"':)/47 G /’}I"’) 100D

F ot el

Title:

9 RC3600 DATA ENTRY
RELEASE 2
SUPERVISOR PROGRAMMING GUIDE

E *REGNECENTRALEN i oo

Edition: June 1977
Author: Birte Steckhahn

RC SYSTEM LIBRARY: FALKONERALLE 1 DK-2000 COPENHAGEN F

CONTENTS PAGE
1. INTRODUCTION L.ttiiriereeeeecacesssessssncasonss 1
2. DISC FILES vtviteneerrevoensneeoesacaseasasassansans 2
2.1 L Oraries v veereeeneossosonneoocsasesosassccnnsns 2
2.2 JODS vttt ittt ereee s esesssssssnnncsans 3
2.3 Batches ...vevereeneeencoccosonscoacnssooonss . 3
3. CODING OF A SUPERVISOR PROGRAM . ..ivvivvennenss 4
4, DESCRIPTION OF STANDARD CODE PROCEDURES 5
4.1 Code Procedure Get Commandccovveeveeens 5
4.2 Code Procedure Get Parameterccccvvees 6
4,3 Code Procedure Returncevvveeesconnesacnes 8
4.4 Code Procedure Access eesosesesecessens 12
4,5 Code Procedure AllGCCESS vvvveereenereeneeenosns 14
4.6 Code Procedure Connect File ...covceeveeennns 15
4,7 Code Procedure Find lfemccceevevevenccecns 16
4.8 Code Procedure Get Next ltem tecececesenne 19
4.9 Code Procedure Delaycovvvieevnneecninnns 2]
5. PROGRAMMING HINTSc.vvennne tesereccenns v 22
5.1 Printout voveeeseeeeeeeeeeoeeeceooscasosenssases 22
5.1.1 Spool-Fileccvvviiiieennnn.. cereenes 23
5.1.2 Hardcopy Devicescovvveneinnennenns 23
5.1.3 Opening of Actual Device 24
5.1.4 How to make the Printoutovvvevenens 24
5.2 Program Termination ceeeees . 25
5.3 Error Proceduresveeeeeeeceeeccocoasecnncnss 26
5.4 Creation of abatchvviiieneiieeeieeneeennes 27
6. OPERATOR COMMUNICATION ...iiiiienrennecnnnns .. 29
7. INSTALLATION OF NEW SUPERVISOR PROGRAMS 30

CONTENTS (continued) PAGE

APPENDIX A STRUCTURE OF A LIBRARY
APPENDIX B STRUCTURE OF A JOB

APPENDIX C STRUCTURE OF A BATCH
C.1 Batch Head
C.2 Records

C.2.1 Data Records
C.2.2 Register Records

| C.3 Batch End Mark
APPENDIX D DIAGRAM OF HOW TO USE THE CODE PROCEDURE 'RETURN'
APPENDIX E STANDARD TEXT NUMBERS
APPENDIX F PROGRAM EXAMPLE VOLUME
APPENDIX G PROGRAM EXAMPLE DUMP
APPENDIX H REFERENCES
APPENDIX I INDEX

INTRODUCTION

This manual describes how to make a supervisor program to the
Data Entry System, Release 2, and explains the environment

where the programs are operated.

The Supervisor is a part of RC3600 Data Entry System, called
NANNY which handles loading of and communication with -
supervisor programs and dialog with the operator, when the key
station is in supervisor mode. When it receives a command it
looks for the corresponding entry in the RC3600 file system
catalog, loads the program to the supervisor area in memory,
starts the program as a process and sends a message to the

process containing the command line typed by the operator.

Before starting to make a supervisor program, it is recommended

to glance through the following sections :

2., 3., 5.1, 5.2, 5.3, and 6.

Page 1.

DISC FILES

2.1

Libraries

The Data Entry System has 5 libraries.” They are physically

disc files containing a group of names.

The 5 libraries are :

]o

Job Library

The library contains the names of all the jobs in the
system. The name of the file on the disc is JBLIB. The

structure of the library, see appendix A,

Format Library

The library contains the names of all the translated formats
in the system. The name of the file on the disc is FBLIB,

The structure of the library, see appendix A.

Subprogram Library

The library contains the names of all the translated sub-
programs in the system. The name of the file on the disc

is SPLIB. The structure of the library, see appendix A.

Table Library

The library contains the names of all the translated tables
in the system. The name of the file on the disc is TBLIB.

The structure of the library, see appendix A.

Disc-table Library

The library contains the names of all the created disc-
tables in the system. The name of the file on the disc is

DTLIB. The structure of the library, see appendix A,

Page 2.

2.2

2.3

Jobs

A job is a disc file containing a group of batch names, and
for each batch name a status word containing a status of the
batch.

Each job name is included in the job library (JBLIB), and in
each batch belonging to a job is the job name mentioned, too.

Further description of a job file, see appendix B.

Batches

A batch is a disc file on the disc containing the data and
register records together with some informations about the batch,
such as which job it belongs to. Every record then contains
informations about itself, such as a record status, and a number
of fields.

The informations about the batch is placed in the first block in

Page 3.

the file and this block is called the batch head. The information

about a record is positioned at the beginning of the record and

is called the record head.
A batch is terminated by a batch end mark.

The exactly structure of a batch, see appendix C.

Page 4.

CODING OF A SUPERVISOR PROGRAM

All supervisor programs must be coded in the MUSIL programming
language and compiled using the MUSIL compiler. Qutput from
the MUSIL compiler is a relocatable binary object code, which
can be added to the Data Entry Sysfém by loading it to disc

(see section 7).

The standard code procedures described in section 4 have been
implemented in order to make it possible for the Data Entry

Supervisor to

- transfer command lines and parameters to the supervisor
programs, and to get receipts from the programs before
removal of the process after program termination. (The

procedures 'get command', 'get parameter', and ‘return').

- lookup, delete or insert a name in a library or to seach
sequential through a library (the procedures 'find item',

and 'get next item').

- read the fields in a batch (the procedures 'access' and

‘allaccess').

- slow down the supervisor program so that keying, rekeying,
and editing will be unaffected of the run of a supervisor

program (the procedure 'delay').

- to open a file for the printout (the text that must be
written on the hard copy device or on the supervisor key

station display) (the procedure 'connect file').

These procedures must be declared and called in the MUSIL program

and copied into the program at compilation time. See reference 1.

Page 5.

DESCRIPTION OF STANDARD CODE PROCEDURES

4.1

Code Procedure Get Command

This procedure is used to receive a command line from the super-

visor in the Data Entry System.

The call of this procedure must be the first statement executed in

the supervisor program.
The procedure must be declared as follows:

procedure cmmd (var comline: string (112);

var return: integer);

codebody;
Parameters :
Comline: Return parameter of type 'string'.

The length of the parameter must be at least 112
bytes.

The parameter contains a command line, typed in
by the keying operator, and must not be changed

by the program.

Return : Return parameter of type 'integer'.

The parameter contains the message address used by

the supervisor.

This parameter must be used when returning to the
supervisor (see section 4.3), and when delaying the
program (see section 4.9), and the value of the
parameter must therefore not be changed by the

program.,

After a syntax check, made by the supervisor, each parameter to

the program will be packed in 'comline' as groups of information
P p group

4.2

Page 6.

as follows:

1. Type of parameter

2 bytes; where 0 = integer parameter
1
2

1]

text pararﬁeter

fermination

2, The parameter

2 bytes for integer parameters, and
6 bytes for text parameters, each parameter terminated by

at least one null character

3. Terminator for parameter

2 byi’es, where 0 = space
1

2 = termination

period

After a call of the procedure return (see section 4.3) it is possible
to get an empty command line (i.e. only ENTER has been pressed
on the supervisor key station). The contents of 'comline' will then
be: <0> <255> if no syntax check has been made, or <0> <2> after

a syntax check (i.e. termination).

Code Procedure Get Parameter

This procedure is used to get a single parameter from the command
line. The first call of this procedure in the program will in parameter
'item' return the name of the file that later on must be opened for
printout (see section 5.1) with the procedure 'connectfile' (see section
4.6). The parameter 'value' describes if the printout is fo be produced
on a hardcopy device or on the supervisor key station display screen.
The contents of those two parameters must therefore be saved before

a new call of the procedure 'get parameter'. The subsequent calls

will return the parameters in the order in which they were typed on

Page

supervisor key station.
The procedure must be declared as follows:

procedure gtpm (var comline: string (112);

var item: string (6);
var value: integer;
var kind: integer;
var sep: integer);
codebody;
Parameters :
Comline: Call parameter of type 'string'. See section 4.1.
Item: Return parameter of type 'string'.

The length of the parameter must be a least 6 bytes.

The parameter contains a text from the command
line if kind =1,

The text is terminated by a least one null character.

The first character in a text parameter must be a

letter followed by letters or digits.

The first time the procedure is called, this parameter

contains the name of the printout file.

Value : Return parameter of type 'integer'.
The parameter contains an integer value if kind = 0.

An integer parameter may be typed on the supervisor
key station either in signed/unsigned decimal repre-
sentation, or in octal representation (identified by

a preceeding apostrophe). The first time the procedure
is called, this parameter indicates whether the printout
must be produced on a hard copy device or on the

supervisor key station display screen:

Value = 0: printout on display screen,

Value = 1: printout on hard copy.

4.3

Page 8.

Kind: Return parameter of type 'infeger'.

The parameter contains the type of the returned

parameter, where:
Kind
Kind
Kind

0 means integer parameter.

1 means text parameter.

2 means that the procedure has been called
too many times (i.e. more than the number
of parameters in the command line),
or that an empty command line has been
received (i.e. only ENTER has been pressed
on the supervisor key station) after a call

of the procedure return (see section 4.3).

Sep: Return parameter of type ‘integer'.

The parameter contains an integer value which
indicates the terminator of the returned parameter,
where:

Sep = 0 means space

Sep = 1 means period
Sep = 2 means termination = last parameter (i.e.

ENTER on the supervisor key station).

Code Procedure Return

This procedure is used to return to the Supervisor in the Data Entry
System, either to get a new command line from the supervisor key
station or to indicate that the program execution must be terminat-
ed and the process must be removed from the supervisor area in

memory .

In case of termination the call of this procedure must be the last

statement executed in the supervisor program.

Page 9.

The -procedure must be declared as follows:

procedure return (var return: integer;
var result: integer;
var action: integer;

var textmode: integer;

var text: string (80 or 160)); *
codebody;
Parameters :
Return : Call parameter of type 'integer'. See section 4.1.
Result : Call parameter of type ‘'integer'.

This parameter may contain a number, which may

be output on the supervisor key station display screen

as an octal number, when a standard text is output

(see parameter 'action'). Standard texts, see appendix
E. Result cannot be output after a text in the parameter

"text’.

Action : Call parameter of type 'integer'.

The parameter contains information about a possible
standard text to be output on the supervisor key
station display screen, special actions to be taken by
the supervisor, and about continuation of the program

execution. The information must be packed as follows:

(txt1 shift 10) + (ixt2 shift 4) + (check shift 3) +
(printout shift 2) + (outputres shift 1) + cont.

txtl: If a standard text must be output, the number
of the first text must be placed here.
txtl = 0 means that no text is output, a text
in the parameter 'text' is output or a semaphore

function has fo be performed.

Page 10.

txt2: If a standard text is composed of two text
numbers the second text number must be
placed here. If a semaphore function has
to be performed, the ident of the semaphore
must be placed here (first semaphore = 1).
'txt2' = 0 means that only one standard text
number is used (indicated in 'txtl'), ho text
is output, or that a text in the parameter

'text' is output.

check: = 1 if the program execution must continue
('cont' = 1) and the new input from the super-
visor must be syntaxchecked or if a semaphore
function has to be performed.
= 0 if no syntax-check of new input or if the

program has to terminate ('cont' = 0).

1 if

printout:

a printout is produced and must be output
to the hard copy device or the supervisor

key station display screen,

a signal semaphore function has to be

performed.

=0 if

a prinfout must not be output (for example
after an error) or a printout has not been

produced.

- a wait semaphore function has to be perform-
ed.

Page 11.

outputres: = 1 means that the number in the parameter
'result' must be output on the display screen
after a standard text.
= 0 means that the parameter 'result' must
not be output after a standard text, or that
a text in parameter 'text' is to be output
('result' cannot be output after such a text).
In this case the contents of 'result' are

irrelevant.

cont: =1 means that program execution must
continue,

= 0 means program termination.

Textmode : Call parameter of type 'integer'.

This parameter describes the contents of parameter

"text'.

= 0 means that the contents of 'text' are irrelevant,
because the parameter 'action' is used for receipt

specification,

= 1 means that byte 1-80 of parameter 'text'
contains a text to be output on the supervisor key

station display screen instead of a standard text.

= 2 means that byte 1-80 of 'text' contains a re-

place command (see ‘text').

= 3 means that byte 1-80 of 'text' contains a text
to be output and byte 81 -~160 of 'text' contains a

replace command.

Text: Call parameter of type 'string'.

The length of the string must be 80 or 160 bytes,

depending on the value of 'textmode'.

