oy

i

o

R =

AN

S
e

N

"
.
o s 7 a7
e

0

7

e

ks

S

G

o

i

"

2

s
AT A

o

o

i

-
i

R

|
-

7%

7

e

e
.

L

x\‘i‘};*’
NG 5
R
HRRSN

D

«
e .
R
%&i\\\& gwx\} .
Sl
S
.

L
.

S
SR

R
N
N

i

%{% L
.

.

.

]
I
\

.
} (&\§§§ .

SO

S

SR

a0

L e N
Lo
\\\\\g,;«\’e N y

N

. Lt

R

AN

&
SN

e

Al

R

3
N

S S
2 N SRR
SR % 2 X DR
Y 4 Y S § R S
N B S

ol

\\'a\?’%‘ o § e Ly SN
. N

AR L

7

.

7

3
RS

e

S

N

>
5

S0

TR N
S o

R
R

N
S X N & e
N SRR L S N

vz

G

N
SR
% SO
; ‘%ﬁ?ﬁ‘&%@ 0
Q{a RN
& SRR

%
2
LR

e

o

%

L . S g VRN SN

&

N

CONTENTS PAGE
1. PREFACE ..eceeccenacncccoans eecsccecacanas cecoes 1
2. INTRODUCTION TO RC3600 COROUTINES +vvvesess seane 2
3. SURVEY OF FUNCTIONS AND DATA ..eeeeeeecnnscenes . 13
4, DATA DECLARATIONS ceeone etessscscecne eves 16
4.1 System Data Areas ...e.ceeceeeees ceeene N 16
4.2 Coroutine VariablesSceeeeeecenecnas «s 17
4.2.1 Single Coroutine cescecece 18
4.2.2 Multiple-Incarnation Coroutine ... 19
4.3 OQOperations tetceseaacnnasen ceeene 22
4.3.1 Operation Descriptorcc.e.... 24
4.3.2 OperationS ccevevececescennes . . 25
4.4 Semahores ceracsecraneeesanans cesense 25
4.4.1 Simple Semaphore cecenes 26
4.4.2 General Semaphore eesseene 26
4.5 StackS ccevevecroanen s senan ceerecans 27
5. PROCEDURES ©.vvvecosvnnsoncsacnscnnnncnnns ceecss 28
5.1 Synchronization Primitives............ coe 28
5.1.1 Simple Semaphoresceceeeee. . 28
5.1.2 General SemaphOYeSeccecesess 29
5.2 Interfacing Other Processes ..eceeeee. e 36
5.2.1 Sending MESSAgesS .c.eeescrccooses . 40
5.2.2 Answering Messages cesceses 42
5.2.3 MUSIL Standard Input/output 43
5.3 Utilities treaciesceccasenans cevense 45
5.3.1 Reentrancy in Procedures- R 45
5.3.2 Coroutine DescriptOrcse.. oo 48
5.3.2 Coroutine Delay cereciasanas 48
5.3.4 Coroutine Passee... ceeeen . 49
5.3.5 Create Internal Operations 49
5.4 Initialization .ceeeeececererreceonanccas . 50
5.4.1 Initialize System cenes 50
5.4.2 Initialize Coroutine cesens . 51
5.4.3 Multi-incarnation Coroutines 53

ii

TESTOUTPUT FACILITIES ...veeinneeinernnneenenannns
6.1 User Produced Outputecveeeeeecaans cese
6.2 Built-in Testoutputc.veviiieeennncanas

7.1 Message Distributingeeeiieeecenieenanas

7.2 Sending MessSagesS e seeaann ceace- .-

7.3 Data Concentration Exampleceeceeeeeases

COMPILING AND RUNNING cresccsesccasnas ceesses

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D

PROCEDURE SUMMARY .
DATA FORMAT SUMMARY.
SOME ADDITIONAL CODEPROCEDURES OF INTEREST.

55
57
60

62
62
66
69

87

LIST OF ILLUSTRATIONS.

iii

FIGURE PAGE
1. Conway's coroutines. Call mechanism. 2
2. Coroutine system, several activated coroutines. 4
3. 3 interacting coroutines. 7
4, Multiple incarnations. 18
5. Sending messages. 38
6. Receiving messages. 39
7. Testoutput. 55

iv

This page is intentionally left blank.

Page 1

PREFACE. 1.

The present maunal is a reference manual for the extended
coroutine monitor on RC3600, and is intended for MUSIL
programmers.

The manual is new, as no manual has been available for earlier
coroutine facilities in MUSIL, and the use of these facilities
has been restricted to internal use at the development depart-

ment in RC.

The overall design may present same conceptual difficulties

for the reader of this manual, but these problems arise from
difficulties in the implementation caused by the limitations
present in the implementation of MUSIL, and are difficult to
explain for any reader but those with a very detailed knowledge
of MUSIL.. We hope that any problems arising in this connection
will only be of small significance, and may be solved by exami-
ning the examples in chapter 7 or by trying to run a simple
program.

The following manuals may be of additional interest:

RCSL: 43-GL 4715 Extended RC3600 Coroutine Monitor
Programmer's Manual
(October 1977)

RCSL: 43-GL 4475 Coroutine Monitor Testoutput Program
User's Guide '
(July 1977)

Page 2

INTRODUCTION TO RC3600 COROUTINES.

original

entry\

system
start

The use of the term 'coroutine' has not yet been standardi-
zed in the technical litterature, and consequently appear
confusing, as the word 'coroutine' is used about programming
tools ranging fram subroutine - like modulies calling each
other in a highly symmetric way, to tasks running in a gene-
ral multiprogrammed system which interact in a certain simple
way.

The name 'coroutine' was coined by Conway in 1958. He used it
for subroutines in a system, where each subroutine is written
as if it is the main program and the others simply subroutines
called by it (fig. 1). This is done by merging of call and
return, and dynamically changing entry points in the routine.
The mechanism is described in detail in D.E.Knuth: The Art of

Camputer Programming, vol. 1. The concept is found as well
in SIMULA 67.

original origianl
entry entry
Coroutine A \ Coroutine B \ Coroutine C

®

: r Q
@call B'/{,/) call A /%call B
/

e
©

|
%\
ANNN

.: Y 6 / call B

: '@call 1

. % — — currentl entry
. for C

@call B@mm@:all A

Figure 1. Conway's coroutines. Call mechanism.

Page 3

Same of the characteristics of such a system are:

- one coroutine at a time is active (using the CPU).
This means that a coroutine always runs in 'dis-
abled' mode and consequently has free and exclusive

access to any variable in the system.

- one coroutine at a time may wait for external events
as interrupts and other I/0 events. That coroutine

is the active coroutine.

- protection of data areas shared between coroutines

against simultaneous access is not critical.

- the scheduling of CPU~-time is 'primitive' - each co-
routine uses as much CPU-time as needed. No protec-
tion exists against one coroutine monopolizing the
CPU. Implementation of the call mechanism is very

simple.

- as each coroutine may be written as if it is the main
program calling subroutines, a certain amount of modu-
larity and independence between modules is enforced on
the programmer.

An important extension to this simple coroutine system is found

in the book by D.E. Knuth. A coroutine is allowed to activate
several other coroutines before stopping, i.e. in the terminology
of subroutines simultanecusly to branch to several entry points.
Activation of another coroutine and suspending own executing are
thus separate functions (fig. 2). The 'current entry point' (fig 1)
is replaced by a 'waiting point'.

Selection of the coroutine which is allowed to run next (in case

of several activated coroutines), is done by a central logic.

Page 4

system
start

Coroutine A Coroutine B CQroutine C

. /@

s

D ®

af:tlvate C / : / abtivate B
agctivate B @ wait :

; / ® < ® vait

. activate A @

8 '$wja‘i.t\ attivate C /
. \“"‘@delay (at) ——-—-@wait

@% :

\P@_O_'mmw—w—‘

@ B & C activated, B selected
@ A & C activated, A selected
(@ Mo coroutines active. B activated when requested.

Figure 2. Coroutine System, several activated coroutines.

A primitive sort of internal event has been added in form of
the activate/wait pair. A coroutine may further wait for a
specified time ('delay 2 secs'), which can be considered as

a hidden timing coroutine activating the caller after the spe-
cified interval of time. Scheduling of the CPU is still
'primitive’, but the central logic has decisional abilities,
and is extended with a timing function.

The RC3600 Coroutine Monitor consists of such a central logic
and a collection of reentrant functions. If has developed from
the system mentioned above be emphasizing the role of internal
and external events, and by making the coroutines more indepen-—
dent. These design principles are found in the RC4000 operating
system BOSS2 too.

An RC3600 coroutine is either active (activated) or waiting
for same internal or external event. An active coroutine is
either placed in the active queue, i.e. activated and waiting
for access to the CPU, or is the singular coroutine executing
instructions.

A waiting coroutine may wait for timer, internal events sig-
nalled by other coroutines (see below), or external events
such as interrupt or incaming messages and answers. It is

possible to wait for more than one type of event at a time.

The concept of internal events needs a little expansion.

The activate/wait pair (fig. 2) functions as a sort of syn—
chronization between the 'activate' coroutine and the 'wait'
coroutine, informing the waiting coroutine that a certain mu-
tually specified event has occurred thus enabling it to resume
its activities. This simple coroutine interaction has been

extended in several ways:

- the wait/active pair need not be executed in that

order.

- the number of wait and activate calls need not
match.

- the activation event may be provided with one of

several datatypes.
- activation is done by a sort of indirect addressing,
and several coroutines may compete for activation by

a certain internal event.

The extension is linked to the introduction of the semaphore

concept and some functions (signal/wait) working on semaphores.

Page 5

Page 6

A semaphore is a data structure containing a state variable

and same additional information about queues of waiting co-

routines and signalled events. A semaphore is in one of

three states:

NEUTRAL:

OPEN:

CLOSED:

The number of signals equal the number of
waits. The semaphore is initially in this
state.

There has been more signals than waits.
This means that a coroutine is not delayed

when executing a wait.

There has been more waits than signals.
Consequently a signal will activate one

waiting coroutine.

The associated operations signal/wait will work like this:

Signal (sem):
Wait (sem):

if sem. state <> CLOSED then
begin

remember one more activation (sem);

if sem.state = NEUTRAL then sem.state = OPEN
end
else
begin

activate one waiting (sem);

if last one activated then sem.state = NEUTRAL
end;

if sem. state <> OPEN the

begin
if sem.state = NEUTRAL then seam. state = CLOSED;
delay until activation (sem, this coroutine);
+ which activates next !

end

else

begin
delete one activation (sem);
if no left then sem.state = NEUTRAL

end;

Page 7

Figure 3 shows three coroutines using signal/wait. Internal
events with data are called operations. The signal/wait pair
used in connection with operations have an extra parameter for
the operation and the 'remember one more activation' and 'delete
one activation' routines user these parameters.

Coroutine B

walt S1

Coroutine A /® Coroutine C
o sl [e

; : > ©
@ signal S1 ® wait s1 —+4 :

1) @ sic.gnal s2
®) signal S1 :

: / -_3_)_”_____.- 8) wait S1
@) wait s2 e —]
E Q"""“M

O) wait S2
' 4)

1) B&C activated, B allowed to run,
2) C&A activated, C allowed to run,
3) A activated,

4) S2 is OPEN, so A is not stopped.

Result of step: 123456789
Semaphore S1: CCNNNCCCC C = CLOSED
S2: NNNCNNOON N = NEUTRAL
Active queue : AZ;\Z}@]?@?@A O = OPEN
BBCCAA
¢ A

Figure 3. 3 interacting coroutines.

Page 8

The RC3600 extended coroutine monitor supports three types

of semaphores with corresponding signal/wait pairs:

- simple semaphore:

- chained seamaphore:

- general semaphore:

No datatypes are connected
with a signal/wait. The se-
maphore contains the number
of signals not waited for,

and a queue of waiting corou-
tines, if this number is nega-

tive.

A single type of operation is
used with optional data field.
The strategy is: first signalled,
first delivered to a waiting co-

routine.

The operations have a 16-bit
type field. Same events have
preassigned types as timer and
the external events message,
answer and interrupt, which
leaves 12 bits for user-speci-
fied internal events. An opera-
tion is delivered to a waiting
coroutine if the type and a mask
specified in the call has coammon
bits in a first came, first deli-

vered fashion.

In addition to the semaphore functions, the RC3600 coroutine

monitcr supports functions as:

Page

- delay: Delay a coroutine a certain amount
of time.
- pass: Allow other activated coroutines

to run. Can be used when a time-
consuming operation is executed in

a coroutine.

send message
: Interface to the MUS I/0 system.

wait answer

The characteristics for a system of coroutines using the corou-
tine monitor facilities are (campared with the primitive corou-

tine system):

- One coroutine at a time uses the CPU. Other active
coroutines are placed in the active queue waiting
for the CPU to be passed over.

- Coroutines which are not active, are in a waiting point

and are placed in one of the following queues:

1) delay queue, waiting for timer,

2) answer queue, waiting for an external answer

by means of coroutine walit answer,

3) waiting queue for a semaphore, waiting for

sane event.

- One coroutine in the system may wait for external events
like messages and interrupts.

- Scheduling of CPU time is 'primitive' - each coroutine
uses as much CPU time as needed and allows other corou-
tines to get the CPU time by executing a wait, delay
or pass. No protection exists against a coroutine mono-
polizing the CPU. Implementation of the CPU switching
mechanism is kept simple.

Page 10

= One coroutine system equals one MUS process. The
different coroutine systems cammunicate by means
of the standard MUS cammnication primitives. Schedu-
ling of the CPU between the different 'active' corou-
tine systems (processes) is done by the standard MUS

scheduler, using a priority 'round-rcbin' method.

A system of coroutines resembles a multiprogramming system

(like RC3600 Multiprogramming Utility System = MUS), where the
coroutines are equivalent to concurrent processes and the signal/
wait pairs correspond to sendmessage/waitanswer and waitevent/
returnanswer. There are, however, significant differences, which
make a coroutine system (= one process) a useful and significant
alternative to a system consisting of several cooperating proces-
ses. The following table ocutlines the differences between pro-
cesses and coroutines, intended for the reader, who is familiar
with elementary concepts as exclusive access to shared data, syn-
chronization of parallel processes etc., as found in e.q.

