e

o
Title:
 Introduction to DOMAC Assembler, ‘
Y r b e R v
A —
 § HEGNECENTRALEN RCSL No: 43-GL 5174
Edition: October 1977 ,f
RC SYSTEM LIBRARY: FALKONERALLE 1 DK-2000 COPENBAGHN F AUthor: Hﬂrﬂld Vi'lemoos . "

Keywor-ds: Beginnen guide, DOMUS, DWAC, RC3600, Oﬁemler-

Abstract: This manual contains a short introduction to the RC3800 assembler

language, a description of how to invoke the DOMAC assembler,

and a list of possible error messages from the DOMAC assembler.

sers ot chis manuot ore cautionad that the specifications

Copyright © A/S Regnecent—ie or ?Tmco horen
Printed by A/S Regr: onerg s -

e . R e wns

CONTENTS | PAGE

'
) = Te PREFACE tieeiieiii ittt e, 1
2, ASSEMBLER LANGUAGEiviveeeeennnnnnnnn, 2
2.1 Assembly Process (General) v.....oovennnnnnn. .. 2
2.2 Addressing and Relocatabilityovuvunvnnnn... 6
2.3 Machine Instructionsueeeeueuneunnnnnnnnnnn. ?
2.4 Assembler Directivesoveuneneeenennnnn.n.. 12
2.5 Example ...ttt 18
3. ASSEMBLY PROCESS . .vviiiiiriennennnnn., ceeeaen 20
3.1 Prerequisitescoviiiiiiiiiiniiriiiannnnn.. 20
3.2 Calling the DOMAC Assembler v....eovenenun.... 20
3.3 DOMAC Functional Description ceveniectans . 23
4, DOMAC ERROR MESSAGESvieieereeeennnnnnn. 25
4.1 Syntax Errors ...uieive i 25
4.2 I/O Error Messagesovviuineenunnnn... cee 30
5. PREDEFINED SYMBOLS ...ttt ieeennnnn 31
5.1 Permanent Symbols feeteeeeiiet e, 31
5.2 Semi~permanent Symbols ceecenas 32
References :
P (n Programmer's Reference Manual to RC3603 CPU

(m DOMUS, User's Guide, Part I.
(1) DOMAC, Programmer's Reference Manual
(IV) MUSIL Codeprocedures

Pare

PREFACE

This manual is intended for persons who wants to get a basic
knowledge of the RC3600 assembler language. After studying this
manual carefully it should be possible for the reader to create
minor assembler programs such as MUS|L codeprocedures or the like.
This manual is not intended as a reference manual and all advanced
facilities such as macro facilities, label generation, listing control
etc. has been omitted. A description of these facilities can be

found in the manual : DOMAC, Programmers Reference Manual.

Before studying this manual the reader should be familiar with :
Programmer’s Reference Manual to RC3403 CPU, and
DOMUS, User's Guide, Part I.

Page 2

S 2. ASSEMBLER LANGUAGE

2.1 Assembly Process (General)

An RC3600 computer executes machine instructions which are numbers
between 0 - 219 (65536). To make a program means to create a
sequence of numbers which is convenient for a computer but not for

a human being who thinks in words. In order to ease the task of creat-
ing machine-level programs it is convenient to assign a symbolic name
to each computer instruction, create a sequence of these symbolic names
and then let the computer itself translate this sequence of words to a

sequence of numbers,

This translation process is called an assembly and the program that makes
the computer to do this is called an assembler. Finally an assembler
language is a language consisting of these symbolic names for machine

instructions.

When reading the following section, please consult the example in

section 2.5,

programmer assembler DOMAC machine
—> | program [> assembler [instructions
\ The machine instruction 'load accumulator one with the contents of

memory location 3' would be:

001T0100000000011 in binary or
10243 in decimal.

As input to the DOMAC assembler this would be :

IDA 1 3

In order to relieve the programmer from thinking of memory address-
es as numbers, the DOMAC assembler facilitates symbolic addressing.
This means that a name is assigned to a memory location and this

location is then referenced by name rather than by its address.

TEMP: 7 ; this might be location 3
; containing the value 7,
LDA | TEMP ; this would then be the

; same instruction as above.

Whenever a semicolon is found on a line, the rest of this line is

ignored by the assembler and may be used as comments.

It is convenient to think of an assembler program as a number of
lines separated by carrage return or form feed. Each line consists of
a maximum of 4 fields of which some may be optional depending on

the context :
<label-field> <operation-field> <operator-field> <comments>

label-field:

This field is used to assign a symbolic name (a label) to a memory

location.

