— RCSL No: 43-GL10166
Edition: March 1980

Author: Jgrgen Hansen

Title:

DOMUS
User's Guide, Part 2

- ¢REGNECENTRALEN

: af 1979

Keywords:
RC3600, DOMUS, Utilities, Manual.

Abstract:
This manual describes the utility system for the disc operating system

for the RC3600 line of camputers.
This manual substitutes 43-RI0432.

(80 printed pages)

Copyright © 1980, AJ/S Regnecentralen af 1979
RC Computer A/S
Printed by A/S Regnecentralen af 1979, Copenhagen

Users of this manual are cautioned that the specifications contai-
ned herein are subject to change by RC at any time without prior no- -
tice. RC Is not responsible for typographical or arithmetic errors
which may appear in this manual and shall not be responsible for
any damages caused by reliance on any of the materiais presented.

42:1 1341

TABLE OF CONTENTS PAGE

1. INTRCEUCTTCN M EEEEEEEEEEERE NI I AR ECA R I AU B R Y R B I A L AL I N 1

2. THE UTILITY SYSTEM EEEREEEEREEEENRITI I I NI BRI I IR BB R
241 Utility Call A EEEEEEREEEEX NI NI S A NN BN NI LN I B B 2 B

2.2 Parameter Ebrmat 06 68 8 0000 0000080000000 sRREePCED

3- m@m SYSTm EEEREEEEEEENENREN NN NN I N B B B S I BCEE B IE 4
3.1 Catalog System DescriptioOn e.cesecesesscccsescceccs
3.2 Filename References in Utility Calls ceeeveecscess

4, PERTPHERAL DEVICES cctececesecsccsccsscasescsssosssccces 10
4.1 Device HANALiNg ceseseesssessessssccsscssssocsseas 10
4.2 Examples of Use of Device DesSCriptOrs «eeeseesesss 12
4.3 Standard COVErSiOn seesceceescocsosrcasccssscccens 15

5' SYSTm MESSA@S TEEREEEEEEEEEE N BN A BN BB BT AN BN BN BE B B B N N 2 N 4 16
5.1 Starﬁard Messages TEEEREEEREEEEREE NI I I I B I B A B ECE BB S B 4 16
5.2 Message Generation ceseecescscsscssssesscecccessscss 20

6. STANDARD UTILITY PROGRAMS vvvevevevcecnnceasssscnosssase 21
6.1 ADDEX evoeessesssecsscsnsssennesncavasacansenasss 22
6.2 AMXINIT eovvoroeoonessesnsnssseasonesnsasescassase 23

— 6.3 APPEND veoevesvscnnsncenessnensesnsannsnsencsessee 24
6.4 CATLIST eevvseeseosensosessesnnasssssesassnsssasse 25
6.5 CHATR veveoecenoennonessesssossenssanassessssnsane 27
6.6 COMP vueveoeusesecnssasesessesnsssssnsssasacssssses 28
6.7 COMBARE 1 sveesevonesncnesssasennsssssssssssseanes 30
6.8 OONFIGURATION sevevosnsesnocnesssnsssnsensasnssses 31
6.9 COPY wevessoennesesssnnossssensssssesnsassssssases 32
6210 CREATE v souoessennesesnssnsassensesnssassssssssse 33
6211 DCOPY wvvesessnosnsssssesssesnasssasnsonsascassoss 34
6.12 DELETE «uevessesesssecsssssasasasssaesnsanassasss 36
6213 DISK evveeeesncsncssossesssosssssessssnssnssoesas 37
6274 DOMAC oeveeveosesencnnessnsnssnsessssssssssassnees 38
.15 DUBL uvvesnssseosasnsessesssasesnsencsassssoesess 40

TABLE OF

ii

CONTENTS (continued)

PAGE

6.16 EDIT
6.17 EXEC

B0 0 000 08B LN OSSN PNLILIENIOEOIOIEBIIGEEOLEEIOSEOSEDINTPOEDS

0 0 680009 0PV P S PIIIOEIINBLELNIEOIELEOIOETITAIIOEIOETBTEDOPOSETETONDS
’

6018 FCOPY 0 5 060000000 PPLEENROBOEREROIESSEOLOESISIEOERESEBEREOBSOEBOS
6.19 FLCOPY €8 9 T 0 00 PP SO H OO0 0 L0 TSSO OEEE0S0SEIIIENNS
6020 FLIF(M.A 2908 5208 NI PPN LSNP ECLCLLIN SR OLEBOIERSIOENOEIRTIETN

6.21 GEN

6.22 @NER S8 0 60 9053002060000 0080000000800 c0000RsIOROTLS

6.23 LIBE
6.24 LINK

8 60 60 0BGV GOOPE OIS IOILEIRIEIIESINEROEINOIOEETITODILIEOETSTTS

6.25 NAMEX coceeccnocossacoovoncnnorsosssnssnsssnossanse
6.26 NEWCAT sevveoceessssososcassosvssccsnnsssssecssssse
6.27 PRINT covesescocoosssssoscsssonrosssssossasensssns
6028 PUNCH ccoveecosccosacossnssansssssscssccssccnscans
.29 REMOVE cevcesncesssococvsssenessnsosssascsocnsssnse
6.30 RENAME .ieveecesocnsoosssosnannsonasssaccssconsnns

6.31 SET

20 0 6 R 8 05BN EEE0LEON 0D CSLDPIS IO PIISSEOIEOISELIECEOLS

6032 STACO ® 8 00 000 PR EP LN ROPBOPOLOINEN IS EIIEENIOESIERE LS
6'33 SIJBCAT P8 P PGS P PSS N0 G OELIDEIEEDPOIOOOION ISP SN SE

6.34 TYPE
6.35 XREF

SUPPLEMENT :

SURVEY OF
SURVEY OF
SURVEY OF
REFERENCE

® @ 0 9 0 86000000 EPRPIOPOREEENCETEOEIOELIPIEIIEOEBEOLERBOEOEND TS

0 00 200 SPGB ESELEE00 0000000080008 RSILREREDSCES

STANmRD SYSTm M%SAGES 6 & 00 50 00000 E ISP e
mVICE mSCRIPIORS ® 9 0 505 0 % 050 200080000 PeN e
UTILITY PROGRAM CALLS WITH DEFAULT VALUES ...

LIST LRI R A A A A A N I IR I A I IR I IR B R R A SR BN B A A B

4
42
43
46
47
48
49
51
52
54
56
57
58
59
60
61
63
64
65
66

67
70

72

INTRODUCTION

This manual describes the utility program system running under
the RC3600 DOMUS system.

Use of utility programs is based on the DOMUS S-function 'utility
program load', and can be reviewed as an extension of the
S-commands.

The utility programs are designed in order to ease the admini-
stration of disc files, the possibility to make backup and hard-
copy of the files and to help the MUS - programmer with a set of
tools in his program production.

THE UTILITY SYSTEM

2.1

Utility Call

The utility call is based on the S-function 'utility program
load' given by the format

<filename> [<params>}

As seen fram DOMUS User's Guide, Part 1 the function is defined
by the filename which is not a normal S-function.

The function is executed by loading the process placed in file
<filename>, and transferring the <params> section to the process
after fundamental syntax analysis and packing.

Further interpretation of the parameters is left to the utility
program.

After completion the utility program is removed from the memory
by DOMUS, and the operating system will write a message on the
operator console: FINIS <program name>.

If a utility call is too long to be contained in one line, it may
be divided into more lines by use of exclamation signs. This is
described in DOMUS User's Guide, Part 1. An example is this call
of the utility program 'DELETE':

DELETE A1 A2 A3 A4 !
t A5 A6
FINIS DELET

2'1

2.2

Parameter Format 2.2

In order to get a simple and standardized parameter interpreta-

tion all utility programs, with a few exeptions, use the same
format and check procedure.

The utilities have each a fixed number of parameters, each
specified with a parameter type, a memonic parameter name, a
specified position in the parameter string and a default value.
Five parameter types are defined:

1) NAMES as defined in DOMUS User's Guide, Part 1

2) FILENAMES is defined as
<filename>: := <name>| <name>/<name> | <name> : <number>

3) TEXTS as defined in DOMUS User's Guide, Part 1
4) NUMBERS as defined in DOMUS User's Guide, Part 1

5) BOOLEANS is defined as a name with the value NO or YES

The structure of <params> can then be defined as:
<params>::= { <sep> [<parameter name>.] <parameter>} *

<parameter name>::= <name>

<sep>::= <space> { <space> } *
<parameter>::= <name> ‘ <f ilename>' <text> l <number> l NO l YES [<dummy>
<dummy>: := *

Occasionally it can be useful o use a name containing special
characters, such as dot, slash or space. This can be done includ-

ing the name in quotation marks.

As seen, each parameter is called by a unique mnemonic name,
which can be typed in front of the actual parameter followed by
'.', hereby changing the position in the sequence of the parame-—
ters. This way of naming the parameters can be amitted if all
parameters are assigned in the sequence predefined by the program,
and need only to be used if one or more parameters are skipped or
the defined seqguence is broken.

Skip of a single parameter can be done by use of the dummy para-

meter '&'.

If a parameter is not defined in the call, it will get the de-
fault value as defined in the program.

The parameter type <filename> has three possible formats which
all refer to a catalog entry.

The first format '<name>' refers to the catalog entry with the
name <name> in the current catalog (see DOMUS User's Guide, Part
1 about the S-functions CONNECT and RELEASE).

The second format '<name>/<name>' is interpreted as a catalog
entry in a catalog possibly different from current catalog. Here
the name before the slash is the name of the catalog and the
name after the slash is the name of the catalog entry.

For further information about the catalog system, see chapter 3
in this manual.