P. Brinch Hansen: Operating System Principles
(Prentice~Hall 1973)

—

Page 11

*sutod buTiTem usemiaq usyy butoetd Aq
ATTeoT3Ru03ne pojoojoad axe suotbex TeoTITID

‘pesn ST 3Tem/Teubrs ‘sjutod
butyTeM TeIoA®Ss BUTUTEIUOD 3pod JO 209Td ®
JIOJ pojuem ST SS200F OATSNTOX® JI °s3jurod

PUTITEM USOM]S(POINSUD ST SS900R DATSNTOXH
*sozoydeups uoumpod HuTsn
3TEeM/TRUBTS AQ SUOP UOTIROTUNILIY) "JU9IX®

POITUTT © O3 UMOUy ATUO SSUTINOIACD ISUI0

*UTINOIO)D =

*s3dnazeut butigqesTp Aq

33Tys ssoooxd e burjuessad Aq 10 Aem
aues oy} UT pojoojoad oq Aewl soS
~s2001d TRIDASS UsoMi] pPoIeys 9poo
JUeIIUS-UCU *3*T ‘SUOTbSI TeOT3TID

*$S900B DATSNTOX® SBY
JomsuR/aHessoul SUF JO ISUMO JUSIIND
aYJ, "ISMSUR/SbeSsSall UTE3I8D © UITM
SSO00R PO3RTOOSSE AQ poInsud

ST StoXe elep O3} SSSOOR SATSNTOXA

*pebueyoxXe 9Ie SIaMSUR/SObeSSal

‘aureu Aq umowy| ssoooad I9UY0

*SS3001d =

1SS000R SATSNTOXS U3TM BIEep

poxeys pue UOTHRI TeOT3TID

:SOTNPOU USSMIS] UOTFEOTUNIMDD

STNPANW

*ssoooad ouo ut

SBUTINOIOO TRISADS ‘UOTINTOS SUTINOIOD

*sossoooad TRIDASS

‘yotINTos pouneIboadTy Th

adeouo)

Page 12

*abesn NgD MOT ‘punoq jusas
I0 O/I ‘SeT3TATIOR HuTjoersqut ATasOT)

“TTews 3dey oq
ued pesyrsa0 ‘ssoeTd pourIop TTomM e

suaddey SuUTINOICO ISYOjUR 03 3ITUS SY

*MOT ATqexszaad peol ndd

*ON

*S8UTINOIOD JO WS3SAS oaTouym

do3s TTTM suT3nOIoo ® uT dooT e ‘ON

*TTews AISA

*obesn Ndd UbTY 03 umTpsw
U3TM SOTITATIOR buTioersyur ATosor)d

*UOTINO9XS O3

JO @oue3isut Aue je uaddey Aew ssoo
-o1d I9UY30 03 3IITUS pue jdnirequr ue
se ‘sessoooad sy3z Aq pesn sioysthoI
STemM}JOS pue SIempIey T[[e JI0J eoIe
9ABS B SUTPqUOO - I03dTII0SSp SS8900Ig

*PROT NdD JO obuex Auy

*asucdsal o3eTpeumT
aney AtaoTad ybTY YITM S9SS9001g

*UOTINODXD

Juoasad jou ueo A3TIorad ISMOT IO
s (ITM sseooad Tsyzoue ut dooT ¥
*A1I0Tad BATIRTEI UO BuTpusdep ‘sox

"SST3TTTORY
sTempIey uo butpusdsop UYLBTY 03 MOT

:uSyM s

JPESUIDAO 2I0)

obesn Nd)

sposjueIenb
asuodsox awr3TeaI 3I0US

rpssjuexenb NgdD

1pESUIBA0 1D

Page 13

SURVEY OF FUNCTIONS AND DATA. 3.

The present manual contains in chapter 5 functional descriptions
for the set of codeprocedures and in chapter 4 description of
the different data structures used in the MUSIL implementation
of the extended coroutine monitor for RC3600. The descriptions
are centered towards the functional descriptions of the proce-

dures which occupy a greater part of the manual.

The data structures include:

- Same locations in the process descriptor for the program
(which is generated by the compiler). These locations
are initialized by means of INITCOSYS and SETUSEREXIT
(see 5.4).

- One coroutine descriptor for each coroutine in the pro-
gram. The system part is initialized by DEFCOROUT (see
5.4.2), and is 18 bytes long.

- Operations, which are exchanged between coroutines.
System operations(of size 26 bytes) used when processing
messages and answers are initialized by INITCOSYS. Other
internally used user operations (at least 4 bytes) are
created by CREATEOPS (see 5.3.5).

— Operation descriptors used to access operations. The size
is minimum 6 bytes.

- Semaphores. Both simple (2 bytes)and general semaphores
(10 bytes) are supported. General semaphores are initia-
lized by INITGENSEM (see 5.1.2).

- Stacks, used when calling reentrant MUSIL procedures, are
initialized by RESETSTACK (see 5.3.1).

Page 14

- Files. when used in connection with reentrant multiple-
incarnation coroutines, the buffer part of a file needs
special initialization by INITZONE (see appendix D).
Files may additionally cause problems in connection with
the allocation of message buffers done by the campiler.

Appendix C contains a summary of data formats which is intended
to be used especially with program dumps.

The set of procedures includes:

- Synchronization primitives, section 5.1:

simple semaphores : signal/waitsem
general semaphores : initgensem/waitgeneral/signal
general .

- Interface to other MUS programs, section 5.2:

sending messages : csendmessage/releaseanswer

receiving messages : returnanswer
- Coroutine utilities, section 5.3:
procedure reentrancy : resetstack/savelink/return -
miscellaneous : pass/cdelay
createops
changemask

- Initialization procedures, section 5.4:

system areas : initcosys/setuserexit

coroutines : defcorout

- Testoutput procedures, chapter 6:
user testpoints : testpoint
- A selection of non-coroutine utilities, appendix D.

Appendix B contains a summary of the procedure declarations.

Page 15

Page 16

DATA DECLARATIONS.

4.1

The codeprocedures use various data structures such as semaphores,
coroutine descriptions, stacks and system areas. These data struc-
tures are declared mainly in the variable section (after VAR) in

a MUSIL program, and are camposed of the standard MUSIL types in-
teger, string, file and record. The codeprocedures make use of
knowledge about the storage allocation algorithm in the MUSIL
canpiler, and the sequence of declaration may in several cases

by significant for the proper functioning of a coroutine system.
The concept of swapping data areas may in same connections have

effect on where certain user variables are allowed to be placed.

The formats of the various data structures and restrictions in

their use are described in the following sections.

System Data Areas.

The system data areas camprises words in page zero of the RC3600
storage, 12 words in the process descriptor of the actual corou-
tine program, and a 20 words long area containing the testrecord
and same anonymous variables. The locations in page zero contains
entrypoints for the coroutine procedures, a pointer to current
active coroutine and a location shared with the optional testoutput
program, and these locations are initialized when the coroutine

monitor is loaded.

The remaining areas are initialized by INITCOSYS (see 5.4.1), and
SETUSEREXIT (see 5.4.3) if necessary. Note that the program should
be compiled with MODIF C (see 8) to make room in the process de-

scriptor.

Page 17

Coroutine Variables. 4.2

Fach coroutine in the program is described by a coroutine de-
scriptor which is 9 words or 18 bytes long. In addition to the
coroutine descriptor, which provides place for system informa-
tion, the user may specify same variables used by the code exe-
cuted by the coroutine.

It may be convenient. by some applications to use one piece of
code as the body of several coroutines, acting on separate data
areas with the same structure. This is typical for applications
where several, nearly identical devices are processed by each
one coroutine, and the differences in the treatment are so small
that the code executed is nearly identical, too. The implemen-
tation of such systems is not trivial, as addressing of many
identical items, e.g. in form of indexing in arrays, is not

present in MUSIL.

The present coroutine implementation supports, however, such
reentrant code acting on incarnations of a set of variables

by simulating arrays using swapped data areas. The user de-

clares his data area and a swapping area, and the system will

now ensure that the data in the user area always belongs to the
current incarnation. This is done by swapping old data out and
actual data in, before the coroutine code is reactivated (figure 4).
The procedure SETUSEREXIT (see 5.4.3) sets a system variable to
point to the code performing this swapping.

Page 18

4.2.1

HEAD :I: Head

N

User area

A

Incarnation (1) K

et
Swap in :: ~~ Swag out

Incarnation (i)

O

‘; Swap area

'—m\'—

\QS Incarnation (3j)
\\ just deactivated
N

) 4

A\

Incarnation (n)

Figure 4. Multiple incarnations.

Single Coroutine.

The coroutine descriptor for a single coroutine, i.e. a coroutine
using one piece of code and one data area, is camposed of a sys-—
tem part declared as string (18), and a user part of any struc-
ture and length. The user part may be declared anywhere. The
system part uniquely defines the coroutine, and is the first pa-
rameter in the defining call of DEFCOROUT (see 5.4.2.). If the
program consists solely of single coroutines, a call of SETUSEREXIT
(see 5.4.3) is not needed.

4.2.2

Page 19

Multiple-Incarnation Coroutine. 4.2.2

Multi-incarnation coroutines are coroutines, using the same
(reentrant) code acting on several identically structured data
areas. It is not possible to select a certain incarnation of
data in a MUSIL program at run-time, as all addresses are fixed
at carpile-time and campiled into the code as an integral part
of tre statements. The present solution to this addressing
problem is to simulate arrays by swapping. The reentrant sta-
tements are coded as if there were only one coroutine, acting
on a dumny area declared by the user. The actual data for a
specific incarnation are stored in the swap area and are moved .
into the dummy area immediately before the execution of the
corresponding code is resumed. This swapping action is done
by means of code initialized by SETUSEREXIT (5.4.3). If any
coroutines in a program uses the multi-incarnation facilities
then this procedure should be called after INITCOSYS. The
variables of multi-incarnation coroutines are declared as

follows.

For each set of coroutines sharing code and data structure,
three areas are declared in exactly this order with no other

declarations between:

(1) Header - a dummy coroutine descriptor, as string (18).

(2) User working area - contains all variable declarations
for variables owned by an incarnation.

(3) Swap area - contains actual values for the variables
owned by the different incarnations, and the associated
coroutine descriptors. The length of this area is
a multiple of the combined length of (1) and (2).

The user area (2) may contain declaration of variables of any

MUSIL type with the following restrictions:

Page 20

(a) The body of a general semaphore (see 4.4.2) is
not allowed, but must be placed in a fixed area
(see 5.1.2).

(b) The buffer part of a file can not be allocated
in a swapped data area, but has to be placed in
a fixed area (see 5.2.3).

The length of the user variable area is used in the call of

DEFCOROUT (see 5.4.2).

include the length of

It is given in words, and does not

the coroutine descriptor. It is cam—

puted as the sum of the lengths of all variables declared,
by using the following information.

An integer is one word long.

A string (11) is (114+1)//2 words long.

The length of records

The declaration is of

record
\VAl : T
v2,V3 : T2
Vi : Ti
V3 : T
Vk : Tk
vn : Tn
vz : Tz

end;

is camputed in this way:

the general format

-

; ‘two fields of same type!

-

fram pj ;

fram pn

First campute the sum of the lengths (in bytes) for all tields

without the keyword fraom, using the length of integers= 2 and

length of string (11)

= 11. This sum gives the carbined length

of sequential fields, LS in bytes.

Second, campute the maximum value of 1j + pj - 1 where 1j and
pj are the length in bytes resp. the position of fields with
the keyword from. This maximum value gives the maximum extend
of the positional fields, LP, in bytes.

The greatest of the two values, LS and LP, is called LTOTAL,
and indicates the length of the record in bytes. The length
in words is (LTOTALA+1)//2. An example: the length of

record
A,B : INTEGER; lalways at odd addresses!
C : STRING (9);
D STRING (1) ;
E : INTEGER; 'odd address !
F : STRING (7) fram 2;
G : STRING (3);
H INTEGER fram 5;
end

is 10 words. (LS = 19, LP = 8, LIOTAL = 19).

The length of a file is as follows. If the declaration is

file "...",....,.n1,11,<format>
of ; 1length = 121

then the length in words is 26 + n1 * (7 + (1141)//2).
Note that the length 12 is only significant when <format> is
F or FB, where the relation 11 = p * 12 shall be satisfied for

sane p > 1.

The length of the swap area (3) is
n* (L +9) * 2 bytes
where n is the number of incarnations, and L the total length

in words of the user area.

Page 21

Page 22

When files are used by multiple-incarnation coroutines,
action should be taken to allocate a proper number of extra
messages buffers. This is needed because the MUSIL compiler
only recognizes one file declaration where actually several
files may be active. The message buffers needed have no
connection at all with the system operations used by
CSENDMESSAGE or WAITGEN, and have to be allocated by a call
of the codeprocedure CREATEMESSBUFS. This codeprocedure is
described in appendix D.

The number of message buffers needed is determined by the
number of buffers used in the files. A file declaration like

file"....", ..., nl,
of .c.eeeene

needs nl message buffers. The total number of message buffers
to be created is camputed in this way.

First, for each multi-incarnation coroutine declaration, cam—-
pute the sum of buffers used (as nl1 above; and call it stotal.
If the number of incarnations is m, then (m - 1) x stotal addi-
tional message buffers may be needed for these m coroutines.
Actually fewer may be in question, depending on the number of
files being used simultaneocusly.

Second, take the sum of these needs to get the total number to
be created.

4.3 Operations.

Operations are used by SIGGEN and WATTGEN (seeb.1.2) to exchange
data between coroutines and by CSENDMESSAGE, RELEASEANSWER (see
5.2.1) and RETURNANSWER (see 5.2.2) when camunicating with
other processes. The procedures INITCOSYS (see 5.4.1) and
CREATEOPS (see 5.3.5) are used to create such operations.

Page 23

Operations may be divided in three kinds:

(1) Standard operations, defined in the coroutine moni-

tor. The timer operation is a standard operation.

(2) System operations, created by INITCOSYS. These
operations have a fixed format and is used to send
messages, and receive events like messages and an-

SWers.

(3) User defined operations, created by CREATEOPS. The
format and use is defined by the user.

Operations have the following general layout:

1

Optional data words

Address >

} 2 words fixed part

They are addressed by a word address pointing to the last word
of the operation.

