

2, If the page width is set to zero, the system will regard the
length of the print line as infinite and consequently not out-
put an automatic carriage return and line feed in PRINT state—
ments (see Ch. 3). The user may find this advantageous when
using the X-Y addressing facilities of a video terminal.

9.13

164
Example Comment

* LIST

0010 FOR I=1 TO 10
0020 PRINT I;
0030 NEXT I

* PAGE=30

* RUN

1 2 3 4 5 6 7 8 9 The system outputs a carriage
10 ' return and line feed when the
END page width (length of the

AT 0030 print line) is exceeded.
* PAGE=20

* RUN
12 3 4 5 6
7 8 9 10

END

AT 0030
*

PUNCH

Format

<line ni>
lTO

PUNCH <line n2>
()
<line n1>!, I<line n2>
<line n1>: the first statement to be punched.
<line n2>: the last statement to be punched.

Use

As a command to output part or all of the currently loaded
program in ASCII to the terminal punch (when present).

165
Remarks

1. A PUNCHed listing is preceded by a leader and followed by a
trailer, each containing 120 NUL characters (see App. D).

2. As the PUNCH command does not turn the terminal punch on and
off, the following procedure is required:

a. Type the desired PUNCH command, press the RETURN key, and
immediately press the ON button on the punch.

b. A NUL leader will be punched, followed by a listing of the
desired lines of the current program, followed by a NUL
trailer.

c. When punching is completed, press the OFF button on the
punch.

3. When part or all of a program is PUNCHed, a listing is output
on the terminal simultaneously.

4. The variations of the command have the following effects:
PUNCH Punches the entire program

starting from the lowest

numbered statement.

PUNCH <line n1> Punches only the single

statement at line number
<line n>.

TO

PUNCH {, }(line n2> Punches from the lowest
numbered statement through

line number <line n2>.

TO

PUNCH <line n1>!, I<line n2> Punches from line number
' <line n1> through line

number <line n2>.

Example

* PUNCH 200 TO 500

Comment

Lines 200 through 500 will
be punched.

166

9.14 RENUMBER

Format

<{line n1>
STEP
RENUMBER l, <line n2>
STE

P
<line n1>{, Lline n2>

<line n1>: the initial line number in the current program.

<line n2>: the increment between line numbers in the
current program.

Use

As a command to renumber the statements in the current program.
Remarks

1. The variations of the command have the following effects:

RENUMBER Renumbers the current
program starting with the
default line number 0010
and with a default incre-
ment of 10 between line
numbers.

RENUMBER <line n1> Renumbers the current
program starting with line
number <line ni1> and
incrementing by <line n1>
between line numbers.

STEP
RENUMBER {, ’<line n2> Renumbers the current
' program starting with the
default line number 0010 and
incrementing by <line n2>
between line numbers.

STEP
RENUMBER <line n1>{, }<line n2> Renumbers the current

167

program starting with line
number <line n1> and
incrementing by <line n2>
between line numbers.

2. Line numbers are limited to four digits. If a RENUMBER
command causes a line number to be greater than 9999, the
command will be re-—executed as:

RENUMBER 1 STEP 1

3. The RENUMBER command will also modify the line numbers in
GOSUB, GOTO, ON-GOTO/GOSUB, and RESTORE statements (see Ch.
3) to agree with the new line numbers assigned to the current
program.

4, References to non—existent lines are changed to 0000.

9.15

168
Example

* LIST

0001 LET NUMBER=5; I=0
0002 REPEAT

0004 PRINT NUMBER*I;
0007 LET I=I#1

0010 UNTIL I=NUMBER

* RENUMBER

* LIST

0010 LET NUMBER=5; I=0
0020 REPEAT

0030 PRINT NUMBER*I;
0040 LET I=I#1

0050 UNTIL I=NUMBER

* RENUMBER ,5

*LIST

0010 LET NUMBER=5; I=0
0015 REPEAT

0020 PRINT NUMBER*I;

0025 LET I=I#
0030 UNTIL I=NUMBER

RUN/RUNL

Format

RUN ’ l<1ine no.>]
RUNL <filename>

Comment

The default values of <line
n1>,<line n2> are 10,10.

<line no.>: the line number in the current program from
which execution is to begin.

<filename>: a disc file or a device expressed as a string

literal.

169
Use

As a command to execute the current program, either from the
lowest numbered statement or from the line number specified by

<line no.>, or to load and execute a previously SAVEd program as
the current program.

Remarks

1. Output from PRINT statements (see Ch. 3) will appear on the
terminal or, if the RUNL form of the command is used, on the
line printer. '

2. The variations of the command have the following effects:

RUN/RUNL, Clears all variables: undimensions
all arrays and string variables;
executes an implicit RESTORE
command (see Ch. 3); resets the
random number generator; runs the
current program from the lowest
numbered statement.

RUN/RUNL <line no.> Retains all existing information,
e.g. the values of variables and
dimensioning, resulting from a
previous execution of the current
program; runs the current program
from the line number specified by
<line no.>.

This variation of the command
allows program execution to be
resumed retaining the current
values of all variables and para-
meters. It may be used after the
execution of a STOP statement
(see Ch. 3) in the program, after
the ESCape key has been pressed,
or after an error has occurred,
and will incorporate any changes
made in the program after the
program was stopped.

RUN/RUNL <filename> LOADs a previously SAVEd program
from the disc file or the device
specified by <filename> (see Sect.

9.16

Ex les

* RUN

* RUNL 50

* RUN "$PTR"

* RUNL "PROG.SV"

SAVE

Format

SAVE <filename>

170

9.10), thereby clearing any
currently loaded program from core
memory; runs the previously SAVEd
program from the lowest numbered
statement.

Comments

Runs the current program from the
lowest numbered statement.

Runs the current program starting
at line 50; output will appear on
the line printer.

Loads a program from paper tape
and runs it from the lowest
numbered statement.

Loads a program from the file
PROG.SV and runs it from the
lowest numbered statement; output
will appear on the line printer.

<filename>: a disc file or a device expressed as a string
literal or by means of a variable.

Use

As a command or statement to write the currently loaded program,
including the current values of all variables and parameters, in
binary format to the disc file or the device specified by

<filename>,

Remarks

1. If the program is written to a disc file, a new file named
{filename> is created in the logical disc to which the
terminal is connected (see Ch. 8). If <filename> already

171

exists, the program is written to this file. If an end of
file condition is detected during the SAVEing operation, the
error message 0107: END OF FILE will be output.

2. In the interests of conserving space on a SAVE device,
one should add the statement

1 STOP

to the program and RUN it before it is SAVEd. This will cause
the core memory area which is used for variables during
program execution to be truncated. The 1 STOP statement may
then be deleted, before the program is SAVEd (see Ex. 2).

3. A SAVEd program can be LOADed, CHAINed, or RUN (see,
respectively, Sect. 9.10, Ch. 3, and Sect. 9.15).

4. SAVEing, rather than LISTing (see Sect. 9.9), is a more
efficient way to store large programs. The size of a program
in binary format can be determined by means of the SIZE
command (see Sect. 9.18). If the indicated size is less than
the number of ASCII characters in the program, which may be
ascertained by looking at the program, then SAVE should be
used rather than LIST.

Example 1 Comment (1)
* SAVE "SPTP" SAVE commands.

* SAVE "PROG1.SV"

200 SAVE "spTP" SAVE statements.
200 SAVE "PROG1.SV"

9.17

172

Example 2

* LIST

0010 DIM A(100)
0020 FOR I=1 TO 100
0030 LET A(I)=I
0040 NEXT I

* SIZE
00422 BYTES USED
04578 BYTES LEFT

* RUN

END

AT 0040

* SIZE

00836 BYTES USED
04164 BYTES LEFT

* 1 STOP
* RUN

STOP

AT 0001

* SIZE

00428 BYTES USED
04572 BYTES LEFT

* 1
* SIZE

00422 BYTES USED
04578 BYTES LEFT

* SAVE "$PTP"

*

SCRATCH

Comment (2)

Shows how one can save space
when SAVEing a program.

+—8ize before execution.

-—Size after execution.

<1 STOP statement inserted.

<+Size after second
execution.

+—1 STOP statement deleted.

-—Program SAVEd on paper
tape.

Used only in batch mode. For description, see Appendix B.

9.18

9.19

173

SIZE
Format
SIZE

Use

As a command to return the number of bytes used by the current
program and the numbers of bytes left.

Remarks

Even though no program is present, the SIZE command will
indicate that approximately 350 bytes have been used, as these
are always required to administer the execution of running
programs.

Example

* SIZE
00836 BYTES USED
04164 BYTES LEFT

TAB
Format
TAB=<expr>
<{expr>: a numeric expression in the range
1 <= <expr> <= page width specified by the PAGE
command.
Use

As a command or statement to set the zone spacing between the
print elements output by PRINT statements (see Ch. 3).

Remarks
1. The default zone spacing (width of a print zone) is 14

columns. This spacing allows five print zones per 72
character print line.

174

2. Since the maximum range of zone spacing depends on the PAGE
command setting (see Sect. 9.12), it is wise to specify the
page width (length of the print line) first and then specify
the setting of the tabulation zones.

Example

* LIST
0010 FOR I=1 TO 10

0020 PRINT I,
0030 NEXT I

* PAGE=30
* TAB=10

* RUN
1 2 3
4 5 6
7 8 9
10

END

AT 0030

* TAB=5

* RUN

AT 0030

*

9.20 TIME

Used only in batch mode. For description, see Appendix B.

7.3

Ex

127

les

* CONNECT "DISC1"
* CONNECT “SUBAREA",637
10 CONNECT LDNAMES,KEY

COPY

Format

COPY "<ldname>:<filenamei>","<filename2>"

<ldname>: a logical disc.
<filename1>: a file in <ldname> to be copied.

<filename2>: a file in the logical disc to which the
terminal is connected.

Use

As a command to copy a file from any logical disc to a file in
the logical disc to which the user"s terminal is connected.

Remarks

1.

A file can be copied to a logical disc only if the user
correctly specified the protection key of that logical disc
in the CONNECT command (see Sect. 7.2).

The COPY command copies the file <filename1> in the logical
disc <ldname> (provided that <ldname> is not reserved for
writing by another user) to a file, <filename2>, in the
logical disc to which the terminal is connected.

If <filename2> does not exist, a file will be created with
the name <filename2>.

Example

* COPY "LIB:PROG1","PROG2"

7.4

15

128

INIT

Format
INIT <device>

<device>: a device expressed as a string literal.
Use

As a command to initialize the main catalog in a device
containing logical discs.

Remarks
1. The INIT command can only be given from the master terminal.

2. Users may CONNECT their terminals to logical discs in <device>
as soon as the INIT command has been executed.

3. When the INIT command is executed, the UNIT ID is output on
the master terminal. (For a description of the UNIT ID, see

the NEW function in the separate publication RC BASIC System
Logical Disc Formatting Program Operating Guide.)