Both a text to be output on the supervisor key
station display screen and a replace command must

be terminated by a null-character.

4.4

Page

A replace command is a supervisor command, i.e.
a call of another supervisor program with termination
of the first program in the same way as if the first
program terminates, and the operator calls the second

program.,

A replace command cannot change the output device
for the printout. If a program is called wii‘h'outpuf
of printout on printer via spool-file, and this program
terminates with a replace command, the new program
will place the printout on the printer via spool-file,

too.
In appendix D a diagram is showing how to use the procedure.

Code Procedure Access

The procedure is used to read transfer fields in the data records in
a batch. The zone connected to the batch must be opened for read-

ing and positioned just after the block with the batch head, i.e.

zone.zname:= <batchname>;
open (zone, 1);
' read and check the batchhead!

setposition (zone, 0, 1);

Between the first and the last call of the procedure the zone may

not be changed by calling other procedures using the zone.

The procedure will skip register records and the fields with status
'no transfer' (register records and field states are described in

appendix C).

12.

Page 13.

. The procedure must be declared as follows:

procedure access (file z;
var field: string (80);
var number: integer;
var status: integer;

var subname: string (2));

codebody;
Parameters :
z: Call and return parameter of type 'file'.
' The parameter must be defined as a disc-file, i.e.

kind = 62 and share length = 512, z. zname must
be a name of a batch, e.g. not a name of a job

or a table.

Field: Return parameter of type 'string'.
The length of the string must be 80 bytes.

The contents of 'field' is a field with the status
transfer, if the parameter 'number' is greater than
or equal to zero. 'Number' then indicates number

of characters in the field.

. Number : Return parameter of type 'integer'.
The parameter describes what has been read:

>0: a field has been read.
'Number' contains the number of characters
in the field which is placed in 'field'. The
parameter 'status' contains the field status and

the parameter 'subname' is undefined.

==1: a record head is read.
'Field' is undefined, 'status' contains the
record status and 'subname' contains the name
" of the subformat, which has been used when
. keying the record.

4.5

==2: a record end is read.
'Field', 'status' and 'subname' are all -un-
defined.

=~3: a batch end mark is read.

'Field', 'status' and 'subname' are all un-
defined.

Status: Return parameter of type 'integer'.

The parameter contains the record status if a record
head is read and the field status if a field is read.

Otherwise 'status' is undefined.

Subname : Return parameter of type 'string’.
The length of the string must be 2 bytes.

If a record head is read the parameter in the first
byte contains the name of the subformat, which has
been used when keying the record. The second byte

is a null-character.

Code Procedure Allaccess

This procedure is used in the same ways as the procedure 'access’,
and returns nearly the same. The only differences between 'access'

and ‘allaccess' are

- t'allaccess'is defined with the name allac instead of

access,

- 'allaccess' returns fields with status no transfer, which

are ignored by 'access'.

Page

14,

4.6

The .procedure is defined:

Page 15.

procedure allac (file z;
var field: string (80);
var number: integer;
var status: integer;

var subname:

string (2));

codebody;

Parameters :

Please consult section 4.4.

Code Procedure Connect File

This procedure is used for opening the file where the printout
must be placed (a work-file on the disc or one of the hardcopy

devices).

The procedure looks up the catalog entry given by the name. If
the entry is found and is a file descriptor (if the name is one of
the names of hardcopy devices), the information about device name,
mode, kind, file, block, and give up mask are transferred to the

zone variables.
If the name is the name of the work-file, a 'createentry' is perform-
ed (because the entry is deleted by the supervisor before calling

the program).

Before return to the MUSIL program the zone is opened with the

mode specified,
The procedure must only be called once in a program.
The procedure must be declared as follows:

procedure connec (file z;

integer;
string (6));

const outmode:
const name:

codebody;

Page 16.

Parameters :

z: Call and return parameter of type 'file'.

The parameter must be defined as a file with the
sharelength = 512,

Outmode : Call parameter of type 'integer'.
The parameter must be set to output mode, i.e.

- outmode:= 3;

before call of the procedure.

Name: Call parameter of type 'string'.
The length of the string must be 6 bytes.

The contents of 'name' must be the name of the file
where the prinfout must be placed, (this name is
received when the procedure 'get parameter' (section
4.2) is called the first time).

Code Procedure Find Item

This procedure is used to search for a name, to insert a name or

to delete a name in a library or a job.
The procedure must be declared as follows:

procedure fitem (file z;
const optype: integer;
const length: integer;
const name: string (6));

codebody;

Page 17.

NOTICE:
In the MUSIL program there must be two integers defined just after
the string 'name', for an extraword and a result, because the

procedure uses those two integers, as they were parameters:

If z. zname is a name of a job, i.e. 'name' is a name of a
batch (specified by 'length' = 4, see 'length') the status of the
batch taken from the job is placed in the first integer, called
'extraword', and the result of the call of the procedure is placed

in the second integer, called 'result'.

Parameters :

z: Call parameter of type 'file'.
The parameter must be defined as a disc-file, i.e.
kind = 62 and sharelength = 512,
z., zname must be the name of the library or the job,
where the procedure must look for 'name', insert it
or delete it. The zone must be opened for reading
before a call of the procedure.

Optype: Call parameter of type ‘integer'.

The procedure first searches through the library or
the job for 'name' and then looks at 'optype' to

decide the action to be taken :

=0: search item:
If 'name' is found, 'result' is set to 0, otherwise
to 1.
If 'name' is a batch name the status from the

job is placed in 'extraword'.

=1: delete item:
If 'name’ is found, the name is deleted and

'result' is set to 0, otherwise to 1.

Page 18.

=2: insert item:
If 'name' is not found, the name is inserted
and if 'name' is a name of a batch, the
contents of 'extraword' is inserted after 'mame'
and 'result' is set to 0. If 'name' already

exists, 'result' is set to 1.

Length: Ccll parameter of type 'integer'.

This parameter describes how many words in the library
or the job, the item must use., If z. zname is a name
of a job, 'length' must be 4 (3 words for the name and
1 word for the status). If z. zname is a name of a
library (job, format, subprogram, table, or disc table

library), 'length' must be 3.

Name : Call parameter of type 'string’.

The length of the string must be 6 bytes, and the
contents must be the name to search, insert or delete
in the job or the library. A name must be a letfter
followed by not more than 4 letters or digits and

terminated by at least one null-character.

Extraword : This is not a parameter used in the call of the procedure,
but is an integer defined just after 'name' in the

variable section in the MUSIL program.

If 'length' = 4 the batch status from the job is placed
here if 'optype' = 0, and if 'optype' = 2 the contents

of ‘extraword' is inserted after 'name’.

Result : This is not a parameter used in the call of the
procedure, but is an integer defined as second integer -

after 'name’.

The contents of 'result' is O if the call of the procedure

causes no errors, otherwise 'result' is set to 1.

4.8

Page 19.

Code Procedure Get Next Item

This procedure is used to run sequential through a job or a
library to get all the names one by one, e.g. run through a job

in order to dump all the batches.
The zone with the job or library name must be opened for reading
and positioned on the first block before the first call of the proce-

dure.

The procedure must be declared as follows:

procedure getnex (file z;
const length: integer;
var name: string (6);
var extraword: integer;
var status: integer);
codebody;
Parameters :
z: Call and return parameter of type 'file'.

The parameter must be defined as a disc-file, i.e.
kind = 62 and sharelength = 512, z, zname must
be the name of the job or the library containing

the names to be read.

Length: Call parameter of type ‘integer'.

This parameter describes how many words in the library
or the job one item uses. If z. zname is a name of
a job, ‘length' must be 4, and if z. zname is a name

of library, 'length' must be 3.

Name: Return parameter of type 'string'.

The length of the string must be 6 bytes. The contents
of 'name' after a call of the procedure is the next

name read in the job or the library.

Page 20.

Extraword : Return parameter of type 'integer'.

If z. zname is a name of a job, the batch status
from the job is placed here. If z. zname is a library

name it is undefined.

Status Call and return parameter of type 'integer'.

Before the first call of the procedure, 'status' may
be undefined, but before the second and all the other

calls it must have one of the following values:

= 0: The disc zone has been used for something else,
i.e. the zone has been destroyed and the job
or library name must be inserted in z. zname -
before calling the procedure.

=1: The disc zone has not been used after last call.

This value must be used in the first call with

I
LB

a new job or library name in z. zname after
the procedure has been used on one job or

library.

When the procedure returns to the MUSIL program,

Istatus' has the values:

= 0: The end of the job or library has not been

reached yet.

=1: The end of the job or library has been reached.

'Name' and 'extraword' are undefined.

Page 21.

Code Procedure Delay

This procedure is used to slow down a supervisor program with many
disc transports in order to let keying operators work without speed-
reduction, so the procedure must be used in programs, that read

or write on the disc.

The procedure makes the MUSIL program wait a number of timer-
periods (one timer-period = 20 milliseconds) standing in mess3 in

a message buffer. The number is calculated by NANNY and depends
on number of key stations in key, rekey and edit mode. The
procedure is only effective if the supervisor key station has come

to the supervisor mode by the control command SUPERVISOR SLOW.
If the control command SUPERVISOR is used, mess3 is always set

to 0.

The procedure is declared as follows:

procedure delay (var delayed: integer;

var bufaddr: integer);

codebody;
Parameters :
Delayed : Return parameter of type 'integer'.

After a call of the procedure 'delayed' will contain

the number of timer-periods the program has waited.

Bufaddr : Call parameter of type 'integer'.

The parameter must contain the address of that message
buffer, where mess3 contains the number of timer-periods,
the calling program must wait. This address is the
return-value of the parameter 'return' in the code

rocedure 'get command' (see section 4.1).
P g

Page 22.

S. PROGRAMMING HINTS

5.1 Printout

A supervisor program can produce a printout in the form of a
survey, log, listing, and the like. This section describes the

administration of the printouts and how to make a printout.

The printouts car be output in three ways :

HARDCOPY
DEVICE

(3)

SUPERVISOR | /7N 7N\

PROGRAM M, 2 WORKFILE SPOOLFILE 2)

DISPLAY
SCREEN

(1) On the supervisor key station display screen.

(2) On a hardcopy device (e.g. line printer or operator console

device) via a so-called spool-file.

(3) Directly on a hardcopy device.

The way printout is to be produced is selected by the operator when

the supervisor command is entered.

Examples :
SYSTEM DISC Printout on display screen.
SYSTEM.S DISC Printout on hardcopy device
via spool-file.
SYSTEM. L DISC Printout directly on hardcopy

device.

Page 23.

5.1.1 Spool-File

The spool-file can contain printouts from several supervisor programs
and the operator can stop and start printing from the spool-file.
This means that the hardcopy device may be used for non-data entry
functions (for example conversion).simultanously with production of

some data entry printouts to be printed later.

5.1.2 Hardcopy Devices

When a system-tape is installed some catalog entries are created
to describe hardcopy devices. |t can be such as the line printer or

the operator console device (TTY).

The entries contain information about the device: device name, mode,

kind, file, block, and giveup-mask,
The names of the entries are:

HCOPY Normal hardcopy device.
It depends on the actual configuration,

but can be the line printer for instance.

HLPT Line printer

HLPTI Second line printer

HSP Serial printer .

HSP1 Second serial printer

HCPT Charaband printer

HCPTI Second charaband printer
HTTY Operator console device (TTY)

The current hardcopy device can be changed to another one by the
SPOOL NEWDEVICE - command (see reference 2, section 9).

5.1.3

Page 24.

Opening of Actual Device

5.1.4

When a supervisor program is called, the Supervisor finds out, where
the printout must be placed. If it is in the work-file, this file is
deleted and later on created again (by code procedure 'connect file!).
When the code procedure 'get parameter' (section 4.2) is called the
first time the name of the work-file or the name of the catalog entry
describing current hardcopy device is returned in the parameter 'item'.
In parameter 'value' the procedure returns if the printout must be

written on the display screen or on a hardcopy device:

value = 0 : display screen

value =1 : hardcopy device.
It is necessary to know the length of the lines to be written because
the display screen has space for 80 characters, and a line printer has

space for 132 characters.

To open the file the code procedure 'connect file' is used (see section
4.6). This procedure looks up the name in the catalog. If the entry is
found, it is one of the names mentioned in section 5.1.2, and the
procedure moves the device name, kind, and giveup-mask to the zone

and or's the mode found with the mode given in the call of the procedure.
If the entry is not found, it is the name of the work-file, which was
deleted when calling the supervisor program. The procedure then creates
an entry as a disc file. Hence it is very important that this procedure

is called only once in a program. Finally the procedure opens the file

and positions it at file and block.

How to make the Printout

A text string is written in the printout file by using the standard
procedure QUTTEXT. This procedure stops writing the text string in

the zone, when it meets a null-character, i.e. all strings to be used
by OUTTEXT must be terminated by at least one null-character. The
character set to be used must be the ASCIl code. When the printout

is output to the actual device it is automatically converted if the
output device does not use the ASCIl code (for example a line printer).
The last character to be output in the prinout before closing the zone

must be an end medium character: value 25.