The third format '<name>:<number>' is used when a catalog entry
residing in the main catalog on a unit different from current
unit is referred to. The referred entry is the one with the name

<name> in the main catalog on unit number <number>.

If any conflict between the parameters and the parameter names
typed and the expected format is detected, the utility function
is terminated with an error message («%xPARAM) written on the

console.

For further explanation take the following fictive

utility-program MAIN:

MAIN

prmBummnting

Format:
MAIN IN.<filename> COUNT.<number> OP.<boolean> TX.<text>

Function:
Undefined.

Parameters:
Default values of call are:
IN.SPTR CQOUNT.20 OP.YES TX.'<0>...<0>'

Maximum textlength for parameter TX is 10 characters.

Examples:
1) MAIN S$CDR 100 TX.'ABCD'

2) MAIN S$CDR 10 NO

3) MAIN XX:3 TX.'aB'

4) MAIN PIP/XX

5) MAIN TX.'QV' OP.NO

6) MAIN sCDR * NO

Explanation of the examples:

1) Used values are:

default

IN: SCIR

COUNT: 100

OP: YES

TX: ' ABCD<0 ><0 ><0 ><0><0><0>"

2) Used values are:

IN: SCDR
COUNT: 10

OP: NO

TX: '<0>...<0>'

3) Used values are:

IN: XX

COUNT: 20

OP: YES

TX: 'AB<0>...<0>'

4) Used values are:

IN: XX

COUNT: 20

OP: YES

TX: '<0>, .. <0>'

5) Used values are:

IN: SPTR

COUNT: 20

OP: NO

TX: 'OV <0><0>..<0>'

6) Used values are:

IN: SCDR
COUNT: 20

OP: NO

TX: '<0>..,.<0>'

default

-file on

default
default

file in
default
default
default

‘default

default

default

default

wmnit 3

subcatalog PIP

as skipped by *

THE CATALOG SYSTEM 3.

3.1

Catalog System Description 3.1

The RC3600 Catalog System makes it possible to divide a disc
drive into smaller indeperdent units, called files. These files
are identified by name. The description of the files, file des-
criptions, are kept in a catalog (which itself is a file) stored
on the disc. A file description contains information about the
file such as name, length and starting position. The catalog
consists of a number of catalog entries. Every file description
is kept in a catalog entry.

The RC3600 Catalog System deals with units. A unit may be a disc
drive, a part of a disc drive or include several disc drives.
Each unit has -its own main catalog, describing the files contain-
ed on that unit. A file may be a new catalog (subcatalog) for a
number of files. Files in different catalogs may have the same

names. A file containing a catalog is always named 'sys'.

All units in the system are described in a file called CAIW,
which resides on unit 0. A unit may be initialized and a new
catalog may be defined either at the time of system generation or
by the utility NEWCAT.

A subcatalog is created by calling the utility SUBCAT.

When files described in a subcatalog are to be created, accessed
or deleted, a link to the subcatalog must exist in a file called
'SyssC'. This link describes on which unit the subcatalog resides
and an eventual protection key. This link is created by the uti-
lity SUBCAT. If a protection key is given, it is not possible to
write in any file in the subcatalog or to create, change or dele—
te any entry in the subcatalog, unless the DOMUS function CONNECT
has been executed with the correct protection key.

All files described in a subcatalog reside on the same wnit as
the subcatalog itself. To access files in a subcatalog, even on a
unit different from unit 0, a link must be created in the SYSSC
file on unit 0.

3.2

For each disc file and subcatalog to be accessed at the same time,

one area process must be present in the memory.

These area processes are brought into memory by loading one or
more of the modules CAP2, CAP3, CAP4, CAP8, CAP16 or CAP32,
which contain respectively 2,3,4,8,16 and 32 area processes.
These may be loaded in any number and in any cambination. An area
process can not be removed from the memory unless the system is
autoloaded again. When just autoloaded, the system contains one
area process to be able to load programs (or more area processes)
fram the disc.

When a disc file is opened for reading or writing, one area pro-
cess is reserved, and is returned to the pool of free area pro-
cesses, when the disc file is closed.

Up to three different processes may use the same area process to
read the same disc file at the same time, but if a file is opened
for writing by a process, no other process is allowed to access
the file.

Filename References in Utility Calls 3.2

Most utilities has one or more filenames anong their parameters.
Such a filename is used to point out a certain entry in a certain
catalog. As mentioned in chapter 2.2, a filename has one of three
different formats. The use of these formats is described below.
In part 1 of this manual is described that DOMUS has a current
catalog which may be selected by the DOMUS-functions CONNECT and
RELEASE. After autoload of the system, current catalog is the
main catalog on wnit 0.

If reference to a file in the current catalog is wanted, the
simple filename format '<name>' is used.

If reference to a file in the main catalog on another unit than
unit 0 is wanted, the filename format '<name>:<number>' is used.
The number then points out the selected wunit.

If reference to a file in subcatalog, which is not current
catalog is wanted, the filename format '<name>/<name>' us used.
The first name is the name of the subcatalog, and the second name
is the name of the wanted file.

If reference to a file in the main catalog on unit 0 is wanted,
when oonnected to a subcatalog, the filename format <name>/<name>
is used too, but the first name must be 'CAT', and the second

name of the name of the file.
Examples:

1) COPY PIP PAP
The file PIP is copied to file PAP. Both files reside in
current catalog.

2) COPY PIP:1 PAP
The file PIP in the main catalog on unit 1 is copied to
file PAP on current catalog.

3) COPY PIP SUB/PAP
The file PIP in current catalog is copied to file PAP in

subcatalog SUB. This is not allowed, if subcatalog SUB is
protected by a key. In this case, use the next example.

4) CONNECT SUB 100
COPY CAT/PIP PAP
The file PIP in the main catalog on unit 0 is copied to
file PAP in subcatalog SUB.

5) SUBCAT LINK SUB1:1
FINIS SUBCA
QONNECT SUB1
COPY CAT/SPTR PAP

First a link to subcatalog SUB1, which resides on disc
unit 1, is created. Then the file SPTR in the main catalog

on unit 0 is copied to file PAP in this subcatalog.

10

PERTPHERAL DEVICES 4.

4.1

Device Handling 4,1

Only few utility programs have been designed to use special
devices, and to avoid each program fram keeping track of the
device characteristies in the handling, a general way of file i/o
initialization has been implemented.

Documents which are not disc files are defined in catalog

entries, called device descriptors, which hold information of the
driver name to be used, the damument kind, the mode of operation,

the status bits to cause giveup, and finally the document
position given by the file mumber and block number.

Supplied with the DOMUS system are a number of predefined device
descriptiors, which can be found in appendix B, but the user can

change these or create his own device descriptors. This is done
by using the utility program SET.
Formmat of the SET call is:

SET NAME.<filename> DEVICE.<name> FILE.<number> BLOCK.<number>
MODE . <number> KIND.<number> MASK.<number>

Explanation of the parameters:

NAME: Entry name of the device descriptor to create or

'change.
DEVICE: Process name of the driver that supports the device.

FILE, BLOCK:
The wanted position of the document. Not relevant for

all devices, or it may have special meaning.

MODE : Generally mode=1 means binary input, and mode=3 means
binary output, but each device may have defined its own
mode bits.

For devices enabling both input and output it is
sufficient to specify the mode for input, as the utility
programs are able to change the mode.

11

KIND: The kind is easily given in radix 2, and can be
interpreted after the scheme:

Bit 15: character oritented devices, i.e. line printer,
paper tape reader, paper tape punch.

Bit 14: block oriented devices, i.e. magnetic tape, card

reader, discs.

Bit 13: positionable devices, i.e. magnetic tape,
discs.

Bit 12: repeatable devices, which means devices suppor-

ting error recovery, i.e. magnetic tape, discs.
Bit 11: disc files only, not used in device descriptors.
MASK: Generally a mask which enables all status bits except

bit 3, bit 4 and bit 5 (the soft status bits) is

sufficient.

12

When initializing input/output, the utilities looks up the given
entry in the given catalog, and depending of this entry and the
function, one of the following actions is taken:

1. If the entry exists and describes an ordinary disc file, and
the function is input, data is transferred from this disc
file.

2. If the entry does not exist, and the function is output, a new
disc file is created, and data is transferred to this disc
file.

3. If the entry does not exist, and the function is input, the
utility program will terminate with an error message.

4. If the entry does already exist and describes an ordinary disc
file, and the function is output, the utility program will
terminate with an error message to prevent overwrite of exis-

ting data.

5. If the entry exist and is a device descriptor, the file is to
be transferred to or fram the document described by the device
descriptor.

The block size of the document is normally 512 bytes, unless it

can be changed by the parameters.

Examples of Use of Device Descriptors 4,2

1. Define the device descriptor $MT describing file 10 on first
magnetic tape station: ’
SET $MT MTO 10 1 1 2'1110
The block number and the mode are set to 1, and the kind is
set to repeatable, positionable and blocked.

13

2. No device descriptors exist on a subcatalog just created, and
this means that special care must be taken when the current
catalog is such a catalog. The device descriptors on the main
catalog may be used in the following way:

PRINT PIP CAT/SLPT
or
COPY CAT/SPTR PAP

3. Another way to acces peripheral devices when connected to a
subcatalog is to create the device descriptors as entries in
the subcatalog:

CONNECT SUB
SET $MTO 1 1 1 2'1110 8'161777

4. The task 'copy file number 4 on second magtape station to file
nunber 6 on first magtape station' is done in the following
way':

SET MTIN MTM 4 KIND.2'1110
FINIS SET
SET MTOUT MTO 6 KIND.2'1110
FINIS SET

COPY MTIN MTOUT

FINIS COPY

14
5. Copying of a number of binary paper tapes, each to a separate
file on magnetic tape can be done in the following way:
SET MT' MTO 1 KIND.2'1110
FINIS SET
COPY SPTRN MT
FINIS COFY
SET MT FILE.2
FINIS SET
COPY $PTRN MT
FINIS COPY
SET MT FIIE.3

and 0 on. This is possible, as all non given parameters are
taken fram the existing device descriptor.