Example Comment

* INIT "S$FDO"
FORMATTING EXAMPLE 77.02.09 -—UNIT ID.

LOCK

Format
LOCK <device>

<device>: a device expressed as a string literal.

Use

As a command to lock a device, when changing discs or closing
down the system, so that no user can CONNECT his terminal to a
logical disc in that device.

A.1

175

Error Messages
Introduction

The errors that can occur during use of the RC BASIC system fall
into three categories.

1) Errors detected during program entry or command execution

If an error is detected when an RC BASIC statement is entered or
when a command is executed, an error message will be output in
the following form:

ERR : <xxxx>
<text>

{xxxx>: a decimal error code less than 0100.
<text>: a brief description of the error.
If an error is detected while a program is being read from a
file, RC BASIC will output the erroneous statement followed by

the above error message on the current output device.

2) Errors detected during program execution

If an error is detected during the execution of a program, an
error message will be output in the following form:

AT <yyyy> :

ERR : <Xxxx>

<text>
<yyyy>: the line number of the erroneous statement.
<xxxx>: a decimal error code less than 0100.

<text>: a brief description of the error.

3) Errors detected during file operations

If an error is detected during an input/output operation, an
error message will be output in a form similar to that of the
messages output for errors of the first or second category;
however, the text IOERR will replace the text ERR and the

A.2

176

decimal error code, <xxxx>, will be greater than or equal to

0100.

Error messages, i.e. messages for errors detected during program

entry or command execution as well as those detected during
program execution, are listed and explained in numerical order
in Section A.Z.

1/0 error messages, i.e. messages for errors detected during

file operations, are listed and explained in numerical order in
Section A.3.

Error messages

0000:

0001

0002:

0003:

0004:

0005:

ILLEGAL COMBINATION OF RELATIONAL OPERATORS

The legal combinations are: <, <=, =X, =, >=, =, 2,
and <>.

CHARACTER UNKNOWN

A character not used in RC BASIC was input. This
message may appear as the result of a transmission
error.

SYNTAX ERROR

The structure of an RC BASIC statement is incorrect.

NO CORE

No core memory is available for additional terminals
at the moment.

ILLEGAL KEY

' The protection key specified in a CONNECT command must

be in the interval [0,65535].
ILLEGAL STATEMENT NUMBER
A statement number must be in the inverval [1,9999].

An illegal statement number may occur as the result of
an overflow when the AUTO command is used.

177
0006: TOO MANY NAMES

Too many names (variables and procedures) have been
declared. The maximum number allowed is 93. The number

of names can be reduced by means of the following
commands

* LIST <filename>

* NEW
* ENTER <filename>

0007: COMMAND NOT EXECUTABLE FROM DEVICE
This error will occur, for example, if an ENTER file
contains a command or if the attempt was made to
execute BYE (and certain other commands) in batch
mode.,

0008: ILLEGAL PAGE/TAB COMMAND

The following rule apgplies to the two commands PAGE=
<expr1> and TAB=<expr2>:

0 <= <expr1> <= 132 and 1 <= <expr2> <= <expri>
0009: LINE TOO LONG

A program line (when translated to internal form) is
too long.

0010: TIME LIMIT EXCEEDED

The time limit specified for a batch job has been
exceeded.

0011 NAME TOO LONG

A name (variable or procedure name) may not exceed a
length of 8 characters.

0012 ILLEGAL COMMAND
Attempt to use an RC BASIC statement as a command, but

the statement is meaningful only within the context of
a program.

0013:

0014:

0015:

0016:

0017:

0018:

0019:

0020:

0021:

178
LINE NUMBER DOES NOT EXIST

A line number that was referenced, e.g. by LIST or
RUN, does not exist in the program.

PROGRAM TOO LARGE

Available core memory is insufficient for the program
(statements). Program size may be reduced by deleting
REM statements and other nonessentials.

NO MORE DATA FOR READ

The last element in the last DATA statement has been
read, but the system attempted to execute READ once
more,

ARITHMETIC ERROR

Either division by 0 or overflow.

UNDEFINED VARIABLE

Attempt to use a variable in an expression, but the
variable has not been defined, e.g. by LET or DIM.

GOSUB-RETURN DEPTH

Nested subroutines (GOSUB statements) or procedures
(EXEC statements) may not exceed a depth of 7 levels.

RETURN WITHOUT GOSUB

A RETURN or ENDPROC statement was encountered without
the previous execution of a GOSUB or EXEC statement.

FOR-NEXT DEPTH

' Nested FOR-NEXT loops may not exceed a depth of 7

levels.
FOR WITHOUT NEXT

Every FOR statement must have a corresponding NEXT
statement.

0022:

0023:

0024:

0025:

10026:

0027:

0028:

0029:

179
NEXT WITHOUT FOR

A NEXT statement was encountered without the previous
execution of the corresponding FOR statement.

NO MORE ROOM FOR VARIABLES

No more core memory is available to assign space for
variables. Program size may be reduced by deleting REM
statements and other nonessentials.

ILLEGAL USE OF <

The character < may be used in a string literal only
in connection with the indication of a decimal value
to represent a non-printing or special character. Thus
the ASCII character Carriage Return, for example, is
represented as <13>. If the character < itself is to
appear as a character in a text string, it must be
represented as <60>.

NOT IMPLEMENTED

This message will appear, for example, if the user
attempts to execute a BATCH command and the system has
no card reader.

ONLY ALLOWED FROM MASTER TERMINAL

INIT, LOCK, and certain other commands can only be
given from the master terminal.

ILLEGAL FILE NUMBER
A user file number must be in the interval [0,7].

ORIGINAL DIMENSIONING EXCEEDED

' Attempt to dimension an array previously dimensioned

to a smaller number of elements.
EXPRESSION TOO COMPLEX

An expression contains too many parentheses.

0030:

0031

0032:

0033:

0034:

0035:

0036:

0037:

0038:

180
ILLEGAL FILE LENGTH
The specified length of a sequential access file in
blocks or the specified number of records in a random
access file must be greater than or equal to 0.
SUBSCRIPT ERROR
A subscript of a dimensioned variable exceeds the
upper bound of the dimension for the array or is less
than 1.

UNDEFINED FUNCTION

A user function, i.e. FNa(d), has not been defined in
a DEF statement.

Not used.

ILLEGAL FUNCTION ARGUMENT

A function containing an illegal argument was called.
FORMAT ERROR IN PRINT USING

The format of a PRINT USING statement is incorrect.
PRINT ELEMENT TOO LONG

A print element contains more characters than the
print line can hold. (The length of the print line can
be set by means of the PAGE command.)

DETERMINANT IS ZERO

A matrix cannot be inverted if its determinant is
equal to zero.

' VARIABLE NOT DIMENSIONED

A variable which has not been declared was used in the
form <name>(<subscript>).

0039:

0040:

0041:

0042:

0043:

0044:

0045:

0046:

181
SAME MATRIX ON BOTH SIDES OF EQUAL SIGN
Certain matrix operations, such as multiplication,
cannot be performed if the same matrix appears on both
sides of the equal sign.
DIMENSIONAL ERROR IN MATRIX OPERATION
a) In matrix addition or subtraction, the two matrices

on the right-hand side of the equal sign must have
the same dimensions.

b) In matrix multiplication, the rules set forth in
Chapter 6, Section 5, must be respected.

c) The total number of elements in the matrix on the
left-hand side of the equal sign must not be less
than the number of elements in the matrix which is
the result of the matrix operation on the right-
hand side of the equal sign.

MATRIX NOT SQUARE

Only square matrices can be inverted.

FILE ALREADY OPEN

Attempt to open a user file (numbered from 0 to 7)
which is already open.

Not used.
FILE NOT OPENED

Attempt to reference a user file which has not been
opened.

PROC WITHOUT ENDPROC

A procedure (which is introduced by a PROC statement)
does not end with an ENDPROC statement.

PROCEDURE DOES NOT EXIST

A procedure which was called by means of an EXEC
statement does not exist in the program.

182
0047 Not used.
0048: NOT A SAVE FILE

A LOAD command was given specifying the name of a file
that does not contain a SAVEd program.

0049: Not used.
0050: IF-ENDIF DEPTH

Nested IF-ENDIF constructions may not exceed a depth
of 7 levels.,

0051: ELSE WITHOUT IF

An ELSE statement was encountered without the previous
execution of an IF statement.

0052: IF/ELSE WITHOUT ENDIF

An IF/ELSE statement must have a corresponding ENDIF
statement.

0053: WHILE WITHOUT ENDWHILE

Every WHILE statement must have a corresponding
ENDWHILE statement.

0054: WHILE-ENDWHILE DEPTH

Nested WHILE-ENDWHILE loops may not exceed a depth of
7 levels.

00553 ENDWHILE WITHOUT WHILE
An ENDWHILE statement was encountered without the
previous execution of the corresponding WHILE
 statement.

0056: ENDIF WITHOUT IF

An ENDIF statement was encountered without the
previous execution of an IF statement.

0057:

0058:

0059:

0060:

0061:

0062:

0063:

0064:

183
REPEAT-UNTIL DEPTH

Nested REPEAT-UNTIL loops may not exceed a depth of 7
levels.

UNTTL WITHOUT REPEAT

An UNTIL statement was encountered without the
previous execution of the corresponding REPEAT
statement.

CASE WITHOUT WHEN, CASE ERROR

A CASE <expr> OF statement must either be matched by at
least one WHEN <expr> statement or, if no match is
found between the expression in the CASE statement and
an expression in a WHEN statement, be followed
immediately by one or more statements.

CASE WITHOUT ENDCASE

A CASE statement must have a corresponding ENDCASE
statement.

ENDCASE WITHOUT CASE

An ENDCASE statement was encountered without the
previous execution of a CASE statement.

WHEN WITHOUT CASE

A WHEN statement was encountered without the previous
execution of a CASE statement.

CASE DEPTH

This message will appear when there is a programming

error in the user's program, viz. a loop that causes

CASE <expr> OF, but not ENDCASE, to be executed.
NOT A DIMENSIONED VARIABLE

A simple variable has been used in the form <name>
(<subscript>).

A.3

A.3.1

184
0065: ILLEGAL TYPE
An expression is of the wrong type.
0066 TYPE CONFLICT

A variable is not of the same type as that with which
the user attempted to equate it.

Error codes 0067 through 0076 are all accompanied by the text
SYSTEM ERROR. If a SYSTEM ERROR message appears, please fill out
an RC Error Report, stating the error code.

Error codes 0077 through 0099 are not used.

1/0 error messages

1/0 errors, i.e. errors detected during file operations, are
divided into two groups.