A symbolic name consists of letters A-7Z. Digits 0-9, period and
question mark. The first character must not be a digit. A name may
be any number of characters but only the first five will be used by
the assembler for recognition, i.e. ABCDE and ABCDEFG is the same

name seen from assembler point of view,
A label consists of a name followed by colon.

Examples:

TEMP:
LONGNAME:

Serme

operation field:

This field specifies the basic contents of a memory location. It may
be the symbolic name of a machine instruction and will then in most
cases be followed by one or more operators or it may be a value,
either a constant or an expression. Finally it may be a pseudo-
operation which is a directive to the assembler, e.g. .LOC (set
the location counter to a specified value) or .END (end of assembler
program). A list of all machine~instruction mnemonics is found in

section 2.3 and a list of all pseudo-operations in section 2.4.

An expression is made of numbers, defined symbols, and operators. A
number consists of one or more digits, which will be interpreted in
current radix, by default radix 8. The input radix may be changed
by the .RDX pseudo-operation. The following list shows the operators
in the order they will be evaluated. When more operators of equal
priority are shown on the same line they will be evaluated from left
to right. The order of evaluation may, however, be changed by any
number of parantheses; expressions inside parantheses are evaluated
first.

Operator Priority of evaluation
B higest

+-*/8&! next

<<K=D>>= ==<> lowest,

The bit alignment operator B evaluates according to the following

formula:

x> B <y> = <>+ A15?)
where <x> is a number of current radix or an expression enclosed in
parantheses, and <y> is a number in radix 10 or if enclosed in paranthes-~

es an expression or number in current radix.

+ is addition,

- is subtraction,

is multiplication,
division,

is the logical and, evaluated bit by bit

.-w\

is the logical or, evaluated bit by bit,

The following 6 operators evaluate to a value of either 1 (true) or
0(false).

means less than,
less than or equal to,

greater than,

vV VvV A A
"

greater than or equal to,

1
]

equal to,

A
Vv

different from,

Finally it should be mensioned that when a number is immediately

followed by a punktuation mark, it is interpreted ir radix 10.
Examples :

Expression (number octal) Valuve (in decimal)

2+3*4 20
12./ 2

(283) *(1! 3
3814

14>14

14>=14

3==3

2+3* 3B14 30

- - O O O O

Page 5

A

2.2

operator field:

The content of this field depends highly on the operation field.

Usually it is empty or contains one or more expressions,

Examples :

LDA 1 TEMP
JMP REP ;
HALT ;
1SZ REL,2 ;

load AC1 with contents of TEMP
GOTO REP

stop computer execution.

increment the location with the address =
REL + (contents of AC 2) and skip if

the result is zero.

Addressing and Relocatability

As mensioned above a name has a value, e.g. a label has the

value: memory address. Actually a name also has another

characteristica called the relocatability which describes how the

value is to be transformed when it is loaded into the computer

memory. The output from the domac assembler is in relocatable

binary format. The following relocatabilities exist :

absolute

pace zero relocatable

pace zero byte relocatable

normal relocatable

normal byte relocatable

Both the address of a storage word and the contents of the storage

word may be relocated during load.

rage

2.2

-~ The DOMAC assembler maintains three registers called location

. counters which contain the next page zero relocatable location,
the next normal relocatable location, and the next absolute
location. Whenever the contents of q memory location has been
assembled, it ¢ assigned the address contained in current location
counter and no-mally the location counter is then incremented by
one. Only one of the three location counters is current at o,
moment. The current location counter is chosen by the pseudo-

operations :

NREL, .7RF!, and .LOC

Absolute relocatability means no relocation, i.e. the value will

- be unchanged after a load process.

E.g.:
7. ; constants are absolute

.NREL ; normal relocatable location counter

A: 0 ; these three constants are
B: 1 ; all absolute,
C: A-B

Page zero relocation and normal relocation means that g constant
(one for page zero and one for normal) will be added to the valoe

during load, i.e. the value is moved (relocated) in core.

. E.g.:
NREL ; if this program is loaded into core in location 1000
A: B 7 and 1001, the location addressed with A will
B: 2 ; contain 1001 and B still 2.

.END ;

Page zero byte relocation and normal byte relocation just means

that the appropriate constant is added twice instead of once.

Page 8

One way of defining a symbol is to use it as a label. The symbol

- will then be assigned the value of the location counter.