The use of word addresses in MUSIL programs is rather cumbersame,
as pointer types are not a language feature, and codeprocedures

or coding tricks has to be used instead. The operation descriptor
has been introduced to provide an easy way of using operations.

An operation descriptor is a record containing a reference to the
operation in question, a field reflecting the type, and a data
field with an image of the data part of the operation, if present.
All procedures use this record when referencing operations, and
moves an appropriate number of words between the image and the

data part of the operation.

Page 24

4.3.1 Operation Descriptor.

An operation descriptor consists of 3 integer fields and an
optional data field of appropriate, free format and length.
Note that a whole number of words, or an even number of bytes,
are moved by the procedures. The operation descriptor is spe-
cified to a procedure as parameter by the first, integer fieid.

The format is
record
opadr : integer;
optype: integer;

opsize: integer;

! and optional data area
end;

The contents is

/////// -l opadr, reference to an operation or 0
7 optype, a copy of the type in the operation.

opsize (in words)

7 A

A

An operation descriptor shall be placed either at a fixed place,
or in the user part of the coroutine descriptor (see 4.2) when
used by WATTGEN. The opadr and opsize fields should be initia-
lized, to 0 and a proper length respectively.

Page 25

4.3.2

4.4

4,3.2 Operations.
Operations are provided with a 16 bit long type. The bit assign-
ments are

bit name use

15 TIMER Type of the standard operation sig-
nalled in case of time-out.

14 ANSWER Type of the system operation signalled
to an answer samnaphore when a message
sent by CSENDMESSAGE is answered.

13 MESSAGE Type of the system operation signalled
when a message arrives.

12 INTERRUPT Cannot be used by a MUSIL program.
Reserved for system use.

11

. USER User defined operation types. Any com—

’ bination of these 12 bits may be used.

0

A pool of free system operations is created by INITCOSYS (see
5.4.1) and user operations may be created by CREATEOPS (see 5.3.5).
4.4 Semaphores.

The coroutine monitor supports two kinds of semaphores, simple

and general, and each kind has a set of procedures associated
with it. Simple semaphores are used by SIGNAL and WATITSEM,
section 5.1.1, and general semaphores by SIGGEN, WATTGEN,
INTTCENSEM and CSENDMESSAGE, section 5.1.2 and 5.2.1.

Page 26

4.,4.1 Simple Semaphore.
A simple semaphore is of type integer, and the 16 bits are divi-
ded into two fields
semaphore state bit 0-14 bit 15
OPEN count > 0 1
NEUTRAL 0 1
CLOSED head of waiting queue 0
The count determines how many WAITSEM calls that may be executed
before the semaphore becames closed. The semaphore can be initia-
lized to NEUTRAL, value 1, or OPEN.
4.4,2 General Semaphore.

A general semaphore consits of a body of length 10 bytes and a
reference to this body of type integer.

SEM body of SEM
34—

integer

The body contains a waiting queue of coroutines waiting for scme
canbinations of operations, and an operations queue containing
operations of different types not yet waited for. As the body
may appear in the delay queue, it must occupy a fixea location
and can consequently not be placed in swapped data areas, e.g.

the user part of a multi-incarnation coroutine descriptor.

A general seamaphore has no specific status. The procedure
INITGENSEM (section 5.1.2) initjalizes the semaphore so the queues
are anpty. The reference is always used to address the semaphore.
It is allowed to have multiple references to the body.

Page 27

Stacks. 4.5

Stacks are used in connection with reentrant procedures, and
are used by RESETSTACK, SAVELINK and RETURN, section 5.3.1.

A stack consistsof a body of variable length, and a reference
of type integer to the body.

STACK Body of STACK
integer 6 bytes system area
\
’—‘"\I’
T~ T [stacked entrypoints
J

The system part contains current position of next free, maximum
extent and an underflow/overflow trap. The stack is reset to
empty by RESETSTACK. The stacked entrypoints are MUSIL inter-
preter program addresses, and are only accessible to the user

by SAVELINK and RETURN. Each stacked entrypoint occupies 2 bytes.

Page 28

PROCEDURES.

5.1

This chapter contains declarations, parameter conventions and
functional descriptions for the MUSIL codeprocedures implemen-—
ting the facilities in the extended coroutine monitor, and for

same other procedures which might be of use.

Parameters refer the definitions in chapter 4: declarations.
The internal names of as well procedures as parameters in a
specific program may of course be changed to whatever else the
programmer wants as a consequence of the MUSIL implementation
of codeprocedures. Only the external P00.. names cannot be al-
tered. It may, however, be convenient to use the names fram

this manual to increase readability.

Synchronization Primitives.

5.1.1

Simple Semaphores. SIGNAL (SEM) ,

WATTSEM (SEM) ;
Declarations:

procedure SIGNAL (var SEM : integer);
codebody P0128;

procedure WAITSEM (var SEM : integer);
codebody P0127;

This pair of procedures use simple semaphores (see 4.4.1) to syn-

chronize two or more coroutines.

Page

Tunctional Descriptions:

SIGNAL (SEM) : if SEM.state <> CLOSED then SEM.count:=
SEM.count + 1 else remove and activate

(SEM.queue) ;
WATITSEM (SEM) @ if SEM.state <> OPEN then insert and stop
(SEM.queue, COROUT) else SEM.count:= SEM.

count -1;

SIGNAL removes the coroutine which has waited for the longest
time.

WATTSEM may delay the calling coroutine an undefined time, until
a matching SIGNAL fram another coroutine.

General Semaphores. INITGENSEM (SEM, SEMAREA ,DISP) ;

SIGGEN (SEM,OPDESCR.OFADR) ;
WAITGEN (SEM, EVENTMASK , OPDESCR.
OPADR,DELAY) ;
Declarations:

procedure INITGENSEM (var SEM : integer;
var SEMARFA : string (1);
const DISP : integer;

codebody P0091;

procedure SIGGEN (var SEM ¢ integer;
var OPADR : integer);

codebody P0093;

procedure WAITGEN (var SEM : integer;
const EVENTMASK : integer;
var OPADR : integer;
var DELAY : integer);

codebody P0092;

Page 30

These procedures are associated with the use of general semapho—
res (see 4.4.2). INITGENSEM generates and initializes one gene-
ral semaphore, and SIGGEN and WAITGEN are used to synchronize

two or more coroutines, and exchange operations of different,
mixed types between the coroutines. WAITGEN is in addition used
to synchronize with external events as messages and answers, and
to support a timing facility. When accessing messages, one co-
routine at a time may wait for the messages, using a general sema-

phore.

The procedure CSENDMESSAGE (section 5.2.1) has a general semaphore
as parameter, to which the answer to the message will be signalled.

Functional Descriptions:

INITGENSEM (SEM, SEMAREA ,DISP) :

Initializes the body of the general semaphore SEM found in the 10

bytes SEMAREA(DISP).... SEMAREA(DISP + 9) to neutral. The variable
used as first parameter SEM contains a reference to the body, and
this reference is used in all codeprocedures requiring a general

semaphore as parameter.

Note: The body cannot be a part of any swapped data areas as it
requires a fixed location. Swapped data areas are e.g. user part
of coroutine descriptors, when the coroutine in question is a mem-—
ber of a set (see DEFCOROUT, section 5.4.2).

SIGGEN (SEM,OPDESCR.OPADR) ;

The operation described by OPDESCR (see section 4.3.1) is signalled
to the general semaphore referenced by SEM, by means of the following
algorithm:

Page 31

P:= SEM.nxtco;

while p <> nil do ! search for sameone waiting !

begin
if p.opmask and OPDESCR.TYPE <> O then goto 10 ! found !
p:= p.next

end;

! not found !

chain (SEM.nxtop, OPDESCR.OPADR) ;

exit;

! found !

10: remove and activate (p, OPDESCR.OPADR) ;

exit;
OPDESCR
FOPADR
OPTYPH }not changed
opsIzy
// // optional
OPSIZE words| d2t2 area
/ / moved
/ -
OPTYPE] -1
0 system part
OPERATION

to be signalled

The field OPADR points to an operation, which has a data part of
length at least OPSIZE words. OPSIZE words are moved fram the
data part of OPDESCR to the data part of the operation, as shown,
the optype of the operation is changed to the value of optype in
OPDESCR, and the operation is signalled to the semaphore. OPADR

is then set to zero.

If OPADR was initially zero, the call of SIGGEN is dummy. If OPSIZE
is too large, sane words outside the operation will be destroyed,

and this may cause unpredictable results.

Page 32

WATTGEN (SEM, EVENTMASK OPDESCR .OPADR,DELAY) ;

Performs a wait for operations as specified by EVENIMASK on
the general semaphore referenced by SEM, with timer. The
operation resulting is described in OPDESCR (see section
4.3.1). The algorithm executed is:

p:= SEM.nxtop ;
while p <> nil do :scan for an appropriate operation!
begin
if p.opmask and EVENIMASK <> 0 then goto 10;
p:= p.next;
end;
‘not found .
if DEILAY=0 then
begin
OPDESCR.OPADR:=0; OPDESCR.OPTYPE:=1b15; !timer!
exit;
end;
if EVENTMASK and (1b12+1b13) <> 0 then
begin Imessage or interrupt !
CUR.MSEM:=SEM;
CUR.MCOROUT : = COROUT';
end;
insert in end of chain (SEM.nxtco); ! this coroutine is !
¢ inserted in waitqueue “
if DELAY < 0@then
begin !set semaphore to wait for timer!
insert in chain (SEM,CUR.DELAY QUEUE) ;
end;
activate next; 'next coroutine is allowed to run !
!operation found !
10: remove (SEM.nxtop,p);
OPDESCR.OPADR:= p;
!transfer contents of operation !

exit;

Page 33

The values of parameters EVENIMASK, OPDESCR and DELAY on call

and return is as follows:

Call:
EVENTMASK is a sum of events:

bit in EVENTMASK expected event

1015 timer. This bit is always considered
set to one, independent of the value
supplied in the call. DELAY specifies
max. interval length:

DELAY 0 no delay, immediate
return
= =1 infinite delay

value <> 0 or -1: number of

20 ms pe-
riods to
wait.

1b14 answer.,

113 message (only one coroutine at a time),
(see figure 6).

1b12 NOTE: cannot be used - may cause unpredic-

table results.
1611

user defined operations.
100

Return:

The value of DELAY is changed to remaining number of 20 ms.
periods, zero if the reslut was timer, -1 if DELAY originally
was -1. If message was waited for, the timing may be inaccurate

in case the bufferpool with size 13 buffers was empty.

Page 34

Resulting optype = 1b15 - TIMER:

OPDESCR

e O
r 1b15

OPSI1ZE

Resulting optype = 1b14 - ANSWER:

OPDESCR ™)

ol

To14 | OPTYPE
OPSIZE | . _ . _

/| e
/%Zi——z // .

//////////] original receiver
1b14 | OPTYPE

- ‘,ﬂ/ SIZE 13 OPERATION

10 word

—— o —

The size 13 operation is released after use by means of
RELEASFANSWER (section 5.2.1).

Resulting optyve = 1b13 - MESSAGE:

OPDESCR ™

-

1b13 [OPTYPE 10 word
OPSIZE

T s w0 st

//////// addr. of original message buffer
1b13 |OPTYPE

SIZE 13 OPERATION

The answer is returned by means of RETURNANSWER (section 5.2.2).

A SIZE 13 operation has the following

10 word
message buf-

fer image

(12

-11

|

Resulting optype contains 1b0..1b11

OPDESCR

—

OPTYPE
OPSIZE

.

OPTYPE

structure:

CHATINING

SIZE

SENDER
RECEIVER or O

MESS 0

SPECIAL

OPTYPE
LINK

> optional data area

-

USER OPERATTON

Page 35

Page 36

5.2 Interfacing other Processes.

The proceduresdescribed in this section have two purposes:

1) to improve the facilities for sending messages
to other processes and receiving the correspon—

ding answers.

2) to allow easier access to messages received fram

other processes.

The two figures 5 and 6 show the general principles for
1) and 2). The numbering refers to the different steps taken.

Figure 5 shows how a message is sent, answered and the answer

processed. The central point is that the answer can be recog-
nized by the coroutine monitor central event logic and signal-
led to a semaphore specified by the user, who thus may wait

for other answers and operations as well.

The message is sent (I) by means of CSENDMESSAGE, which uses
one operation fram the system operations pool (see section 4.3).
As a result of CSENDMESSAGE, the message is chained into the
event queue owned by the receiver (II). In due time the message
is fetched (III), processed and returned (IV). The answer is
chained into the event queue belonging to the sender, where

the coroutine central logic will fetch it (V). The inspection
of the event queue is done when all coroutines are waiting, or
as a consequence of a call of PASS. The answer is recognized
as sent by CSENDMESSAGE and is released from the event queue
and signalled to the general semaphore given as the answer sema-—
phore as an operation with type = answer (VI). This operation
may be fetched by WATTGEN (VII) and used in one or more corou-
tines before it eventually is released and returned to the pool
(VIIT). It may then be used by another CSENDMESSAGE (IX!.

Page 37

Figure 6 is an illustration to 2) processing messages arriving
fram other processes. Messages are transferred to operations

which may then be signalled between several coroutines.

A message is sent by another process (I) and will be placed
in the event queue belonging to the receiving program (II).
The coroutine central logic is activated when PASS is called,
or vhenever all coroutines are waiting and will inspect the
event queue. When the message is found, and a coroutine is
actually waiting for messages, a system operation is taken
fram the pool (ITI). The system operations used in this way
are managed by a simple semaphore (BSEM), and the coroutine
waiting for messages will use this semaphore to ensure at
least one operation is present. The contents of the original
message is copied into this operation (IV), which then is sig-
nalled to the general semaphore used by the message-waiting
coroutine (V). The operation may now be used by one or more
coroutines (VI). Eventually the last coroutine using the ope-
ration will call RETURN ANSWER (VII), which will return the
answer to the original message (VIII) and release the operation

for future use (IX).