Page 25.

The last statement to be executed in a supervisor program must be

a call of the code procedure 'return' (section 4.3) with the parameter
'cont' equal to 0. If the program has made a printout with the end
medium character as the last one, the parameter 'printout' must be
set to one. This informs the Supervisor that a printout has been made,
and if it is written in the work-file, the Supervisor copies the print-
out from the work-file to the display screen or to the spool-file and
from the spool-file to the hardcopy device. The copying is-stopped
when the end medium character is met. If the printout is copied to
the display screen and a line contains more than 80 characters, the
Supervisor automatically inserts a 'new line'~character after the first

80 characters.
All control characters (i.e. value less then 32 = SP) are ignored
except 'new line' characters, this means that 'form feed' characters,

for instance, has no effect.

Program Termination

Before the program returns to the Supervisor by a call of the code
procedure 'return' with the parameter 'cont' = 0, all processes (i.e.
driver- and area processes) which have been used by the program
must be released. This is done by calling the procedure CLOSE with
non-zero release (i.e. close (zone, 1);). Before closing the printout
file, an end medium character must be OUTTEXTed. When using the
code procedure 'return' it is important to set the values of the

parameters in the right manner.

Parameter 'action':

'cont’ must be zero
'check!' must be zero
'printout’ must be 1 if a printout with an end

medium character has been mode, otherwise

fo zero. ,
'outputres' must be set to 1 if 'txt1' and 'txt2'

describe standard texts and if the contents

of parameter 'result' must be outfput on

the display screen after the standard texts.

Otherwise 'outputres' must be set to zero.

5.3

Page 26.

Parameter 'textmode':

If this parameter is not initialized in the right way,

it may causes some error-messages from the Supervisor.

Error Procedures

After an error which cannot be corrected by the operator or no
correction is wanted, the program execution must be terminated as
described in section 5.2. When the procedure CLOSE is called a
program loop may occur after an output error because closing output
zone may result in a new output message which will call the giveup-

procedure again and so on,
This program loop can be avoided in two ways:

1: The mode in the erroneous zone is set to zero before closing
the zone. This will prevent further output messages and the
procedure CLOSE will only release the process, but some
output data may be lost. (This action is shown in the program

example in appendix F).

2 An error-counter is used to count number of errors. When a
zone is opened the counter is set to zero. If the giveup-
procedure is called the counter is increased by one and the
program tries to close the zone, This may result in one of

two things:

- the giveup-procedure is called once more and the counter

is increased by one
- the error is corrected and the zone will be closed.

If the error counter then gets greater than for example N the

CLOSE-call cannot succeed and it is then skipped.

If a call of CLOSE is succeeded the error-counter is then set

to N. (This action is shown in the program example in appendix
G, with N = 4),

5.4

Page 27.

Creation of a Batch

If a batch is created by a supervisor program there are different
things to remember: '

(The structure of a batch, see appendix C)

a) in the batch head:

- jobname must be a name of a job file. If the job does not
exist already, the job name must be inserted in the job library
(JBLIB) and a file with the job name must be created and
the contents must be set according to the specifications given

in appendix B.

- the format name must be a name of an existing translated

format if the batch later on must be rekeyed or edited.

- the batch name must be the same name as the name of the

file where the batch is placed.

- the batch status word must be set to closed, i.e. bit 0 =1
(status = 1000008) or to closed and invalid, i.e. bit 0 =1 and
bit 12 =1 (status = 1000108). If the invalid bit (bit 12) is

set, some of the field in the batch may be invalid.

- number of blocks (word 14) and number of records (word 15)

must be calculated and inserted in the batch head.

- end format (word 26) must be set fo 1000008 as if the 'end'-

statement in the format was executed.

- the other words in the batch head must be set to zero.

b) in the data record head:

- subname must be the name of a subformat in the format specified
in the batch head.

- the length of the record and the record number in the batch

must be calculated and inserted.

- the other bytes must be set to zero. The record status can be
set to non-zero, if the record must not be dumped. (Normally
the supervisor program 'dump' will skip records with invalid

status).

Page 28.

c) in the data record end:
- subname must be the same as subname in the record head.

- record end mark must be one byte with the value 28]0.

d) in the fields:

- the field status can be set to not transfer if the data in

the field must not be dumped or transferred.

- the field end mark must be one byte with the value 2710-

e) register records:

- the register records may not be made by a supervisor program.

If a batch, made by a supervisor program, must be corrected with
EDIT the batch must contain register records. They are made in this

way :

1) leave supervisor mode with the supervisor command STOP
2) key: EDIT <batchname>
3) key: END

This will causes the editor to run through the batch and make the
register records. At the same time the states of the fields, the records
and the batch will be set according to the format (specified in the
batch head).

After this the batch can be corrected with EDIT.

Page 29.

OPERATOR COMMUNICATION

When a supervisor program has been called from the supervisor key
station, the communication with the program may be done either
from the supervisor key station, if the program uses the code proce-
dures 'get command', 'get parameter' and 'return', or from the
RC3600 operator console device (TTY), if the program uses the

standard operator communication procedures described in reference 1.

The latter communication is recommended for greater supervisor
programs such as print image programs, paper tape conversion programs
etc., because it gives a possibility for temporary halts of the program

execution caused by the operator.

When using the code procedures 'get command', 'get parameter’,
and 'return' all the communication between the program and the
operator is éufomaﬁcally written in the log-file by the Supervisor.
This means that the supervisor program has not to make any action
to write in the log-file. (The log-file can be dumped and printed
by the standard supervisor programs DUMPSTAT and LISTLOG, see

reference 2, section 9).

As can be seen in appendix F communications via the key station

has been made possible by
1) calling the codeprocedure 'return' with 'cont’ =1,

2) calling the codeprocedure 'get command', this will
wait until the operator has answered the question

asked for with 'return'.

The answer is given in 'comline' as a return parameter

from 'get command'

- if the answer has been syntax-checked by the
Supervisor the items from the answer must be pick-

ed up by using 'get parameter’.

- if the answer has not been syntax-checked 'comline’

holds a normal text string.

INSTALLATION OF NEW SUPERVISOR PROGRAMS

A new supervisor program is put into the Data Entry System by
means of the standard supervisor program PUT. In this way it is
not necessary to generate a new system tape every time a new

supervisor program has been made.

The binary supervisor program (i.e. the output from the MUSIL

compiler) may be read from either paper tape or magnetic tape.

The supervisor command for PUT is fully described in reference 2,

section 9. Please consult this description.

Page 30.

APPENDIX A: STRUCTURE OF A LIBRARY

The five libraries in the Data Entry System are structured in the
same way, Each of them is an extensible disc file containing a
group of names with the same characteristics. A disc file is a
collection of blocks. The first two bytes in the first block is a
counter containing number of names in the library. The first two
bytes in the other blocks are undefined. The rest of each block

is divided into groups of 6 bytes, each group containing one name.
One block can in this way contain 85 names (one block = 512 bytes:
two bytes for counter or undefined, 510 bytes for names of 6 bytes
85 names).

A name consists of a letter followed by not more than 4 letters

or digits terminated by at least one null-character.

Examples :
name BAJOI name B75
1. byte | B | A |2, byte 1. byte | B RE; 2. byte
3. byte | J | 0 |[4. byte 3. byte | 5 |null|4. byte
5. byte | 1 | null]é. byte 5. byte | null { null § 6. byte

When a name is deleted by the code procedure find item (section 4.7)
the first two bytes in the name are overwritten with null-characters
and the counter is decreased by one. This makes a free space in the
library. When a name is inserted in the library by the same procedure,
it is inserted on the first free place (and not after all the other names)

and the counter is increased by one.

APPENDIX B: STRUCTURE OF A JOB

A job is an extensible disc-file containing a group of batch names

and for each batch name a status of the batch.

The first two bytes in the first segment is a counter containing number

of batches in the job. The first two bytes in the other blocks are

undefined. The rest of each block is divided into groups of.8 bytes,

each group containing one batch name and the status of the batch.

One block can in this way contain 63 batch names with states (One

block = 512 bytes: two bytes for counter or undefined, 510 bytes

for names and states of 8 bytes = 63 names, rest 6 bytes).

A name in a job (a batch name) is structured in the same way as a

name in a library (see appendix A).

The status of a batch in a job tells, if the batch is used for keying,

rekeying or editing:

status = O:
status = 1:
status = 2
status = 3:
status = 4

the
the
the
the

the

batch
batch
batch
batch
batch

is
is
is
is

is

not in use.

used for keying.

used for rekeying.

used for keying and rekeying.

used for editing.

APPENDIX C: STRUCTURE OF A BATCH

A batch is a disc-file containing the records with the fields. The
records are stored from the second block and forward in the file.

The first block contains some information about the batch and is
called the batch head. The batch is terminated by a batch end mark.

Example :

Jlock 0 block 1 . block 2 . block 3 . block 4 . block 5

batch head rec 1 rec 2 rec3 rec4 rec5 rec 6 rec 7 t batch end mark

C.1. Batch Head

The contents of the batch head is:

word 0 - 2: Job name: the name of the job, to which the

batch belongs.

word 3 - 5: Format name: The name of the translated format
to be used when keying, rekeying and editing the
batch.

word 6 - 8: Batch name.
word 9: Batch status (see below).
word 10: Byte count in old batch last block.

word 11: Byte count in work batch last block.

word 12: Block address of last register record.

word 13: Byte address of last register record.

word 14: Number of blocks in the batch inclusive the batch
head.

word 15: Number of data records in the batch.

word 16: Number of rekeyed records.

word 17: Number of invalid records.

word 18: Activation time, real time clock 1.

word 19: Activation time, real time clock 2.

word 20: Block count in old batch, -

word 21: Block count in work batch.

word 22: = Name of current subformat.

word 23: Current recordnumber in old batch.

word 24: Current record number in work batch.

word 25: Maximum number of records in work batch.

word 26: End format: = 1000008 indicates that the
'end'-statement in the format is executed.

WORD 3 Bt s (s be o)

The rest of the batch head is not in use yet, i.e. must

all be zeroes.

The batch statuslword is 16 bit, where the value of all the bits,

except the last one (bit 15) gives a status:

all bits =0 : the batch is empty.

bit
bit

: the batch is keying.

bit 0 =1 : the batch is closed.
bit 1 =1 : the work batch is closed.
bit 2 =1 : the batch is editing.
bit 3 =1 : the batch is rekeying.
4 =1
5=1

: the batch must be rekeyed (the parameter

'rekey' has been used in the 'set'-command).

bit 6 =1 : the batch has been rekeyed.

bit 7 =1 : the batch has been partial rekeyed.

bit 8 =1 : the batch has been edited.

bit 9 =1 : the batch has been saved by the supervisor

program 'save'.

bit 10 =1 : the batch has been dumped by the supervisor
program 'dump'.

bit 11 =1 : the batch has been transferred.

bit 12 =0 : the batch is valid.

bit 12 =1 : the batch is invalid, i.e. one or more fields
are invalid.

bit 13 =1 : the batch has been sorted.

bit 14 =1 : the batch must be valid (the parameter 'valid'

has been used in the 'set'-command).

bt 17 Ao ‘u».wu;‘
HoTE Sabls 4 -
%
he =1 T bert 5 0 may o] bwdhe ikl
bt el 5 el dlew(Fe 5'1;2' w,m:? Wt Ml {}t{.ﬂa{;{,(vr
b L e s el ewed b R o e e e Vg g

b3-is Vet q“

C.2.

Records

C.2.1

There are two types of records: data records containing the data,
which has been keyed to the batch, and register records, made by
NANNY as a copy of the register area, and is written in the batch

for every 10 data records.

Data Records

A data record contains a record head, a number of fields and a

record end.

Example :

Lg ,—/‘;\ /——JL; ,__——--/'L —)JL J‘R/'-;
rec, field 1 field 2 field 3 field 4 rec.
head end

The contents of the record head is:

byte 0: Subname: the name of the subformat used when keying

the record.

byte 1-2: The total record length.

byte 3-4: Record number in the batch.

byte 5: Record status: number of invalid fields in the record.
byte 6: Rekeyed. ,

byte 7-8: Block number of corresponding record in old batch.
byte 9-10: Byte number of corresponding record in old batch.

The contents of the record end is:

byte 0: Subname the same as byte 0 in the record head.

byte 1: Record end mark: one byte with the value 28]0.

The contents of a field is:

byte 0: Field status:
bit 7 =1 : invalid
P bit 7 =0 : valid
' bit 6 =1 : skip
©) bit 5 =1 : skip by statement)
bit 5 = bit 6 = 0 : not skip 9% hitsd4 pot. wnvied
,;\jj bit 0 = 0 : transfer field \D bet L: No Conpuwi
- bit 0 =1 : no transfer field) bit 1 = Dspray ox
byte 1> n: data (max 80 characters in ASCIl code with values
greater than 311 O)'
byte n + 1: field end mark, value 27

10°

Fields with the status no transfer and fields with the length 0 are

placed as the last fields in the record.