4'3

15

Standard Coversion 4.3

When utility programs produce output to a printer, data is send
as ASCII characters. Charaband printers and serial printers are
able to accept these ASCII data, but some line printers requires
the presence of a conversion table in memory, as some RC3600 line
printers are able to use different print drums.

Wwhen the conversion table is loaded into memory, it must be oon-
nected to the line printer driver by call of the utility program
STACO.

The function of STACO is to connect a conversion table placed in
a core item to the selected driver and to prevent the oconversion
table from removal without the driver's knowledge. A call of the
S-function LIST/CORE will produce a list of coreitems, which will
show that the driver is placed as owner of the coreitem contai-
ning the conversion table.

Regret of a standard conversion can only be done by killing the
owner driver, and reload of the process.

Standard conversion is only used by the driver, if the reserver
program does not specify its own conversion table, hereby ena-
bling application programs with its own defined table to run
without change.

Load of line printer driver and the conversion table P218, and
connecting it to the driver can be done in this way:

LOAD LPT P218 (STACO LPT P218)

FINIS STACO

16

SYSTEM MESSAGES 5.

5.1

Standard Messages 5.1

All system message reside on the file SSYSE on the main catalog
on unit 0, and each message is identified by a unique number in
the interval 1 - 9999,

Each error occuring in the system is converted to an appropriate
message number, and the text to be output is fetched from the
camon file. This enables the user to add, translate, change or
re-formulate the errortext connected to the number.

In order to avoid conflicts the system message have been split
into different groups depending of the use:

1-99 DOMUS operating system.

100 - 1999 Standard utility programs.

2000 — 2999 Standard device errors. Each text is found by adding
a base connected to a specific device to the number
of the leftmost status bit set.

3000 - 7999 Standard application programs.

8000 ~ 9999 Informative texts.

9000 - 9999 Customer available texts, free to use for any

customer designed texts or message.
In groups from 1 = 7999 the texts are always defined with the
heading 'NNNNxx', where NNNN is the text number.

The messages in the group 1 - 99 are defined and explained in
DOMUS User's Guide, part 1.

Message in the interval 100 - 2999 can be found in appendix A of
this guide.

17

Message numbers used in case of errors in catalog operations are

found by adding base 100 to the leftmost status bit number, when
bit 3 and 4 are removed:

0100

0101

0106

0107

0111

0112

**% CATAIOG I/O ERROR, FILE <filename>
The catalog system is malfunctioning, possibly the catalog
structure is destroyed or there are software errors in the
catalog system.
**% PILE DOES NOT EXIST, FILE <filename>
The referred file is not present in the selected catalog.
***% TIIEGAL OPERATION, FILE <filename>
The operation requested on the referred file is not al-
lowed, either because the file is protected by attributes
or another process is using the file.
Non existing wmnit is specified.
**%* NOT ENOUGH DISC SPACE, FILE <filename>
Too few free segments are available for the referred
file.
% PILE DOES ALREADY EXIST, FILE <filename>
The referred file does already exist in the selected
catalog.
*** TNDEX BLOCK FULL, FILE <filename>
It is not possible to get any more slices for the referred
file.

18

Message numbers in case of errors in the initialization of input-
/output or datatransfer to files are found by adding base 120 to
the leftmost status bit number after removal of bit 3 and 4:

0120 *** CATAIOG I/0 ERROR, FILE <filename>
See error 0100.

0121 *** FILE DOES NOT EXIST, FILE <filename>
See error 0101.

0126 *** FILE IN USE, FILE <filename>
The referred file is reserved for exclusive use by another
process, Or a process with the same name as the file is
present in core.

0127 *** NO FREE AREA PROCESS TO FILE <filename>
The cammon pool of area processes is empty. It can be
extended by loading more area processes.

0131 *** END MEDIWM ON FILE <filename>
Physical end of file is found before the expected logical
end.

0132 *** MAP/FILE EXCEEDED, FILE <filename>
The maximum filelength has been reached on the referred
file, or no more free segments due to a configuration
error on the disc.

19

Message numbers used in case of device errors are found by adding

the base 2000 to the number of the leftmost bit set after removal
of bit 3 ard 4:

2000 *** DISCONNECTED, FILE <filename>
The device is not ready, or the hardware is missing.
2001 *** OFF-LINE, FILE <filename>
The device is set local.
2002 *** PBUSY, FILE <filename>
The device is not able to accept input/output transfers.
2006 *** RESERVED, FILE <filename>
The driver is reserved by another process, or the opera-
tion is unknown, or write has been attempted on a write-~
protected device.
2007 *** END OF FILE, FILE <filename>
See error 131.
2008 *** RBIOCKLENGTH ERROR, FILE <filename>
The block read was to big to be held in the used buffer
size, or the block output was too big to be held on the
document. Format error in input.
2009 *** DATA [ATE, FILE <filename>
The CPU was too busy to respond on a memory reference fram
the device. On high speed devices only.
2010 *** PARITY ERROR, FILE <filename>
One or more characters had a parity error.
2011 *** END MEDIUM, FILE <filename>
See error 131.
2012 *** POSITION ERROR, FILE <filename>
The driver is unable to find the position requested.
2013 *** DRIVER MISSING, FILE <filename>
The driver process is not loaded.
2014 *** TIMEOUT, FILE <filename>
The device did not respond within a specified time.

5'2

20

Message Generation 5.2

Supplied with the system is a system message file, SSYSE. This
file is produced fram the text file STERR, which is also on the
system.

It is possible for the user to modify the SSYSE file and thereby
change the already existing messages or include new messages.
This is done by changing the text file STERR by means of the text
editor and then replace the old SSYSE file by a new one. This
must be done very carefully. First the attributes of the old file
must be changed by the utility call 'CHATR SSYSE', and then the
file is deleted by the utility call 'CELET SSYSE'. The new file
is created by the utility GENER.

It is recammended to protect the SSYSE file with the attributes P
ard W.

Please note that if SSYSE is not existing, any error will result
in the message '*** SYSTEM ERROR 24'. You must also be aware,
that it is not possible to autoload DOMUS if the disc does not

contain a SSYSE file !

The format of the text file can be found in the description of
utility GENER. The maximum text length is 502 characters, ard
undefined message numbers will not occupy disc space. If a
non—-exising message number is referred, DOMUS will return the
text '*** UNREGISTERED ERROR'.

21

STANDARD UTILITY PROGRAMS

This chapter contains descriptions of all available DOMUS utility
programs. All the mentioned utility programs are not neccessarily
present on a standard DOMUS system.

6.

22

6.1 ADDEX

Format:
ADDEX COM.<name> EXP.<name>

Function:
This program is used togehter with the DOMUS utilities NAMEX
and GEN. It is used to insert some filename explanations in
a GEN cammand file. For further information see DOMUS Utili-
ty ADDEX, User's Guide. This utility works on main catalogs

only.
Parameters:
CoM: Name of GEN cammand file in which filename explana-
tions should be inserted.
EXP: Name of filename explanation file.

Default: ADDEX OOM.<0>...<0> EXP.SYSEX

Example:
ADDEX PIP
The filename explanations fram the file SYSEX will
be added to the GEN command file PIP.

6.1

6.2

23

AMXINIT 6.2

Format:
AMXINIT IN.<name>

Function:
This program is able to initialize a RC3682 asynchronous
multiplexer acording to parameters given in a cammand file.
For further information, please consult the manual RC3682
AMX Driver Initialization Program, User's Guide.

Parameters:
IN: Name of text file containing the parameters.
Default: AMXINIT IN.SPTR

Example:
AMXINIT AE082
The AMX driver is initialized according to
parameters given in the text file AE082.

24

6.3 APPEND 6.3

Format:

APPEND QUT.<filename> IN.<filename> <filename>...

Function:
This program copies fram IN.<filename> to OUT.<filename>.
Trailing zeroes in each input file are skipped. Up to 10
input files may be specified.

Parameters:
Qour: output filename
IN: input filenames

Default: As default all filenames are empty. The output
file and at least one input file must be specified.

Example:
APPEND SPTP DATA1 DATA2 DATA3

The files DATA1, DATA2 and DATA3 are copied to
file $PTP (i.e. the paper tape punch).

25

6.4 CATLIST

Format:
CATLIST MASK.<filename> OUT.<filename> TEXT.<text>
ATT. <name> COMPR.<boolean>

Function:
This program produces a sorted list of catalog entries in a
specified catalog. If the process TIME is loaded, current
date and time is included in the headline.
Format of the output is for normal entries:

1: Entry name
2: Entry attributes, with following interpretation:
C: catalog entry
S: subcatalog
B: big slice extension (special use)
L: link entry (not used)
P: permanent entry
W: write protected entry
E: entry only
D: device descriptor
V: extendable file
F: fixed length file
3: Segment number of index block
4: length of file (in segments)
5: Reserved length (in segments)
6: Entry optional words 1 as ASCII string
7: Entry optional words 2 as ASCII string

In case of device descriptor entry:

1: Entry name

2: Entry attributes as for normal entry
3: Driver name

4: File number (decimal)

5: Block number (decimal)

6: Mode (decimal)

7: Kind (binary)

8: Giveup mask (octal)

Parameters:
MASK:

ATT:

COMPR:

26

The name part of this parameter is a mask selecting
the entries to be printed. Any entry name that fits
the mask will be listed. The character $ replaces any
character.

E.g: The mask PIPS will list all entries with name-
length 4 where the first three character are PIP.
The catalog part of the parameter specifies which
catalog to examine. If no catalog is specified,
current catalog will be examined.