1) I/0 error messages 0100 through 0119, 135, and 136

This group comprises errors recognized by RC BASIC.

2) 1/0 error messages 0120 through 0134

This group comprises errors recognized by the MUS or DOMUS
operating system.

The two groups are described in Sections A.3.1 and A.3.2,
respectively.

I/0 error messages 0100 through 0119, 135, and 136

0100: FILE UNEKNOWN
Attempt to reference a non-existent file.
0101 FILE OPENED INCORRECTLY

A file was opened in the wrong mode, e.g. the line
printer cannot be opened in a read mode.

0102:

0103:

0104:

0105:

0106:

0107:

0108:

0109:

0110:

0111:

185
FILE IN USE
Attempt to reference a file already in use.
ILLEGAL FILENAME
A disc filename begins with the illegal character $.
NOT QONNECTED TO LD

Attempt to reference a disc file, but the user's
terminal was not connected to a logical disc.

ILLEGAL COMMAND TO LD

Attempt to create, delete, rename, copy, or write to a
disc file, but the user did not specify the protection
key of the logical disc in the CONNECT command.
ILLEGAL FILE OPERATION

Attempt to reference an unopened file.

END OF FILE

Attempt to read or write outside a file.

FILE TOO LONG

The number of free blocks in the logical disc is not
sufficient for creation of a file of the specified
size,

FILE EXISTS

Attempt to create a file that already exists in the
logical disc.

LD UNKNOWN

The user attempted to connect his terminal to a
non-existent logical disc.

DEVICE UNKNOWN

Attempt to access a non—-existent device.

0112

0113:

0114:

0115:

0116:

0117

0118:

186
DEVICE INITIALIZED

The main catalog in the specified device has already
been intialized.

LD RESERVED

The user attempted to connect his terminal to a
logical disc which another user has reserved for
writing.

WRONG KEY

The user specified the wrong protection key for a
logical disc.

OPEN FILES ON LD

The user attempted to release his terminal from a
logical disc, but one or more files were open.

LD RESERVED ON DEVICE

The main catalog in the device on the specified drive
unit cannot be initialized because the device was not
locked properly when the disc containing the device
was last removed from the drive unit.

This device must now be reset using the special
formatting program (see the separate publication RC
BASIC System Logical Disc Formatting Program Operating
Guide).

RECORD TOO LONG

Attempt to read or write a record (from or to a random
access file) which was longer than the record length

specified for the file.

NO MORE FILE DESCRIPTORS

Every system configuration has a fixed number of file
descriptors, corresponding to the total number of disc
files which can be open at one time.

One or more disc files must therefore be closed before
the file in question can be opened.

A.3.2

0119:

0135:

0136:

187
ILLEGAL RECORDNO
The number of a record to be read from or written to a
random access file is larger than the total number of
records in the file or less than 1.

SYSTEM ERROR

Please fill out an RC Error Report, stating the error
code.

ID IN USE ON DEVICE
Attempt to initialize a device while a logical disc in

the device was in use. The logical disc in question
must be released before the device can be initialized.

I/0 error messages 0120 through 0134

Messages for I/0 errors 0120 through 0134 do not include a
descriptive text, as the meanings of the error codes, which are
explained below, depend on the device causing the error. None of
the devices makes use of all of the error codes.

Line printer errors

0120:

0121:

0126

0128:

0129:

0130:

0131:

0133:

0134:

Unit disconnected.
Unit off line.
Illegal operation. Unit reserved by another process.

Paper fault. For Charaband printer: Overwriting of a
line has occurred more than 8 times.

Unit not ready.

Error in paper movement control character. For

Charaband printer: Parity error during the loading or
printing of a line.

Paper low. End of paper.
Driver process not loaded.

Paper runaway.

143

8.10 MAT WRITE FILE

Format

MAT WRITE FILE(<file>[,<recno>]) [,] <mwar> [,<mvar>] ...
<file>: a numeric expression which evaluates to the
number of a user file opened in mode 0 or 3.

{recno>: a numeric expression which evaluates to the
number (> 0) of a record to be written to a
random access file.

<mvar>: a matrix variable.

Use
As a statement or command to write matrix data in binary format
to a sequential access file or record of a random access file.

Remarks

1. The matrices must have been dimensioned before the statement
is executed (see Ch. 6).

2. The values of the matrix elements are output by rows in
ascending order.

3. If the attempt is made to write a record (to a random access
file) which is longer than the record length specified for
the file, the error message 0117: RECORD TOO LONG will
appear.

8.11 OPEN FILE

Format
OPEN FILE(<file>,<mode>) [,] <filename>

<file>: a numeric expression which evaluates to a
number in the range 0 to 7 (the number of a
user file). This number is associated with
<filename> and used whenever the file is
referenced in other file input/output
statements.

189

Flexible disc drive errors

0120:

0121:

0123:

0124:

0125:

0126:

0127:

0128:

0130

0131:

0132:

0133:

0134:

Unit disconnected.

Unit off line.

Address field parity error.

Disc write-protected.

Output: Disc write-protected.

Illegal operation. Unit reserved by another
End of file.

Block size error. Record format conflict.
Parity error.

End of medium.

Position error.

Driver process not loaded.

Time out.

Moving-head disc drive errors

0120:

0121:

0126

0128:

0129:

0130:

0131:

0132:

Unit disconnected.
Unit off line.
Illegal operation. Unit reserved by another

Block size error. Record format conflict.

'Data channel overrun.

Parity error.
End of medium,

Position error. Seek failure.

process.

process.

190
0133: Driver process not loaded.
0134: Time out.

Incremental plotter errors

01262 Illegal operation. Unit reserved by another process.
0128: Block size error. Record format conflict.

0133: Driver process not loaded. -

0134: Time out.

Card reader punch errors

0121 Unit not ready: Off line, stopped, disconnected, or in
error. (Check the indicators.)

0122: Feed error.

0126: Illegal operation. Unit reserved by another process.
0127 Secondary hopper empty.

0128: Block size error. Record format conflict.

0129: Data channel overrun.

0130 Parity error. Data error.

0131: Primary hopper empty.
0133: Driver process not loaded.
0134: Hardware trouble.

Magnetic tape unit errors

0121: Unit off line.
0122: Unit rewinding.

0123: Input: Byte limit conflict. Noise record.

191

0125: Output: Write ring not mounted.

0126: Illegal operation. Unit reserved by another process.
0127: Input: End of file mark.

0128: Block size error. Record format conflict.

0129: Data channel overrun.

0130: Parity error.

0131: Output: End of tape sensed.

0132: Position error.

0133: Driver process not loaded.

0134: Blank tape. Position error. Wrong -density.

Cassette tape unit errors

0121: Unit off line or disconnected. Cassette released.

0122: Unit not ready. Rewinding or.position to beginning of
tape.

0126: Illegal operation. Unit reserved by another process.

0127 Input: End of file mark.

0128: Block size error. Record format conflict.

0129: Buffer overflow. Data late.

0130: Parity or block check error.

0131: Output: End of tape sensed.
0132: Position error.
0133: Driver process not loaded.

0134: Time out. Output: Write—enable plugs removed.

B.1

192

Batch Mode and Programming on
Mark-Sense Cards

Batch jobs

The batch mode of operation permits the user to enter and run

one or more complete jobs from the mark-sense card reader (when
present).

RC BASIC source programs, written on mark-sense cards, are
placed in the reader; when the BATCH/BATCH "S$LPT" command is
given from a terminal, the system starts reading the cards.

The cards, the contents of which are interpreted exactly as if
they had been entered from a terminal, can contain all of the RC
BASIC statements and commands with few exceptions.

A stack of cards for batch entry is typically divided into
several jobs.

Each job is initiated by a card containing a SCRATCH command
(see Sect. B.5) and terminated by a card containing the EQJ
command (see Sect. B.4).

Between the SCRATCH command and the EOJ command there can be an
RC BASIC source program on cards, each of which contains one

statement, and following the program there can be one or more

cards containing one command each, e.g. LIST and RUN.

A RUN command may be followed by cards containing data for the
program, which is read by means of INPUT statements (see Ch. 3)
in the program. Such data cards are marked only in the FORMULA
section of the card (see Sect. B.2).

The figure below shows a card stack containing two batch jobs.

193

/[B3
/ RUN
/ LIST
/ program cards

~/ 5 REM PROGRAM FINDS 100 PRIME NUMBERS

/ SCRATCH WILKINS MICAWBER 7 C
/ EQ |
/ data cards
/ 4, -5, 7
/ RUN
/ LIST
/ program cards -
/10 REM PROGRAM FOR 2ND DEGREE EQUATION .
/ SCRATCH EMMA MICAWBER 7 C n

STATEMENT 2

FORMULA

STATEMENT 1

b 4

o
——=)
=
fn L)
[)]

[0

==

=] | —

>

&
o)

=2

5=

B <)

=

[

——

D=

=

[

=—=

o
L2 |
[y

NS i>mx|>ras

==
-2

[

ONISN|

[7-]
—
=TS

(1=}
—

[7=]

R0 O

194
=
B[~ [5]
CoE|Do|>E X| ras
B[I~ | © o

=2

[7<)

o
w
]

—|

man
= Eere

w

zé

["+]
EEO|lOLOE|jND-D|> >
=

u

=0
[x| § e |

uw

—

Te]

o

~
EZoloox|n-Sl>E x|

EF T =T) B 3 S

‘__Qz o orep
&
——

=

:“z-;:: BoxE|wni-Dl>Ex|>re

el

|F=o]|ecoE|no]>
w

A R T | Wt | K~

<

e

TS ol
["e]

b
3

C3
R e
<= |
<
=3

SxJ|FFolao|vro|SEx| >

=

=

=

=
<

£

P

S B=ECSjoox|n
i
&

:
s 4

52
—
m
[z}
VAg s
—
i (]
ST —|Swo

[—]
(=]

[)
[L2]
[iz]
L.z}
(L]
2]
VEg
”
[L2]

B~
ir \H\E-

s

—

e
ox—

[3¥]
cSle—alc—alc—"
[
[}
o
o
I e 1=
]
o
| S—
=
o
[~Y]

=5

Sooloww o —Iow i |¥Frxolaon

Soolowu 6T —| S
Soolowu|loT—| 5%
anolowe |lox—| S
Soolowe | 6T —| S
SmolouL o=
$|-ik:-.¢--- RIS

ET-TE) =1

—
£
—

—

s
=mHe—
F 1R~

—

-~

-—

-—
Soolown

-—

-—

—

IT=

dmo|owk|loT—| 5=

-~

LTRSS

-~
CoOOuiu

==

EY
i
A

:

[=]

[=]

=== ——
o

= c—
[«]

[«]

=} [———=] [=]
/| || c—

==
=

=N

==
(=]

=

LN

S (T N T
=

~—

—~—~

IS

P~

S~

[—1 -

g

m
L]
1
—|l/—
1]
|03
1]
=l
"

| e | § s | | i | | e

===

e’ [£
==
S
g
=
| ==mame | | S|
—|—

S
hod

T

—/j—

===

:

ﬁqo_._ oﬁm_._

]]]

[e et B s B e

hz_mm_”_ Elegle]
:.Ez__u_

:

NN

E 5

1v3d3y|

Z
a

g

programming cards. The RC BASIC mark-sense card looks like this

The cards used for batch jobs are 37 column mark-sense

Mark-sense cards

B.2

STATEMENT NUMBER

JHOLS

=]

T~

5
s

| e I o B e i o |
o |]

T=]

:

[Te)

<
||
oIsve OY

4
3

=2y

N @ [D

=

[
=

[=]

— ||

S| [N OO,

w

B.2.1

195

The mark-sense card is not punched; instead, information is
written on it simply by marking one or more fields with a soft
pencil, e.g. No. 2.