*sebessop £ Husg ‘G 2InbTA

SANT.IAGIOD ¥HASN

(ITIA) MAMSNV ESVLIZd (IIA) NEDITM

\/§
dL

Coa
(vLai) |

|
SNOILL?IAJO
(X1)

IWLISAS

_— e — ———— ———

O— ™M

//I\ (I) EDYSSHNANESD

el

SASSHOCId
ONIATHOET

Page 39

|

*sobessoly BUTATEOSY *9 =2anbTjg

€° "OMSNY

(ITA) UAMSNV NN |
(IA)
NIOLTM

N

SANTLNCYCO ¥HdSM

Lo

IR

asonawas O 195
s |

100d
SNOILVYHdO
WALSAS

\

OIDOT TWEINHD

mmom%m
TYIANTD

eiql

(n)
SASSIONA
ONTANHS
/

~———F

lew“mm% TUNIOTHO

dnEn0 INSAT|

(1I1) (

Page 40

5.2.1

Sending Messages. CSENDMESSAGE (NAME , SEM,OPDESCR.OPADR) ;

WAITGEN (SEM,EVENTMASK,OPDESCR OPADR,DELAY) ;
RELEASEANSWER (OPDESCR.OPADR) ;

Declarations:

procedure CSENDMESSAGE (const NAME : string(6) ;
var SEM : integer;
var OPADR : integer);

codebody P0095;

procedure WATTGEN (var SEM : integer;
const EVENIMASK : integer;
var OPADR : integer;
var DELAY : integer);

codebody P0092;

procedure RELEASEANSWER (var OPADR : integer);

codebody P0098;

These procedures are used to send messages to other processes,
and to accept the answers and return them to the pool (see
figure 5). WAITGEN may be used for various other purposes,

a description is found in section 5.1.2.

Functional Descriptions:

CSENDMESSAGE (NAME , SEM, OPDESCR.OPADR) ;

Sends a message to the process with name as given in the string
NAME. One size 13 buffer from the pool is used and the message
content is taken fram OPDESCR (see section 4.3.1). The answer
will be signalled to the general semaphore referenced by SEM.

A BREAK -3 is the result if no size 13 buffers are available.
An answer with status 1b13 (NOT FOUND) and bytecount = 0 is

generated if the receiver does not exist.

Data are moved fram OPDESCR as shown:

OPSTZE f/// 4 vords m ;edy//// MESS(1)
w1 = 7 /'
~ —

one word not

moved

The fields of OPDESCR are not changed.

WATTGEN (SEM,EVENIMASK,OPDESCR.OPADR,DELAY) :

See section 5.1.2 for description.

RELEASE ANSWER (OPDESCR.OPADR) ;

The parameter OPDESCR (see section 4.3.1) describes a size 13
operation, which originally has been received as answer to a

CSENDMESSAGE. No checking is, however, done to verify this.

OPDESCR
HOPADR
I | P SIZE 13 OPERATION
T’ ORIGINALLY ANSWER
”“L‘_W_.
\\\\
R R >

The operation will be returned to the cammnon pool, and OPADR
will be set to zero. All other fields of OPDESCR are irre-
levant and not changed. If OPADR was originally zero, the
procedure is dummy.

Page 41

Page 42

5.2.2 Answering Messages. RETURNASWER (OPDESCR.OPADR) ;
Declaration:
procedure RETURNANSWER (var OPADR : integer);

codebody P0094;

Functional Description:

The parameter OPDESCR (section 4.3.1) describes a size 13
operation originally received as a message by means of WAITGEN

(see figure 6). No checking is, however, done to verify this.

The operation is returned to the cammon pool, and the original
message buffer is returned to the sender by means of MUS send-
answer, with mess0.. mess3 set to the answer as shown below.
OPADR is set to zero. All other fields are left unchanged.

If OPADR was zero, the procedure is dummy.

SIZE 13 OPERATION
ORIGINALIY MESSAGE
pts
OPDESCR el
OPADIE = ORIGINAL MESSAGE

IN EVENT QUEUE

\2\

OPSIZL

— % "4%355—_31";" % ”‘Eg o)

S

one word

|

not moved

Page

MUSIL Standard Input/Output.

Input and output in MUSIL can be done in two different ways:

1) by calling standard input/output procedures like

getrec, putrec, open or close.

2) by calling operator cammnication procedures like

opmess, opin/opwait or opstatus.

The MUSIL implementation has been designed to allow normal use
of the standard I/O-procedures. The implementation does, how-
ever, restrict the use of the procedures in (2), in consequence
of the way operator cammunication is coded in the MUSIL inter-

preter.

All standard input/output activity ends up with sending messa-
ges and waiting for answers. To allow other coroutines in a
system to run while one is waiting for answers, the I/0 proce—
dures have to be forced to exit to the coroutine central lo-
gic, when meeting such a waiting point. The central logic
will then reactivate the coroutine when the answer arrives,
and normal I/0O processing will then proceed. This is done

by setting bit 0 (octal value 100000) in the kind of the
zone, in addition to the bits designating blocked, position-
able etc., in the declaration of the file. '

When files are used in connection with multi-incarnation co-
routines, or other applications where data containing a file

is swapped, the following precautions should be taken.

First, as the buffer area in a file is used by e.g. driver pro-
cesses which runs asynchronously in respect to the program, the
buffers have to occupy a fixed location. This means that they
cannot be allocated in the swapped area, but must be situated
outside. This is done by allocating one single byte as buffer-
size (as the campiler does not allow zero), in the declaration
and initialize the file description by means of appropriate

procedures to describe the actual buffers.

43

Page 44

A possible procedure for the purpose is INITZONE, codepro-
cedure P0155 (see appendix D). It will allocate as well
buffers as the socalled share-descriptors (describing buf-
fers) in a separate area, thus decreasing the number of
bytes to be swapped. If INITZONE is used, the number of
shares should be one (as the campiler does not allow a

value of zero).

Secord, as the MUSIL campiler only will recognize one file,
where actually more are used, the number of message buffers
used by the I/0 system to send messages, which is allocated
will be too small. The user must therefore allocate additio-
nal message buffers e.g. by means of CREATEMESSBUFS, code-
procedure P0054 (see appendix D). The number of extra message
buffers needed is computed as follows. For each file declara-
tion to be used by a set with many incarnations, find the num—
ber of shares, i.e. buffers. Add these numbers and multiply
the result by the number of incarnations decreased by one. The
result of the multiplication gives the number of extra messages

needed for this specific multi-incarnation coroutine.

The procedures which may be used in this way includes:

CLOSE
GETREC
INBLOCK
INCHAR

OPEN
OUTBLOCK
OUTCHAR
OUTTEXT
PUTREC
SETPOSITION
TRANSFER
WATTTRANSFER
WATTZONE

Page 45

The operator communication procedures make direct send message
and wait answer, and cannot be forced to call the coroutine
central logic. As input is split into two procedures, OPIN
sending a message and OPWAIT waiting for answer, with OPTEST
telling when it is convenient to wait, these procedures may

be used with a little caution. The remaining procedures, OPMESS
and OPSTATUS will, however, delay the whole coroutine system

avd can only be used where the parallel running of the coroutines

is of no importance.

5.3 Utilities.

The procedures described in this section are (with the excep-
tion of the delay and pass procedures) somewhat arbitrarily
selected fram the host of applicable procedures already existing
in the code procedure library. A description of these procedu-
res should as a consequence be consulted when actual needs arises
(see appendix D for descriptions of same selected procedures).
The procedures described below comprises code-procedures to be
used when a MUSIL procedure containing a coroutine waiting point
may be called (directly or indirectly) fram several coroutines

a procedure to change the testmask in the coroutine ident field
and a procedure to generate internal operations. Utility proce-
dures not included in the present description features array si-
mulation by means of swapped data areas and queue handling.

5.3.1 Reentrancy in Procedures. RESETSTACK (STAKC,ARFA, DISP,DEPTH) ;
SAVELINK (STACK);
RETURN (STACK) ;

Declaration:

procedure RESETSTACK (var STACK : integer;
const AREA : string (1);
const DISF ,
DEPTH : integer);
codelndy P0073;

Page 46

procedure SAVELINK (const STACK : integer);
codebody P0096;

procedure RETURN (const STACK : integer);
codebody P0097;

The procedures make use of a stack (see 4.5). These proce-
dures are associated with call of and return from MUSIL pro-
cedures with a coroutine waiting point in the body of state-
ments, when the procedure in question may be called, directly
or indirectly, by several coroutines at the same time, thus

implementing reentrant MUSIL procedures.

When a MUSIL procedure is called, the point of return is
stored at the beginning of the procedure bodycode, to be used
when the last END in the procedure is encountered. If several
coroutines are executing the body at the same time, this will
cause all these coroutines to return to the calling point of
the latest caller unless savelink and return are used.

The procedures are intended to be used in a way so the call of
savelink at the top of a procedure ultimately is followed by a
matching call of return. If the calls of savelink and return
do not match pairwise, e.g. when using goto to a label outside
the procedure, this will lead to an unpredictable flow of con-—
trol or to stack under - or overflow. If a jump to the main
program has to be executed, then a call of resetstack is recom-
mended to reset the stack to empty.

A procedure shall call savelink and use return to terminate exe-
cution of the procedure body when the body either containing a
coroutine waiting point as waitgeneral, or calls arother proce-
dure, which needs to use savelink/return, and it may be called

by several coroutines at the same time.

Page 47

Functional Description:

RESET (STACK,AREA,DISP,DEPTH) :

Initializes the body of the stack STACK found in the bytes

AREA (DISP) ... AREA(DISP4+DEPTH-1)

to empty. The variable used as first parameter STACK contains
a reference to the body, and this reference is used in the code-
procedures requiering a stack as parameter.

The value of DEPTH should be 6 + maxdepth * 2, where maxdepth

is the maximum number of savelink calls exceeding the matching
calls of return at any moment, with other words the maximum depth
of procedure calls inside procedures. The 3 words are used by
the procedures, and the minimum stack size is therefore 8 bytes.
The value of maxdepth is in typical applications 3-5.

SAVELINK (STACK):

Note: Savelink must be called as the first statement in the pro-
cedure immediately at the first BEGIN.

The point of return is seized and put on top of the stack given
as parameter. If the stack overflows, a program break is executed
with break code 6.

RETURN (STACK) :

The procedure fetches a return point fram the stack given as para-
meter and executes a return jump to this point, in exactly the way
the MUSIL interpreter does when encountering the final END state-
ment in a procedure. The codeprocedure return may, however, be
called anywhere in the procedure body. If the stack was empty,

a stack underflow condition is signalled by means of a program
break with break code 6.

Page 48

5.3.2 Coroutine Descriptor. CHANGEMASK (COROUT', CONO, MASK , LENGTH) ;
Declaration:
procedure CHANGEMASK (var COROUT : string(18);
const CONO,
MASK,

LENGTH : integer);
codebody P0079;

Functional Description:

The parameters but MASK are identical with the parameters used
when calling DEFCOROUT (see 5.4.2) to define this coroutine. The
seven least significant bits MASK 9-15 replaces the testmask in
the QOUIDENT bit 1-7 of the coroutine, which are used to control
the amount of testoutput generated by the various procedure calls.

5.3.3 Coroutine Delay. CDELAY (TIME) ;
Declaration:
procedure CDELAY (const TIME : integer);

codebody P0080;

Functional Description:

Delays the calling coroutine TIME x 20 msec.

TIME time waited

0 0

1 0-20 ms

2 20-40 ms

255 5,08-5,10 sec.
65535 21 min. 50,7 sec.

The timer has an inbuild inaccuracy of 0-20 ms.
The WAITGEN procedure may be used, too, to delay a coroutine.

5.3.4 Coroutine Pass. PASS;
Declaration:
procedure PASS;
codebody P0126;
Functional Description:
The procedure is intended to be used as 'breakpoint' in time
consuming operations, thus allowing other coroutines to run as
if the calling coroutine had entered a waiting point.
5.3.5 Create Internal Operations. CREATEOPS (AREA ,OPDESCR.OPADR,NO,
SEM) ;
Declaration:
procedure CREATEOPS (var AREA : string(1);
var OPAIR : integer;
const NO : integer;
var SEM : integer);

codebody POXXX;

The procedure is used to create a pool of internal operations,
(see 4.3) linked to an administration semaphore (see 4.4.2).

Functional Description:

A number of operations given by NO are created and signalled to

the general semaphore SEM, using the bytes

ARFEA (OPADR) ... AREA(OPADR + 2 * (OPSIZE+2) * NO -1)

where OPADR and OPSIZE are fields in the OPDESCR (see 4.3.1).

Page 49

5.3.4

5.3.5

The value of OPADR after the call is the previous value incremen-

ted by

2 * (OPSIZE + 2) * NO

Page 50

The new operations are of type given in OPTYPE, and size OPSIZE + 2.

The data portion of the operations is initialized with the contents.
of the data area of OPDESCR, as in SIGGEN (see 5.1.2).

OPADR works as running displacement in the string AREA, initial
value may be e.g. zero. OPSIZE determines the number of data words
in the operation.

5.4 Initialization.
The procedures in this section are used to initialize various areas
in the process descriptor and to define coroutine descriptors and
initialize them.
5.4.1 Initialize System. INITCOSYS (AREA, SYSCO, IDENT,OPS,CSBUFS) ;
Declaration:
procedure INITCOSYS (var AREA : string(1);
var SYSCO : string(18);
const IDENT : integer;
const OPS : integer;
const CSBUFS : integer);

codebody P0088;

Functional Description:

The procedure initializes coroutine system variables in the process
descriptor and initializes and starts the coroutine SYSCO with the
identification given in IDENT, running as single coroutine active
in the system, For the contents of IDENT see 5.4.2, The different
queues in the process descriptor active queue, answer queie and
delay queue are set to empty. The coroutine starts executing the
code following the call. Any additional coroutines may be created
by DEFCOROUT (see 5.4.2), and will be started when SYSCO executes
its first wait or pass. The SYSCO is intended as a special control

coroutine, for example acting as message receiver and distributor.

Page

The procedure further initializes the system area given in para-
meter AREA, the size of which is at least

sysareasize = 40 + 26 * OPS bytes.

The value of the parameter OPS is the number of system operations
to be created. These operations are 13 words long and are used

1) by CSENDMESSAGE to send messages,
2) to signal incoming messages if WATTGEN is used to

accept messages sent from other processes.

CSBUFS is the maximal number of operations used by CSENDMESSAGE
calls at the same time. The program is breaked with cause -3 in
case of lack oOf operations. The remaining number of system opera-
tions OPS - CSBUFS (if > 0) are used to signal incaming messages,
and shall be set to the expected number of received messages in
the system, which have not yet been answered. As well CSBUFS as
this number may be zero, if the corresponding pool is superfluous.