C.2.2 Register Records

A register record contains a record head, a register area and a

record end.

Example:
[I Il 3
—_——A — A/
rec. register area rec.
head end

The contents of the record head is:

byte 0:
byte 1-2:
byte 3-4:
byte 5-6:
byte 7-8:
byte 9-10:
byte 11-12:
byte 13-14:
byte 15-16:

Subname, the ASCIl character '?', value 63.
Total record length.

Record number in batch,

Not used for register records.

Block number of previous register record.
Byte number of previous register record.
Register top.

Number of rekeyed records.

Number of invalid records.

C.3

The .contents of the register area is:

word 0 : Pointer to length, type, and contents of register 01,

word 1 : Pointer to length, type, and contents of register 02.

And so on to the last pointer to length, type, and contents of last

register.

After these pointers each register is described as follows:

byte 0 : Length of register X
byte 1 : Type of register X.
byte 2 > n+1:Contents of register X, n = the length of register X.

The contents of the record end is:

byte 0 : Subname, the same af byte 0 in the record head,
. d.e. 21,
byte 1 : Record end mark: one byte with the value 2810.

The register records may not be made by a supervisor program. They
are made as checkpoints of the current state of the batch after key-

ing a number of data records.

Batch End Mark

The batch end mark is one byte with the value 29]0.

The last bytes in a batch are then:
sub
field | 2710 | name| 2810 | 2%10]

| field | | rec | batch|
end end end

If the batch is empty the second block of the batch contains a
batch end mark in the first byte, i.e.

. batch head [2910] ,
' : bcfchl
| end
1. block . 2. block

APPENDIX D: DIAGRAM OF HOW TO USE THE CODE PROCEDURE 'RETURN'

parameters e _ _Action_]
txt 1 txt 2 check | printout |outputres | cont Result Textmode | Text
function bit 0-5 | bit 6-11 | bit 12 bit 13 bit 14 | bit 15
: No text output Zero Zero C 0] Zero 1 irrelevant Zero irrelevant
get new input (see be- | (see be-
low) low)
: Standard text output first second C O P 1 no. to be Zero - irrelevant
get new input textno. | textno, |[(see be- [(see be- | (see be- output
low) low) low)
: Param. 'text' output Zero Zero C o Zero 1 irrelevant 1 byte 1-80 =
get new input (see be- | (see be- text to
low) low) output
: No text output Zero Zero Zero o] Zero Zero irrelevant Zero irrelevant
termination (see be-
low)
: Standard text output first second Zero . o] P Zero no. to be Zero irrelevant
termination textno. | textno. (see be- | (see be- output
low) low)
: Param. 'text' output Zero Zero Zero o Zero Zero irrelevant 1 byte 1-80=
termination (see be- text to
low) output
: Replace command R1 R1 Zero O Zero Zero R1 R2 R2
termination (see be- | (see be- (see be- (see below) |[(see below)| (see below)
low) low) low)
: Wait / signal Zero semaph. 1 wait=0 | Zero Zero irrelevant Zero irrelevant
semaphore ident, signal =1 ,

R1 :

The new input must be syntax checked:
check = 0 : yes

check =1 : no

A printout has been produced and must be copied
to hardcopy device via spoolfile or to supervisor
key station display screen,

printout = 0 : no

printout = 1 : yes

The number in parameter 'result' must be output
after ixtl and txt2:

0 : no

outputres

outputres = 1 : yes

These three places must be filled in as 4, 5, or 6.

The value of parameter 'textmode' gives the meaning

of the contents of parameter 'text' :

textmode = 2 : byte 1-80 of 'text' is a replace-
command, i.e. a call of another supervisor program.

The command must be terminated by a null-character.

textmode = 3 : byte 1-80 of 'text' is a text (terminat-
ed by a null-character) to be output on the supervisor

key station display instead of standard texi(s).

Byte 81-160 of 'text' is a replace-command (terminat-

ed by a null-character).

APPENDIX E: STANDARD TEXT NUMBERS

In the Data Entry system the following texts with the corresponding

numbers are available to be used in the code procedure 'return':

Textnumber Text Textnumber Text

1 stop 26 length

2 printer 27 next

3 break 28 punch

4 syntax 29 transmit

5 batch 30 erase

6 state - 31 date

7 error 32 tape ser
. 8 magtape 33 number

9 load err 34 file gen

10 ** supv 35 informa

11 not name 36 real seq

12 ok 37 block

13 cf list 38 factor

14 -~ cf list; 39 load

15 disc 40 table

16 file 41 full

17 ident ' 42 printout

18 unknown 43 in use

19 exist 44 format
. 20 no room 45 ~job

21 name 46 subprogr

22 chars 47 disctabl

23 copied 48 reader

24 not 49 library

25 record

APPENDIX F: PROGRAM EXAMPLE VOLUME

This program example shows the communication between the program
and the operator by using the code procedures 'get command' and

'return’',

The program returns only with 'action' = continue, i.e. no check
of the new input shall be made, and therefore the code procedure
'get parameter' is not used. This is done because the operator may
key letters as well as digits after the text 'magtape number =' has
appeared on the display screen, so the new input may not fullfil

the syntax rules.

In the giveup-procedure for magtape, procedure 'mterror', is zmode
set to zero before the jump to the call of CLOSE, which will release

the driver process if an error on the magtape occurs.

KEYWORDS :

ABSTRACT:

AUTHOR S NRN

ECTITERs YY MM D

PROGRAM RC36=-XXXXX,YY

VOLUME - BOSS=LAREL

MUSTL,MTA,DATA ENTRY = REL 2,LISTING

THIS PROGRAM INITIALIZES A MAGTAPE RBY WRITTING

A VOL1=-LABEL AS THE FIRST BLOCK FOLLOWEDR BY TkD
TAPFMARKS, THE LABEL IS A BOSS=LABEL.

THIS PROGRAM TS A DATA ENTRY SUPERVISCR PROGRAM,

RCSL: XX=MNYYYY: ASCII SOURCE TAPE,
KCSL: XX=iMhNYYYY: RFL. BIN. TAPF,

!

TITLE: VOLUME= BOSS LABREL

ABSTRACT ¢ THIS PROGRAM INITTALIZES & MAGTAPE BY wRITTING
A volL1l LABEL AS THE FIRST BLOCK FOLIGwWED BY Tw()
TAPFMARKS, THE LLABEL 1S A EBOSS~LABEL,

‘ THIS PRCGRAM 1S A [ATA ENTRY SUPERVISCR PROGRAM.
SIze: 1446‘8YTES. INCLUDING ONE B4 RYTES MT=-BUFFER,
CATE:

CALL: VOLUME

THE FRCGRAM ASKS FQR:
MAGTAPE NUMBER STRING CF &6 CHARACTERS,

CUTPUT MESSAGES:
SYNTAX SYNTAX ERROR IN CALL=LINE
MAGTAPE ERROR <CODE>
CONSULT THE APPENDIX TO THE RC3600 DATA ENTRY
SYSTEM USER'S MAMNUAL,
K PROGRAM EXECUTION IS TERMINATED SUCCESFULLY,

SPECIAL REQUIREMENTS:
' © CMMD: (ROOO!: RCSL: 43=-RI0398).
GTPM: (RO0Q03: RCSL: 43=RINES4),
RETUR: (RO004: RCSL: 43-RI0528),

CONST
voL1l=
SP=
LABEL=

. .AGNG:

VAR
COMLINE
FPRETUR:
PTEXT:
FVALUE:
FKIHD:

T<36><T7a><T6><49> ",

f<32>10,
1

<YBR>KUB>KUAB><CUB><UE><{E>
<IU><GU><U><yu>",

'MAGTAPE NUMBERz=<0>!';

STRIMNG(112)7
INTEGER:
STRING(6);
INTEGER:;
INTEGER:

CISPLAYTEXT: STRING(RO)}

PSEP:
RTEXT1:
KTEXTZ:
RSFEC:
RCON:
RESULT:
TEXTMODE 2
ACTIONS:
\ELPST:
DENT 3
X
I:
CWNER:
EXPLENGTHS

INTEGER;
INTEGER:;
INTEGER:;
INTEGER;
INTEGER;
INTEGER:
INTEGER;
INTEGER:
STRING(1);
STRING(B);
INTEGER?
INTEGER;
STRING(6):
INTEGER?

Hem Bumm B Bom e B dumm B B Jom Bew G S fam Gom

COMMAND LINFE 1

PARANM aDDR 0OF MESS~BUF I
PARAM TEXT !

PARAM VALUE !

PARAM KIND 1

RETURN SPECTAL TEXT!
PARAM SERPERATQOFR
RETURN TEXTHY !

RETURN TEXTZ !

RETURN SRECTAL !
RETURN CONTINUE !
RETURN RESULT !

RETURN PARAMETER MODE!
RETURN ACTINNS!

HELLP VARIABLES |

MTO: FILE ! MAGTAPE DESCHIPTICN |
LRCR ORI
14, { REPEAT,POSITINN,BLUCKED |
1, { BUFFERS |
. &4, ! SHARESIZE !
. UR; ! UNDEF, BLUCKED !
GIVEUP MTERRQOR, | ERKOR PRNOCENURE !
8'173637 ! GIVEUP MASK !}
OF RECORD ! RECORD STRUCTURE !
TOTAL: STRING(8B4);
LIDENT: STRING(4) FROM 137
FIDENT: STRING(&) FROM S
ENDS
PRCCECURFE CHMMD(VAR COMLINE: STRING(112): GET COMMAND
VAR PRETUR: INTEGER):
CuCEBCDY?;
FRCCELURE GTPM(VAR COMLINE: STRING(112); GET PARAMETER
VAR PTEXT: STRING(&);
VAR PVALUE: INTEGER;
VAR PKIND?: INTEGER;
VAR PSEP: INTEGER);
CQLEBQCNY;
QROCEDURE RETUR(VAR PRETUR: INTEGER:; I RETURN !
VAR RESULTs: INTEGER;
VAR ACTIONS: INTEGER:
VAR TEXTMODE¢INTEGER;
VAR TEXT: STRING(30)):
CODERBQDY;
FRCCEDURE MTERRQR;
BEGIN
RTEXTL = 8; I MAGTAFE |
RTEXT2 = 7; ! ERROR !
RSPEC 1= 13 I QUTPUT CONTENTS OF RESULT !
RCON = 03 ! DO ONOT CONTINUE
RESULT 3= MT0,20:

* - -
- - ’

MTO,ZMODE
GeTn 200

ENC7
*ROCEDURE SYNTAX:

BEGIN
RTEXTL = 43 ! SYNTAX !
RTEXT2 := 0; ! NO TEXT 2 !
RSPEC = 07 ! NC SPECIAL ACTICN !
RCON = 07 ! DG NOT CONTINLE !
RESULT 3= 0;
GCTC 300;

END;

REGIN
CMMD(COMLINE,PRETUR) ;
GTPM(COMLINE,PTEXT,PVALIE,PKIND,PSEP);
IF PSEP <> 2 THEN SYMTAX;
DISPLAYTEXT := MAGNO; EXPLENGTH:= 63
‘): TEXTMCDE 3= 15 LOOUTPUT TEXT IN CISPLAYTEXT
ACTIOMS 17 Y ACTICON 2= CONTIMNUE
RETUR(PRETUR,RFSULT,ACTICNS, TEXTMODE,DISPLAYTEXT); | RETURN !
CMMD(COMLINE,PRETUR): VUGET NEW INPUT 1
X = 0; '
WHILE X < EXPLENGTH DO REGIN
MOVE (COMLINE, X, RELPST,0,1);
IF BYTE HELPST = @ THEH BEGIN ! CHAMGE NULL-CHAKS TC SPACES !
REPEAT MOVE(SP,0,IDENT,X,1);
X = X + 1 UNTIL X = EYPLENGTH;
GLTO 20;
END;
MOVE (RELPST,0,INDENT, X, 1)
X s= X + 1;

=
.

30 END
OPEN(MTQ,3);
SETPOSITION(MTO,1,1):
PUTREC(MTO0,84):

. INSERT(64,MT0T,0)7 INSERT(A4,MTO0T,1);
MOVE (HTOT,0,MT0T,2,82): :
MTIOTLLIDENT = vOLL; :
MTOT L FIDENT 3= DWMNER;

MOVE (LABEL,O,MTOT,10,74):
QUTBLOCK(MTO0);

RTEXTY == 12: I TEXT1 := 0K I
RTEXT2 := 0; ! ND TEXTZ !
RSPEC = 07 I NO SPECIAL ACTICN |
RCCN 2= 03 ! DO NOT CONTINLE
RESULT = 0;

200
CLOSE(MTO,1);

300

I PACK TEXTS IN ACTIONS !
ACTIONS = RTEXT1 SHIFT 10 + RTEXTZ2 SHIFT 4 + RSPEC SHIFT 1 + RCON;
TEXTMORE 3= 03
‘ ReTUR(PRETUR,RFSULT,ACTICNS, TEXTMODE ,DISPLAYTEXT);
D 7

APPENDIX G: PROGRAM EXAMPLE DUMP

This program example shows how to use all the standard code
procedures except procedure allaccess (this is used in the same
way as procedure access), and it shows how to make a printout

by 'outtexi'.