As may be seen from the figure on the preceding page, the
RC BASIC mark-sense card is divided into four sections, from

left to right:

STATEMENT NUMBER section (columns 1-4)

STATEMENT 1 section (columns 5-7)
FORMULA section (columns 8-36)
STATEMENT 2 section (column 37)

STATEMENT NUMBER

The STATEMENT NUMBER section (columns 1-4) is used for
statement numbers.

An RC BASIC program consists of statements, each of which begins
with a statement number in the range 1 to 9999. A statement
number is written by making at the most one mark in each of the
columns 1 to 4.

196

Examples

-

[el = =1
M=

10 1987:

[=]

=|5]

-y

ASIC

WM
1 e =l e e =l =
N

[9%]
(%]

=

=
=

RC
o

[=}]

:IZU‘E::. [

-._J

—

Clo|J|o|a|~

[{=RK="]
‘ "‘_‘._D=OD,

© | 0| ~|o

B.2.2 STATEMENT 1

The STATEMENT 1 section (columns 5-7) permits the user to write
one or more RC BASIC words simply by marking one field for each
word.)

None of the three columns in this section may contain more than
one mark. Some of the RC BASIC words are commands, e.g. LIST or
RUN, and may not be preceded by a line number. Other words, e.g.
ENTER or CLOSE, may be used with or without a line number, i.e.
either as statements or commands. Still other words can be used
only with a line number, e.g. PROC or ENDPROC. :

Whether a word must have, may have, or may not have a line
number can be seen from the statement and command descriptions
found in Chapters 3, 6, 7, 8, and 9.

197

Examples
10 OPEN FILE : LIST :
[s Sl A = [|
[o[loffo[fo [Few [rers o] [[oTiofIofTo] en s o
Qi [fot QU] e [oo
(121220 s e [eS: | af2ll2]lo]J2| s e [§
BMBIBIB o o g | SB[o o (=]
(A4 o o e Ol e = o
15 115[5{05 [Froc eso [(SIS - ome e
[6[[6{16]06| s [wr e | BEREISHEEE
[7[7)17][7) oo o [osne [7{17[7[7) Desese moe ooncy
EREE] SN & [8]18]8][8 lowen e [rve |
]9 ”Q ﬂg ﬂ9! Hgéns ”READ ”DATAé 9 gﬂgl” iﬂg%nsjﬂsan "mm%
\|'l3ﬂ4|5l IG. I?Il 1 48 5] 7

B.2.3 STATEMENT 2
The STATEMENT 2 section (column 37) is used as follows:

The CONT field should be marked whenever an RC BASIC statement
fills more than one card. The system will then continue reading
from the next card, skipping the STATEMENT NUMBER section of
that card. A statement can theoretically be continued on any
number of cards.

When the EQJ field is marked, the system will terminate the job.
No other fields on the card should be marked.

The THEN, OF, and DO fields are used in conjunction with the
words IF, CASE, and WHILE, respectively.

ENDPROC, RETURN, STOP, END, and RANDOMIZE are normal RC BASIC
statements.

B.2.4

B.2.4.1

B.2.4.2

198

The STATEMENT 2

section looks
like this: , W“
[
HTHEI
1l §
HW E
[=2
.”Emm
.&v
I]EMD
e
L/
FORMULA

The FORMULA section (columns 8-36) is used for that part of an
RC BASIC statement which cannot be written in the STATEMENT 1
and STATEMENT 2 sections.

Each of the columns 8 to 36 contains twelve vertical fields.
The first field from the top is field number 12, the second
field from the top is field number 11, and the remaining fields
are numbered 0 to 9.

Even numbered columns

Columns with even numbers (i.e. 8, 10, ..., 36) are used for the
letters A to Z, the digits 0 to 9, and the following special
characters: ‘

(field 12)
’ (field 11)
. (field 9)

0dd numbered columns
Columns with odd numbers (i.e. 9, 11, ..., 35) are used for

the digits 0 to 9 and the following special characters:

199

((field 12)
) (field 11)
PR (field 1)
/ Vo (field 2)
< > 4 (field 3)
I - (field 4)
? % @ (Field 5)
& | Sp (field 6)
E @ & (Field 7)
CR ' (field 8)
=, . (field 9)

Note: SP is the space character. CR outputs positioning to the
leftmost character position on the print line and a line feed
(see App. D). &, @, and A are letters of the Danish alphabet.

B.2.4.3 Writing characters. The following characters are (or may be)
written by marking only one field:

= (field 12, even numbered columns)

((field 12, odd numbered columns)
i (field 11, even numbered columns)
) tfield 11, odd numbered columns)
0 to 9 (fields 0 to 9, respectively)

All other characters are written by marking two fields:

The first field to be marked is the field in which the
character itself appears on the card.

200

The second field to be marked is field 12, 11, or 0,

Which second field to mark is determined by the position of
the character in the first field, for example:

A
Bi|1
&

The characters A, B, and C all appear in field 1.

Since the character A has the top position in field 1, it is
written by marking field 1 and field 12.

Since the character B has the middle position in field 1, it
is written by marking field 1 and field 11.

Since the character C has the bottom position in field 1, it
is written by marking field 1 and field 0.

201

le

Ex

The statement

105 PRINT A,B,NAMES

is written by marking a card as follows

—_

o

-+

=t

—

r
[

- E (2 + 11)

- M (5 + 12)

—A(1+12§

- N (5 + 11)

- B (1 + 11)

-, (11)

- A (1 +12)

= PRINT

==

=]
=

=

al mm”mxw mme,mwm_mm

A I Lm_
S T
o[l E_mn.%mmmm=m—n=m_@=mm~m=mm%=unmnm.. bk 4l Bl il
Gl Nl Gl o Gl G Il A Sl
e e S C T
el el el e e el el e e e i
e Gp L P B e B[m_ﬁ_w*mm_ﬁ, SEVE PR E BB B M

-
[———]

=
o~

el

=

s

) e =T

[=2]

[=0]

O~
j— e | | e

wn

<t

£

2]

=

[=1 K=l [~]

[=]

=_I%=:I=I
=

B.3

B.3.1

B.3.2

202
Note

1. Blank spaces must be marked explicitly (the character SP).
Columns having no marks whatsoever will be skipped by the
card reader.

2. If a column contains more than the legal number of marks, the
column will be skipped. (This can be utilized to skip a
column containing an incorrectly marked field). Columns 1-7
may contain only one mark. Columns 8-36 may contain two
marks. Column 37 may contain a mark in the CONT field and one
other mark.

3. RC BASIC words not found in the STATEMENT sections can be
written using the PORMULA section.

Batch mode

BATCH/BATCH "SLPT" command

A terminal can be placed in batch mode by giving the command

BATCH or BATCH "SLPT". Before the command is given, the cards
should be placed in the card reader and the reader should be

ready, as the system will start reading cards at once.

If the BATCH form of the command is used, all output from the
jobs executed, i.e. listings, output from PRINT statements (see
Ch. 3), and error messages, will appear on the terminal.

If the BATCH "SLPT" form of the command is used, job output will
be directed to the line printer.

Illegal statements and commands
As stated in Section B.1, there are a few RC BASIC statements
and commands which cannot be used in batch mode. They are:

INIT AUTO
LOCK BATCH/BATCH "SLDT"

USERS BYE

B.3.3

B.3.4

B.3.5

203

Time limit on jobs

A time limit can be placed on a job, so that when the job has
run for a specified number of seconds, it will be interrupted.

The error message 0010: TIME LIMIT EXCEEDED will then be output
and the next job started.

The next job is assumed to begin with a SCRATCH command.

When a job is started, the time limit is set by default to
60 seconds. This time limit can be changed by means of the TIME
command (see Sect. B.6). '

ESCape key
The ESCape key has a special function when the terminal is in
batch mode.

When the ESCape key is pressed, the system will interrupt all
current activity and output the following message on the
terminal:

NEXT JOB(1), END OF BATCH(2), CONTINUE(3):

Here, the user should respond by typing one of the numbers
(i.e. 1, 2, or 3) and pressing the RETURN key.

All according to the user's response, the following will now
occur:

1 Cards will be read and skipped until
a SCRATCH command is encountered or the
reader is empty.

2 The terminal will be placed in
interactive mode.

3 The next card will be read and its
contents interpreted.

Return to interactive mode

When the BATCH/BATCH "SLPT" command has been given, the terminal
will remain in batch mode until one of the following occurs:

B.4

B.5

204
1. The card reader becomes empty.

2. The user presses the ESCape key and then
types the number 2.

3. An I/0 error on the card reader is detected.

EOJ command

Format

EQJ

Use

As a command to terminate a job.

Remarks

1. The EQJ command executes an implicit NEW command (see Ch. 9).

2. Any logical disc that was connected by the job will be
RELEASEd (see Ch. 7).

3. A card containing the EOJ command should always be the last
card in a job. '

SCRATCH command

Format
SCRATCH [<text>]

{text>: a text, i.e. a number of characters, which will
be output as a heading.

Use
As a command to initiate a new job.

Remarks

1. If the command BATCH (see Sect. B.3) has been given, the

B.6

205

SCRATCH command will clear the display screen on the RC 822
or RC 823 terminal; if the command BATCH "SLPT" has been
given, SCRATCH will cause the output of a form feed (see App.
D) on the line printer.

2. If <text> is specified, <text> will be output as the first
line displayed on the terminal or the first line on the new
line printer page.

3. The job time limit is set to 60 seconds. This time limit can
be changed by means of the TIME command (see Sect. B.6).

4, An implicit NEW command is executed (see Ch. 9).

5. Any logical disc that was connected by the previous job is
RELEASEd (see Ch. 7).

6. A card containing a SCRATCH command should always be the
first card in a job.

TIME command

Format

TIME=<val>

<val>: a numeric constant (expressing seconds).
Use

As a command to specify how many seconds a job may run.