The system uses 20 words for a testrecord and same variables mana-

ging the system operations pool.

5.4.2 Initialize Coroutine. DEFCOROUT (COROUT',NO, IDENT , LENGTH) ;
Declaration:
procedure DEFCOROUT (var COROUT : string(18);
const NO : integer;
const IDENT : integer;
const LENGTH : integer);

codebody P0089;

51

Page 52

The procedure is used to initialize the system part of a corou-
tine descriptor and to start the coroutine at an appropriate
MUSIL statement. The coroutine may as well be an incarnation

of a multi-incarnation coroutine, (where the incarnations exe-
cute the same reentrant code and use identical data structures),
as a single-standing coroutine. See section 4.2 for a descrip-
tion of this concept. If multi-incarnation coroutines are used,
SETUSEREXIT (section 5.4.3) should be employed.

Functional Description:

Note that the procedure call must always be followed by a GOTO
statement:
DEFCOROUT (READER, 6, 8' 077420, RLENGTH) ;
GOTO 1105;

The procedure will return to the statement after the GOTO, thus
skipping it. The starting point of the coroutine defined will
be the statement with label 1105.

The procedure defines a coroutine COROUT and initializes the sys-—
tem part with ident field IDENT, and starts it by queuing it into
the active queue. The integer IDENT consists of three fields:

Bit 0 : priority 0 low priority
1 high priority

Bit 1-7 : testmask testoutput is divided into seven
classes, see chapter 6. A one bit
in position 1-7 tells that test-
output in the corresponding class
is wanted. The testmask may later
be changed by a call of CHANGEMASK
(see section 5.3.2).

Bit 8-15: identification the value is used to distinguish
between coroutines, e.g. when test-
output is generated. A coroutine
system will work with the same ident
tification for different coroutines.
It is, however, recamended that co-

routines have unique idents.

5.4.3

Page 53

A value octal 177777 (all ones) for IDENT is reserved for system
use and cannot be used. It will be changed to octal 177776 by

the procedure.

The parameter NO determines whether the coroutine is single or

an incarmation of a multi-incarnation coroutine.

NO = zero : The coroutine is a single coroutine. The actual co-
routine descriptor is situated in COROUT, which may
be followed by a number of user variables. The para-
meter LENGTH is not used.

NO > 0 : The coroutine is incarnation with number NO. All
variables, system and user defined, are placed in the
area following the declaration of the variables used
by the coroutines, see section 4.2, and COROUT acts
as a head with a description of the whole set of in-
carnations. The parameter LENGTH gives the length
of the user area in words. The user area for this
incarnation is initialized with the contents of the

header area.

Multi-incarnation Coroutines: SETUSEREXIT};

Declaration:

procedure SETUSEREXITj;
codebody P0090;

Functional Description:

The procedure manages swapping of the user part of a coroutine
descriptor necessary for multi-incarnation coroutines (see section
4,2). The procedure may, however, be used in any coroutine system

whether using incarnations feature or not, without bad effects.

Page 54

The procedure is implemented using the USER DEFINED EXIT facility
in the extended coroutine monitor, which makes it possible for a
userto execute samne action immediately before the central logic
transfers control to an activated coroutine selected as current.
It is possible to implement other codeprocedures, which use the
facility depending on the actions wanted, but this precludes the
use of SETUSEREXIT.

The procedure should be called once in the program, and it is re-
cammended to do this immediately after the call of INITCOSYS (sec-—
tion 5.4.1). The call initializes the CUDEX field of the process
descriptor, which defines a user action to point to the code, which
manages the multi-incarnation coroutines. This code will then be
called immediately before any coroutine execution. The code deter-
mines whether the newly activated coroutine is a single coroutine

or some incarnation.

When the latter is the case, the code determines if swapping of
data is necessary and saves the contents of the old incarnation

and loads the new if this is true.

Page 55

TESTOUTPUT FACILITIES.

In order to aid the user in debugging, same facilities for gene-
rating testrecords have been built into the extended coroutine
monitor. The testrecords contains the time, identification of

origin and same data and are produced

(M
(2)
(3)

when coroutine functions are called,
at exit to an activated coroutine,

by calling a testoutput procedure.

The testoutput is processed by a separate program, and the amount
Figure 7 shows the

///, gi;légzﬁﬁDIA

of testoutput may be dynamically controlled.

configuration.

PROCESS

/ i Sy

AN

PROCESS / /
P m—— COROUTINE L \
COROUT. MONTTOR NPT OUTRUT
\

call \

returf ?
esfjoutpuit u

. (7 \
B / AN + TEXT
a] MEDIA
////tead switch 0 INTERNAL
BUFFER

COROUTINE SYSTEMS

A—

CPU FRONT PANEL

TESTOUTPUT PROCESSING
PROGRAM

Figure 7. Testoutput.

Page 56

Each process containing a number of coroutines. The testoutput
routine in the coroutine monitor is called, and the value of CTOP
in page zero determines whether the testoutput processing program
is processing testrecords. The program is described in a separate
manual and allows testoutput to be output to a text medium like
printer, a binary medium like magnetic tape, or written into an
internal, cyclic buffer. The program may in addition retrieve

binary and internal testrecords for printing.

The amount of testdata produced is controlled in several ways:

(1) The inbuilt coroutine testoutput is divided into seven
classes. The IDENT field in a coroutine descriptor
contains a mask, which selects which classes are to

be output (see section 5.4.2).

(2) Testoutput is only generated when the location CTOP in
page zero contains an address. This location is reset
to zero as the coroutine monitor is loaded, but is set

to a proper value by the testoutput program.

(3) The testoutput program reads switch 0 on the RC3600 CPU
front panel. Testoutput is processed when this switch

is one.

(4) The user may produce varying amounts of testdata by
means of TESTPOINT, which is described below.

Output generated by the coroutine monitor procedures contains absolute
storage addresses, which are not available to a MUSII. programmer,
except in connection with storage dumps. It is therefore recommended
mainly to rely on TESTPOINT.

Page 57

6.1 User Produced Output. TESTPOINT (KIND,DATA) ; 6.1
Declaration:
procecdure TESTPOINT (const KIND : integer;

var DATA : integer);
codebxdy P0072;

Functional Description:

The procedure generates one testrecord. The parameter KIND
has four fields:

KIND bit 0 : LONG 0 No data field is present.
1 Data are present in DATA
ard the variable declared

after it. 7 or 11 words are

output.

bit 1-7: CLASS Determines the class of the test-
record. One of the bits is nor-
mally set, giving 7 classes. The
testrecord is not processed it the
IDENT for the coroutine has a zero
in the mask for that class. The

classes are shown in section 6.2.

bit 8 : REVERSE Indicates whether the words follo-
wing or preceding the second para-
meter are to be output as data. The
value 0 indicates following words
to be used, and is the normal value.
The value 1 indicates preceeding
words to be used, and in this case
DATA and the word declared immediate-
1y before it will be skipped.

Page 58

bit 9-15: FUNCTION Identifies the coroutine pro-
cedure or user origin. The va-
lues 1-13 are used to identify
system functions and will be prin-
ted as corresponding names (see
6.2). The values 0 and 14-127
(decimal) are printed as a three-
digit decimal number.

The procedure TESTPOINT is intended to output key variables in the
program. As these variables very often are integers, the parameter
type has been selected to be an integer. Depending on KIND, no, 7

or 11 words are output (for the format of a testrecord, see the appro-

priate manual):

KIND TOPT1-TOPT7 TAQO TACT TAC2 TAC3

0 9-15

0 >13 or 0 not output (notel) (note2) undef. undef.

1 >13 or 0 DATA(1)-DATA(7) (notet) (note2) undef. undef.

1 10 DATA(1)-DATA(7) DATA(8) <9) -(10) DATA(11)

note 1: TACO The image of register 0 contains the number of times
the system operations pool (size-13 operations) has been

empty when a wait general was executed.

note 2: TAC!1 The image of register 1 contains the position in the
event queue of the next message expected, starting with
one; the value is thus one greater than the number of mes-—

sage currently received but not answered.

The function codes in the interval 1-13 should be avoided not to

confuse the reader of the testoutput.

Page 59

The words DATA(1) ... depends on the REVERSE bit:

7 variables
declared
before DATA

position of ~ DATA(1)” — -
parameter DATA (2)
3) variables

r declared

- after DATA

REVERSE=0 REVERSE=1

Page 60

6.2

Built-in Testoutput.

The different procedures will normally generate testoutput. The

following table contains a summary of what is generated by which

procedure:
OUTPUT
Procedure FUNC CLASS BIT DATA
CDELAY *) 8 DELAY 6 No!
CHANGEIDENT - - -
CREATEOPS 11 SIGGE 1 Yes, as SIGGEN.
CSENDMESSAGE 13 CSEND 2 No.
(and 11 SIGGE 1 Yes, as SIGGEN).
DEFCOROUT - - -
INITCOSYS - - -
INITGENSEM - - -
I/0 SYSTEM *) 5 CWANS 7 No.
PASS *) 6 PASS 6 No.
RELEASEANSWER - - B
RESETSTACK - - -
RETURN - - -
RETURNANSWER **) 2 SIGNA 2 No.
SAVELINK - - -
SETUSEREXIT - - -
SIGGEN 11 SIGGE 1 Yes, last 6 words and
type of the operation.
SIGNAL 2 SI@A 2 No.
TESTPOINT Any Any, Any - see section 6.1.
prefer.4
WATITSEM *) 4 WAITS 3 No.
WATTGEN *)xx) 12 WATTG 3 No.

The procedures marked with *) contain a waiting point, and generates
an EXIT testrecord, class bit 5, when reactivated. The procedures

marked with #*) handle incaming messages and generates testrecords

in the following way:

WATTGEN:

RETURNANSWER:

Page 61

If the message type bit is not set in the mask, a
simple WATTG testrecord appears. Otherwise two

or three testrecords appear, first a WAITS on an
anonymous semaphore to ensure a system operation
is available, and then a WAITG. If the resulting
operation is not a message, a third testrecord

is generated by a signal (SIGNA) to the anonymous
semaphore to release the system operation which

was not used.

Generates a SIGNA testrecord when the system opera-
tion is returned to the pool, by a signal to the

anonymous semaphore.

Page 62

CODING EXAMPLES.

7.1

The following three examples illustrates the use of procedures
and data structures. As it is difficult tc give simple examples
of coroutine systems, only one is a total program, performing
a simplified dataconcentrating task. The other examples illu-

strates message and answer handling.

Message Distributing.

This example shows a piece of code executed by message-distribu-
ting coroutines. Incoming messages are examined for a streamnumber
in mess0 bits 0-7, and depending on the value signalled to the pro-
per coroutine after changing the type to an internal type, as the
message type only may be waited for by the distributing coroutine.
The semaphores used are found in an array QUEUESEM, simulated by
means of the codeprocedures LOAD and STORE (see appendix D). The

variable declaration part includes:

CONST
maxstreams = ... , . max number of streams used !
maxextend = ... , | maxstreams * 2 :
semareasize = ... , . maxstreams * 10 !
syssize = ..., 140 + 26 * no of system operations
VAR

' two arrays containing variables known to syscoand the.

! processing coroutines. In LOAD/STORE format :

reserver: INGEGER; resarray : STRING (maxexterd);
queuesem: INTEGER; gsarray : STRING (maxextend);

Page 63

¢ SYSCO descriptor and variables :

SYysco : STRING(18); tcoroutine descriptor !
sysdescr : RECORD
opadr, optype, opsize : INTEGER;

sender, receiver : INTEGER;
mess(, mess?,

nmess2, mess3

INTEGER;
special : INTEGER
end;

eventsem : INTEGER;

streamno, {nfinite : INTEGER; + NOTE1!
i, p : INTEGER;

evarea : STRING(10);

. bodies of queuesemaphores .
semarea : STRING(semareasize);

sysarea : STRING(syssize);

The initialization includes:

BEGIN
initcosys (sysarea, sysco, ..., ey eeey):
infinite:= -1 ! NOTE 1!
. initialize semaphores :

initgensem (eventsem, evarea, 0);

i:= 0; p:= 0;

WHILE i € maxstreams DO

BEGIN
initgensem (queuesem, semarea, p);
p:=p + 10;
store (queuesem, i);

e

reserver:= 0; store(reserver, i);

iz= 1+ 1

END;

Page 64

The code of the message distributor:
100: sysdescr. opsize:= 7; ! NOTE 2 ¢

waitgen (eventsem, 8'000004, sysdescr.opadr, infinite);
testpoint (8'104020, sysdescr.sender); ! NOIE 3 .

streamno:= sysdescr. mess0 SHIFT(-8);
IF streamno > = maxstreams THEN

BEGIN ! reject and wait for the next 1

105: sysdescr.mess0:= 8'001000; ! NOTE 4 !
sysdescr.messi:= 0 ;

returnanswer (sysdescr.opadr);
END: goto 100
7

' now streamno is allowed - check if stream reserved !

load (reserver, streamno);

IF reserver <> 0 THEN
IF reserver <> sysdescr.sender THEN GOTO 105;

! the stream is not reserved by another
! change the type of the operation to an internal
1]

value:

. CONTROL octal 400
. INPUT octal 200 .
. OuUTPUT octal 100 .

IF sysdescr.mess0 extract 2 = 2'01 THEN sysdescr.optype:=8'200 ELSE

2'11 THEN sysdescr.optype:=8'100 ELSE

I

IF sysdescr.mess0 extract 2

sysdescr.optype:= 8'400;

load (queuesem, streamno);

siggen (queuesem, sysdescr.opadr);

goto 100;

Page 65

Notes:

(1) The delay parameter to waitgen shall be a variable. The
value of infinite will, however, not be changed, and may
be used by all coroutines in the system.

(2) The last 7 words are moved, but only mess0O, messl and

sender are used.

(3) This call of testpoint will produce a record which even-
tually will be printed like this:

proc cor func time ACO AC1 AC2 AC3

sender receiver mess0 messl mess2 mess3 special

(4) The message is answered with messO and mess1 changed to
(rejected, 0) and mess2, mess3 unchanged.

Page 66

7.2

Sending Messages.