Output filename.

The ASCII string specified in this parameter will be
output as a headline of the listing. Maximum length
of the string is 40 characters.

If one or more attributes is specified to this para-
meter, only entries that have of least one attribute
in camon with this mask will be listed.

If this parameter is specified as YES, a campressed
listing will be produced. No headlines will be
output. Entries with attributes C,S or E and some
system entries will not be listed.

For each entry only the name and the filelength will
be output.

Default: CATLIST MASK.$$$$S OUT.STTY TEXT.<0>...<0>

ATT.<0>...<0> CQMPR.NO
i.e. all entries on current catalog is listed on
device described by $TTY.

Example:

CATLIST SUB/ASS$SSS 'SOURCE FILES' P

i.e. all entries in subcatalog SUB with A as the
first character of the name and with attribute P will
be cutput to file PIP on current catalog. The text

' SOURCE FILES' will be output as a headline of the
listing.

27

6.5 CHATR 6.5

Format:
CHATR NBME.<filename> ATT.<name>

Function:
This program will change the attributes of the specified

file to the specified value.

Parameters:

NAME: Name of entry to be changed
ATT: New attributes. The only changeable attributes are:

B: big slice extension (special use)

3

permanent entry

W: writeprotected file
V: extendable

F: fixed length

Default (HATR NAME.<0>...<0> ATT.V

Example:
CHATR PIP PW
The file PIP on current catalog is changed to have
the file specifications permanent and writeprotec-—
ted.

6.6

CoMP

Format:

28

COMP IN.<filename> OUT.<filename> LIST.<filename>
INCOD. <filename> NAME.<name> IDENT.<name> OPCOM.<name>
MODIF.<name> BLOCK.<number>

Function:

This utility is the MUSIL compiler, which is able to produce
executable binary programs fram an ASCII source text. For
further information see MUSIL Compiler, Operator's Guide.

Parameters:

INCOD:

NAME:
IDENT:

OPCQOM:
MODIF':

BLOCK:
Default:

Input source file name.

If specified, binary output file name.

If specified, filename where to list the source
text.

The name of the file fram which codeprocedures are
loaded.

Process name of object code.

If specified, the ident is output as an ASCII text
in front of the object code.

Driver name of operator device of object code.

One to six characters denoting special functions.
The following are allowed: B (extra message
buffers), C (coroutine program), N (no process
descriptor), X (XREL code is produced), P, P1, P2,
P4, P8 (paged program).

Qutput block size. Maximal value is 512 bytes.
CCMP IN.SPTR OUT.<0>..<0> LIST.<0>...<0>
INCOD.<0>...<0> NAME.MAIN IDENT.<0>...<0> OPCOM.TTY
MODIF.<0>...<0> BLOCK.512.

29

Example:
CaMP S1000 P1000 SLPT ULIB PIP MODIF.X
The file S1000 is campiled and the binary output is placed

in file P1000. A listing of the sourctext is output to file
SLPT, and codeprocedures are fetched from file ULIB. The

process name of the object program will be PIP.
The object program will contain XREL code.

Program size:

The computer will, besides its own size, use the largest

free coreitem for working area.

30

6.7 COMPARE 6.7

Format:
COMPARE IN1.<filename> IN2.<filename> MAX.<number>

Func_tion:
This program will campare two files byte by byte. If any
difference between the two files is detected, a message is

output to the operator console. This message contains the
absolue byte number and the two different values. All values
are decimal. The program will terminate either when end of
file is reached or when a spefified number of unmatching
bytes have been detected. leading and traling binary zeroes

are skipped.
Parameters:
IN1: Name of first input file.
IN2; Name of second input file.
MAX: Max imun number of unmatching bytes before termina-
tion.

Default: IN1.<0>...<0> IN2.<0>...<0> MAX.1

Example:
COMPA DATA SPTR
The files DATA and $PTR are campared.

6.8

31

CONFIGURATION

Format:
CONFI LIST.<filename>

Function:
The titles of modules placed in the current DOMUS basic
system are listed on the file specified by parameter LIST.

Parameters:
LIST: Name of list file.
Default: CONFI LIST.STTY

Example:
CONFI SLPT
The files of the modules in the basic system are listed
on file SLPT.

6.8

6.9

32

CorPY

Format:
COPY IN.<filename> OUT.<filename> BIOCK.<number>

Function:
This program copies the file specified by parameter IN to
the file specified by parameter OUT. Output blocksize is
selectable. If a disc file is copied to another disc file,
the tail part of the entry is copied too.

Parameters:
IN: Input filename
ouUT': Output filename
BIOCK: Block size used on output file. Maximum value is

512 bytes
Default: COPY IN.<0>...<0> OUT.<0>...<0> BLOCK.512

Example:
COPY $PTR SPTP
The file $PIR (i.e. the paper tape reader) is
copied to file $PTP (i.e. the paper tape punch).

6.9

6.10 CREATE

Format:

33

CREATE NBME.<filename> SIZE.<number> ATT.<name>

Function:

This utility is used to create a file with specified name,
size and attributes.

Parameter:
NAMEs
SIZE:
ATT:

Name of the file to be created.

Number of segments in the file.

Attributes of the file. Allowed values are:
B (big slice extension), P (permanent file),
W (writeprotected file), V (extendable) and F
(fixed size).

Default: CREATE NAME.<0>...<0> SIZE.1 ATT.V

Example:

CREATE WORK 100 PF

The file WORK is created on current catalog with
size 100 segments with attributes permanent and
fixed size.

34

6.11 DCOPY 6.11

Format:
DCOPY FUNC.<name> UNITA.<number> UNITB.<number>

Function:
This program is a disc copy and backup program. It is able
to copy one disc unit to another, to campare two disc units,
to copy a disc unit to megtape and to ocopy a magtape to a
disc unit.
After having been loaded, the program will write the current
function on the operator console, and the operator must
confirm with 'yes', if the function is accepted.
The program is able to handle multi-reel magtapes. When the
erd of magtape is reached, the message 'mount next magtape'
is output to the console, and when the next reel is mounted,
the operator must answer 'return'.
When the function is ocompleted, the message 'end function'
is output to the console and must be answered with 'return'.

Parameters:
FUNC: Function of the program. Allowed values are:

BACKU: The contents of the disc unit specified by
parameter UNITA is copied to magtape.
The parameter UNITB is dummy.

RESTO: The contents of a magtape produced by the
BACKU function is copied to the disc unit
specified by UNITA. The parameter UNITB is
dummy.

COPY: The contents of the disc unit specified by
parameter UNITA is copied to the disc unit
specified by parameter UNITB.

CMPA: The ocontents of the two disc units specified
is campared to detect any difference between
them.

UNITA: If function is BACKU or RESTO, this parameter speci=-
fies the disc unit to be used. If function is QOPY or
COMPA, it specifies the source disc wunit.

35

UNITB: If function is QOPY or COMPA, this parameter
specifies the destination disc wunit.

Default: DCOPY FUNC.BACKU UNITA.O UNITB.1

Example:
DCOPY COPY
The contents of disc unit 0 is ocopied to disc wunit 1.

Note:
This program must be used very carefully, as it is able t©
overwrite any disc unit in the system, regardless of any

protection.

36

DELETE

Format.:

DELETE NAME.<filename> <filename>....

Function:

This program deletes the files with the specified names.
Max. 20 files may be specified.

Parameters:

NAME s Name(s) of file(s) to be deleted.
Default: DELETE NAME.<0>...<0> <0>.,..<0> ...

Example:

Note:

DELETE WORK SUB/WORK1
The file WORK on current catalog and the file WORK1
on subcatalog SUB will be deleted.

Ocasionally an erroneous termination of a utility program
may leave a workfile with a name containing a dot or a
space. These files may be deleted by including the name in
quotation marks, for instance:

DELETE '.XEC'

6.12

37

6.13 DISK 6.13

Format:
DISK UNIT.<number>

Function.
Number of free segments and number of used segments on the
catalog wnit described by the parameter UNIT is output to
the operator console.

Parameters:
UNIT: Number of the unit to be examined. Must not exceed
255,
Default: DISC WNIT.O

6.14

DOMAC

Format:

38

6.14

DOMAC MODE. <name> LIST.<filename> BIN.<filename>
LINES.<number> PERM.<filename> SYMB.<filename>
MACRO. <filename> XREF.<filename> <filename> <filename> ...

Function:

This program is the DOMAC assembler. For further informa-
tion, see Introduction to the DOMAC Assembler and DOMAC,
DOMUS Macro Assembler User's Guide. Please note that the
parameter format is not fullfilling the standard of utility
calls. Each parameter must be preceded by the parameter

name, except for the source file specification which has no
parameter name. The order of the parameters is not defined

in the same may as other utilities. All used files must

reside on the main catalog on unit 0.

Parameters:
MODE :

LIST:
BIN:

A name of maximum five characters. Each character
specifies a special function of the DOMAC
assembler.

Allowed characters are:

Add all semipermanent symbols to cross-reference
listning.

Overwrite all listing suppression.

Add referenced semipermanent symbols to
cross—-reference listing.

Skip pass 2 and create a new semipermanent
symbol table and macro definition file.

A warning is listed for data words where bit
zero is set by means of @.

Do not make a cross-reference listing.

Include a size block in binary output.

Name of file where to output the program listing.
Name of file where to output the relocatable binary
object code.

6.15

40

DUAL

Format:

DUAL BOOQT.<name> SYS.<name>

Function:
This program loads the second processor in a dual processor
system. First the program autoloads the second processor via
the front end processor adapter (FPA) and transmit the FPA
relocatable binary loader, which is taken fram a disc file
specified as parameter. The FPA bootstrap loader is able to
receive relocatable modules and link them together to form
an exectutable core-image as neccessary to start up a MUS
(DOMUS) system. The binary modules to be transmitted should
be specified in a disc file given as the second parameter.
For further information, please consult the manual DOMUS
Utility DUAL, User's Guide.