Remarks

1.

If the TIME command is not used, the system will interrupt

the job in 60 seconds, starting from the execution of the
SCRATCH command (see Sect. B.5).

The maximum specifiable time limit is 3600 seconds (1 hour).

The time allotted to a job is real time, i.e. the amount of
central processing unit time which the job actually receives
will depend on how many programs are being run at the same
time from terminals in interactive mode.

C.1

206

Other Interactive Uses of RC BASIC

Commands derived from RC BASIC statements
The interactive use of RC BASIC for source program maintenance

is described in Chapter 9. This appendix describes other
interactive uses of RC BASIC.

Many RC BASIC statements (see Chs. 3, 6, and 8) can be used as
keyboard commands. When a statement is used as a command, it is
entered without a preceding line number and terminated by pres-
sing the RETURN key; the system then executes it immediately.
This facility is useful for:

Performing desk calculator functions, e.g. PRINT EXP(2.13)

Debugging programs dynamically

Performing file input/output, e.g. OPEN FILE(6,9) "$PTR"
Certain RC BASIC statements, which are meaningful only within

the context of a program, cannot be used as keyboard commands.
These statements are:

CASE-WHEN-ENDCASE ELSE

DATA ON-ERR

DEF ON-ESC

DELAY ON-GOTO/GOSUB
END PRINT USING
EXEC PROC-ENDPROC
FOR-NEXT REM

GOSUB and RETURN REPEAT-UNTIL
GOTO STOP

ENDIF WHILE-ENDWHILE

C.2

C.3

207

Desk calculator functions

Calculations can be performed using the PRINT command. A
semicolon (;) may be used instead of the word PRINT.

The items in the argument list may be numeric or relational
expressions, string literals, or string variables.

Values can be assigned to variables by means of the LET, INPUT,

or READ command, or the current values of variables in a loaded
program can be used.

Example Comments

* TAB=10
* K=5SYS(14)/180 K is the factor used when
* +SIN(45%K),COS(45*K) ; TAN(45*K) converting radians to
.707107 .707107 1 degrees.
* ;SQR(169);SQR(27.45)
13 5.23927
L e < This PRINT command will
- clear the display screen on
* the RC 822 or RC 823
terminal.
Program debugging

The use of RC BASIC statements as keyboard commands permits
programs to be debugged dynamically.

If, for example, a running program is producing the wrong
output, it can be interrupted (ESCape key); the current values
of the variables can then be examined (PRINT command) and
changed (LET command) as required, before program execution is
continued (see the CON or RUN <line no.> command, Ch. 9).

c4

Example

0010 LET K=180/5YS(14)
0020 FOR I=0 TO 45 STEP 5

0030 PRINT USING "### #.####",I,SIN(K*I),

0040 NEXT I

* RUN
0 0.0000
150
STOP
AT 0030
* K=SYS(14)/180
* RUN 20
0 0.0000
15 0.2588
30 0.5000
45 0.7071
END

5 0.5597

5 0.0872
20 0.3420
35 0.5736

AT 0040

*

File input/output

10 0.9277

10 0.17306
25 0.4226
40 0.6428

Comments

The results indi-
cate that the
value of K is
wrong.

The user presses
the ESCape key,
assigns the right
value to K, and
resumes program
execution from
line 20.

With the exception of PRINT FILE USING, the file input/output
statements described in Chapter 8 can be used as keyboard
commands to create a file, open a file, write data to a file,

and so on.

1f, for example, the error message 0044: FILE NOT OPENED is
output, the user can open the file by means of the command

OPEN FILE(<file>,<mode>) <filename>

and program execution can then continue.

Use of the RELEASE command (see Ch. 7) may cause the error
message 0115: OPEN FILES ON LD to appear, in which case the user
should first give the command CLOSE and then RELEASE.

209

D ASCII Character Set

D.1 ASCII characters with their decimal and octal values

DEC OCT CHAR DEC OCT CHAR DEC OCT CHAR DEC OCT CHAR
0 000 NUL 32 040 SP 64 100 @ 96 140 °
1 001 SOH 33 041 1 65 101 A 97 141 a
2 002 STX 34 042 " 66 102 B 98 142 b
3 003 ETX 35 043 # 67 103 C 99 143 c
4 004 EOT 36 044 S 68 104 D 100 144 4
5 005 ENQ 37 045 % 69 105 E 101 145 e
6 006 ACK 38 046 & 70 106 F 102 146 f
7 007 BEL 39 047 71 107 G 103 147 g
8 010 BS 40 050 (72 110 H 104 150 h
9 011 HT 41 051) 73 111 1 105 151 i
10 012 LF 42 052 * 74 112 J 106 152 3
11 013 VT 43 053 + 75 113 K 107 153 k
12 014 FF 44 054 76 114 L 108 154 1
13 015 CR 45 055 - 77 115 M 109 155 m
14 016 SO 46 056 . 78 116 N 110 156 n
15 017 SI 47 057 / 79 117 O 111 157 o
16 020 DLE 48 060 0 80 120 P 112 160 p
17 021 DC1 49 061 1 81 121 Q 113 161 g
18 022 DC2 50 062 2 82 122 R 114 162 r
19 023 DC3 51 063 3 83 123 S 115 163 s
20 024 DC4 52 064 4 84 124 T 116 164 t
21 025 NAK 53 065 5 85 125 U 117 165 u
22 026 SN 54 066 6 86 126 V 118 166 v
23 027 EIB 55 067 7 87 127 W 119 167 w
24 030 can 56 070 8 88 130 X 120 170 x
25 031 EM 57 071 9 89 131 Y 121 171y
26 032 SUB 58 072 90 132 2 122 172 z
27 033 ESC 59 073 ; 91 133 [(&) 123 173 { (@)
28 034 FS 60 074 < 92 134 \ (@) 124 174 . (&)
29 035 GS 61 075 = 93 135] (&) 125 175 } (&)
30 036 RS 62 076 > 94 136 f (") 126 176 ~
31 037 US 63 077 2 95 137 — () 127 177 DEL

D.2

210

Note: Decimal values 91 through 93 and 123 through 125 can be
used for Danish or other national characters.

Output of non-printing characters

Non-printing characters, i.e. characters which do not appear as keys
on the terminal keyboard, can be output by means of the following
sequence:

PRINT "<x>"

where % is the decimél value of the character to be
output.

Only a few of the non-printing characters are used ordinarily,
e.g. to move the paper on the line printer or to position the cursor
on a video terminal.

The non-printing characters that occur most frequently are:

12 FF Form Feed. On the line printer, feeds the form
to the top of the next page and positions to
the leftmost character position on the print
line.

13 CR Carriage Return. On the terminal, positions to
the leftmost character position on the print
line.

10 LF Line Feed. On the terminal, feeds one line
vertically.

Note: To output positioning to the leftmost
character position on the print line and a line
feed, the sequence PRINT "<13><10>" must be
used.

7 BEL Bell. On the terminal, causes the bell to ring
once.

The characters used to position the cursor on a video terminal
will depend on the terminal in question and may be found in the
operating guide for the terminal.

211

Reserved Words

This appendix contains an alphabetical list of the reserved
words in the RC BASIC language. These words have special
meanings and may not be used as variables.

ABS
AND
ATN
AUTO

BATCH
BYE

CASE
CHAIN
CHR
CLOSE
CON
CONL
CONNECT
CoPY
Ccos
CREATE

DATA
DEF
DELAY
DELETE
DET
DIM
DIV

ELSE
END

ENDCASE
ENDIF
ENDPROC
ENDWHILE
ENTER
EOF

EOJ

ERR
ESC
EXEC
EXP

FALSE

FILE

NA ... FNA
FOR

GOSUB

IDN
IF
INIT
INPUT
INT

LEN
LET
LIST
LOAD

LOCK
LOG
LOOKUP

MAT
MOD

NEXT

OF

OPEN
CR
ORD

PAGE
PRINT

PUNCH

RANDOMIZE
READ
RELEASE
REM
RENAME
RENUMBER
REPEAT
RESTORE
RETURN

SAVE
SCRATCH

SIN
SIZE
SOR
STEP
STOP
SYS

TAB

TIME
TINPUT

UNTIL
USERS
USING

WHEN
WHILE
WRITE

ZER

Note: FNA ... FNA represents the 29 reserved words FNA, FNB,
..., FNZ, FNE, FN@, and FNA.

212

F Summary of Statements, Commands,
and Functions

F.1 RC BASIC statements (Chapter 3)

Format/Description Section/Use
CASE <expr> OF 3.2

[<statements-0>]
WHEN <expr> [,<expr>] ...
{statements-1>

WHEN <expr> [,<expr>] ...
<{statements—-n>
ENDCASE [<comment>]

The expression following CASE is evaluated STATEMENT
and compared with the expressions following

WHEN. If there is a match in the ith WHEN

statement, statements-i is executed. If no

match is found, statements-0 is executed.

Control is then transferred to the first

statement following ENDCASE.

CHAIN <filename> [THEN GOTO <lineno.>] B3

Runs the SAVEd program referred to by a STATEMENT
filename when the statement is encountered or COMMAND
in the user's program. When used as a

command, CHAIN will LOAD, but not execute,

the SAVEd program.

{<val>][
DATA |[(<slit>

Provides values to be read into variables STATEMENT
appearing in READ or MAT READ statements.

Lval> }] 3.4
<slit> see

DEF FN<a>(<d>) = <expr> 3.5

Used with the function FNa(d) to define a STATEMENT
user functiqn.

213

DELAY = <expr> . 3.6

Interrupts program execution for a STATEMENT
specified number of seconds.

<svar >(<m>) | |<svar>(<m>) 3.7
DIM | <array>(<m>) 1<array>(<m>) e
{array>(<row>,<col>) <array>(<row>,<col>)
Defines the size of string variables or STATEMENT
numeric variable arrays. or COMMAND
END [<comment>] | 3.8
Terminates execution of the program. STATEMENT
EXEC <name> 3.10
Executes a procedure defined by STATEMENT
PROC-ENDPROC.
FOR <control var> = <expr1> TO <expr2> [STEP <expr3>] 3.11
<{statements>

NEXT <control wvar>

FOR begins a FOR-NEXT loop and defines the STATEMENT
number of times a block of statements is

to be executed, NEXT is the last statement

in the loop and changes the value of the

control variable.

GOSUB <lineno.> 3.12

<statements>
RETURN [<comment>]

GOSUB transfers control to the first state- STATEMENT
ment of a subroutine. RETURN is the last ‘
statement in a subroutine and returns

control to the first statement following

the GOSUB statement that called the sub-

routine.
GOTO <lineno.> 3.13
Transfers control unconditionally to a STATEMENT

statement not in normal sequential order .

214
IF <expr> [THEN] <statement>

Executes a single statement depending on
whether an expression is true or false.