The main program starts by getting the command line into 'comline'.
Then it initializes all the error-counters to 4. When a zone is
opened the corresponding error-counter is set to zero and when the

zone is closed, it is set to 4 again.

The parameters in 'comline' is received by calling the code procedure
'get parameter' (gtpm). First call gives the name of the printout file
and it is saved in 'Iname', which is used in the call of code proce-

dure 'connect file' (connec).

Most of the texts written with 'outtext' are constant texts specified

in the constant section of the program. They are terminated by
invisible null-characters and 'outtext' will therefore stop on these
null-characters. But if a constant string is moved to another string,
this null-character is lost and must be inserted as the last character.
When writing the constant line 'headline' the name from the command
line is inserted and to be sure that eventual null-characters in the
name will not stop 'outtext' the procedure 'outname' is called to

changed the null-characters to spaces.

When all of the batches in a job must be dumped, the job is opened
and the batch names are found one by one by calling the code pro-
cedure 'get next item' (getnex). If the zone has not been destroyed
between two calls, the parameter 'res' (corresponding to 'status') must
be 1 before the call (i.e. if the batch does not exist as a disc-file

or if the batch is used by another key station).

The procedure 'dumpbatch' opens the batch and checks the batch
head. Then it reads the data in the batch by calling the code proce-
dure 'access' (acces), and when a new block is read, the program

must wait some timer-periods by calling the code procedure 'delay’.

Before returning to the Supervisor by calling the code procedure
'return' (retur) the program must release all drivers and area
processes, but only if the error-counter is smaller than 4. This
will avoid a program loop if an error has occurred. Then the
parameter 'rtextl' (corresponding to 'action') is packed and the

call of 'return' with continue = 0 will return to the Supervisor.

.-

KEYWORDS:

.BSTRACT:

KCSL:
RCSL:
l

XX~NNYYYY:
XX=rihYYYY:

RCSL?: XX=reNYYYY
AUTHOR T NKN

EDITEC: YY,MV,CD

PRUGRAM RC36=-XXXXX,YY

DUMP - RELEASE 2,

MUSIL,CONVERSION,DPO,MTA,PRINTOUT,DATA ENTRY,LISTING

THIS PROGRAM HANDLES DATA BATCHES OR JOBS CF DATA RATCHES
FROM DISC WITH A MAXIMUM RECORDSIZE CF 79 EYTES wITH ASCII
COCE DATA,

OUTPUT ON A LABELLED TAPE WITH A BLUCKSIZE OF 720 BYTES,
IN ASCII CCDE, EACH BLOCK CONSISTING OF 9

RECORDS OF 80 BYTES In ASCII CODE,

THE LAST BYTE IS FILLED UP wITH THE CHARACTER NL,

TF A RECORD IS SMALLER THAN 79 BYTES IT IS FILLED UF

WITH SPACES,

IF A RECOKD IS GREATER THAN 79 BYTES IT IS CUT CFF AND

THFE TEXT 'RECORD <NO> T0O0O LONG' IS WRITTEN IN THFE PRINTOUT.
THE LABEL IS A STANDARD BCSS~LAHEL.

INVALIC RECORDS ARE NOT DUMPED,

NUMBER GF DUMPED RECORDS IS WRITTEN IN THE PRINTCUT.

THTS PROGRAM IS A DATA ENTRY SUPERVISUR PRCGRAM,

ASCII SOURCE TAPE
REL.BIN TAPE

! RC3o=XXXXX PAGE 01

TITLE: DUMP = RELEASE 2.
A3STRACT: THIS PRKOGRAM HANDLES DATA BATCHES OR JOBS OF DATA HATCHES
‘ FrROM DISC wTTH A MAXIMUM RECORDSIZE OF 79 EYTES wITH ASCIT

COLE DATA,

QUTPUT ON LARELLED TAPE WwWITH A BLCCKSIZE CF 720G EYTES,
IN ASCIT CORE, EACH BLOCK CONSISTING CF 9

RFCORDS CF 80 BYTES IN ASCII CODE.

IF A RECGRD IS SMALLER TrHAN 79 BYTES 1T 1S FILLED UP
WTITH SPACES.

IF A RECCKRD IS GREATER THAN 79 BYTES IT IS CUT NFF AND
THE TEXT 'RECORD <nND> TOC LONG' IS WRITTEN IN ThE FRINTOQUT.
THE LABEL IS STANDARED BOSS-LABEL.

INVALID FECORDS ARE nNOT DUWPED, .

NUMBER OF OUMPED RECORDS IS wRITTEN IN THE FPRINTOUT.
THIS PROGRAM TS A DATA ENTRY SUPERVISOR PRQGRAM,

SIZE: 7860 RYTES, INCLUDING ONE 512 RYTES INPUT GBUFFER,
ONE 720 BYTES OUTPUT BUFFEK AND ONE PRINTCUT=BUFFER,
DATE:
‘ALL: DUMP BATCH/JOB <HRATCHNAME>/<JOBNAME> RNEW/OLD
BATCH/JOB: INDICATES IF A BATCH CR A JOB IS T0 BE DUMPED.

<BATCHNAME>/<JOBNAME>: THE NAME OF THE RATCK CR THE JCB

THAT 1S TO BE DUMPED,

NEA/CLD: "NEW STARTS DUMPING AFTER THE BOSS-LABFEL.

CLD STARTS DUMPING AFTER THE LAST DATAELCCK,.
NEW/OLD CAN BEE FOLLOWED BY DUMPOK AND/OR KRELEASFE:
DUMPOK: THE BATCH/JOR HAS REEN DUMPED ONCE REFCKE,

ANC MUST BE DUMPED ONCE MORE.
RELEASE: THE BATCH/JOB MUST BE REKEYED AND NCT RE=-
KEYED YET,

CUTPUT MESSAGES:

NOT NAME MO BATCH WITH THE SPECIFIED NAME EXISTS,
NUT BATCH THE SPECIFIED BATCHNAME IS NOT A BATCH WITHIN THE SYSTEM.
SYNTAX SYNTAX ERROR IN THE CALL LINE,

MAGTAPE UNKMNOWN
THE MAGTAFE IS NOT INITIALIZED BY A VOL1=LAREL,
‘CF LIST SOME ERRORMESSAGES ARE WRITTEN IN THE PRINTCUT,
CNNFER THE LOG.
BATCH IN USE THE BATCHK IS USED #HY AMODTHER KEYSTATICN,

JoB In USE THE JOE 1S5 USED BY ANUTHER KEYSTATICHN,
LIBRARY IN USE THE JOBLIBRARY IS USED BY ANOTHER KEYSTATTON.
NOT JOB TH SPECIFIEDR NAME IS NOT A NAME OF A J08,

K PROGRAM EXECUTION IS TERMINATED SUCCESFULLY.

MAGTAPE ERROR <CCDE> CONSULT THF RC3600 LATA ENTRY USER'S
GUIDE, PART 2, APPENDIX 3,
CISC ERROR <CODE> CONSULT THE RC3600 DATA ENTRY USER'S
GUIDE, PART 2, APPENDIX 2,
PRILTQUT ERROR <CODE> CGMSULT THE RC3600 DATA ENTRY USER'S
GUICE, PART 2, SECTION 8.2.

SPECIAL REGUIREMENTS:

CMMD € RO0O1: RCSL: 43-RIN3G8).
GTPM (R0O003; RCSILL: 43=RI0654),
KFTUF (ROO0O4: RCSL: 43-RT10528).
ACCES (w0013: RCSL: 43=-RT0796).

‘ CONNEC (PO0B6: RCSL: 43=GL3275).
FITEM (FOO017: RCSL: 43=-RTI01034).
GETNEX (ROO01&: RCSLe 43-~RT0S31).
DFLAY (RO021: RCSL: 43=RI0N995).,

| 9 PECORD PER BLCCK !

CONST
NEw= YNEWTY,
- CiLb= ‘oLee,
‘ECLGT: 79, ICONSTANT RECORD LENGTH!
VoL 1= '<B86><T79><76><46>",
JaLIe= tJalig<o>t, ! NAME OF JOB LIBRARY |
FF= t<12>',
JOB= vJoee,
FBATCH= "BATCH',
HJCB= vJjag o o0,
TXNLSP= '<13><10> ',
TXSPACES= '<13><10> NC QOF DUMPED RECNKDS: ',
SPACES= ! L
EM= '<25>1, !' EMD MEDIUM CHARACTER
NULL= t<>t,

NOTBATCH= ': MOT BATCH<13><ti0>',

TXEX= L DOES NCT EXIST<i3><i0>',

STATERR= Y NOT DUMPED, STATE ERROR<13><10>!',
BUSED= ‘s NOT DUMPED, IN USE<i13><10>!',
NOREK= "RELEA',

‘MPUK: 'puMPQY,

HEADLINE= '<13><10>%x % *°% % x* * %x % * x DUMP 0OF
X kX kK kx kx kx k * x x %!V,
TEXTLINE= '<13><]0>BRATCHNAME v,

TEXTLINEL= '<{3><10>FQORMAT Yy

TXTQOTAL= '<13><10>THE TOTAL NUMBER OF DUMPED RECCRCS: ',
TXEND= 1<]13><10>% % % % *x % *x % % % % END QF DuMp

X X k k & %k *x k*k % % *x<{3><1(>',

TXLONG= '<13><10>RECORD NUMRER TCO LONG?,

TXINVAL= '<13><10>RECORD HNLUMBER INVALID, NCT DUMPELT',

L= '<10>7,

SP= '<32>;

VAR
COMLINE s
FRETUR:
FTEXT:
FVALUE
KIND:
SEP:
PERICDS:

ELGCK:
FIELD:
SUBNAME 3

EOF:

COM:
OBMAME :
WORD ¢

RES:

CTYPE:

LENGTH:

STATUS:

SUMze

REC:

CUMPNQ:

ITEMI:

ITEMZ2:

FLAG:

FELEASE:

NOFELP:

NQO s

RECNC:

BINNG:

NAME ¢

CECNO:

!?RLPT:
RRBAT:

ERRJAT:
FRRMTO:

RTEXT1:
FTEXT2:
KSFEC:
RCOM:
FESULT:

TEXTMODE :

LMAME 2

STRING(112)3

IMTEGER:

STRING(6) 3

INTEGER;
INTEGER;
INTEGER:;
INTEGER;

INTEGER;

STRING(RQ);
STRING(2);

INTEGER;
INTEGER:
INTEGER:
INTEGER:
INTEGER:
IMNTEGER:

INTEGFR;

STRING(S)
STRING(6)
INTEGER:
INTEGFER;
INTEGER;
INTEGER:
INTEGER:
INTEGER:

STRING(RO);

INTEGER:

STRING(R);
)i

STRING (&
INTEGER:
INTEGER;

STRING(2);

INTEGER:
INTEGER;
INTEGER;

STRING(A):
STRING(S);

INTEGER:;
INTEGER;
INTEGER;
INTEGER:

INTEGER:
INTEGER:
INTEGER:
INTEGER:
INTEGEK
INTEGERS

STRING (&)

S A hmw fam G fem N

N = g

R

S

S pem B fm e Y e b g

dew e B pem Bem Y Yo B e

G G e G dem Bem G

COMMAND LINE

PARAMETER ADORK CF ME3SAGE RUF
PARKAMETER TEXT

PARAMETEFR VAl UE

PARAMETER KIND

PARAMFTER SEPERATOR

RETURM PARAMETER

NU¥MBERS OF BLOCKS ON CLE TaPE
FIELD IN RECQKRD
SUBNANME OF FQORPMAT (OF KECCRO

MUMBER CF CHAR IN HUFFER
NUMBER COF CHAR In FIELD

RLUCK NUMRER IN BATCH

COMMAND JORB 0OR BRATCH

JUBNAME OR BATCHNAME

NB L O JUBNAME, EWQRID AND RES
MUST RE CONSECUTIVE
COMMANG TYPE IN CODE PRCC, FIT

EN

LENGTH OF ITEM IN JOB CR LIBRARY

BATCH STATUS

TUTAL DUMPED RECORDS

WORKING AREA FOR CURR.RECORD
NUMBER CF DUMPELC RECOQOFRDS

NUMBER OF CHAR IN REC
CURR, RECORD NUMBER
WORKING AREA

HATCH NAME |

WORKING LOCATION

NUMBER GF ERRCRS ON LFT
NUMBER QF ERRCRS ON BATCH
NUMBER CF ERRCRS ON JCR
NUMRBRER CF ERKCRS ON MT0

RETURN PARAMETER TEXTI
RETURN PARAMETER TEXTZ
RETURN PARAMETER SPECIAL
RETHRN PARAMETER CONTINUE
RETUKFN PARAMETER RESULT
RETURN PARAMETER MODE
NAME (OF PRINTCUT=FILE

S Bve B B

G Bma G

L T o

Som o B A e fem o

LPT:

EATCH:

710

ERINTFR FILF CESCRIPTION

FILE !
LeTe, I NAME COF PRINTE® ORIVER
82, I KIND = CHARACTER QRIEANTED
1, i RUFFERS !
512, ! SHARESIZE !
U; ! FORMAT = UNDEFINED
GIVEYP
LFTERRQOR, I LPT ERRMCR PROCECDURE
FARSEEERRERR DR RRES!
OF STRING(S512); ¢ RECORD STRUCTURE
FILE ! RATCH ERRQR DESCRIPTICHN
'RATCH?, ! NAME 0OF BATCH
60, I KIND = POSITICNABLE,
1, ! BUFFERS !
512, ! SHARESIZE !
Uz ! FORMAT = UNDEFINED
GIVEUP
BATERROR, ! BATCH ERROR PROCEDURE
2ttt
OF RECORD ! RECDFD STRUCTURE

JNAME: STRING(6) FROM 1:

FORM: STRING(&) FROM 7;

RNAME: STRING(3) FKOM 133

STAT: STRING(2) FROM 19

END S
FILE
TMTOY,
14, ! KIND = REPEATABLE,
! RLOCKED

1, ! RAUFFERS !
720, ! SHARFESIZE]
FB; ! FORMAT = FIXED BLOCKED
GIVEUP
MTERROR, ! MT FRROR PROCEDURE

2'11110111100111190

OF STRING(80); {

FECORD STRUCTURE

e

REFEATABLE

POSTTICNARLE,

[T —

—

o -

r—

o

FROCTLURE CHamD (VAR COMLINFE:D STRING(L12); ! GET CCHMANG !