Parameter:

BOOT: The name of a disc file on the main catalog contai-
ning the FPA relocatable binary bootstrap loader
(FPBxx) in absolute binary format.

SYS: The name of a disc file on the main catalog
containing the names of modules to be loaded as an
ASCII text string.

Default:

DUAL BOOT.FPABT SYS.Q3600

Example:
DUAL
The second processor is loaded using the loader
fran the disc file FPABT. The basic system in the
second processor is linked of the modules described
in the disc file Q3600.

6.15

40

6.15 DUAL 6.15

Format:

DUAL BOOT.<name> SYS.<name>

Function:
This program loads the second processor in a dual processor
system. First the program autoloads the second processor via
the front end processor adapter (FPA) and transmit the FPA
relocatable binary loader, which is taken fram a disc file
specified as parameter. The FPA bootstrap loader is able to
receive relocatable modules and link them together to form
an exectutable core—-image as neccessary to start up a MUS
(DOMUS) system. The binary modules to be transmitted should
be specified in a disc file given as the second parameter.
For further information, please consult the manual DOMUS
Utility DUAL, User's Guide.

Parameter:

BOOT: The name of a disc file on the main catalog contai-
ning the FPA relocatable binary bootstrap loader |
(FPBxx) in absolute binary format.

SYS: The name of a disc file on the main catalog
containing the names of modules to be loaded as an
ASCII text string.

Default:

DUAL BOOT.FPABT SYS.Q3600

Example:
DUAL
The second processor is loaded using the loader
fram the disc file FPABT. The basic system in the
second processor is linked of the modules described
in the disc file Q3600.

6.16

41

EDIT 6.16

Format:
EDIT [<filename>]

Function:
This program is the system text editor. It is described in
the manual RC3600 Text Editor.

Parameters:
If a filename is typed, the editor will perform a UY command
on this file, and the first page of this file will be ready
in the edit buffer.

Example:
EDIT PIP
The editor is loaded and the file PIP is opened for
editing.

42

Format:
EXEC IN.<filename> LIST.<filename> STOP.<boolean>
CONT. <filename>

Function:
This program is the DOMUS batch processor module which
executes utility program calls and S~functions in a user
defined sequence. For further information see DOMUS utility
EXEC, User's Guide.

Parameters:
IN: Name of the file fram where the commands are read.
LIST: Name of the file on which a log of the cammands are

listed.

STOP: If this parameter equals YES, a check is performed
on each utility termination, and if the program
reports a non-succesful termination the whole job
is terminated with an error message.

CONT': If this parameter is typed, the operating system is
requested to interpret this file after execution of
the commands in the EXEC cammand file.

Default: EXEC IN.SPTR LIST.<0>...<0> STOP.NO CONT.<0>...<0>

Exsample:
EXFC CQOM STTY
The S-cammands written in file OM will be execu-
ted, and a log is output to file 5TTY.

43

FCOPY

Format:
FCOPY FUNC.<name> MASK.<filename> LIST.<filename>
FILE.<number> DEV.<name> UPDAT.<boolean>

Function:
Dumps or loads all or selected discfiles in a single cata-
log, except system files and files with names equal to loa-
ded processes, to/fram magnatic tape or flexible disc. A log
of the filenames and sizes (number of segments) is produced.

Parameters:
FUNC: Defines the function of the program. There are
three possible values:

DUMP: All files on the selected catalog with a
name fitting the mask will be transferred
fran the disc to magtape or flexible disc.

LCAD: All files on the magtape or flexible disc
file fitting the mask are transferred to
the specified catalog.

SAVE: All disc files mentioned in the command
file given by parameter MASK are transfer-—
red to magtape of flexible disc.

The cammand file must reside in the same
catalog as the files to be transferred.
The structure of the command file is
described below.
MASK: The catalog part of this parameter defines which
catalog to use when reading/writing the disc files.

If a wnit number is applied to this parameter, the

main catalog on this unit is used.

The meaning of the name part of this parameter de-

pends on the parameter FUNC. If this is DUMP or

LOAD, the name is to be taken as a mask where the

character $§ means any character.

Only files with a name fitting this mask will be

transferred.

6.18

LIST:
FILE:
DEV:

UPDAT:

Default:

Examples:
FCOPY

44

If the function is SAVE, the name points out a
camand file which contains a number of names of
disk files to be transferred to magtape or flexible
disc. The structure of this command file is
described below.
File where to output the log.
File number to be used on magtape or flexible disc.
Driver name of the magtape or flexible disc.
The nommally used drives are MI0 (first magtape
station), MIM (second magtape station), FD5 (first
RC3751 flexible disc unit) and FD6 (second RC3751
flexible disc unit).
This parameter has only effect when the function is
LAAD. If YES is specified, an already existing disc
file with the same name as a file to be loaded will
be overwritten, otherwise the disc transfer is
skipped.
FCOPY FUNC.DUMP MASK.$$$S$ LIST.SLPT FILE.1

DEV.MT0 UPDAT.NO

All files on current catalog is transferred to file
1 on first magtape station. A log is output to file
SLPT.

FCOPY LOAD ASS SLPT 2 FD5 YES

All files with a namelength of one to four charac-
ters and 'A' as the first character are transferred
fram file 2 on the first flexible disc unit to the
current catalog. A log is output to file SLPT.

FCOPY SAVE SUB/CM STTY

The files in subcatalog SUB described in the com-
mand file CM, which also is placed in subcatalog
SUB, are transferred to file 1 on first magtape
station.

A log is output to file S$TTY.

45

Structure of cammand file:
The camand file used when the function is SAVE is to be
seen as a string of ASCII characters devided in lines by the
characters CR and/or NL. The first characters of each line
are interpreted as a filename. The name is terminated by any
character with an ASCII value less than 33 or greater than
126. The rest of each line is skipped.
The file is terminated by the ASCII character EM or physical
end of medium.
The output from a call of CATLIST with COMPR.YES fulfills
the syntax.

Structure of log file:
The log is headed by some lines giving information about the
transport. If process TIME is loaded, date and time is
included in these headlines.
This is followed by one line for each disc file to be trans-
ferred. If no occurs, each line gives the name and size of
the disc file.
If the file transport is not campleted, the size is replaced
by a text. Possible text are:

PROCESS EXISTS: A process with the same name as the file
to transfer does already exist.
DOES NOT EXIST: May appear when the function is SAVE. It

means that the filename stated in the
camand file does not exist as a disc
file.
DISC ERROR, NOT DUMPED:
A disc file to be dumped or saved is
erroreous and impossible to transfer.
NOT LOADED: A file to be loaded does already exist
as a disc file and the parameter UPDAT
is specified as NO.
If during DUMP a catalog segment is found erroreous, an er-
ror message is written to the log, and the dump is continued
with the entries described in the next catalog segment. The
error message has the following layout:
***% FRROR ON FILE SYS, SEGMENT NNNNN
The number NNNNN is decimal and relative to the start of the
catalog.

6.19

46

FLCOPY

Format:
FLCOPY FROM.<number> TO.<number> CYL.<number>

Function:
This program produces an exact copy fram one RC3751 flexible
disc to another. The two flexible discs must be formatted in
the same way, for example by the utility program FLORMA. No
bad tracks are allowed on the flexible discs.
The program will output the formatting characteristics to
the operator console.

Parameters:
FROM: Unit number of source flexible disc drive.
TO: Unit number of destination flexible disc drive.
CYL: Number of cylinders to copy. Allowed values are 75,

76 and 77. The program FLFORMA does always
initialize 77 cylinders.
Default: FLFCOPY FROM.0 TO.1 CYL.77
Exanple:
FLCOPY TO.2
This call will produce a copy of the flexible disc mounted
in wnit 0 to the one mounted in unit 2.

47

6.20 FLFORMA 6.20

Format:
FLFORMA UNIT.<number> LENGTH.<number> SIDE.<name>
DENS. <name> SCREW.<boolean> BAD1,<number> BAD2.<number>
ERMAP . <name>

Function:
This program is used to format a RC3751 flexible disc. It
may be formatted as normal or screwed. After the flexible
disc has been formatted, the data area is filled with binary
zeroes, and then a read check is performed to ensure correct
formatting.

Paramaters:

UNIT: Unit number of flexible disc to format. Must be
specified in order to prevent overwrite of a sys-
tem disc.

LENGTH: Number of bytes on each sector, must be a multiple
of 128 bytes. '

SIDE: Specification of number of sides of the flexible
disc. Allowed values are S for single sided and D
for double sided flexible discs.

DENS: Specifies the density of the flexible discs.
Allowed values are S for single density and D or
double density flexible discs.

Specifies whether the flexible disc is to be for-

matted as nomal or screwed NO mens normal and YES

means screwed.

BAD1: Number of first bad cylinder, if any.

BAD2: Number of second bad cylinder, if any.

ERMAP: Format of -the error map on the flexible disc.
Allowed values are A for ASCII and E for EBCDIC.

Default: FLFORMA WNIT.999 LENGTH.128 SIDE.S [ENS.S

SCREW.NO BAD1.0 BAD2.0 ERMAP.A

SCREWN

Example:
FLFOR 1 256 D
This call will format the flexible disc mounted in unit 1
with a sector length of 256 bytes and as double sided.

6.21

GEN

Format:

48

GEN OUT.<name> OCOPY.<number> CONTR.<name> LOG.<name>
LCOPY. <number> MARG.<number>

Function:

This program is used for generating program magtapes, card
decks, flexible discs and paper tapes.

For further information, please consult the manual RC3600
System Generation with DOMUS GEN, User's Guide.