IF <expr> [THEN]
<{statements>
ENDIF [<comment>]

(DO]

Executes a block of statements depending on
whether an expression is true or false.

IF <expr> [THEN] [DO]
<{statements-1>

ELSE [<comment>]
<{statements-2>

ENDIF [<comment>]

Executes statements-1 if an expression is
true, otherwise statements-2.

<var> ,<var> }]
<{svar> ,<svar> e
Assigns values entered from the user's
terminal to numeric or string variables.

INPUT [<slit-0>,] [[,<slit—n>]

{var>

<var> }]
<svar>| = <expr>] ...

<{svar>

= <{expr> [;

[LET]

Assigns the value of an expression to a
variable.

ON ERR THEN <statement>
Enables the programmer to take special

action, if an error occurs during program
execution.

ON ESC THEN <statement>
Enables the programmer to take special

action, if the ESCape key is pressed
during program execution.

3.14

STATEMENT
or COMMAND

STATEMENT

STATEMENT
.,

STATEMENT
or COMMAND
3.18
STATEMENT
or COMMAND

3.20

STATEMENT

3.21

STATEMENT

215

oo -
ON <expr> [THEN] (GOSUB| <lineno.> [,<lineno.>] ...

Transfers control to one of several lines
in a program depending on the computed
value of an expression when the statement
is executed.

<expr> <{expr>
: <slit>(|[,]1<slit> I,
PRINT <svar>||l;] |<svar> s ;

Prints specified items on the user's

terminal.
<{expr> <{expr>
PRINT USING <format>,)<slit> s 11<slit> o '
{svar> : || <svar> H

Outputs the values of items in the
argument list using a specified format .

PROC <name>
<{statements>
ENDPROC [<comment>]

Defines a procedure. When the procedure is
called by EXEC, control is transferred to
the first statement following PROC. ENDPROC
is the last statement in a procedure and
returns control to the first statement fol-
lowing the EXEC statement that called the
procedure.

RANDOMIZE

Causes the random number generator to start
at a different point in the sequence of
random numbers generated by the function
RND(X).

[(var>’ }
READ |<svar>

,<var>]

,<svar> | | oo

Reads in values from DATA statements and
assigns the values to the variables listed

3.22

STATEMENT

3.24

STATEMENT
or COMMAND

3.25

STATEMENT

3.26

STATEMENT

3.27

STATEMENT
or COMMAND

3.28

STATEMENT
or COMMAND

216

in the statement.

REM [<comment>] 3.29
Inserts explanatory comments within a STATEMENT
program.

REPEAT [<comment>] 3.30

<{statements>

UNTIL <expr>

Executes a block of statements repetitively STATEMENT
until an expression is true. The block of
statements is always executed at least once.

RESTORE [<lineno.>] 3.31
Resets the data element pointer to the STATEMENT
beginning of the data list or to a or COMMAND

particular DATA statement.

STOP [<comment>] 3.33
Terminates execution of the current STATEMENT
program.

TAB(<expr>) 3.35
Used in PRINT statements to tabulate the FUNCTION

printing position to the column number
evaluated from an expression.

WHILE <expr> [THEN] DO - 3.36
<{statements>
ENDWHILE [<comment>]

Executes a block of statements repetitively STATEMENT
while an expression is true. If the expres-

sion is false the first time WHILE is en-

countered, the block of statements is not

executed even once.

F.2

217
RC BASIC functions (Chapter 4)
BBS(<expr>)

Returns the absolute (positive) value of
an expression,

ATN(<expr>)

Calculates the angle, in radians, whose
tangent is an expression.

COS(<expr>)

Calculates the cosine of an angle which is
expressed in radians.

EXP(<expr>)

Calculates the value of e (2.71828) to the
power of an expression.

FN<a>(<d>)

A user function which is defined by DEF
(see Sect. F.1) and returns a numeric value.

INT(<expr>)

Returns the value of the nearest integer
not greater than an expression.

LOG(<expr>)

Calculates the natural logarithm of an
expression.

RND(<expr>)

Produces a pseudo random number between
0 and 1.

SGN(<expr>)

Returns the algebraic sign of an
expression.

4,2

FUNCTION

4.3

FUNCTION

4.4

FUNCTION

4.5

FUNCTION

4.6

FUNCTION

4.7

FUNCTION

4.8

FUNCTION

4.9

FUNCTION

4.10

FUNCTION

218
SIN(<expr>)

Calculates the sine of an angle which is
expressed in radians.

SOR(<expr>)
Computes the square root of an expression.
SYS(<expr>)

Returns system information, based on an
expression which is evaluated to an
integer, as follows:

Time of day.

Day.

-Month.

Year.

Terminal port number.

Time used since terminal was logged

Error code of last run—time error.
File number of last file referenced.
Page size.

10 Tab size.

11 Hour.

12 Minutes past last hour.

13 Seconds past last minute.

14 Constant w.

15 Constant e.

O~ oUW = O

o

TAN(<expr>)

Calculates the tangent of an angle which
is expressed in radians.

Number of file I/0 statements execu ted.

The following functions are described in other sections: the
printing function TAB(X) in F.1; the string functions CHR(X),
LEN(XS$), and ORD(X$) in F.3; the matrix function DET(X) in F.4;

and the function EOF(X) in F.6.

F.3

F.4

219
String functions (Chapter 5)
CHR(<expr>)
Returns the character corresponding to
the number found as an expression modulo

128.

{svar>
<slit>

LEN()

Returns the current number of characters
in a string.

<svar>}
ORD([<slit>])
Returns the decimal number of the first
character of a string.

Matrix statements (Chapter 6)

MAT <mvar1> = <mwar2>
Copies the elements of one matrix to
another matrix.

MAT <mvari> = <mvar2>{t!<mvar 3>

Performs the scalar addition or
subtraction of two matrices.

<mvar2>

< =
MAT <mvar1i> (<expr>)

* dmvar3>

Performs the multiplication of one
matrix by another matrix or by a scalar.

<var> = DET(<expr>)

Returns the determinant of the last
matrix inverted by a MAT INV statement.

Ol

FUNCTION

5.3

FUNCTION

5.4

FUNCTION

6.3
STATEMENT
or COMMAND

6.4
STATEMENT

or COMMAND

6.5

STATEMENT
or COMMAND

6.6

FUNCTION

MAT

MAT

220
<mvar> = CON

Initializes a matrix such that all
elements are set to one,

<mvar> = IDN

Initializes a matrix such that all
elements (i,i) are set to one and the
remaining elements are set to zero.

INPUT <mvari1> [,<mvar2>,; ... ,<mvar-n>]
Assigns numeric values entered from the

user"s terminal to the elements of one
or more matrices.

<mvar1> = INV(<mvar2>)

Inverts a matrix and assigns the resultant
element values to another matrix.

PRINT <mvar> [}i}mvar)] A

OQutputs the values of the elements of one
or more matrices on the user"s terminal.

READ <mvar> [,<mvar>] ecee.

Reads in numeric values from DATA state-
ments and assigns the values to the
elements of one or more matrices.

<mvar1> = TRN(<mvar2>)

Transposes a matrix and assigns the
resultant element values to another
matrix.

<mvar> = ZER

Initializes a matrix such that all
elements are set to zero.

6.7

STATEMENT
or COMMAND

6.8

STATEMENT

or COMMAND

6.9

STATEMENT
or COMMAND

6.13

STATEMENT
or COMMAND

STATEMENT
or COMMAND

F5

221

Logical disc commands (Chapter 7)

CONNECT <ldname> [,<expr>]

Connects the user's terminal to a logical
disc for reading or, if the protection key
is correctly specified, for both reading
and writing.

COPY "<1ldname>:<filename1>","<filename2>"
Copies a file (<filename1>) from any
logical disc (<ldname>) to a file
(<filename2>) in the logical disc to
which the terminal is connected.

INIT <device>

Initializes the main catalog in a device
containing logical discs.

LOCK <device>
Locks a device, when changing discs or
closing down the system, so that no user
can connect his terminal to a logical disc
in that device.

LOOKUP ["SLPT"]
Returns a listing of the files in the

logical disc to which the terminal is
connected.

RELEASE

Disconnects the user's terminal from the
logical disc to which it is. connected.

USERS <device>
Returns the number of users whose

terminals are connected to any logical
disc in a device.

7.2

COMMAND or
STATEMENT

7.3

7.4

COMMAND

T

COMMAND

7.6

Tal

COMMAND or
STATEMENT

7.8

222

F.6 File statements (Chapter 8)

CLOSE [FILE(<file>)]

Dissociates a filename and a user file
number (see OPEN FILE) so that the file
no longer can be referenced. The CLOSE
form of the statement closes all open files.

CREATE <filename>,<size>[,<recl>]

Creates a file in the logical disc to
which the user's terminal is connected.

DELETE <filename>

Deletes a file in the logical disc to which
the user's terminal is connected.

EOF(<file>)

Returns a value of +1, if an end of file
condition was detected in the last INPUT
FILE or READ FILE statement; otherwise, a

value of 0 is returned.

Reads data in ASCII format from a
sequential access file for the variables
in the argument list.

{(var> l[{(var>
INPUT FILE(<file>) [,] |<svar>]|, [<svar>

MAT INPUT FILE(<file>) [,] <war> [,<mwar>] ...
Reads data in ASCII format from a
sequential access file for the matrix
variables in the argument list.

MAT PRINT FILE(<file>) [,] <mwar> [,<mvar>] ...

Writes matrix data in ASCII format to a
sequential access file.

8.2

STATEMENT
or COMMAND

8.3

STATEMENT
or COMMAND

8.4

STATEMENT
or COMMAND

8.5

FUNCTION

8.6
STATEMENT
or COMMAND

8.7
STATEMENT
or COMMAND

8.8

STATEMENT
or COMMAND

223

MAT READ FILE(<file>[,<recno>]) [,] <mwar> [,<mvar>] ... 8.9
Reads data in binary format from a STATEMENT
sequential access file or record of a or COMMAND

random access file for the matrix
variables in the argument list.

MAT WRITE FILE(<file>[,<recno>]) [,] <war> [,<mvar>] ... 8.10
Writes matrix data in binary format to a STATEMENT

sequential access file or record of a or COMMAND
random access file.

OPEN FILE(<file>,<mode>) [,] <filename> 8.11
Associates a filename, i.e. a disc file or STATEMENT
a device, with a user file number so that or COMMAND

the file can be referenced in other file
I/0 statements; also specifies how the file
is to be used.