VAR PRETUR: INTEGER)3
COCERQDY;
. PROCCECUKRE GTFM (VAR COMLINE:® STRING(112); ! GET PAKAMETER !
. VAR PTEXT: STRING(S) ;
VAR PVALUE: INTEGER H
VAR PKIND: INTEGER ;
VAR PSEFP: IMTEGER)7
CocEBGCDYS
PROCEDURE RETUR(VAR PRETUR: INTEGER ; I RETURN !
VAR RESULT: INTEGER ;
VAR RTEXTI: INTEGER ;
VAE TEXTMUDE: INTEGER H
VAR CUOMLINE: STRING(112)):
COCERCDY;
PROCECURE ACCES(FILE BATCH? ! GET FART QOF KECORD |
VAR FIELD: STRING(RD);
VAR Y: INTEGER ;
VAR STATUS ¢ INTERER ;
VAR SUBNAME: STRING(2)) ;
CORERCCY:
.RGCEDURE CONNEC(FILE LPT ; I CONNECT PRINTCUT 1}
VAR X: IMNTEGER 7
VAR LNAME: STRING(R))
COCEBQDY; ’
PROCEDURE FITEM(FILE BATCH ; ! FIND ITEM |
CUNST CTYPE:® INTEGER H
CONST LENGTHeINTEGER ;
VAP NAME: STRING(&)) ;
CORERODY;
FROCEDURE GETHEX(FTLE RBRATCHE ; I GET NEXT ITEM !
CONST LENGTH2INTEGER ;
VAR NAME 2 STRING(6R) H
VAR EWQORD: INTEGER ;
VAR RES: INTEGER) 7
CODERBCDY;
ROCEDURE DELLAY(VAR PERIQCDS: INTEGERS { DELAYS THE CALLING PROGRAM |
VAR PRETUR: INTEGER);
COCERQDY;

! PRCCEDURE REPUS REPOSITICHS THE

LAST HATCH, WHICH KHAS RFEwN
THREE GIVEUP=PROCEDURES:

RCCEDURE REPUS;
BEGIN .

SETPOSITION(MTO,2,BLOCK) ;

IF RTEXTH 42 THEN GOTO

DUMPNO 3= 03
QUTTEXT(LPT,NL)Y;
CUTTEXT(LPT, TXSPACES);
RINDECC(OUMPNQ,DECND)
CUTTEXTC(LPT,DECNO);

IF CoM JOR THEN BEGIN
BINDEC(SUHM,DECNG);
OUTTEXT(LPT,TXTOTAL):
DUTTEXT(LPT,DECND) S
CUTTEXT(LPT,NL)Y;

END;

QUTTEXT(LPT, TXEND)

490:

GOTC 260;
‘ND:

PRINTGUT=FILE |

PRCCEDURE LPTERROR:

REGIN
RTEXT1 3= 4d2;
RTEXTe = 73
RSPEC := 1;
RCON 3= 07
RESULT 1= LPT.Z0;
EKRLPT 3= ERRLPT + 1;
REPOS;
! U0 NOT CGPY EVENTUAL PRINTOUT TO

HARDCOPY DEVICE !
FLAG:= 07
GOTO 2003

"iMDP

!
.

IN A NAME IN "TTEMI"
THEN A CaLL OF

HOW

"OUTTEXT"

PRCCELURE QUTHAME;
BEGIN
Viz 037
WHILE V
BEGIN
MOVE(ITEML,V,CELNG,Q,
IF DECND
MAOVE(DECNGD,0,ITEM2,V,
V ¢tz V + 1;
tMND;
MOVE(NULL,0,ITEM2,5,1)3
EMD;

< 5 DN

I.FTERRUR,

MAGTAPE

FIMISHED AND IS

4003 !

QUITEXT(LPT,NL)?

DISPLAY

"ITEMLI",

1);

1);

BATERRCK AND MTEKROR !

JUST AFTER THE

CALLED FROM TFRE

-

IF THE PROCEDURE IS CALLED
FRCM PRCCEDURE LPTERROK |

! PROCEDURE LPTERROR IS THE GIVEUP=PROCENURE FOR THE

PRINTOUT !

ERRQOR !

QUTPUT CONTENTS QOF RESULT
DO NOT CONTINLE)

SCREEN CR

PRCCEDURE QUTMAME CHANGES THE EVENTUAL NULL=CHARACTERS
TO SPACES AND INSERTS A NULL=CHA=-
RACTER AS THE |AST CHARACTER AND PLACES THE RESULT IN

WILL WRITE 5 CHARACTERS NG
MANY CHARACTFRS THERE WERE IN

"ITEVE".
MATTER
!

MULL THEN MOVE(SP,0,DECNU,0,1);

e

BATCH STATUS HWORD IN
PRCCECURE CUMPBIT:
BEGIN
SETROSITICH(RATLR,0,0):;
GETREC(RATCH,NO);
STATUS := WORD RATCHT.STAT:
IF STATUS AND Rr4n =
MO := STATUS + 81'49Q:
CLOSE(BATCH, 1)
OPEN(RATCH,2):
SETPOSITION(BATCH,0,0)
BATCH.ZFIRST :=

RATCH.ZREM = 03
CUTRLOCK (BATCH) ;
END;
END 3

! PROCEDURE BATCHSTATE IS CALLED
FROM PROCEDURE BATERROR wWHEN STATUS=8'400006, !

DOES NOT EXIST, I.FE.

FPRCCEDURE RATCHSTATE:

REGIN

IF COm =
ATEXT1 1= 57
RTEXTE :=
RSPEC :=
RCON ¢
RESULT ¢
FLAG ¢

HEATCH THENM BEGIN

55:

END

IF BATCH,ZNAME
RTEXT! = us
GOTC 557
END;

CUTTEXT(LPT,BUSED);

RTEXT1 := 13;

RES := 27

GCTC 703

ENG;

BATCH,ZTCR;
MOVE (NORELP,2,BATCHT,18,2):

= JOBNAME THEN REGIN

THE BATCH HFEAD, |

0 THEN BEGIN

WHEN A BATCH 0OR

IEATCH!
t 1IN USE

! PPOCEDURFE CHECKSTAT CHECKS THE STATUS nF ThkE
BEFCRE DUMP, |
FROCELURE CHECKSTAT:
- BEGIN
‘ IF STATHUS AND 81174000 = &'100000 THEN GOTC 60;
IF STATUS = 0 THEN GOTC 63
GOTO 62:
€0:IF RELEASE = 3 THEN GOTCO 63;
IF RELEASE = 2 THEN GOTC 613 :
IF STATUS AND 8'3000 = 8'2000 THEN GOTU 62;
IF STATUS AKND 2 = 2 THEN
IF STATUS AND &'v10 <> 9 THEN GOTO 62;
6€1:IF RELEASE = | THEN GOTC 833
IF STATUS AND 8140 = B'40 THEN GOTO &2:
GOTGC 63;
62:CUTTEXT(LPT,STATERRK);
STATUS 1= 03
RTEXT1 = 13;
GOTO o64;
63:STATUS 1= 15
E4sEND;
PROCEDURE DUMPBIT SETS THE RIT "HAS GBEEN DUMPED®

3ATCH

IN

{CLOSED !
FEMTY !

INO FURTHER CHRECKI

1HUST PE REKFYED!

FAND RERKEYED !
IVALID REQUIRED!
PAND NCT INVALID!

TOUMPEDR

m

ISTATE ERROR!
IMAY MCT RE DUMPED
13

!
PTEXTL o= CF LTST

! STATUS CcK. !

THE

JCB FILE

.

I NO SPECIAL ACTION |
! 0O NOT CCONTINUE |

fJoBl

G-10

! FRCCEDURE BATERRQR IS

ROCECURE BATERROR;
EGIN :

RESULT

IF BATCH,LZO AND R'1000
AND R'040000 <> 0

IF PATCH,ZO
3EGIN

IF FLAG

RTEXTIL
RTEXT2
RSFEC
GOT0 1
EHD;
CUTTEXTC(LPT,TXFX);
RTEXT1e= 13;
kKES:= 23
GOTO 70;

END;
RTEXTI1
RTEXTR
REPOS;
IF BATCH,ZNAME
IF SATCH.,ZNAME
GQTO 2003
ENMD;

.
14

10

1 i

1
7

.
.
.
e

e N

| PROCEDURE MTERROR IS

PROCEDURE MTEKROR;
BEGIN

<>JOBNANME THEN
JOBNAME THEN

T

THE GIVEUP=PROCEDURE FOR TEE

<> 0 THEN
THEN

BEGIN

ERRBAT
ERRJA

=
=

HE

IF MT0,Z0 AND 8'10 <> O THEN GOTO 510
IF MT0,70 AND 87400 = 0 THEN BEGRIN
RKTEXT1 = 83
RTEXT2 := 73;
RSPEC = 17
RCON iz 05
RESULT ¢= MT0,707}
® ERRMTO := ERRMTO + 1;

! TF nNOISE RECORE,
REPOSITION MAGTAFE !

! THENM

BLOCK LENGTH,

IF MT0,Z0 AND 8'10360 <> 0 THEN
GOTO 200;
END;
IF MT0.Z0 AND 8'400 <> 0 THEN ECF := 1;
5102
EMD;

! PRCOCELDURE
HEADED [N

FROCECURE ERRHEADS:

BEGIN
RTEXT1 := 8;
RTEXT? := 18;
RSPEC := 07
| RCON 3= 07
’ RESULT := 03
GCTD 2003

END;

ERRKHEAD IS CALLED IF THE
THE RIGHT WAY

!

MAGTAPE !
UNKNOwWN
NO SPECIAL
PO NOT CONTINUE

N fum b g

BATCHSTATE; !

§
!
!

IRC36=XXXXX PAGE GR !

DIsC,. !

IN LSE
DCES NOT FEXIST

FILE
! FILE

NOT NaME

DIsSC !
ERROR {

REPOSITION MAGTAPE 1

ERRBAT+1;
ERRJAT+1;

DATA CHANNEL,

-

ACTION

GIVEUP-PROCEDURE FOR THE MAGTAPE !

! POSITICN ERRCR !
I IF NGT END OF FILE 1
MAGTAPE |
ERRUR !
CUTPUT CONTENTS OF RESULT
DO NOT CONTINUE !

PARITY, EOT |

REF0S:

END GF FILE !

MAGTAPE IS NOT

!
!

-

G- 11

-

I}

! PRUOCECURE HEADER CHECKS THAT THE MAGTAPE IS HEADED [N
T.’E’. FI(JHT WAY. 1

FRCOCEDLURE HEADER:

T BEGIN

@ crruaite,s;
ERRMTQ 1= 0
Y 1= 84;
SETPOSITIUON(MTO,1, 1)
G&TﬁFC(‘TO Y);
IF MTQt <> yOLy THEN EREREAD;
INdLOCK(MFO),
IF EQF <> | THEN ERRHEAD:
IF ITEM?2 = OLD THEN GOTO 1000;
EQF 1= 03
INBLOCK(NTO0);
IF ECF <> 1 THEN ERRHEAD;
CLOSE(MT0,0);
QPEN(MTO0,3);
SETPOSITION(MTO,2,1);
PLGCK = 03

1000: END;

PROCEDURE SYNTAX IS CALLED IF THE CALL CF THE
PRUGRAM HAS NQOT THE RIGHT PARAMETERS. !