NB:

Parameters:
QUT:

OCOPY:
CONTR:

Default:

Example:
GEN MT 1

The program is only able to handle entries in the
main catalog.

The output device. Allowed values are: MT
(magtape), FD (flexible disc (RC3650)), PTP
(papertape punch), RDP (card reader/punch) and NFD
(Flexible disc (RC3751)).

Number of copies of the output.

A disc file generated by the text editor containing
the cammands to GEN.

If stated, GEN will use this file to output a log
of the work.

Number of copies of the lcg.

Margin on the log. Number of spaces (max. 10) to be
printed before each line of the log.

GEN OUT.MT OCOPY.1 CONTR.<0>...<0> LCOPY.1 MARG.O

caM sLpPT 2

This call will produce a program magtape as des—
cribed in the control file COM and write two copies
of the log on SLPT.

Program size:

If output on magtape or flexible disc (RC3650 or
RC3751), memory must be available to get a coritem
as big as the biggest absolute binary module to be
put on the tape/disc.

6.21

49

GENER 6.22

Format:

GENER IN.<name> LIST.<name> OUT.<name>

Function:

The program reads an ASCII file containing all system mes-

sages, produces a listing of these message and of any error
detected in the text file, and creates a disc file contai-

ning the message in a form accessible by DOMUS. Number of
errors is output to the console, and line and page number of

each error can be found in the listing.

NB: (nly files on the main catalogs are handled by the pro—
gram. Please refer to chapter 5.2 about the use of this

Parameters:

utility.

IN: Input source file name.
LIST: List file name.

QOUT': Qutput file name

Default: GENER IN.STERR LIST.SLPT OUT.SSYSE

Exemple

GENER OUT.MSYSE

This call causes GENER to read and check the ASCII
text file STERR and to create the file MSYSE with
listing on SLPT.

Format of input file:

The ASCII input file contains the system message in ascen-
ding order each in the form:

<number> <camment> <message><nl>

<number> identifies the number of the message. It is written
as a number of decimal digits terminated by a space. The
value must be inside the range 0 - 9999.

<comment> is any string of characters not including quotation

mark (').

50

<message> is the message coresponding to the message
number.

It is a string of characters started and terminated by quo-
tation marks. Character with a value less than 32 has no
effect on the output file, and characters with a value
greater than 127 are replaced by a question mark. If a cha-
racter with a value outside the range 32-127 is wanted in
the output file, it must be written in the form: <NNN>,
where NNN is the decimal value of the character.

The very first line of the file must not include any mes-
sage. It is used only to identify the file.

The file is terminated by physical or lcgical end medium.
Example of text file:

0000 DOMUS 77-02-15 REV 03.00

0001 DOMUS 77-02-15 ' 0001 *** SYNTAX'

0304 BASIC 78-01-25 'ILLEGAL KEY'

0349 BASIC 77-01-25 "'

2000 ANY 77-03-25 '2000 *** DISCONNECTED, FILE '

51

6.23 LIBE

Format:
LIBE LIB.<filename> OUT.<filename> FUNC.<name>
PROC.<filename>

Function:
This utility is used for maintenance of MUSIL codeprocedure
libraraies. It is possible to perform insert, delete, ex-
tract and list operations on a library.
A codeprocedure is defined as a number of relocatable binary
blocks with a leading title block and a trailing start

block.

Parameters:
LIB: Name of the codeprocedure library to use.
OoUT: Name of file to which a log will be output.

FUNC: Defines the function of the program. Possible
values are: ‘

LIST: List names and sizes of all code procedures
in the library on the logfile.

ADD: Insert the codeprocedure fram the file de-
scribed in parameter PROC, in the library. If
the library does not exist, it will be crea-—
ted.

If one or more codeprocedures with the same
‘name as the new one already exist in the
libaray, they will be deleted.

DEL: Delete the codeprocedure defined by parameter
PROC fram the library.

EXT: Place the codeprocedure described by para-
meter PROC in a disc file with the same name.
The library remains untrouched.

PRCC: Name of file to contain the ccdeprocedure.

Default: LIBE LIB.<0>...<0> QUT.$TTY FUNC.LIST PROC.<0>...<0>

Examples:
LIBE ULIB $TTY ADD P0260
The codeprocedure contained in file P0260 is inser-
ted in library ULIB. A log is output to file $TTY.
If a codeprocedure with the title P0260 already
exists in the library, it will be deleted.

6.23

6.24

LINK

Format

52

LINK OUT.<name> LOG.<name> TITLE.<name> ENTRY.<number>
CHECK. <boolean> FORM.<name> MODE.<name> IN.<name> ...

Function

The purpose of a linkage editor is to handle external refe-

rences between relocatable binary modules. The DOMUS linkage

editor (LINK) takes a number of relocatable binary input

modules produced by the DOMAC assembler and outputs a single

program in absolute or relocatable binary formmat, having

filled in intermodule references and relocated approprately.

The input modules are taken fram disc files. When linking, a

work file on disc named .INK is used. This file is removed
automatically when the linking has finished.
The program is able to work on main catalogs only.

For further information, please consult the manual DOMUS
Linkage Editor.

Parameters:
QUT:

MODE :

Name of file or entry to which the binary code is
output. Must be specified.

Name of file or entry to which the log information
is output.

Title of the output module. Only relevant when
parameter FORM is R or P.

Specifying the maximal number of entries defined in
the input mcdules.

If check of location overwrite is wanted, YES must
be specified, otherwise NO.

Specifies the format of the binary output. Only one
of the following letters must be specified: R (re-~
locatable binary), A (absolute binary), B (Basic
system), N (as B, but the output has no start
address) or P (paged program).

One or more of the following, letters may be speci-
fied: S (Only the first module fram each input file

is read), M (the input files may contain more than

6.24

53

one module), X (a size block will be added to the
binary output. Only relevant with relocatable
binary output).
IN: Name of input file. Up to 50 input files may be
specified, and they are linked in the order given.
Default: LINK OUT.<0>...<0> LOG.<0>...<0> TITLE.MAIN ENTRY.225
CHECK.YES FORM.R MODE.S IN.<0>...<0> <0>...<0> ...

Example:
LINK ABSBI $TTY FORM.A IN.TEXT1 TEXT2
Link the modules from TEXT1 and TEXT2 and output abso-
lute binary of file ABSBI. The log will be output to
$TTY.

6.25

54

NAMEX

Format:
NAMEX FUNC.<name> NAME.<name> TXT1.<text> TXT2.<text>

FILE.<name> LIST.<name>

FUNCTION:

This program maintains a filename explanation file,

containing user supplied information about files on a DOMUS

disc pack.

The filename explanation file is a set of records oconsisting
of two fields. The first field is an ident, normally the
name of a DOMUS file. The secord field is a user defined
text related to the ident. The text oould describe the

contents of the file identified by the ident.

The program oontains ordinary editing functions, such as
insert, change and delete. The program can also add a text
to an existing record, print specified records an merge two

filename explanation files.

The program operates on main catalogs only.

For further information, please consult the manual:
DOMUS Utility NAMEX, User's Guide.

Parameters:
FUNC: The function of the program. Allowed values are:

I (insert), A (add), C (charge), D (delete), P

(print) and M (merge).

MAME : Identifies the ident on which the function should

be performed, with two exceptions:

If function is P, the ident is a mask, where $ may
substitute any character. In this case the default

value is $$SSS.

If function is M, the ident is the name of a file-
name explanation file, fram which filename expla-

nations are added to the filename explanation file

given by parameter FILE.

TXT1: User explanation to be associated with the ident.

Only significant, when the function is I, A or C.

The maximum length is 120 characters.

6.25

55

TXT2: May be defined, if TXT1 if specified. The text in
this parameter will be added to TXT1. Maximum
length is 120 characters.

FILE: Name of the filename explanation file, on which the
operation is to be performed.

LIST: Name of file where to output the listing when the
function is P. '

Default: NMAMEX FUNC.<0>...<0> NAME.<0>...<0> TXT1.<0>...<0>

TXT2.<0 ...<0> FILE.SYSEX LIST.STTY

Example:
NAMEX I DATA1 'THIS IS A DATA FILE' FILE.MYEXP
The text 'THIS IS A DATA FILE' is inserted in the
filename explanation file MYEXP as belonging to the
ident DATA1. ‘

56

6.26 NEWCAT 6.26

Format:

NENCAT UNIT.<number> CATSIZE.<number> SLICE.<number>
SEG. <number>

Function:
A new and anpty catalog is created on the spefied disc unit.
It is not possible to create a catalog on unit 0, as this
unit is the system disc at running time.
Note: All files on selected unit are deleted independent of

any protection.

Parameters:
UNIT: Specifies the unit on which to create a new cata-

log. Must be inside the range 1 - 15.

CATSIZE: Specifies the size of the catalog file in segments.
This size must be an integral multiple of the slice
size.

SLICE: Specifies the slice size in segments of the new

catalcg.

SEG: Specifies the total number of segments on the new
unit.

Default: No default values, all parameters must be speci-
fied.

Example:
NEWCAT 1 24 6 4872
All files on catalog unit 1 are removed, and a new
and enpty catalog is created. The catalog size is
24 segments, and the slice size is 6 segments.
Total number of segments is 4872, i.e. a 2.4 MB
disc is used.

Requirements:
Catalog initialization process CATI must be loaded.

57

6.27 PRINT 6.27

Format:

PRINT IN.<filename> LINE.<boolean> OUT.<filename>

Function:
An ASCII text file is output to a printer. The character
"TAB' (ASCII value 9) is converted to the corresponding
number of spaces. If wanted, linenumbers egiuvalent to num-
bers printed by the MUSIL compiler may be output in front of
each line. If the process TIME is loaded, date and time will
be included in the headline. ‘
It is recammended to use the DOMUS utility QOPY for data
transfer to non-printer files.