<expr>[l,} <expr> ’,}
PRINT FILE(<file>) [,] i<slit> : 11<slit> H 8.12
<svar>‘ <{svar>
Writes data in ASCII format to a STATEMENT
sequential access file. or COMMAND

{expr> <expr>
PRINT FILE(<file>) [,] USING <format>,{<slit> ,’ CalIEst 1 ess l{s
:|[<svar> H

<svar>
Writes data in ASCII format to a STATEMENT
sequential access file, using a specified
output format.
[(var) } ’<var> }
READ FILE(<file>[,<recno>]) [,] !<svar>!|,l<svar> — 8.14
Reads data in binary format from a STATEMENT
sequential access file or record of a or COMMAND

random access file for the variables in
the argument list.

F.7

224

RENAME <filename1>,<filename2> . 8.15
Renames a file in the logical disc to STATEMENT
which the user's terminal is connected. or COMMAND

<expr> <{expr>

WRITE FILE(<file>[,<recno>]) [,]{<slit>;],{<slit> cee 8.16
<svar> <{gvar>
Writes data in binary format to a _ STATEMENT
sequential access file or record of a or COMMAND

random access file.

System commands (Chapter 9)

<line ni>,<line n2> 9.2

<line ni>

<line n1>,

,<line n2>
Deletes one or more statements in a COMMAND
program.
<line n1> 9.3
{STEP}

AUTO i <line n2>

{STEP}
<line ni>{, <line n2>

Provides automatic line numbers in a COMMAND
program, thereby making it easier to
enter programs from a terminal.

BATCH ["$LPT"] 9.4

Places the terminal in batch mode and COMMAND
causes the system to start reading cards

from the mark-sense card reader. Job out-

put will appear on the terminal or, if the

BATCH "SLPT" form of the command is used,

on the line printer.

BYE

oo |

225

Logs the terminal off the system.

Continues execution of the current program
after the execution of a STOP statement in
the program, after the ESCape key has been
pressed, or after an error has occurred.

Output from PRINT statements will appear on

the terminal or, if the CONL form of the
command is used, on the line printer.

ENTER <filename>

LIST

| (<1line n1>l

Merges the statement lines from the disc
file or the device specified by a filename
into the current program storage area.

[(<line n1>

{ }
}
r

[<filename>]
<line n2>

Outputs part or all of the currently
loaded program in ASCII format to the
disc file or the device specified by a
filename or, if no filename is specified,
to the terminal.

LOAD <filename>

Loads a previously SAVEd program in binary
format from the disc file or the device
specified by a filename into the user's
program storage area.

Clears all currently stored program state-
ments and variables from core memory and
closes any open files.

8.5

COMMAND or
STATEMENT
9.6

COMMAND

9.7
COMMAND or

STATEMENT

9.9

COMMAND

226

PAGE=<expr> ' 9.12

Sets the right-hand margin of the terminal. COMMAND or

STATEMENT
<line m> _ 9.13
Ll
. PUNCH , 1<line n2>
: ’TO}
<line n1>|(, |<line n2>
Outputs part or all of the currently loaded COMMAND
program in ASCII format to the terminal
punch (when present).
<line n1> 9.14
iSTEP}
RENUMBER ; <line n2>
‘STEP}
<line nmi> |, <line n2>
Renumbers the statements in the current COMMAND
program,
[RUN } {(line no.>} 9.15
RUNL <filename>
Executes the current program, either from COMMAND
the lowest numbered statement or from a
specified line number, or loads and executes
a previously SAVEd program as the current
program. Output from PRINT statements will
appear on the terminal or, if the RUNL form
of the command is used, on the line printer.

SAVE <filename> 9.16
Writes the currently loaded program, COMMAND or
including the current values of all STATEMENT
variables and parameters, in binary format '
to the disc file or the device specified
by a filename.

SIZE 9.18
Returns the number of bytes used by the COMMAND

current program and the numbers of bytes
left.

F.8

227
TAB=<expr>
Sets the zone spacing between the print

elements output by PRINT statements.

Batch mode commands (Appendix B)

EQJ
Terminates a job.
SCRATCH [<text>]
Initiates a job.
TIME=<val>

Specifies how many seconds a job may run.

COMMAND or
STATEMENT

B.4

B.5

COMMAND

B.6

COMMAND

228

G Advanced Programming Examples

In course of preparation.

229

H Calling an Assembly Language Subroutine
from RC BASIC

In course of preparation.

230

Index

)y 14
t}e 15
[1, 1.5
swng 145
+; 2.5.2
-, 2.5.2
t, 2.5.2
Ry 2452
Ly 2562
<, 2.5.6
<=, 2.5.6
=, 2.5.6
>=, 2.5.6
S5 24546
<>, 2.5.6
by 3.24
% Bl
$5 54142
SFREE, 7.1, 7.6

ABS(X), 4.2
Access to programs, unauthorized, prevention of, 9.11
AND. See Operators, Boolean
Appending data to data written previously to
a file (mode 2), 8.1.5, 8.1.7, 8.11
Arctangent of X in radians, function to return, 4.3
Arithmetic, RC BASIC, 2
Arrays, 2.4, 3.7
- dimensioning, 2.4.2, 3.7
- elements, 2.4.1, 2.4.2, 3.7
- manipulation as matrices, 6
ASCII characters, D.1
- decimal and octal values, D.1
Assembly language subroutines, calling from
RC BASIC, H
ATN(X), 4.3
AUTO, 9.3

Batch jobs, B.1

Batch mode, 1.1, 1.3, 9.4, B, B.3

- illegal statements and commands, B.3.2
-~ return to interactive mode, B.3.5

231

- time limit on jobs, B.3.3

- use of ESCape key, B.3.4

BATCH ["SLPT"], 9.4, B.1, B.3.1

Block sizes. See Devices

Boolean arguments. See Operators, Boolean
Branching, conditional, 3.2, 3.14, 3.15, 3.16, 3.22
- unconditional, 3.13

BYE, 9.5

Bytes used and bytes left, command to return, 9.18

CASE, 3.2

CASE-WHEN-ENDCASE, 3.2

Catalog, main, 7.1, 7.4; initialization of, 7.4

- structure, 7.1

- subcatalog, 7.1

CHAIN, 3.3, 8.1.5

Character corresponding to specified number, function to
return, 5.2

CHR(X), 5.2

Clearing programs from core memory, 9.11

CLOSE FILE, 8.1.5, 8.1.7, 8.2

Commands, 1.2

- derived from RC BASIC statements, C.1

desk calculator functions, C.2

file input/output, C.4

logical discs, 7

program debugging, C.3

program development and execution, 9, 9.1

Comments, explanatory, within program, 3.29

CON/CONL, 9.6, C.3

CONNECT, 7.1, 7.2, 8.1.6, 8.1.8, 8.3, 8.4, 8.15

Control structures, 3.2, 3.11, 3.13, 3.14, 3.15, 3.16, 3.22,
3.30, 3.33

COPY, 7.3

Corrections, program statements, 1.2

Cosine of X, where X is in radians, function to return, 4.4

COS(X), 4.4

CREATE, 8.1.4, 8.3

DATA, 3.4, 3.31

Data element pointer, resetting of. See RESTORE
Debugging, p&ogram, C.1, C.3

DEF, 3.5

DELAY, 3.6

DELETE, 8.4

232

Deletion, files, 8.4

— program statements, 1.2, 9.2, 9.7
Descriptions of statements, commands, and functions, 1.4
Desk calculator functions, C.1, C.2
DET(X), 6.6

{device>, 1.5

Devices, 7.1, 8.1.1

- block sizes, 8.1.3

- reserved names, 8.1.2

DIM, 3.7, 5.1.3, 6.2

Dimensioning, matrices, 6.2

- numeric arrays, 2.4.2, 3.7

- string variables, 5.1.3

DIV. See Operators, arithmetic

DO, 3.15, 3.16, 3.36

ELSE, 3.16

END, 3.8

ENDCASE, 3.2

ENDIF, 3.15, 3.16

ENDPROC, 3.10, 3.26

ENDWHILE, 3.36

ENTER, 8.1.5, 9.7

Entering data for program from terminal. See INPUT
EOF(X), 8.5

EQJ, B.1, B.4

ERR, 3.20

Error messages, during command execution, A.1, A.2
- during file (input/output) operations, A.1, A.3
- during program entry, A.1, A.2

- during program execution, A.1, A.2

- during reading of program from file, A.1, A.2
ESC, 3.21

ESCape key, 1.2, 1.3, 3.21, 9.3, 9.5, B.3.4, C.3
E-type notation. See Numbers in RC BASIC

Examples of statements, commands, and functions, 1.4
EXEC, 3.10, 3.26

Execution, program. See Program execution
Exponential form. See Numbers in RC BASIC

<expr>, 1.5

Expressions, 2.5. See also Operators

numeric, 2.5.1; evaluation of, 2.5.3

relational, 2.5.5

relational string, 5.1.7

- string, 2.5.8

EXP(X), 4.5

Example 1

* LIST

0010 LET I=0

0020 REPEAT

0030 PRINT RND(I);
0040 LET I=I#1
0050 UNTIL I=4

0060 STOP

0070 GOTO 0010

* RUN

21132
STOP
AT 0060
* RUN

«21132
STOP
AT 0060
* CON

. 162866
STOP

AT 0060
*

.14464 .852625"

.14464 .852625

.433095 .563933

Example 2

* LIST

0010 LET I=0

0020 WHILE I<4 DO

0030 PRINT INT(25*RND(I)
0040 LET I=I#1

0050 ENDWHILE

* RUN
5 3 21
END

AT 0050
*

23

93

.927054

.927054

.20965

):

Comment (1)

The RUN command resets the
sequence of random numbers;
the CON command does not.