Another way of assigning a value to a symbol is to equate it to a

value,

<symbol> = <expression>

E.g.: ABC = 14.
ZERO =0
FALSE = ZERO

Location counter value and relocation properties can easily be seen

from the assembler listing which will be explained in the following:

B Column Contents
1 -3 If no errors are detected in the input these columns
contain a two-digit line number followed by a space.
4 -8 The location counter, if relevant. Otherwise the
column is left blank. The value is normally output in
radix 8.
9 A one-character flag indicating the location counter
relocatability :
space absolute
- page zero relocatable
= page zero byte relocatable
W
= ' normal relocatable

" normal byte relocatable

10 - 15 The data field, if relevant, or blank. The data is
normally output in radix 8.

16 A one-character flag indicating the data field reloca-
tability :

space absolute

- page zero relocatable

= page zero byte relocatable
normal relocatable

normal byte relocatable

3 external displacement data

e

i/

2.3

Page 9

Column Contents

17 - The source line as written.

Normally the source program will be followed by an alphabetical-
ly sorted cross-reference listing of all symbols defined in the

assembler program in the following format :

Column Contents

1 -5 Name of the symbol

7 -12 Value of the symbol, normally in radix 8.

13 Relocation property of the value as defined for

column 16 of the listing.
15 -17 The type of the symbol as follows :

space user symbol

EN entry defined by ,ENT

PS semipermanent symbol, defined by .DUSR or
the like.

XD external displacement, defined by .EXTD or
.EXTU

XN external normal, defined by .EXTN

Machine Instructions

The DOMAC assembler maintains a number of pre-defined (semi-
permanent) symbols in a disc file called DOMPS. These symbols are
the names of machine instructions and modifications, and names from

the MUS monitor, A complete list of all pre~defined symbols is found

in section 5,

2.3

The following list contains all machine instructions recognized by
DOMAC (1) and the corresponding octal value :

Memory reference instructions without accumulator :

JMP 000000
JSR 004000
1SZ 010000
DSZ 014000

Memory reference instructions with accumulator:

LDA 020000
STA 040000

Arithmetic /logic instructions :

COM 100000
NEG 100400
MOV 101000
INC 101400
ADC 102000
SUB 102400
ADD 103000
AND 103400

and skip modifications to above ALU instructions :

SKP
SZC
SNC
SZR
SNR
SEZ
SBN

N O 0 A w N~

Page 10

1/0 instructions :

NIO
DIA
DOA
DIB
DOB
DIC
DOC

060000
060400
061000
061400
062000
062400
063000

I/O skip instructions :

SKPBN
SKPBZ

SKPDN
SKPDZ

Special

INTEN
INTDS
READS
INTA

MSKO
IORST
HALT

063400
063500
063600
063700

instructions :

060177
060277
060477
061477
062077
062677
063077

Two characters have special meaning as input to the assembler :

@

The 'at' sign found in a source line indicates indirect
addressing. When found in a source line containing a
memory reference instruction, bit 5 of the instruction
(the indirect bit) will be set to one. When found in a

source line containing data, bit 0 will be set to one.

)

2.4

Example :
LDA 1} 3 will
LDA @ 1 3 will
1 +2 will

A 'number' sign found in a source line containing an
arithmetic/logic instruction indicates no-load and will set
bit 12 of the assembled instruction to one.

Example :

@ 1+2 will

AND 1, 2 SNR will
AND # 1, 2 SNR will

Assembler Directives

This section contains an alphabetically list of the most common

assemble to 024003
assemble to 026003
assemble to 000003
assemble to 100003

be 133405
be 133415

2.4

used assembler directions (pseudo-operations) of the DOMAC assembler :

An assembler directive may be used in two different ways :

oper)

value)

NB.

When found as the first name of a source line, it is

interpreted as a pseudo-operation, this means that some

kind of assembler action is taken.

When found anywhere else in a source line, it is interpret-

ed as a variable having a value related to the function

of the directive.

Not all assembler directives are defined in both of the

above mentioned ways,

Page i3

. ; dot
Value only.,

Represents the current value of the location counter. E.g.:

.LOC 10. ; set location counter to 10.
; value 10 in location 10.
JMP | + 2 ; skip next instruction.
.BLK <exp> ; block
Oper only.

Define a block of storage with size = <exp> number of words.

No values are inserted, only the current location counter is

incremented. E.g.:

.LOC 10. ; location 10,
. ; value = 10.
.BLK 5 ; 5 words are allocated.
. ; value = 16.
.DO <exp> ; do repeatedly
Oper only

Repeat the source code from the next line and up to the

next .ENDC the value of <exp> number of times. E.g.:

.DO 2 ;

0 ; two zero words will be

.ENDC ; assembled,

.DO 1 ==2 ; <exp> is zero so this line is
5 ; skipped.