Parameters:
IN: Name of ASCII text file to be printed.
LINE: If YES is specified, the output is supplied with
linenumbers in front of each line.
OUT: Name of output file (a device descriptor describing
a printer).
Default: PRINT IN.SPTR LINE.NO OUT.SLPT

Example:
PRINT TEXT YES $SP
The file TEXT is output to device $SP with line-
numbers.

Requirements:
Depending on printer drum, standard conversion can be used

by connecting a conversion table to the printer driver by
DOMUS utility STACO.

58

PUNCH

6.28

Format:
PUNCH IN.<filename> MODE.<name> PNQO.<number>

Function: A
The inputfile is output to the paper tape punch. The paper
tape is punched with either no, even or odd parity.

Parameters:

IN: Name of file to be punched.

MODE : Defines the parity. Only the first character of the
parameter is checked. Allowed values are: N (no
parity), A (ACSII parity), E (even parity) and O
(odd parity). If any other character is specified,
no parity punch is performed. The modes A and E are
equal.

PNO: Unit number of paper tape punch.

Default: PUNCH IN.<0>...<0> MODE.E PNO.O

Example:
FUNCH PIP A 1
File PIP is printed on PIP1 with even parity.

6.28

6.29

REMOVE

Format:

59

REMOVE MASK.<filename> LIST.<filename> VERIFY.<boolean>

Function:

Deletes all selected non-permanent discfiles in a specified

catalog.

Optionally each selected discfile must be verified

before deletion. A list of all selected discfiles is produ-
ced. Each filename is followed by either 'deleted' or 'not

deleted'.

Parameters:
MASK:

LIST:

VERIFY:

Default:

Example:

The catalog part of this parameter specifies the
catalog to be used. The name part is a mask of
filenames to be deleted, where the character $
replaces any character. Only non-permanent files
matching the mask can be deleted.

Name of file on which to output a list of selected
filenames.

Specifies whether or not each matching filename
should be output on the oconsole and verified before
deletion.

If the first character of the answer is 'Y', the
file is deleted, otherwise it is not deleted.
REMOVE MASK.<0>...<0> LIST.$TTY VERIFY.YES

REMOVE A$$$$ VERIFY.NO

All non-permanent files on the main catalog with
'A' as the first character of the name will be
deleted unconditionally.

6.29

6.30

60

RENAME

Format:
RENAME OLD.<filename> NEW.<name>

Function:
This utility changes the name of a catalog entry into
another.
Parameters:
OLD: Name of entry to be changed.
NEW New name of the entry. This entry is always placed

in the same catalog as the old entry.
Default: RENAME OLD.<0>...<0> NEW.<0>...<0>

Examples:
RENAME WORK SAVE
The file WORK is renamed SAVE. The name WORK is
removed fram the catalog.
RENAME PIP:1 PAP
The file PIP on unit 1 is renamed PAP. No files on
unit 0 are changed.

6.30

6.31

61

SET 6.31

Format.:
SET NAME.<filename> DEVICE.<name> FILE.<number> BLOCK.<number>
MODE. <number> KIND.<number> MASK.<nunpber>

Function:
This utility creates a new device descriptor or updates an
existing device descriptor according to the values given of
the call. Please see chapter 4.1 about the use of this
utility.

Parameters:

NAME : Name of device descriptor to create or change.

DEVICE: Name of the equivalent document name. i.e. the
driver name.

FILE: The filenumber of the document.

BIOCK: The blocknumber of the document.

MODE: The mode to be used.

KIND: The kind of the document.

MASK: The giveup mask to be used.

Default: SET NAME.<0>...<0> DEVICE.<0>...<0> FILE.%1 BLOCK.1

MODE.1 KIND.1 MASK.8'163777

Note: These default values are only used when crea-
ting a new device descriptor. If the descriptor
exists, the default values are taken fram this

entry.

Examples:

SET SPTP PTP MODE. 11
Device descriptor SPTP describes the document
punched tape with even parity.

SET $MTO MTO 4 1 1 2'1110
Device descriptor $MTO describes file 4 on MIO.
Kind is set to repeatable, positionable and
blocked.

62

Definition of the task to copy from MT1, file 2 to
MTO, file 10 can be done in this way:

SET MTOUT MTO 10 1 3 2'1110
FINIS SET

SET MTIN MIM 2 1 1 2'1110
FINIS SET

COPY MTIN MIOUT
FINIS QOPY

63

6.32 STACO 6.32

Format:
STACO <name> <name>

Function:
The program inserts a conversion table as standard
conversion to a driver. Both the driver and the table must
be loaded. The owner of the coreitem containing the table is
changed to be the driver. Thus the table may only be removed
by killing the driver.

Parameters:
This utility does not use the standard format. Two names has
to be given: The first is the process name of the driver,
and the second is the name of the coreitem containing the
table. There are no default values.

Example:
LOAD LPT TAB1
STACO LPT TAB1
FINIS STACO
The table found in TAB1 is inserted as standard
conversion for the LPT driver.

64

6.33 SUBCAT 6.33

Format:
SUBCAT FUNC.<name> NAME.<name> KEY.<number>

Function:
The utility subcat is able to create, link, delete and
unlink subcatalogs. For further information, please consult
the maunual DOMUS Utility SUBCAT, User's Guide.

Parameters:

FUNC: A name defining the function of the program. Pos-
sible values are: INIT, CREATE, LINK, CRELI (create
and link), DELET and UNLINK.

NAME: Name of subcatalog in question.

KEY: An integer specifying the protection key of the
subcatalog.

Default: SUBCAT FUNC.INIT NAME.<0>...<0> KEY.O

Example:
SUBCAT CRELI LIB 123
The subcatalog LIB is created on unit 0 and linked
with the key 123.

65

6.34 TYPE

Format:
TYPE IN.<filename> LINE.<boolean>

Function:
A selected text file is output to the operator console.
The character 'TAB' (ASCII value 9) is converted to the
corresponding number of spaces.
Optionally linenumbers are output in front of each line.
If the ESCAPE key is pressed during run of TYPE, the output
will be terminated at once, and the program will be removed.
If the process TIME is loaded, date and time will be output
as a headline.

Parameters:
IN: Name of file to be output.
LINE: If this parameter is specified as YES, linenumbers
will be output in front of each line.
Default: TYPE IN.SPTR LINE.NO

Example:
TYPE TEXT YES
The file TEXT is output to the operator console
with linenumbers.

6.34

66

6.35 XREF 6.35

Format:
XREF IN.<filename> OUT.<filename>

Function:
This program produces a cross-reference listing of all
constants, types, variables, procedures and labels in a
MUSIL source text. A sorted list of all symbols declared is
produced, with the rnumbers of the lines in which they

appear.
If process TIME is loaded, time and date is included in the
headline.
Parameters:
IN: Name of text file containing the MUSIL source text.
OUT: Name of file to which the listing is output.

Default: XREF IN.SPTR QUT.SLPT

Example:
XREF TEXT
A cross-reference listing of the MUSIL source text
in file TEXT is output to SLPT.

Requirements:
This program will use a coreitem XREFC for internal sort.