This example makes use of an invented set of communication rules
between two processes, which will not normally be found in a real

system to illustrate sending of messages and waiting for the an-

swers.

receiving a special control message.

Declarations:

CONST

procname=

'HEURE' ,

xcontrol= 8'000000,
input = 8'000001,

syssize = 92, ! 40 + 26 * messpool
messpool= 2,
cspool = 2;
VAR
infinite : INTEGER;
! coroutine declaration :
messco @ STRING(18);
dop : RECORD
opadr, type, size : INTEGER;
mess0, messt,
mess2, mess3 : INTEGER;
special : INTEGER
END;
dsem : INTEGER;
walittime, address : INTEGER;
dsarea : STRING(10);
buffer : STRING(80);

sysarea

STRING (syssize) ;

The receiver of the messages will return a message when

NOTE 1

NOTE 2

Page 67

Initializations:
BEGIN
initcosys (sysarea, ..., ..., messpool, cspool);
infinite:= -1; ! NOTE 1 !

' initialize variables !

initgensem (dsem, dsarea, 0);

takeaddress (buffer, address); ! NOTE 3 ¢
defcorout (messco, 0, 8'004001, 0); ! NOTE 4 !
goto 1000;
The code sending messages and waiting for answers:
1000: ! NOIE 4 !
dop.size:= 5; ! NOTE 2 &
dop.mess0:= input;
dop.messi:= 80;
dop.mess2:= address;
csendmessage (procname, dsem, dop.opadr);
waittime:= 500; ! NOTE 1 !
waitgen (dsem, 8'000003, dop.opadr, waittime); ! NOTE 6 !
_ ! NOTE 6 !

IF dop.type = 8'000001 THEN
BEGIN ! take it home :

dop.mess0:= xcontrol;

csendmessage (procname, dsem, dop.opadr);

waitgen (dsem, 8'000002, dop.opadr, infinite); ! NOIE 6 !
* NOIE 5 ¢

releaseanswer (dop.opadr);
dop.size:= 0; ! ignore answer to regret operation:
waitgen (dsem, 8'000002, dop.opadr, infinite);
END; ! NOTE 2
. NOTE 5

releaseanswer (dop.opadr);

' now use the answer .

Page 68

Notes:

(3)

(6)

The parameter to waitgen specifying delay has to be a
variable. The value of infinite is, however, not changed
and may be shared by several coroutines. The variable
waittime will be decremented from 500 * 0.02 = 10 seconds,

depending on when the answer arrives.

The data part of the operation descriptor is 5 words long

(compare example in 7.1). When the answer is of no impor-
tance, it is skipped by setting size to 0, leaving the old
contents.

See appendix D for description of takeaddress.
The coroutine messco is a single coroutine with identifica-
tion number 1, allowing testoutput controlled by bit 4. The

starting point is the label 1000.

Answers to messages sent by CSENDMESSAGE are released to
return the system operation to the free pool.

The eventmasks used have the following significance:

87000003 TIMER + ANSWER (delay = 10 seconds)
8'000001 TIMER
8'000002 ANSWER (delay = infinite)

The answer will be forced home after 10 seconds, if it has

not arrived before.

Page 69

7.3 Data Concentration Example. 7.3

The example is a program consisting of a number of identical
coroutines (here two) reading data from a number of devices
and sending it to a writer coroutine which outputs these
data in the order of arrival. Two additional coroutines

take care of operator commnication:

R 71 1 \ > O
CA—>t—> — | ,
L WRITER output device
input READER
devices

The coroutines use the I/O system to input and output data.

To cammunicate with each other they make use of general sema-

phores:
Dataflow
—-—-—- "
| \
| T T T TN
=y
B e
A’O --=-
<)
N\ FULL
~
\\
raER Q) WRITER

(maintains queue of empty buffers)

Page 70

Operator Output

f
| OPOUT
|
/)
CONSO
READER \O/ WRITER

EMPTY

An empty operation of type CONSTYPE is fetched and sent to the
output coroutine by means of the semaphore CONSOUT.

Operator input

|
|
|
vV OPIN

;\W\/"\
CONSIN(1.. ' CONSIN(0)
OF @)
[l
1 |
|
|
|
|
]\
\
\l
READER N R

An empty operation of type CONSTYPE is fetched and sent to the
relevant READER/WRITER by means of the array of semaphores found
in CONSIN.

| PROGRAM EXAMPLE / DATA CONCENTRATOR

| CONSTANT SECIION |

CONST

| configuration dependent constants |

maxreader
semtablesize
varlength
stasize
semasize
fhsize
messpoolsize
syssize
oppoolsize
opareasize
datpool
datopsize

intsize

| other reader constants

readersize
readmode
maxsize
rdnames

| writer constants |

writerbuf
writerlength
writemode

| states |

neutral

running

2, |
6, | 2x(maxreader+l)
49, | length of variable area for readers
, | maxreaderxstacksize
30, | semsizex(maxreader+1)
188, | maxreader* (80+14)
14, | (maxreader-1)*14
40, | 40+26xno of system operations
3, |
36, | oppoolsize*2* (conssize+2)
3, |
24, | datpool*2* (dsizet2)
246, | 3*writerlength
|
|

232
25,
80,
" CDR<0>< 0>< 0> RDK B>< >< B>,

2xmaxreader* (varlength+9)

410, 5 record/block |
82,
3,

| operating types used by e.g. waitgen
Pe

timertype
constype
datatype

i

8'000001,
8'000100, conssize = 4,
8'000200, dsize

i
N
-

Page 71

Page 72

| operator input constants |

"start", cstartlen = 6, startcom
"stop", cstoplen = 5, stopcom = 2,

It
—_
-

¢cstart
cstop

| operator output/error recovery |

operatorintervention = 8'177777,

stopbits = 8'001424,

delaybits = 8'160000,

fatalerror = 8'001004,
retryinterval = 10, | 0.2 seconds |
headlength =17,

errtext = "error",

finistext = "finis", textl = 7,

nl = 10, sp = 32,

| other constants |

coident 8'077400,
semsize = 10,
stacksize = 10; ! 6 + 2 X Ynested calls of savelink !

Page 73

| TYPE DECLARATIONS

TYPE
coroutine = string(18);

string(semsize) ;

gensemaphcre

opdescriptor
record
opadr,
optype,

opsize : integer;

| constype : |

status : integer;

name : string(6);

camand: integer fram 7;

| datatype:|

address : integer from 7;

length : integer fram 9
end;

Page 74

VAR

infinite : integer;
empty, full, consout : integer;
emptysem, fullsem, conssem : gensemaphore;

| system coroutine - operator input |

sysco : coroutine;
ttlength, clen, no, cammand : integer;
ciop : opdescriptor;
ttin : file "TTY", 8'100001, 1, 80
of string(80);

| operator output

opout : coroutine;

coop : opdescriptor;

ii, char : integer;

txt : string(7);

ttout : file "TTY", 8'100001, 1, 80, ub
of string(80);

| writer

writeco : coroutine;

wop, erop : opdescriptor;

wrtstate, wtime : integer;

writer : file "MT(Q', 8'100016, 2, writerbuf, fb;
giveup writererror, 8'161777
of string(writerlength);

| readers

readerhead : coroutine;
camnsem : integer;

YOp :opdescriptor;
rdstate, rdno, rdlength, rtime, endmark,

stack, result

¢ integer

reader : file "XxX", 8'100001, 1, 1;
giveup readererror, 8'161777

of string(1);

covars : string(readersize);

camon variables and system areas |

consin : integer; consvars : string(semtablesize);

sysarea
stackarea
semarea
Opops
dataops
localbufs
filebufs
messbufarea

string(syssize) ;
string(stasize) ;

: string(semsize);

: string(opareasize);

(X

string(datopsize) §
string(intsize) ;
string (fbsize) ;
string (messpoolsize) ;

Page 75

Page 76
| CODEPROCEDURE DECLARATIONS |

procedure cdelay (const time : integer);
codebody p0080;

procedure createops(var area : string(1);
var opadr : integer;
const no : integer;
var sem : integer);
codebody p OXXX;
procedure defcorout(var corout : string(18);
const no,
ident,
length : integer) ;

codebody p0089;

procedure initcosys(var area : string(1);
var sysco : string(18);
const ident,
ops,
cshufs : integer);
codebody p0088;
procedure initgensem(var sem : integer;
var semarea : string(1);
const disp : integer;
codebody p0091;
procedure resetstack(var stack : integer;
const area : string(1);
const disp,
depth : integer) ;

codebody p0073;

procedure return(const stack : integer);
codebody p0097;

Page 77

| CODEPROCEDURE DECLARATIONS - CONTINUED |

procedure savelink(const stack : integer);
codebody p0096;

procedure setuserexit;
codebody p0090;

procedure siggen(var sem : integer;
var opadr : integer);
codebody p0093;

procedure waitgen(var sem ¢ integer;
const mask : integer;
var opadr,
delay : integer);
codebody p0092;

procedure binoct (const no : integer;
var str : string(6);
codebody p0087;

procedure createmessbufs(var bufarea : string(1);
const length : integer);

codebody p0054;

procedure fill(const bytevalue : integer;

const tostr : string(1);
const toindx,
count : integer) ;

codebody ;

procedure initzone(file z;
const shares,
length,
area : integer);
‘codebody p0155;

Page 78

| CODEPROCEDURE DECLARATIONS - FINIS |

procedure invalue(const value

toaddr,

atype : integer);
codebody p0121;

procedure load(var base : integer;
const irdex : integer);
codebady ;

procedure movin(const framstr : string(1);
const fromindx,
toaddr,
count : integer);
codebody;

procedure movout(const fromaddr : integer;
var tostr : string(1);
const toindx,

count : integer);

codebody ;
procedure store(var : integer;
const index : integer);

codebody ;

procedure takeaddress(var strvar : string(1);
var addr : integer);
codebaody ;

Page 79

procedure readererror;
begin | giveupprocedure for readers |
savelink (stack) ;
rtime:= 0;
if reader.z0 and operatorintervention <> 0 then
rtime:= infinite;
waitgen (empty, constype, rop.opadr, rtime);
if rop.optype <> timertype then
begin | send status to operator |
rop.status:= reader.z0;
rop.name := reader.zname;
siggen(consout, rop.opadr);

end;

if reader.z0 and stopbits <> 0 then

if reader.zrem = 0 then

begin | stop by signalling device end |
reader.zrem:= 1; | prevent inblock loop |
endmark = 1;

end;
if reader.z0 and delaybits <> 0 then cdelay(retryinterval);

return(stack)

end;

procedure testoperator;
begin | test for operator input to reader f
| result I
I 0 - no message, <>0 message |
savelink (stack) ;
rtime:= 0; rop.opsize:= conssize;
waitgen (camsem, constrype, rop.opadr, rtime);
result:= 0;
if rop.optype <> timertype then result:= rop.cammand;
return (stack)

.end ;

Page 80

procedure inoperator;
begin | acts on a result from testoperator |
savelink (stack) ;
testoperator;
if result <> 0 then
begin | message present |
if result = startcam then rdstate:= running else
if result = stopocom then rdstate:= neutral;
end;
return (stack)

end;

procedure writererror;

begin | giveup procedure for writer

wtime:= 0;
if writer.z0 and operatorintervention <> 0 then
wtime:= infinite;
waitgen (empty, constype, erop.opadr, wtime);
if erop.optype <> timertype then
begin | send status to operator |
erop.status:= writer.z0;
erop.name := writer.znamej;
siggen(consout, erop.opadr);

end;

if writer.z0 and fatalerror <> 0 then
begin | wait until operator acts|
load(consin, 0);
waitgen (consin, constype, erop.opadr, infinite);
| regardless of contents, proceed|
siggen (empty, erop.opadr) ;
end;
cdelay (retryinterval) ;
repeatshare (writer) ;

end;

| INITTALIZATION OF VARTABLES AND START OF COROUTINES

begin

ir.itcosys(sysarea, sysco, coident, 0, 0);
setuserexit;

infinite:= -1;

initgensem(empty, emptysem, 0);
initgensem(full, fullsem, 0);
initgensem(consout, conssem,0);
createmessbufs (messbufarea, messpoolsize);

| operator output coroutine |

defcorout (opout, 0, coident+127, 0);
goto 3000; | xoxx |

coop.opsize:= conssize; coop.optype:= constype;
coop.opadr := 03
createops (opops, coop.opadr, oppoolsize, empty);

| writer coroutine |

wrtstate:= neutral;
defcorout (writeco, 0, coident+126, 0);
goto 2000; | xsxxx |

ciop.opadr:= 0; ciop.optype:= datatype;
ciop.opsize:= dsize;
takeaddress (localbufs,ciop.address) ;
ii:= 1;
repeat
createops (dataops, ciop.opadr, 1, empty);
ciop.address:= ciop.addresstwriterlength;
ii:= ii#1
until ii>datpool;
initgensem(consin, semarea, 0); store(consin,'O);

Page 81

Page 82

| INTTIALIZATION CONTINUED |
| readers |

no:= 1; ii:= 0;
repeat
rdstate:= neutral; rdno:= no;
resetstack (stack, stackarea, ii, stacksize);
ii:= iitstacksize;
initgensem(consin, semarea, rdnogsemsize);
commsem:= consin; store(consin, rdno);
defcorout (readerhead, rdno, coident+rdno, varlength);
goto 1000; | xxxx |

no:= no+l
until no>maxreader;

OPERATOR INPUT
open(ttin, 1);

400: getrec(ttin, ttlength);
if ttlength>1 then
begin | interpret cammand |
if ttint = cstart then
begin
clen:= cstartlen;

command:= startcom;

415: ttlength:= ttlength—clen;
if ttlength>1 then
begin | parameter present |
move (ttint, clen, ttint, 0, ttlength);
decbin(ttint, no);
if no <= maxreader then
begin | send cammand to the coroutine |
load(consin, no);
waitgen (empty, constype, ciop.opadr, infinite);
ciop.comand:= command;
siggen(consin, ciop.opadr);
end
end
end | start
else
if ttint = cstop then
begin
clen:= cstoplen;
camand:= stopcom;
goto 415;
end;
end;
goto 400;

Page 83

Page 84
| READER COROUTINE STATEMENTS - REENTRANT

1000: while rdstate <> running do inoperator;