FRCCECURE SYMTAX: ! PARAMETER ERRCR !
FEGIN ’
RTEXTL 1= 4; I SYNTAX !
RTEXT2 1= 0; ! NO TEXTZ !
KSPEC 1= 0; ! MO SPECIAL ACTICN
RCON t= 0; ! DO NOT CONMTINLE 1
RESULT := 0;
GOGT0 300;

END;

| PRUGCECURE NOTMAME I8 CALLED WhEN A BATCH OR A JOB
TO BE DUMPED IS FOUND NQOT TOQ BE A BATCH 0F A JOK, !

FROCEDURE NOTMAME;
BEEGIN
IF COM = JOB TREN IF BATCH,ZNAME = NAME THEN REGIN
‘ OQUTTEXT(LPT,NOTBATCH);
CLOSE(RATCH,1); ERRBAT := 4;

GOT0 70;

END

RTEXTL 3= 24; I NOT !

IF CO# = JOB THEN RTEXT2 := 45; 1Jos i

IF COM = HBATCH THEN RTEXT1 1= S; ! BATCH I

RSPEC 1= 0; ! ~OQ SPECIAL ACTICN)
FCON = 03 § D0 NOT CONTINLE
KRESULT := 0;

GATO 2003

END;

G -12

I RC36=XXXXX PAGF 10 |
! PRUCECURE WRITERFC WRITES CNE RECGRD QN THE MAGTAPE, |

FROCECURE WRITERFC;
EGIN
IF NG <> 0 THEN-
REGIN :
IF WO > RECLGT THEN REGIN
BINDEC(RECND,DECNQ) ;
HOVE (DECNC, 0, TXLONG,16,5)
UUTTEXTCLFT, TXLONG)
RTEXTY = 13;
Enbs
WHILE NOQ < RECLGT RO BREGIM
MOVE (SP,0,KEC,NO,1);
HO 1= NO + 1
END;
DUMPNG 1= DUMPNG + 13
PUTREC(MTO,RECLGT+1):
MOVE (REC,0,MT0%,0,RECLGT);
IHSERT(10,MT01,79) 5
EMD;
NO = 03

@

G -13

! PROCEGURE DUNPRATCH IS8 ThE PROCEDURE 10 READ THROUGH A
BATCH AND DUMP ALL THE UATA IN THE HATCH, ! ’

FROCEZLURE DUMPHBATCH:
BEGIN
@ CUTTEXTCLRT.TEXTUINE): OUTTEXT(LPT,SPACES);
ITEML = NAME; CUTNAME; OUTTEXTCLPT,ITEMZ);
BATCH,ZNAME = NAME;

OPEN(RATCH,1): ERRBAT := 03 ! OPEN [ISC FOR READING !
DELOCK = 03 RECNO 1= 1; NO := 03 DUMPND t= 03
SETPCSITIONCRATCH,0,0);

GETREC(PATCH,X) ; ! GET BATCHHEAD !

IF BATCH,ZHAME <> BATCHT.BNAME THFN NOTNAME; ! CHECK BATCH HEAD !
IF BATCHT JINAME <> JUBNAME THEN NOTHAME:
STATUS := WOURD BATCHT.STAT;
CHECKSTAT; v CHECK STATUS CF RATCw
IF STATUS = 0 THEN GCTO 303 ! STATE ERRUR !
OUTTEXT(LPT,TEXTLINEL)
GUTTEXT(LPT,SPACES);
ITEMY 2= RATCH?T,FORM; CUTNAME; QUTTEXT(LPT,ITEMR);
SETPOSITINN(BATCH,0,1); :
DELGCK = 17 :
S: | IF BATCH.ZBLOCK HAS BEEN CHANGED THEN LET THE
PROGRAM «AIT SOME TIMER=PERIODS !
. IF BATCH,Z5LOCK <> DBLOCK THEN DELAY(PERICDS,PRETUR);
DELOCK := BATCH,ZBLOCK;
ACCES(RATCH,FIELD,Y,STATUS,SUBNAME) } ! GET PART OF BATCK |
IF Y >= 0 THEN BEGIN ! A FIELD IS READ, MOVE FIELD TO REC !
Vezy;
IF M3 + V > 79 THEN BEGIN
Viz79=-N03;
IF V < 0 THEN Vi=z0:
END s
IF NG + Y <= RECLGT THEN MOVE(FIELD,0n,REC,NO,V);
Z 1= 79~N0;
IF MC < RECLGT THEN IF MO + Y > RECLGT THEN MOVE(FIELD,Q,RFC,NC,Z);
NQ = NO + Y3
GGTI 10
END;
IF Y = =] THEN BEGIN
IF STATUS <> O THEN REGIN

LX)

A RECCRD HEAD IS READ !}
IF RECURD STATUS ERRUOR THEN DO
NOT DUMP THE RECORD, CNLY READ I

BINDEC (RECNO,DECNG);
‘ MOVE (DECNO, 0, TXINVAL,16,5);
QUTTEXTCLFT, TXINVAL);
REPEAT ACCES(BATCH,FIELD,Y,STATUS,SUBNAME)
UNTIL Y = =2;
RECMD = RECNG + 17
END;
GOTO 103
END;
IF Y = =2 THEN REGIN
WRITERECS
RECHEC = RECND + 13
GOTO 103
END:
IF Y = =3 THEN GUTC 203 ! A BATCH END IS READ !
102 .
GOTC 55

A RECORD ENR IS READ !
WRITE RECORD ON MAGTAFE |}

Iy —

G-14

WHILE MTO0.ZREM <> 0 DC BEGIN 1 FILL UP THE LAST BLOCK CN

THE MAGTAPE

PUTREC(MTC,80);
INSERT(G,MT0T,0);
INSERT(O,MTOT, 1)
MOVE(MTOt»0,MT01,2,78);
END;

OUTBLOCK(MTO);
CUTTEXT(LPT, TXNLSP);
OUTTEXT(LPT,TXSPACES);

BINDEC(DUMPMNQ,DECNC); ! WRITE IN PRINTOUT

DUMPEC RECQORDS !
OQUTTEXT(LPT,DECNOY? QUTTEXT(LPT,NL);

dLOCK == MTO0,ZBLOCK:

QUTTEXTCLPT,NL);

DUMPRIT; I SET THE RIT
I BATCH STATUS wWQORD
30:
CLCSE(RATCH, 1Y ERRBAT = 4;
EMD

| PRCCEDURE CHECKKIND CHECKS THAT THE CALL LINE PARAMETER
I.E. FOR EXAMPLE A JCB MUST

BATCH/JCB" AND THE NAME CORRESPONDS,

STAND IN JOB LIBRARY(JBLIB), !

FRCCEDURE CHECKKIND?
BEGIN

IF COM = HBATCH THEN
BEGIN
PBATCHLZNAME 1z NAME;
QPEN(BATCH,1): ERRBAT := 07

SETPOSITION(BATCH,0,0); GETREC(BATCH,X):
IF BATCH.ZNAME <> BATCHT,BNAME THEN NOTNAME;

MOVE(BATCHT,0,J0BNAME, 0,6)
CLOSE(RATCH,1); ERRBAT 3= 4;
END;
BATCH.ZNAME = JBLIR;
OPEN(BATCH,1): ERKBAT = 0;
SETPCSITION(BATCH,0,0);
! LENGTH OF JOB IN JBLIB = 3 WORDS,
COMMAND TYPE := SEARCH |
LENGTH := 37 CTYPE := 0
FITEM(BATCH,CTYPE,LENGTH,JOBNAME);
IF RES = 1 THEN NOTNAME;
CLCSE(RBATCH,1); ERRBAT 1= 4;

END;

g

FIND JOB IN JBLIB
IF NOT FOUND THEN

wITH NULLS

!

.

NUMRER CF

"HAS BEEN DUMPEDRM

ERRCR !

G-15

-

EEGIN

4Q

we

50

I DUMP MAIN PROGRAM START 1

GET COMMAND !
Tizu;

GET PARAM,=PRINTCUT FLLE NAME]
SAVE PRINTOUT FILE NAME |

CMMD (COMLINE,FRETURY;

ERRJAT:=/A; ERRMT0:=d; ERRBAT:iz4; ERRL
GTPM(COMLINE,PTEXT,PVALUE,PKIND,PSEP);
LNAME:= PTEXT;

FLAG:= 0; RELEASE:= 0;
GTPM(COFLINE,PTEXT,PVALUE,PKIND,PSEP) ;

ton 2 T ore

GET FARAMETER = MUST BE
JOP / BATCH
ELSE SYNTAX

[Ty
S b e

IF PKIMD <> { THEN SYNTAX:
IF PSEP = 2 THEN SYNTAX:
COM = PTEXT; :
IF COM <> RBATCH THEN IF COM <> JOR THEN SYNTAX;
GTPM(CCMLINE,PTEXT,FVALUE,PKIND,PSEP); | GET PARAMETER = MUST BF

! JC3=- CR BRATCHNAME

R A

IF PKIND <> 1 THEN SYNTAX;
IF CGM = HBATCH THEN NAME := PTEXT;
IF COM = JOB THEN JOBNAME 3= PTEXTS
BATCH,ZNAME 1= PTEXT;
OPEN(BATCH,1); ERRBAT 1= 0
CLOSE(BATCH,1); ERRBAT : ;
GTPM(COMLINE,PTEXT,PVALUE,PKINC,PSEP); | GET PARAMETER OLD/NEK
IF PKIND <> 1 THEN SYNTAX;
ITEM2 = PTEXT:
GTPM(COMLINE,PTEXT,FVALUE,PKIND,PSEP)? | GET PARAMETER DUMPOK OF |
IF PKINC = 2 THEN GQTO 40; ! RELEASE OR NOTHING
IF PTEXT <> DMPPK THEN IF PTEXT <> NOREK THEN SYNTAX;F
IF PTEXT = DMPOK THEN RELEASE := 1;
IF PTEXT = NOREK THEN RELEASE 1= 2;
GTPM(COMLINE,PTEXT,PVALUE,PKIND,PSEP); | GET PARAMETER DUNPCK OR
IF PKIND = 2 THEN GOTO 407 ! RELEASE OR NOTHING !
IF PKIND <> 1 THEN SYNTAX;
IF PTEXT <> DMPQOK THEN IF PTEXT <> NOREK THEN SYNTAX;
IF PTEXT = DMPOK THEN RELFASE := RELEASE + 1;
IF PTEXT = NOREK THEN RELEASE := RELEASE + 27
IF RELEASE > 3 THEN SYNTAX; ! IF RELEASE TWICE THEN SYNTAX !
! IF DUMPCK TWICE THEN SYNTAX !
IF RELEASE = 2 THEN IF PTEXT = DMPOK THEN SYNTAX;

IF PSEP <> 2 THEN SYNTAX;
CHECKKIND: ! CHECK THAY JCB IS A JCB
' OR BATCH IS A BATCH !

T T

! CHECK IF NAME EXISTS !

.

Fow.

RTEXTI := 07

IF ITEM2 <> NEW THEN IF TTEMZ2 <> 0OLD THEN SYNTAX;

HEADER; ! CHECK LABEL CN MAGTAPE |

IF ITEM2 = NEW THEN GOTC 503

CLCSE(MTO0,0);

OPEN(MT0,3)3 :

SETPOSITION(MTO0,2,32000); ! THIS SETPOSITION WILL CAUSES IN
A CALL OF PRCCEDURF MTERROR.
wWITH PCSITION ERRCR. MTO0,.ZRBLGCK
wILL CONTAIN NUMBER OF BLOCKS
ON THE MAGTAPE + 1 !

B8LOCK := MTO0,ZBLGCK?

X 2= 3;
CONNEC(LPT,X,LNAME); ERRLPT
QUTTEXT(LPT,FF);

FLAG = 15

.
t
D
~a
a—

OPEN FOR PRINTOUT FILE !
MAKE A TOP OF FCRM |
REMEMBER THAT SCMETHING HAS
REEN WRITTEN IN PRINTOUT
IF COM = JUB THEN BEGIN MCOVE(HJOB,0,HEADLINE,33,5);

MOVE (JOBNAME, 0, ITEML1,0,5);

END;
HBATCH THEN BEGIN MOVE(HBATCH,0,HEADLINE,33,5);

MOVE (NAME, 0, ITEM1,0,5);

END;

Y

IF ccw

G -16

I RC36=XXXXX PAGF 14l

JUTNAME ! CHaNGE NULLS TQ sepaCEs |
MCVE(ITEM2,0,HEADLINE,3G,5);
QUTTEXT(LPT,HEACLINE); ! WRITE HEADLINE |
IF COM = HRATCH THEN ! ONE BATCH TO FF DUMPED !
BEGIN
DUMFEATCH:
GOTC 100;
END; '
BATCHLZNAME := JURNAME; '
OPEN(BATCH,1); ERRBAT == 0; ! OPEN FOR JOUB T0 DUMP !
SETPCSITICN(RATCH,0,0): ,
LENGTH = 43 I LENGTH CF BATCHNAME4+STATUS=4 !