67

SURVEY OF STANDARD SYSTEM MESSAGES

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

- 0012

0013
0014
0015
0016
0017
0018
0019
0020
0021

0023
0024

0100
0101
0106
0107
0111
0112

0120
0121
0126
0127
0131
0132

*% %k

ek

*kk

k%%

ek k

*kk

*k %k

*kk

%ok %k

*k*x

*kk

dkk

%k

*kk

*k %k

k

*%k

*kk

*kk

*kk

*kk

Kk k

kkk

*kk

*kk

*kk

sk Kk

*k %

ok %

*k %k

%k %k

%%k *

*kkk

*k*k

SYNTAX

TOO MANY PARENTHESES

PARAM

END MEDIUM, FILE

TOO MANY COMMANDS

STATUS, FILE

UNKNOWN, FILE

RESERVATION, FILE

COREITEM EXISTS, ITEM

SIZE

COREITEM DOES NOT EXIST, ITEM
COREITEM NOT CLEARED, ITEM
ENTRY NOT A FILE, ENTRY
STATUS, DEVICE

NOT ALLOWED

NO SPACE FOR PAGES, FILE
ILLEGAL PROGRAM, FILE

SIZE ERROR, FILE

CHECKSUM ERRCR, FILE
VIRTUAL ADDRESS ERRCR, FILE

PROCESS DOES NOT EXIST, PROCESS

PROCESS EXISTS, PROCESS
UNKNOWN, SUBCATALOG

CATAIOG I/0 ERROR, FILE

FILE DOES NOT EXIST, FILE
ILLEGAL OPERATION, FILE

NOT ENOUGH DISK SPACE, FILE
FILE DOES ALREADY EXIST, FILE
INDEX BLOCK FULL, FILE

CATALOG I/0 ERROR, FILE

FILE DOES NOT EXIST, FILE
FILE IN USE, FILE

NO FREE AREA PROCESS TO FILE
END MEDIUM ON FILE

MAP/FILE EXCEEDED, FILE

0140
0141
0142
0143

0200
0201
0202

0203
0204
0205

0206
0207
0208

0209
0210
0211
0212

0250
0251
0252
0253

0260
0261
0262
0263

0265

0270
0271
0272
0273
0274

*kk

k

* k%

*k%k

ok k

*kk

*k%k

kdk Kk

*kk

k

*k %

%% %k

*k X

*Ak

*kk

% %%

k%%

*k%k

*k%k

*k%k

*hk

k

*k%k

*k%k

*kk

k%

*kk

* % %

Kk k

*kk

68

LINK ALREADY EXISTS TO SUBCATALOG
NO FREE ENTRIES IN SYSSC

LINK DOES NOT EXIST TO SUBCATALOG
WRONG KEY, SUBCATALOG

NOT ENOUTH ARGUMENTS
UNIT NUMBER CONFLICT
ILLEGAL FILE SPECIFICATION

COMMUNICATION ERROR WITH S
SHORT OF QORE STORAGE
NON-ASCII (HARACTER IN XREF-INPUT

UNITNUMBER GREATER THAN 255
UNIT NOT MOUNTED
UNIT DOES NOT EXIST

ILLEGAL UNITNUMBER

ILLEGAL DISC SIZE

NOT DEVICE DESCRIPTOR, ENTRY
FILE OR BLOCK TOO LARGE

CHECKSIM ERROR, FILE
OVERFLON IN ENTRY TABLE
FATAL ERROR, LINKAGE EDITOR
WARNING, LINKAGE EDITOR

ILLEGAL BLOCK TYPE, FILE
CHECKSUM ERROR, FILE
SYNTAX ERROR, FILE
PROGRAM ERROR

STACK OVERFLOW

INTERNAL ERROR:
DOMAC BREAK, NO:
INSUFFICIENT CQORE
PARAMETER ERROR
VIRTUAL (QORE ERROR

69

2000 *** DISCONNECTED, FILE

2001 *** OFF-LINE, FILE

2002 *** BUSY, FILE

2003 *** DEVICE BIT 1, FILE

2004 *** DEVICE BIT 2, FILE

2005 *** DEVICE BIT 3, FILE

2006 *** RESERVED, FILE

2007 *** END OF FILE, FILE

2008 *** BLOCK LENGTH ERROR, FILE
2009 *** DATA [ATE, FILE

2010 *** PARITY ERROR, FILE

2011 *** END MEDIUM, FILE

2012 *** POSITION ERROR, FILE
2013 *** DRIVER MISSING, FILE
2014 *** TIMEOUT FILE

2015 *** DATA FORMAT ERROR, FILE

2026 *** PUNCH RESERVED

2031 *** PAPER LON ON PUNCH

2033 *** PUNCH DRIVER NOT LOEDED
2034 *** PUNCH ERROR OR TIMEOUT

2041 *** STATION CFF-LINE, STATION
2042 *** TAPE REWINDING, STATION
2043 *** NOISE RECORD, STATION
2045 *** WRITE LOCK, STATION

2046 *** ILLEGAL OPERATION, STATION
2047 *** END OF FILE, STATION

2048 *** BLOCK LENGTH ERROR, STATION
2049 *** DATA [ATE, STATION

2050 *** PARITY ERROR, STATION

2051 *** END OF TAPE, STATION

2052 *** POSITION ERROR, STATICN
2053 *** DRIVER MISSING, STATION
2054 *** TIMBOUT ERROR, STATION

70

BC

SURVEY OF DEVICE DESCRIPTORS

B.

andano/andut ‘sTosuco aojexadp 0 l | JURASTSIAT JURASTDIAT ALL ALLS
aoutad Tetass uo Indino pejjeuloIun L/ 191 8 l l JURASTSAAT JURAST3AIT ds dss$
A31aed ou ‘adey aaded jo ndur L90L ,8 L l 3UeASTaIAT JURASTDAAT d1d NIIdS
A31aed usns ‘adey asded jo ndug L9011 ,8 I 6 IURASTSAIT 3JURASTIIAIAT ld dIdS
Kytaed ou ‘sdey aaded wo 3Indano LZ0L 8 L € JURADTSAAT JURASTDAAT dldd NAIdS
A31aed usas ‘adey aaded uo Indano L2018 L Ll 3UeASTS2aT JURASTSIT did dids
andano/andur adey or3subew LLLi91,8 OLLL,Z L I L OIW OIS
as3utad auly uo Ind3ino pejjeudozun L/L19),8 L € JURASTOIAT JURADTIAIL Id1 Id1S
ndino/andut odey 9339sseD LLLL9L,8 OLLL,Z L L | 010 0LO$
asjutad
pueqereyd uo Jndino pSjjeutoyun LLLLI9L 8 l £ JURASTSIIT JURASTSIAT JdD IdD$
so3Aq Axeurq ‘spaeo jo ndur LLLi91,8 0L, | JURASTOAIT JURASTDIAT ¥aon NKIOS
uorjeutusly
U3t spaed Teuntdsp jo Indur £/L191,8 0L, 6 3JURASTSIAT JURASTSAAT ¥aO ¥aos
Jaqunu Iaqunu aureu aureu
as NSeW puty OSpoW 3¥0014 9T1d adaTaq 103d1a0sep 801A(Q

A

C. SURVEY OF UTILITY PROGRAM CALLS WITH DEFAULT VALUES C.
AIDEX COM.<0> EXP.SYSEX
AMXINIT IN.SPTR
APPEND OUT.<0> IN.<0> <0> ...
CATLIST MASK.S$$$SS OUT.STTY TEXT.<0> ATT.<0> COMPR.NO
CHATR NAME.<0> ATT.V
CoMP IN.SPTR OUT.<0> LIST.<0> INCOD.<0> NAME,MAIN IDENT.<0>
MODIF.<0> BILOCK.512
COMPARE IN1.<0> IN2.<0> MAX.<0>
CONFI LIST.STTY
cory IN.<0> OUT.<0> BLOCK.512
CREATE NAME.<0> SIZE.1 ATT.V
DCOPY FUNC.BACKU UNITA.QO UNITB.1
DELETE NAME.<0> <0> <0> ...
DISK UNIT.O
DOMAC MODE.<0> LIST.<0> BIN.<0> LINES.60 PERM.DOMPS SYMB.DOMST
MACRO. DOMMC XREF. DOMXF
DUAL BCOT.FPABT SYS.Q3600
EDIT <0>
EXEC IN.SPTR LIST.<0> STOP.NO CONT.<0>
FCOPY FUNC.DUMP MASK.S$$S$$$ LIST.SLPT FILE.1 DEV.MTO UPDAT.NO
FILCOPY FROM.0 TO.1 CYL.77
FLFORMA UNIT.999 LENGIH.128 SIDE.S DENS.S SCREW.NO BAD1.0 BAD2.0 ERMAP.A
GEN OUT.MT OCOPY.1 CONTR.<0> LOG.<0> LCOPY.1 MARG.0
GENER IN.STERR LIST.SLPT OUT.SSYSE
LIBE LIB.<0> OUT.STTY FUNC.LIST PROC.<0>
LINK OUT.<0> LOG<0> TITLE.MAIN ENTRY.255 CHECK.YES FORM.R
MODE.S IN.<0> <0> ...
NAMEX FUNC.<0> NAME.<0> TXT1.<0> TXT2 <0> FILE.SYSEX LIST.STTY
NEWCAT UNIT.<number> CATSIZE.<number> SLICE.<number>
SEG. <number> (no default values)
PRINT IN.SPTR LINE.NO OQUT.SLPT
PUNCH IN.<0> MODE.E ENO.O
REMOVE MASK.<0> LIST.STTY VERIFY.YES
RENAME OLD.<0> NEW.<0>
SET NAME.OQ DEVICE.<0> FILE.1 BLOCK.1 MODE.1 KIND.1
MASK.8' 161777
STACO <0> <0>
SUBCAT FUNC.INIT NAME.<0> KEY.0
TYPE IN.SPTR LINE.NO
XREF IN.SPTR OUT.SLPT

72

REFERENCE LIST D.

DOMUS User's Guide, Part 1
This manual describes the disc operating system for the RC3600

line of camputers.

DOMUS Utility ADDEX, User's Guide
This manual is a User's Guide describing how to use the DOMUS
Utility program ADDEX.

AMXINIT, RC3682 AMX driver initialization program, User's Guide.
This program describes how to use the program AMXINIT for
initialization of a RC3682 AMX driver.

MUSIL Compiler, Operators Guide
This manual describes the parameters to the MUSIL campiler.

Introduction to DOMAC Assembler

This manual contains a short introduction to the RC3600 assembler
language, a description of how to invoke the DOMAC assembler, and
a list of possible errors from the DOMAC assembler.

DOMUS Utility DUAL, User's Guide
This manual describes how to autoload the second processor of a
dual processor system.

RC3600 Text Editor
This manual describes the use of the text editor for creating,
modifying and updating text files.

DOMUS Utility EXEC, User's Guide
This manual is a User's gquide for the DOMUS batch processor EXEC.

RC3600 System Generation with DOMUS GEN, User's Guide

This manual describes the use of the DOMUS Utility GEN to produce
program magnetic tapes, Flexible discs, card checks and paper
tapes.

73

DOMUS Linkage Editor
This manual describes the linkage editor for the disc operating
system DCMUS.

DOMUS Utility NAMEX, User's Guide
This manual is a User's Guide describing how to use the DOMUS
Utility Program NAMEX.

DOMUS Utility SUBCAT, User's Guide
This manual is a user's guide for the DOMUS utility program
SUBCAT used for maintenance of subcatalogs.

DCMAC, DOMUS Macro Assembler, User's Guide
This manual describes the RC3600 Macro Assembler language and
operation of the DOMAC Macro Assembler.

RETURN LETTER
Title: DOMUS User's Guide Part 2 RCSI. No.: 43-GL10166

A/S Regnecentralen af 1979/RC Computer A/S maintains a continual effort to im-
prove the quality and usefulness of its publications. To do this effectively we need
user feedback, your critical evaluation of this manual.

Please comment on this manual’s completeness, accuracy, organization, usability,
and readability:

Do you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Name: Title:

Company: —
Address:

Date:

Thank you

42-1 1288

........................... Foldhere
................. Do not tear - Fold hereand staple
Affix
postage
here
¢REGNECENTRALEN
af 1979 —~

Information Department
Lautrupbjerg 1
DK-2750 Ballerup
Denmark