Comment (2)

The program produces random
integers in the range 0 to
24,

234

<ldname>, 1.5

Length of specified string, function to return, 5.3

LEN(X$), 5.3

LET; 318 S5e1s2: 50165y 54146 €2y Ci3

<line no.>, 1.5

LIST, 9.9 :

~ LISTing versus SAVEing, 9.16

LOAD, 8.1.5, 9.10

Loading, SAVEd program in binary from disc file or device into
program storage area, 9.10

LOCK, 7.5, 8.1.2

Logarithm of X, natural,. function to return, 4.8

Logging off. See Terminal

Logical disc files, 7.1, 8.1.1. See also Files

- copying, 7.3

creating, 8.3

deleting, 8.4

listing, 7.6

renaming, 8.15

Logical discs, 7.1

- commands, 7

- connection of terminal, 7.2

- exclusive users, 7.1, 7.2

- formatting program, 7.1

- read access,; 7.1, 7.2

- release of terminal, 7.7

- removal of device containing logical discs from drive unit,

7:5; 7.8

- write protection, 8.1.8

LOG(X), 4.8

LOOKUP ["$LPT"], 7.6

Loops, program, 3.11, 3.30, 3.36

Maintenance, source programs, 9.1
Mark-sense cards, B.2

- FORMULA section, B.1, B.2.4

— STATEMENT NUMBER section, B.2.1
- STATEMENT 1 section, B.2.2

~ STATEMENT 2 section, B.2.3
Master terminal. See Terminal
MAT QON, 6.7

MAT IDN, 6.8

MAT INPUT, 6.9

MAT INPUT FILE, 8.7

MAT INV, 6.10

235

MAT PRINT, 6.11

MAT PRINT FILE, 8.8

MAT READ, 6.12

MAT READ FILE, 8.9

Matrices, addition, 6.4

— assignment (copying), 6.3

- determinants, 6.6, 6.10; determinant of last matrix inverted,
function to return, 6.6

- dimensioning, 6.2

- initialization, 6.7, 6.8, 6.14

- inversion, 6.10

- multiplication, 6.5

- operations, 6.1

- subtraction, 6.4

- transposition, 6.13

MAT TRN, 6.13

MAT WRITE FILE, 8.10

MAT ZER, 6.14

Merging, program statements from disc file or device into program
storage area, 9.7

MOD. See Operators, arithmetic

Modes, file usage. See Files

Modes, terminal operation, batch, 1.1, 1.3, 9.4, B, B.3. See also
Batch mode

- idle, 1.3, 9.5

- interactive, 1.1, 1.3, 3.8, 3.33, B.3.5

Modulus calculation, 2.5.2.2

<mvar>»;, 1.5

Names, arrays, 2.4

- numeric variables, 2.3

- string variables, 5.1.2

Nesting; 3.:2; 3.5; 3:11; 3:12; 315 3416, 3.26, 3.30, 3.36

NEW, 1.2, 9.7, 9.10, 9.11, B.4, B.5

NEXT, 3.11

NOT. See Operators, Boolean

Numbering, program statements, automatic, 9.3

Number of first character in specified string, function to
return, 5.4

Numbers in RC BASIC, 2.1

- internal representation, 2.2, 3.14

- printing, 2.1, 3.24

236

OF, 3.2

N, 3.20, 3.21, 3.22

ON-ERR, 3.20, 9.11

ON-ESC, 3.21, 9.11

ON-GOTO/GOSUB, 3.22

OPEN FILE, B.1.6, 8.1.7, 8.11

Operating systems, 1.1, A.3

Operators, arithmetic, 2.5.2; DIV, 2.5.2.1; MOD, 2.5.2.2

- Boolean, 2.5.4

- priorities, arithmetic operators, 2.5.3; arithmetic, Boolean,
and relational operators, 2.5.7

- relational, 2.5.6 '

OR. See Operators, Boolean

ORD(X$), 5.4

Output, current program in ASCII to disc file, device, or
terminal, 9.3; to terminal punch, 9.12; in binary to disc
file or device, 9.16

PAGE, 9.12

PRINT, 3.24, 3.25, C.2, C.3

PRINT FILE, 8.12

PRINT FILE USING, 8.13

Printing, blank lines, 3.24

- compact spacing, 3.24

- data at terminal, 3.24, 3.25, 3.35, 9.12, 9.19

- length of print line (page width), command to set, 9.12
- non-printing characters, 5.1.1, D.2

- numbers, 2.1, 3.24

- spacing to next line, 3.24

- tabulation of printing position, function for, 3.35
- using specified format, 3.25

- zone spacing, 3.24; command to set, 9.19

PRINT USING, 3.25

Priorities of operators during program execution. See Operators
PROC, 3.26

Procedures, 3.5, 3.10, 3.26

- calling, 3.10

= defining, 3.26

PROC-ENDPROC, 3.26

Program execution, 3.3, 9.15

- interruption of, 1.3, 3.3, 3.6, 3.20, 3.21

- resumption of, 1.3, 9.6

- termination of, 3.8, 3.33

Programming examples, advanced, G

Programming on mark-sense cards, B.1

237

Programs, RC BASIC, 1.2
Protection key, 7.1, 7.2, 7.3
PUNCH, 9.13

Random access files, 8.1.6. See also Files

- reading data in binary from record of, 8.14

- reading matrix data in binary from record of, 8.9

- writing data in binary to record of, 8.16

- writing matrix data in binary to record of, 8.10

RANDOMIZE, 3,27

- different starting points in sequence of random numbers
generated, 3.27 '

Random number between 0 and 1, function to return, 4.9

Range of numbers. See Numbers in RC BASIC

READ; 3.28, 5.1¢2, 5.71:5, L2

READ FILE, 8.14

<recly, 8.3

<recno>, 8.9, 8.10, 8.14, 8.16

RELEASE, 7.7

REM, 3.29

Removal of device containing logical discs from drive unit.
See Logical discs

RENAME, 8.15

RENUMBER, 9.14

Renumbering, program statement lines, 9.14

REPEAT, 3.30

REPEAT-UNTIL, 3.30

Reserved names, devices. See Devices

Reserved words in RC BASIC, E

RESTORE, 3.28, 3.31

- resetting data element pointer, 3.31

Resumption, program execution. See Program execution

RETURN, 3.10, 3.12, 3.26

RETURN key, 1.2, C.1

RND(X), 3.27, 4.9

RUBOUT key, 1.2

RUN/RUNL,; 1.2, 84145, 9.15; C.3

SAVE, 8.1.5, 9.16

- conserving space on SAVE device, 9.16

- SAVEing versus LISTing, 9.16

SCRATCH, B.1, B.5

Sequential access files, 8.1.7. See also Files

- reading data in ASCII from, 8.6; in binary from, 8.14

- reading matrix data in ASCII from, 8.7; in binary from, 8.9

238

- writing data in ASCII to, 8.12; using specified format, 8.13;
in binary to, 8.16

- writing matrix data in ASCII to, 8.8; in binary to, 8.10

SGN(X), 4.10

Sign of X, algebraic, function to return, 4.10

SIN(X), 4.11

Sine of X, where X is in radians, function to return, 4.11

<size>, 8.3

SIZE, 9.16, 9.18

<slit>, 1.5

Special action, if error occurs, 3.20

- if ESCape key is pressed, 3.21

Square root of X, function to return, 4.12

SOR(X), 4.12

<{statements>, 1.5

Statements, 1.2

- file input/output, 8

- matrix, 6

- RC BRASIC, 3

sequential execution of, 1.2

- which cannot be used as commands, C.1

STEP, 3.11, 9.3, 9.14

STOP, 3.12, 3.32

Strings, 5.1

- comparison, 5.1.7

- concatenation, 5.1.6

- constants, 5.1.1

- literals, 3.25, 5.1.1

- variables, 5.1.2; dimensioning, 5.1.3

- substrings, 5.1.4

Subcatalog. See Catalog

Subroutines, 3.5, 3.12

- calling, 3.12

- calling an assembly language subroutine from RC BASIC, H

- entry into, inadvertent, avoidance of, 3.12

Subscripts. See Arrays

Summary of statements, commands, and functions, F

{svar>, 1.5 .

System information, functions to return, 4.13

SYS(X), 4.13

TAB, 9.19

TAB(X), 3.35

Tangent of X, where X is in radians, function to return, 4.14
TAN(X), 4.14

239

Terminal, connection to logical disc, 7.2

- log—off from system, 9.5

- master, 7.4, 7.5

- release from logical disc, 7.7

Termination, program execution. See Program execution
THEN; 3.3 3185 3:18; 3.164:3:20; 3:21; 3:22, 3.36
TO, 3.11, 9.9, 9.13

TIME, B.5

UNTIL, 3.30

User functions, defining, 3.5
USERS, 7.8, 8.1.2

USING, 3.25, 8.13

<val>, 1.5

Value of e to the power of X, function to return, 4.5

Value of X, absolute, function to return, 4.2

Value of X, integer, function to return, 4.7

<var>, 1.5

Variables, assignment of values to, 3.17, 3.18, 3.28, 5.1.2,
5.1.5, 6.9, 6.12, 8.6, 8.7, 8.9, 8.14; provision of values
for, 3.4

= numeric, 2.3

- string, 2.3

WHEN, 3.2

WHILE, 3.36
WHILE-ENDWHILE, 3.36
WRITE FILE, 8.16

. o - S ——— ——— F = —— e P —— — i — P — ——— —— ——— —_—

READER 'S COMMENTS RC BASIC
' RCSL 42 - i 0673

A/S Regnecentralen maintains a continual effort to improve the
quality and usefulness of its publications. To do this effective-
ly we need user feedback - your critical evaluation of this

manual .

Please comment on this manual's completeness, accuracy, organiza-
tion, usability, and readability:

Do you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Please state your position:

Name: Organization:
Address: Department:

Date:

RETURN LETTER - CONTENTS AND LAYOUT

— e e e mm e = == ==

Affix

postage
here

A/S REGNECENTRALEN

Marketing Department
Falkoner Allé 1

DK-2000 Copenhagen F
Denmark

C O O 3

| s R s O e S s S s N s SR e B G (R oot S e O s N s S s N i R s S s [N e B s R

f
i
— =

HEENECENTEIF\LEN
Scanins
e TR

HEADQUARTERS: FALKONER ALLE 1- DK-2000 COPENHAGEN F - DENMARK
PHONE: (01)10 S3 66 + TELEX: 186282 rc hgq dk - CABLES: REGNECENTRALEN

INTERNATIONAL

EASTERN EUROPE
A/S REGNECENTRALEN
Glostrup, Denmark, (02) 96 53 66

SUBSIDIARIES

AUSTRIA

RC — SCANIPS COMPUTER
HANDELSGESELLSCHAFT mbH
Vienna, (0222) 36 21 41

FINLAND
OY RC — SCANIPS AB
Helsinki, (90) 31 64 00

FRANCE
RC — COMPUTER S.a.r.l.
Paris, (1) 677 27 91

HOLLAND
REGNECENTRALEN (NEDERLAND) B.V.
Rotterdam, (010) 21 62 44

NORWAY
A/S RC — SCANIPS
Oslo, (02) 35 75 80

SWEDEN
RC — SCANIPS AB
Stockholm, (08) 34 91 55

SWITZERLAND
RC — SCANIPS (SCHWEIZ) AG
Basel, (061) 2290 71

UNITED KINGDOM
REGNECENTRALEN LTD.
London, (01) 439 93 46

WEST GERMANY
RC — COMPUTER G.m.b.H.
Hannover, (0511) 63 99 51

REPRESENTATIVES

HUNGARY
HUNGAGENT AG
Budapest, 88 61 80

KUWAIT
KUWAIT — DANISH COMPUTER CO. S.AK.
Kuwait, 51 05 10

CZECHOSLOVAKIA
KSNP KANCELARSKE STROJE N.P.
Praha, 27 00 01

TECHNICAL ADVISORY
REPRESENTATIVES

POLAND
ZETO
Wroclaw, 44 54 31

RUMANIA
LILR.U.C.
Bucharest, 33 21 57

HUNGARY
NOTO—0SZV
Budapest, 66 84 11