RES = Q; Sum s= 0;
WHILE RES <> 1 DO REGIN
! RES IS SET TO 2 WHEN A NAME FOUND IN THE JOE BUT DOFS
NOT EXIST AS A DISC=FILE OR THE BATCH IS USED
BY ANOTHER KEYSTATICN, THEN THE DISC~ZONE IS NOT DESTROYED
AND THIS MUST BE TOLD TG PROCEDURE GETNEX I
IF RES = 2 THEN RES := 13 ’
BATCH,ZNAME 3= JGRNAME; ! MAKES SURE THAT ZNAME IS JCGRNAME
GETNEX (BATCH,LENGTH,NAME,EWORD,RESY: ! GET NEXT BATCFNAME I
IF RES = 1 THEN GOTO 70; ! IF END CF JOB THEN STOP 1
DUMPBATCH;
q SUM $= SUM + DUMPNG:
0

.
.

END;

CLOSE(BATCH,1)7 ERRJAT := 4;
BINDEC(SUM,DECNG);)
QUTTEXT(LPT,TXTCTAL);
QUTTEXTC(LPT,DECND);
OUTTEXTC(LPT,NL):

CLGSE JoB FILE !
WRITE NO OF DUMPED RECCRDS !

e A

100:
OUTTEXTC(LPT,TXEND);
! NORMALLY RETURN

RSPEC := 03 NO SPECTAL ACTICN !
]

]
IF RTEXTL = 0 THEN RTEXT1 1= 123 P OK !
RTEXT2 2= 03 ! NO TEXTZ !
RCON :t= 07 ! DO NOT CONTINLE !
RESULT := 07
2002

| RELEASE DRIVER AND AREA PROCESSES !
WHILE ERRMTO < 4 DO |
BEGIN CLOSE(MTO0,1)3 ERRMTO = 4 END;
AHILE ERRBAT < 4 DO
BEGIN CLOSE(RATCH,1); ERRRAT 2= 4 END;
WHILE ERRJAT < 4 DO ,
BEGIN BATCH,ZNAME = JOENAME; CLOSE(RATCH,1); ERRJAT := 43 END:
! IF SOMETHING HAS HEEN wKITTEN IN THE PKRINTOUT THEN
WRITE AN END MEDIUM CHARACTER !
WHILE ERRLPT < 4 DG BEGIN IF FLAG = 1 THEN CUTTEXT(LPT,ENM);
CLCSE(LPT,1): ERRLPTY := 4 END;
300:
| PACK PARAMETER RTEXT1 FCR RETURN !
RTEXT1 := RTEXT1 SHIFT 10 + RTEXT2 SHIFT 4
+ RSPEC SKIFT 1 + PCON ;
! IF PRINTOUT IS TG SE CUTPUT ON HARDCCPY DEVICE OR DISFLAY SCREEN
THEN SET THE WPRINTOUT=BIT"(RIT 13) IN RTEXT! |
@ :F FLic = 1 THEN RTEXTL 1= RTEXT1 + 2 SHIFT 1;
TEXTMODE 1= 0; |
RETUR(PRETUR,RESULT,RTEXT1, TEXTMODE,CONMLINE); I RETURN !
END;

G-17

APPENDIX H: REFERENCES

1. MUSIL Programming Guide, RCSL: 42-i 0344

2, Data Entry, Release 2, Users Guide, part 2
RCSL: 43-GL 4796

APPENDIX |
INDEX

The references are pointing out page numbers.

GCCESS .t vttt eetannnsennneeennnesoanennnnnnennnns 4, 12, 13, 14, G-1
oLt T o T 9, 25, F-1, G-1
adding new supervisor programs (see PUT)

allac (see allaccess)

oL oo =T 4, 14, 15, G-1
apostrophe. . o i e e e 7
ASCII code. et iniiiiiiiiii i iiiiininneennns 24
batch. ot e e 3
- creation (see create batch)
= end marke .. | 3, 14, C-1, C-5
mohead. s e e e 3, 27, C-1
R oo T 1T 27, C-1
I 1 (= 1€ 27, B-1, C-1, C-2
T ostructure. L i e C-1

block . et e e 15, 23

bufaddr. ... 21

catalog entry. it 15

check. ot e e ?, 10, 25, D-1, D-2

close devices/processes. ... voveueiiineeiinnnnnn. 25, 26, F-1

cmmd (see get command)

code procedure, standard..........viiueiineinnn.. 5

coding of supervisor programs...........oeeeuennn. 4

COMDINE . ittt tte e innnenneeeennnnneneesnans 5,7, 29, G-1

command line....uueniinniniiiiiiiiiiiiinnnnn, 4 '
- line, empty....oiiiiniiiiiiinnnnnn. 6, 8

connec (see connectfile)

Al -1

connectfile. et et e e, 4, 6, 15, 24, G-1

= o 9, 10, 11, 25, 29, D-1
continue execution (see cont)

control characters....uuviiiieineneeneennennnnnnn. 25

core tables (see table(s))

create batch...................... AT 27
create entry. ... i i i i it i i e i 15
data records. .ottt e e 3, C-3
decimal numbers.......... ... i i, 7
delay. .o e 21, G-1
delayed.. ..ot e, 21

delete in library (see library, delete)

- item (see library, delete)

deVice NAME. . .ttt tennnnniii e rennnneannnnns 15, 23
differences, allaccess and access.v.unneeeeennnn... 14
T T - 2

= fable i, 2

= = hbrary..i. i e 2, 18
DTLIB (see disc table library)

D o N 29
3 28
empty command line..........coiiiiiiiiinienan.. 6, 8
end medium. ..ottt i e e, 24, 25
IOl COUNTer . ittt ittt iienennnnenenenennnnnns 26, G-1
erTOr ProCedUNeS . . vttt treeennnnnnnnnnnennnnnns 26
X T AWOrd. ot ittt i it e e et e, 17, 18, 19, 20

flelde e e e 13, 15, 28

= end Mmark. ..o e e e 28, C-4

IR 10 10 S 13, 14, 28, C-4
= ostructure. oL i e, C-4

file . e e 15, 23
L= T o T 15

find item. . oune i e 4, 16, A-1

Al -2

fitem (see find item)

1o 11T 2

= lbrary. o 2, 18

- ‘name....... e teteaeeraanaen e 27, C-1
get command. .. .iiiiiiiniiiiie it e 4, 5, 21, 29, F-1
m NEW IMPUL . et ittt ittt eerneennerannnaneans 8, 10, D-1
getnex (see get next item)
get Next IteMueeee e enieieeeeeenneeeeoeseneneenens 4, 19, G-:I

B oo e 11 T=Y T 4, 6, 16, 24, 29,

F-1, G-1

GIVE UP MaSK .. ittt ittt ieineneeenennnnennnns 15, 23

- - procedure (see error procedure)

gtpm (see get parameter)

hard copy device. . .uiuiiiiiinieeneniiiieeinnnnennnn 4, 6, 10, 15, 22,
23, 24, 25, D-2

L o . 23

L 23

L SRR 23

1 23

I 23

HO P e e et et 23

I o 23

I ettt 23

insert in library (see library, insert)
- item (see library, insert)
install new programs (see PUT)
integer parameter.......vieeiineeeneenennneneennnnns 6, 8
= P 6, 7, 24

£ TP e 2, 3, 19

= lbrary... i i e e e i 2, 3, 18, 27
m MOME . st tts i eseensennsesnsanessasasnssnnacnnnas 27, C-1

R P 18

SR £ ¥ o] {4 B-1

Al -3

Kind. e 7, 8, 15, 23

Length . ot i i e e et 16, 17, 18, 19
- ,oprintout line. ..ot 24
1< 2, 17, 19
- sdeleter i e et 4, 16
P 14 -1=" o RPN 4, 16
= dookup. .. e 4
SR P - T« 18, 19
R 1o 1 W 4, 16
- ostructure . i A-1
S 1 T L 29
e O 1 = 29

lookup in library (see library, lookup)

LTS 5, 21
message address. ueeeerieinieterieneenenennas 5
MO ottt tiiiteiiettstneeeeonneeennnnennnnnaenns 15, 23
MUSIL compiler....vvuuiiiininniinneiiinnnnnnnnn, 4
~ L PrOgraMMING. e eeeeeeeeeessenoeoasoncennnns 4
DM . vt vttt e teannneeesnonaaseseanonssasnanensas 15, 16, 17, 18, 19,
20, A-1
- . definition............ ettt reerteteene e A-1
NANNY Lttt i ittt i e e eeenannns . 21
new input (see get new input)
T 12T 25
- 'supervisor program (see PUT)
NO feXt. e it ittt it itiestersnannaans 9, D-1
- transfer field. ittt iiiiinrnn. 12, 14, 28
null character.ooiiiiiiiiiiiiiiiiiiiiiinnnn, 6, 7, 11, 14, 18,
24, D-2
MUMDDEr . L ittt ittt ieieeenenenrnnneeenneennnnnans 13, 14
= sdecimal...i i i e i e 7
el < T o] < 7, 9

Al -4

octal number......oov i

open printout (see connect file)

operator communication............ ce
optype....cviviuias, Ceceitetiieneans
oUtMOde. ottt i e i e e,

output device for printout (see printout)

OUIPUIrES sttt iieiieeeiinnnnnnnnn

Lo 10 = S

last (see termination)

- ; CONVErsioN.....veeeueeennnn.
- file name.......... .
- line, length.................
print, open (see connect file)
program example...... e iteaaaae

- termination. .

read batch end mark............. cenen

- field.......... e eeaeaea e

- in job (see job, read)
- = library (see library, read)

- record end......... Ceeteerenaens

integer.......couu....

termination.......co0vuu...

terminator..... checeannaenn

ooooooooo

@0 et e s e s s 00 e

status. ittt it it

oooooooooooo

ooooooooooooo

ooooooooooooo

LR R A e e

ooooooooooooo

ooooooooooooo

ooooooooooooo

oooooooooooo

7,9

29
16, 17
15, 16

9, 11, 25, D-1, D-2
24, 25, G-1

4
6, 8

o 000 00 O
(e0]

, 8
23
6, 9, 10, 12, 15, 16,
22, 24, 25, D-1, D-2
24
7
24

F-1, G-1
25
4, 30

14
4, 12, 13
13

14
13
13

AL -5

read subformat name........oiiui i

receipt (see return)

receive command line (see get command)

Yol

- , data (see data records)

= end mark. . e e e

- , register (see register records)

- SPAtUS . s e e e et e r e

m SHUCIUI® . ettt e

remove process...... P eeeeeeetiatacectattenann
replace current supervisor program...............

=T V]

search in library (see library, search)

- item (see library, search)

semaphore function.......ovvviiiinnnnnnnnn....
- 1= T T
- sosignal o
- P T
L

signal semaphore (see semaphore, signal)

skip register records (see access)

SloW doWn. it

SPLIB (see subprogram library)

3, C-3

14, 28, C-3, C-4,
C-5
3, 13, 27, 28, C-3,

-4

3, 13, 14, 27, C-3
C-3

C-5

3, 12, 28, C-4

25

4

8

11, 12, D-1, D-2
9, 11, 17, 18, D-1,
D-2

4, 5, 8,9, 21, 25,
29, E-1, F-1, G-2

9, 10
10

10, D-1
10, D-1
7

4, 21
6, 8

9

Al-56

.ﬁ

spool file. et it i e e e 23, 25, D-2
SPOOL NEWDEVICE. ..ttt iiiiieeeennnn. . 23
standard code procedures..........iiiiiiiiiiannnn. 5

- text...... e eereieeeaas 9, 10

- - NUMber. .. i it e E-1

- = outpuUt. L e i i e D-1
SHAtUS . e i i i i 13, 14, 15, 19, 20,

G-1

e == FS 3

subformat name......... T 27, 28, C-1, C-3, C-4,
C-5

subname......... PP PR < JUR /O 1
SUbPrOgram. . vt e e e 2

- dibrary. oo e e 2, 18
SYNTAX Check . i et iii i iieiiit i inereneeneennnnnns 5, 10, 29
SUPERVISOR. .ttt iee e 21
supervisor display......viiiiiiiiiiiiiiiiiiine... 4, 6, 10
SUPERVISOR SLOW . .t iiiiiiiiii i iiieceenannn 21
table. o e e 2

= library.. oo e 2, 18
TBLIB (see table library)
termination. ..o i i i i i i 6, 8 11, D-1

- pobatch. e 3

- s PTOgIOM. .ttt ettt ianennnenneennnenns 26
terminator, parameter..........viiiiiiiiiniaeaannn. 6, 8
LS 9, 10, 11, D-1, D-2
1= 1o e L= S 9, 11, 26, D-1, D-2
fext parameter. v iinne it i iieeieesocancanncenan 6, 8
timer period.....iiiiiiiiiiiiiiiiii ittt 21
Ctransfer field. .o i e, 13
L 23
2 9, D-1, D-2
R R 9, 10, D-1, D-2
type, parameter. .. uiiiieieiinnieiiiiieiiieirenaas 6 |

Al -7

value. i e e e 6, 7, 24

wait semaphore (see semaphore, wait)

-, timer periods.iiiiii it 21
work file. e iin it i it i i it 15, 24, 25
Z i ieeet ettt te et ettt ettaaerenansanons 13, 15, 16, 17, 19

Al -8