I started - begin processing |

takeaddress (filebufs, ii);

initzone (reader, 1, 80, ii+94x(rdno-1));

move (rdnames, (rdno-1)x6, reader.zname, 0, 6);
open(reader, readmode);

endmark:= 0;

repeat
getrec(reader, rdlength);
if endmark = 0 then
begin
rop.opsize:= dsize;
waitgen (empty, datatype, rop.opadr, infinite);

if rdlength®maxsize then rdlength:= maxsize;
movin (readert, 0, rop.address+2, rdlength);
invalue (8'60+rdno, rop.address,1); | identify reader |
invalue(sp, rop.addresst1,1) ;
rop.length:= rdlength+2;
siggen(full, rop.opadr);
end
else rdstate:= neutral;
inoperator

until rdstate<>running;

close(reader, 1);

rop.opsize:= conssize;

waitgen (empty, constype, rop.opadr, infinite);
rop.status:= 0; l FINIS message |

rop.name := reader.zname;

siggen(consout, rop.opadr) ;i finis message to operator i

goto 1000;

Page 85

| WRITER COROUTINE

2000: open(writer, writemode);
setposition(writer, 1, 1);
wrtstate:= runningj;
repeat
wov. npsize:= dsize;
waitgen(full, datatype, wop.opadr, infinite);

| data arrived - output it |

putrec(writer, writerlength);
fill(sp, writert, 0, writerlength);
movout (wop.address, writert, 0, wop.length);

siggen (empty, wop.opadr)
until wrtstate<>running;

close (writer, 1);

wop.Opsize:= conssize;

waitgen (empty, constype, wop.opadr, infinite);
wop.status:= 0; | FINIS I

wop.name := writer.zname;

siggen (consout, wop.opadr); | finis message to operator |

goto 2000;

Page 86

OPERATOR OUTPUT COROUTINE
3000: open(ttout, 3);

3001: coop.opsize:= conssize;

waitgen (consout, constype, coop.opadr, infinite);
| message arrived - output it |

putrec(ttout, headlength);
fill (sp, ttoutt,0, headlength);
ii:= 0;
repeat
move (coop.name, ii, coop.name, 0, 1);
char:= byte coop.name;
if char<>0 then
begin
insert(char, ttoutt, ii);
end;
ii:= ii+1
until ii>=5;

putrec (ttout, textl);

if coop.status<>0 then

begin i message about error
ttoutt:= errortext;
putrec(ttout, 7);
insert(sp, ttoutt, 0);
binoct (coop.status, txt);
move (txt, 0, ttoutt, 1, 6);

end else ttoutt:= finistext;

putrec(ttout, 1);
insert(nl1, ttoutt, 0);

outblock (ttout) ;
siggen(empty, coop.opadr);

goto 3001;

end PROGRAM -~ DATA CONCENTRATOR

Page 87

COMPILING AND RUNNING.

A MUSIL campiler with version number 4, or campatible, should
be used to campile programs using the facilities of the exten-
ded coroutine monitor CM002 or compatible.

The program shall be canpiled with the modification parameter
set to C:

MODIF C

When loading a coroutine system, the coroutine monitor should
be loaded before any program using it, otherwise the program
will jump to an undefined location (eg. zero) when the first

coroutine function is invoked.
A program may be breaked with one of the following codes in
addition to the system codes. Care should be taken if restar-

ting after a break.

code cause explanation

-3 CSENDMESSAGE No system operations available

(size 13) to send messages.

6 SAVELINK Stack over - or underflow.
RETURN
7 WAITGEN No system operation available

for receiving message, although

reserved.

Page 88

This page is intentionally left blank.

APPENDIX A - RCSL NUMBERS.

Module

Coroutine Monitor

Testoutput process

Codeprocedures:

TESTPOINT
RESETSTACK
CHANGEMASK
CDELAY
INITCOSYS
DEFCOROUT
SETUSEREXTT
INTTGENSEM
WATTGENERAL
SIGNAL GENERAL
RETURN ANSWER
CSENDMESSAGE
SAVELINK
RETURN

RELEASE ANSWER
PASS

WATTSEM
SIGNAL
CREATEOPS

Name

cM002
RC36-00367

P0072
P0Q073
PO079
P0080
P0088
P0089
P0090
P0O091
P0092
P0093
P0094
P0095
P0096
P0097
P0098
P0126
P0127
P0128

POXXX

Size (bytes) RCSL43-CGL...
1592 5089
9300 1537
24 3506
44 3509
54 3527
18 4058
132 3304
120 5362
78 3310
34 3313
178 3316
56 3319
74 3322
72 3325
32 3328
12 3331
26 3334

APPENDIX B - PROCEDURE SUMMARY.

Declaration, parameters Body Waiting Testoutput
point? & Class

CDELAY (const TIME:integer) PO08B0 vyes yes:6,5
CHANGY: MASK (var COROUT:string(18); PO079 no no
const CONO,
MASK,
LENGTH: integer) ;
CREATEOPS (var AREA:string(1); POOXXX no yes:1

var OPDESER:integer;
const NO:integer;
var SEM:integer);
CSENDMESSAGE (const NAME:string (6) ; P0095 no yes:2 (and 1)
var SEM,
OPDESCR: integer) ;
DEFCOROUT (var COROUT:string(18); P0089 no no
const NO,
IDENT,
LENGTH: integer) ;
INITCOSYS (var AREA:string(1); P0088 no no
var SYSCO:string(18);
const IDENT,
OoPSs,
CSBUFS: integer) ;
INITGENSEM (var SEM:integer; P0O091 no no
var SEMARFA:string(1);
const DISP:integer);

PASS P0126 yes yes:6,5
RELEASEANSWER (var OPDESCR:integer); P0098 no no
RESETSTACK (var STACK:integer; P0073 no no
const AREA:string(1);
const DISP,
DEPTH: integer) ;
RETURN (const STACK:integer) ; P0097 no no

RETURNANSWER (var OPDESCR:integer); P0094 no yes:2

Declaration, parameters

SAVELINK (const STACK:integer) ;
SETUSEREXT'T
SIGGEN (var SEM:integer;
var OPDESCR:integer) ;
SIGNAL (var SEM:integer);
TESTPOINT (const KIND:integer;
var DATA:integer);
WATTSEM (var SEM:integer);
WAITGEN (var SEM:integer;
const MASK:integer;
var OPDESCK,
DELAY:integer) ;

Body Waiting Testoutput
point? & class
P009% no no
PC090 no no
P0093 no yes:1
P0128 no yes:2
PO072 no yes, any-preferably 4
P0127 vyes yes:3,5
P0092 Yes Yes:3,2,5

APPENDIX C - DATA FORMAT SUMMARY.

i . PROCESSDESCRIPTOR. (COMPILER 4, MODIF C)

Procstart 40
1

+2

{octal} +3
+4

5

6

+7
10
+11
+12
+13
+14
+15
+16
+17
20
21
22
+23
+24
+25
26
27
30
31
+32
+33
+34
+35
36
37
40
+41
+42
+43
+44
+45
+46
+47
+50
+51
+52
+53
+54
+55
56

NEXT
PREV

CHAIN

SIZE

NAME

EVENT

BUFFE

PROG

STATE

TIMER

PRIOR

BREAD

ACO
AC1T
AC2
AC3

PSW

SAVE

SAVE1
SAVE2
SAVE3
SAVE4
SAVES

OP

— + J—
| OPERNAME

CCOROUT

LATIME

HACTTIV
HANSWER
HDELAY

—t

(TRETURN)

CDEVICE

~MSEM
MCOROUT

CUDEX

CBUFFER

ZONE *1

[ZONE *2 |

e

——

}QUEUELINKS

PROCESS CHAIN LINK
PROCESS DESCRIPTOR SIZE
PROCESS NAME

HEAD OF EVENTQUEUE

CHAIN OF MESSAGE BUFFERS
ADDR. OF PROGRAM
PROCESS STATE

PRIORITY OF PROCESS
BREAK ADDRESS
SAVED HARDWARE REGISTERS

CPU INSTRUCTION COUNTER (0:14)+CARRY (15)
MUS WORKING LOCATION

MUSTL INTERPRETER 2ND CODEPROCEDURE
WORKING LOCATIONS

MUSIL SAVED ARTTHEMETIC REGIS
MUSIL PROGRAM COUNTER
OPERATOR COMMUNICATION AREA

CURRENT COROUTINE (=ACTIVE,USING CPU)
LAST TIME DELAYS WERE ADJUSTED
ACTIVE QUEUE
HEAD OF { ANSWER QUEUE,
DELAY QUEUE 1
POSITION IN EVENTO OF NEXT MESSAGE
BIT 0=1, BIT(1:15)=ADDR. OF TESTRECORD EIC.
NOT USED, VALUE =0
SEMAPHORE USED FOR MESSAGES
COROUTINE WATTING FOR MESSAGES, OR 0
ADDRESS OF USER EXIT
HFAD OF SIZE 13 BUFFER POOL

ADDRESSES OF USER DEFINED ZONES.

1) TRETURN is also used by CSENDMESSAGE

to save return.

The save locations are used as follows:

code procedure SAVE?2 SAVE3 SAVE4 SAVES
CHAININ addr.OPDESCR addr.HEAD - =
CHATNOUT addr.HEAD addr.OPDESCR - -
CSENDMESSAGE addr .NAME SEM = -
DEFCOROUT addr.COROUT CONO COIDENT CODLENGIH
INITAREA addr .AREA - - -
INITCOSYS addr .TRECORD addr.SYSCO SYSOPS -
INITGENSEM addr.SEM addr . SEMAREA - -
RESETSTACK addr.STACKREF addr.SEMAREA - -
RETURNANSWER addr .OPDESCR - - -
SIGGEN SEM OPADR - -
SWAFVARS addr .AREA NEWINDEX - -
WATTGEN SEM addr . RESULT - EVENTMASK
Location SAVE1 is reserved for the MUSIL interpreter.
The testrecord has the following structure:
-5 ZCNT NUMBER OF WATTS ON BSEM RESULTING IN DEIAY
-4
-3
-2 EVNO As procstart +46, USED IN WAITGEN CALL
-1 BSEM SIZE 13 POOL SEMAPHORE (SIMPLE)
TRECORD +0
(1:15)+1
(OCTAL) 2 TESTRECORD
3
4
5
6

+16

2. CORDUTINE DESCRIPTOR.

address 40
(OCTAL) +1

OPMASK

CIDENT

CEXIT

CILATOP

CRETURN

CAC1SAVE

CSPC

CPARM

3. SIMPLE SEMAPHORE.

+0 | 1]
state: 4(0:14)
OPEN COUNT > O
NEUTRAL 0
CLOSED HEAD OF QUEUE
OF WAITING
4. GENERAL SEMAPHORE.
-1 -1
SEMADR +0 NEXT
+1 NXTOP
+2 CLATOP
+3 NXTCO

(SYSTEM PART)

MASK FOR OPERATION TYPES
COROUTINE IDENT (<> -1)

CHAIN IN QUEUES

SAVED RETURN ADDRESS

0 OR CURRENT REMAINING DELAY OR BUF
POINTER TO HEAD OF 'COROUTINE ARRAY'
SAVED AC1

SAVED PC (process + 33)

SAVED PARAMETER

bit(15)
(o]

PSEUDO IDENT, ALL CNES.

LINK IN DELAY QUEUE

QUETE OF OPERATIONS SIGNALLED

0 OR MIN.DELAY FOR WAITING COFOUTINES
QUEUE OF WAITING COROUTINES

5. OPERATIONS.

MESSAGE/ANSWER - FROM SIZE-13 POOL.
-12 NEXT])
-11 PREV
=10 CHAIN .
-9 ST7E=13 > MUS Message/Answer Fields
-8 [SENDER]
-7 RECEIVER RECEIVER:0 FREE >0 MESSAGE <0 ANSWER
-6 | MESSO]
-5 | MESS1 B
-4 [MESS2]
-3 MESS3 _
-2 SPECIAL (ANSWER) : ANSWER SEMAPHORE (MESSAGE) :ORIG.MESS
-1 TYPE 1b14 : ANSWER 1b13:MESSAGE BUF
ADDR + O NEXT
TIMER
-1 TYPE=1b15
ADDR +0 NEXT NOT USED
INTERNAL OPERATION
/7\/"1\
///////// OPTIONAL USER DATA
-3 /
2 ! 7,
-1 TYPE TYPE IS ANY COMBINATION OF 1BO..1B11
ADDR +0 NEXT
+1 //
+2 /
OPTIONAL USER DATA
/A

C-5

6. OPERATIONS DESCRIPTOR.

ADDRESS OF OPERATION OR 0
TYPE (FROM OPERATION -1)
NUMBER OF WORDS TRANSFERRED

\

OPADR
OFTYPE
OPSIZE
DATA
OPSIZE
NOT IN USE
7. STACK.
ISTACKREF CURRENT
TOP OF STACK ®
MAX.DEPTH OF

STACK

DATA AREA, A COPY OF SOME WORDS IN

r THE OPERATION

FIRST FREE
UPPER STACK LIMIT
TRAP FOR STACK UNDERFLOW

8. COROUTINE SYSTEMS.

SINGLE COROUTINE

\

3 W OPTIONAL USER DATA

0 NEXT

> SYSTEM PART (SEE 3.)

+3 CRETURN -t

i~

HFAD

COROUTINE 1 4

COROUTINE 2 {

N

COROUTINE i ﬁ

ProsSutushadivammto

4 CURRENT
LENGTH e
4 éé////
s ////////,é
+0_ NEXT
+3 CRETURN _*
+0 NEXT
+3 CRETURN
e ——— :
BN
+0 NEXT (
AR
+3 CRETURN e

LR

COROUTINE n 4

iy

A\

+0 NEXT

+3 CRETURN ""'“7\

\

I\

EQUAL: TO A SYSTEM PART
FOR DUMMY COROUTINE

DATA AREA, CURRENTLY CON-
TAINING DATA FOR COROUTINE i
'LENGTH' WORDS.

» SYSTEM PART FOR COROUTINE 1.

DATA FOR COROUTINE 1.

™ TLENGIH' WORDS.

SYSTEM PART FOR COROUTINE i

DATA AREA FOR COROUTINE i.
(WHEN ANOTHER COROUTINE
BECOMES CURRENT, DATA IS
MOVED TO THESE VARIABLES) .

9. SYSTEM AREA.

5 words (see C.1)

TRECORD (1:15) —>»

J

> testrecord, 15 words (see C.1)

-
: N (size 13 buffer used last)
//
<
w; } size 13 buffer pool
-~

originally chained backwards.
CBUFFER points to first free.
(see C.5)

< (size 13 buffer used first)

D-1

APPENDIX D - SOME ADDITIONAL CODEPROCEDURES OF INTEREST.

The library of codeprocedures contains same codeprocedures in
addition to the coroutine procedures, which may be of interest
when coding e.g. driver-like modules. As these procedures at
the moment are very poorly documented, this appendix gives a
short description in order to make themavailable for general
use. The selection of which procedures from the 154 existing
should be described has been done samewhat arbitrarily.

The procedures have been divided into 4 groups (the section
numbers refer to the description found in the remaining part of

this appendix) :

1. Array simulation:

LOAD (base, index) integer arrays (1.1) - 43-GL 631
STORE (base, index) - 43-GL 655
INITAREA (area, vars) |general arrays (1.2) P0074 43-GL 3512
SWAPVARS (area, index) P0075 43-GL 3515

2. Queue administration:

CHAININ (oper, head) (2) PCO076 43-GL 3518
CHAINOUT (head, oper) (2) P0077 43-GL 352t
EXAMINE (oper) (2} P0078 43-GL 3524

3. MUSIL addressing extension:

TAKEADDRESS (stringvar, addr) (3.1) - 43-GL 661
INITZONE (zone, shares, length, area) (3.4) PO055 43-GL 5161
CREATEMESS (area, length) (3.3) P0054 43-GL 2350

SPRIO (name, addr, prio) (3.2) - -

4. Data handling:

ACONVERT (framaddr, toaddr, table, count); (4.4) P0131 43-GL 5695 -

AFTLL (value, toaddr, count); (4.3) P0119 43-Gi, 5674
AMOVE (fromaddr, toaddr, count); (4.1) P0120 43-GL 5677
CONVIN (source, disp, addr, count, table); (4.4) - 43-GL 613
OONVOUT (addr, dest, disp, count, table); (4.4) - 43-GL 616
FILL (value, dest, disp, reps) (4.3) - 43~GL 622
IEXTRACT (result, area, disp) (4.2) P0123 43-GL 5686
TINSERT (value, area, disp) (4.2) P0124 43-GL 5689
INVALUE (value, addr, type) (4.2) PO121 43-GL 5680
MOVIN (framstr, disp, toaddr, length) (4.1) - 43-GL 640
MOVOUT (framaddr, tostr, disp, length) (4.1) - 43-GL 643
OUTVALUE (result, addr, type) (4.2) P0122 43-GL 5683

Parameter conventions and data structures used by these procedures
are described in the following sections.

D-3

1. Array Simulation.

5.1 Integer arrays.

The procedures LOAD and STORE are implemented in a way using know-—
ledge about the specific storage allocation scheme used by the
MUSIL compiler. They make use of the following 'pseudo array':

base : integer;

area : string(l);

The 'base' serves two purposes. It contains the value just loaded,
or to be stored, and it is used to address the array structure. The
'area' contains actual values. For a given length 1, which shall

be even, valid values of the index are 0 to 1/2-1. No checking is,

however, done.

Procedure declarations and descriptions:

procedure IOAD (var BASE : integer;
const INDEX : integer);
codebody';

The word at relative location INDEX (0-(1/2-1)) is moved into BASE.

procedure STORE (var BASE : integer;
const INDEX : integer);
codebody;

The opposite of LOAD. The value of BASE is moved to relative loca-
tion INDEX (0- (1i/2-1)).

Note: The operations LOAD (A, -1) and STORE (A, -1) has no effect,

as the value of A is moved to itself.

D—-4

1.2 General arrays.

The implementation of INITAREA and SWAPVARS uses knowledge about
the specific storage allocation scheme used by the MUSIL campiler.
The procedures use a pseudo-array with the following general
structure:

AREA : integer; ! 3 words header: :
head : string(4); ! +0 : current index :
: +1 : length :
. +2 : address of element no.0!
'

! here comes user variables

VARS : string(l) ; . elements 1 ...

the length of the string containing the elements (here VARS) should
be camputed as the length of the area containing the user variable
declarations timesthe maximum mumber of elements, N. The total
length of the variables can be found using the method described in
chapter 4.2.2. The index may vary between 1 and N. No checking

is, however, done to verify this.

ARFA: o~ A current index
length head length
element no, 0

: %
\ user declarations
length variable for index 'current index' has
(in words}) k been swapped in.

VARS:

variables for index 1.

’l‘\//

/ variables for index 'current index'
//// current values in ‘user declarations'

variables for index 'current index'+1

AR Y

\m‘,—//
\w . .
~ variables for index N

D-5

Procedure declarations and descriptions:

procedure INITAREA (var AREA : integer;
var VARS : string(l));
codebody P0074;

The procedure initializes the 3 word long head. Current index is
set to 1. The length of the user variables declarations is computed
as the difference between the addresses of the head and the VARS

area.

procedure SWAPVARS (var AREA : integer;

const NEWINDEX : integer);
codebody P0075;
If NEWINDEX is different fram current index, then the variables in
the user area is written back where they belong, and the variables
belonging to NEWINDEX are fetched, and current index is updated.
No checking is done that NEWINDEX has a valid value. The area
should have been initialized by INITAREA before use of SWAPVARS.
A whole number of words are always moved.

2. Queue Administration.

The procedures CHAININ, CHAINOUT and EXAMINE works on a first
in/first out queue structured like this:

head

]
BN N O e B
first element ﬂ last element

several elements
head
| - i >C ._)

one element

head

I O I empty

The head and the link fields are one word long. The links are ab~
solute storage word addresses. The queue elements may be e.g. ope-

rations.

Procedure declarations and descriptions:

procedure CHAININ (var OPADR : integer;
var HEAD

integer) ;
odebody P0076;

procedure CHAINOUT (var HEAD : integer;
var OPADR

e

integer) ;
codebody P0077;

procedure EXAMINE (var OPADR
codebody P0078;

integer) ;

The OPADR is the address field of an operations descriptor, pointing
to the operation. HEAD is the head of the queue initially NIL = zero.

D=7

CHAININ puts the element in OPADR into the queue as the last ele-
ment:

_'
|
!
|
|
!
!
|
l
!
|
|
!
|

4
z
X
!
|
|
¥
t
|
v

<!
L-

OPDESCR |OPADR

OPADR is set to zero. If OPADR was initially zero, then the proce-
dure has no effect.

CHAINOUT takes out the first element in the queue and sets OPADR
to point to the element. If the queue was ampty, OPADR is set to
zero.

— o — — — — — e m— st e e e ewww e e cowme

first last

No other fields in OPDESCR are touched.

D-8

The procedure EXAMINE is used to make the contents of the elements
in a queue sequentially available for inspection. OPADR points to
an element in the queue, and OPSIZE should have an appropriate value.
A call of EXAMINE will then take the next element in the queue and
move the contents into the OPDESCR fields in the same way as WAITGEN
(see 3.1.2). OPADR is updated to point to this element. OPTYPE is
not changed. If OPADR was zero the procedure has no effect.

OPDESCR
OPADR \\ new value
N
~ elements to be examined
OPSIZEL _ 1 —_— -

-

,M/ < = g
T - _

~N “ "~
\ -
\ ~___
‘ AN
o - - -,.._ﬁ

2 (=

= 7

HEAD

[

first / last

A queue maintained by CHAININ/CHAINOUT is examined in this way:
(1) first element: opdescr.opadr:= ghead;
opdescr.opsize:= length;

EXAMINE (opdescr .opadr) ;

(2) following elements: EXAMINE (opdescr.opadr) ;

D-9

3. MIJSIL addressing extensions.

The procedures TAKEADDRESS, SETSHARES, SPRIO and CREATEMESS are
a sort of extension to the facilities in the MUSIL campiler with
respect to addressing and ressource allocation.

3.1 Tt.nd absolute address of a string.

Dec.aration:

procedure TAKEADDRESS (var STRVAR: string(1);
var ADDR : integer);
codebody ;

The absolute storage address (a byte address) of the first byte
of STRVAR is returned in ADDR.

3.2 Set multiprogramming priority.

procedure SPRIO (const PROCNAME : string (6);
var PROCADDR : integer;
const PRIORITY : integer);

codebody;

The procedure searches the processes for a process with name

PROCNAME. If it does not exist, a value of zero is returned in
PROCADDR. If it is found, its process descriptor address is re-
turned in PROCADDR, and its priority is set to PRIORITY, if this

is nonzero. Typical priorities are

MUSIL program: b8 (=128)

Drivers : 1b0, or 1b0 + same value.

D-10

3.3 Create additional message buffers.

procedure CREATEMESSBUFS (var BUFAREA : string(1);
const LENGTH: integer);
codebody P0054;

The procedure has only effect the first time it is called in a
program after load. LENGTH is given in bytes. The BUFAREA (0)...
BUFAREA (LENGTH -1) is divided into LENGIH//20 message buffers.
The fields mess0, ..., mess3 are initialized with the 8 byte text

'NOT USED' which may be convenient in connection with later core

dumps .

3.4 Set fields in zone and share descriptors.

procedure INITZONE (file Z;
const SHARES integer;
const LENGTIH : integer;
const ARFA : integer);

codebody P0155;
The file Z should be declared like

zZ: file .o, ..oy 1, ...
of... ;
i.e. with 1 share and 1 byte long buffer.

The value of AREA is an absolute byte storage address obtained by

a call of e.g. TAKEADDRESS, and should be even. The parameter SHARES
gives the number of shares to be created. The parameter LENGIH is
the buffer length in bytes. The procedure uses

SHARES * (7 + (LENGTH+1)//2) * 2 bytes

in AREA, which is structured as follows:

D-11

AREA
|14 14 . 14
:l | BUFFER 1T] | BUFFER 2 | 3; | | 1
L v J L v J L v J
share 1 2 SHARES

The share states are set to free. The zone variables Z.zlength
and z.zshared are both set to LENGTH, and Z.zused is initialized.

Note: (SHARES -1) extra message buffers have to be created, e.qg.
by CREATEMESSBUFS.

D-12

4, Data handling.

These procedure extend the possibilities in the standard MUSIL
procedures MOVE, INSERT and CONVERT, and the operators BYTE and
WORD.

4.1 Datamovement.

Declarations:

procedure AMOVE (const FROMADDR : integer;
const TOADDR : integer;
const COUNT : integer);
codebody P0120;

procedure MOVIN (const FROMSTR : string(1);
const FROMINDX : integer;
const TOADDR
const COUNT

integer;

integer);
codebody;

procedure MOVOUT (const FROMADDR : integer;

var TOSTR : string(1);
const TOINDX : integer;
const COUNT s integer);

codebody;

These procedures are extensions of the MUSIL standard MOVE.

The parameters designated as FROMADDR and TOADDR are absolute
storage byte addresses. The number of bytes to be moved iz given
in COUNT. The actual move is done by the MUS utility MOVE.

The procedure AMOVE transfer COUNT bytes fram FROMADDR to
TOADDR.

The procedure MOVIN moves COUNT bytes fraom FROMSTR (FROMINDX)
to TOADDR and on. The procedure MOVEOUT moves COUNT bytes fram
FROMADDR to TOSTR (TOINDX) and on. The FROMINDX and TOINDX are
displacements, and a value of zero indicates first byte in the
string.

D-13

4.2 Insertion and extraction.

procedure IEXTRACT (var RESULT : integer;
const FROMSTR : string(1);
const FROMINDX : integer);
codebody P0123;

procedure IINSERT (const VALUE : integer;
var TOSTR : string(1);
const TOINDX : integer);

codebody P0124;

procedure INVALUE (const VALUE : integer;
const TOADDR : integer;
const ATYPE : integer);

codebody P0121;

procedure OUTVAILUE (var RESULT : integer;
const FROMADDR : integer;
const ATYPE : integer);

codebody P0122;

These procedures are extensions of the MUSIL BYTE and WORD opera-
tors, and the standard procedure INSERT.

The parameters TOADDR and FROMADDR are absolute storage addresses.
TOSTR and FROMSTR are MUSIL strings.

The procedures IEXTRACT and IINSERT respectively extracts an integer
fram a string and inserts an integer into a string. The TOINDX and
FROMINDX are the displacements in the string for the place of most
significant 8 bits of the integer, the first byte having a displace-
ment of zero. IEXTRACT works like the WORD operator, but the two
bytes may be displaced to any position.

D-14

The procedures INVALUE and OUIVALUE works on one or two bytes ac-
cording to ATYPE:

ATYPE INVALUE OUTVALUE

1 (byte) insert VALUE(8:15} fetch one byte.

2 (word) insert VALUE(0:15) fetch two bytes.
in two bytes.

INVALUE inserts one or two bytes at address TOADDR. OUTVALUE
fetches one or two bytes at address FROMADDR, like the BYTE or
WORD operator.

4.3 Duplicate bytes.

procedure AFILL (const BYTEVALUE :integer;
const TOADDR :integer;
CONST COUNT :integer) ;
codebody P0119;

procedure FILL (const BYTEVALUE :integer;

const TOSTR :string (1) ;
const TOINDX :integer;
const COUNT :integer) ;

codebody;

The procedure inserts the value given in BYTEVALUE extract 8 in
the destination strings COUNT times. FILL inserts the value in
TOSTR (TOINDX) ... TOSTR (TOINDX + COUNT -1). AFILL uses the
address TOADDR which is an absolute storage bvte address.

D=15

4.4 Move with conversion.

ryocedure ACONVERT (const FROMADDR : integer;

const TOADDR : integer;
const TABLEADDR : integer;
const COUNT : integer);

codebcdy P0131;

procedure CONVIN (var FROMSTR : string(1);
const FROMINDX : integer;
const TOADDR : integer;
const COUNT : integer;

const TABLEADDR : integer)

-

codebody;

procedure CONVOUT (const FROMADDR : integer;

var TOSTR : string(1);
const TOINDX : integer;
const COUNT : integer;
const TARLEADDR : integer);

codebody;

These procedures work like AMOVE, MOVIN and MOVOUT, except that
they convert the bytes moved by means of the table specified in
the parameter TABLEADDR, which is an absolute byte storage address.