.ENDC ;

.END or .END <exp>; end of program
Oper only

This pseudo-operation indicates end of source-file and if the
source-file is the last specified, end of assembly. The value
of <exp> will be used as start address in the end-block of

the relocatable binary output.

Page 14

.ENDC ; end of condition
\ Oper only.

. This pseudo-operation indicates end of conditional assembly.

See .DO

LENT <user symbol> ; entry
Oper only.

The <user symbol> will be defined globally as an entry.
<user symbol> may then be referenced in other programs and

linked together by the linkage editor.

Example :

Program A Program B

L.ENT COUNT LEXTN COUNT

COUNT: 0 GCOUNT: COUNT
.END .END

The address of COUNT in program A will be placed in program
B in location GCOUNT when both programs are linkage edited
together.

LEOT ; end of tape
Oper only.

.EOT indicates end of source file and is equivalent to .END

without an expression.

-EXTD <user symbol> ; external displacement
EXTN <user symbo!> ; external normal

Oper only.

These pseudo operations define that <user symbol> is defined

in another program. The difference between .EXTD and .EXTN
is that an external displacement may be used as the displace-
ment of a memory reference instruction, if the value at linkage

edit-time does not exceed 8 bits, while an external normal

N

may have any 16 bits value at linkage edit-time.

Examples :
.EXTD DISP
LEXTN GLOB
152 DISPI, 2
JMP >~ .GLOB
.GLOB: GLOB

.LOC <expression> ; set location counter

.LOC

.NREL

; current location counter value,

Oper (first format) and Value (second format).

Used as operation this pseudo-operation selects current
location counter according to the relocation properties of
<expression> and assigns the value of <expression> to the

selected location counter.

Used as value it is equivalent to the pseudo-operation:

(DOT).

Examples :
.LOC 3 ; absolute location counter
; set to 3
NREL ;
A: 0 H

LOC A+ 5 ; NREL location counter
; set to A + 5,
.LOC .LOC ; no operation!

; normal relocatability

Oper and Valve.,

When used as operation this pseudo~operation selects the
normal relocatable location counter as current location
counter, The value of .NREL is the value of the normal

relocatable location counter.

Page 15

sage 16

-RDX <expression> ; select input radix
.RDX ¢+ current input radix

Oper (first format) and Value (second format).

Used as operation the input radix is set to the decimal

value <expression> which must be inside the range :
2 <= <expression> <= 20

Used as value it represents the current input radix.

Examples :

.RDX 10 ;

1 ; value 11 decimal
.RDX 8 ;

11 ; value 9 decimal
.RDX 2 ;

n ; value 3 decimal

LTITL <symbol> ; define title
Oper only.

This pseudo-operation assigns the title <symbol> to the program.
This title is used to identify the program.

Example :

JITL MYPGM

JTIXT <text> ; pack a text
Oper only.

This pseudo-operation is used to pack an ASCII text into
a number of consecutive words. is a one-character
delimeter that must not occour inside the text. The text
will be packed according to the text mode (see .TXTM).
with at least one zero byte following the last character.
<text> is a string of ASCIl characters or angel bracket

constructs. An angel bracket construct is a left angel (<)

followed by an expression, whose seven bit value will

Page 17

be stored, followed by a right angel (>).

Examples :

LJXT 'THIS IS A TEXT!'
.TXT / TEXT FOLLOWED BY BELL AND CR<7> <13.> /

TXTM <expression> ; set text mode
JTIXTM
Oper (first format) and Value (second format).

When used as operation this pseudo-operation is used to

change the packing of bytes using the .TXT pseudo-operation :

<expression> Byte packing
zero right before left
non-zero left before right.

The value of .TXTM is the current text mode value.

Examples:

JXTM T ; normal MUS-mode
JIXT 'NORMAL PACK.*;

JIXTM 0 ;

.TXT 'SPECIAL PACK.";
JIXT 'ONMRLAP CA.K'; = 'NORMAL PACK.'

XPNG ; expunge all symbols
Oper only.

This pseudo-operation removes all symbols except permanent

from the DOMAC symbol table.

.ZREL ; poge zero relocation location counter,
Oper and value.

When used as an operation this pseudo-operation selects the
page zero relocation location counter as the current location

counter.

The value of .ZREL is the current value of the page zero

relocation location counter.

v

Page 18

2.5 Example 2.5

This section contains the source text and the produced listing of
a sample program, a LOGOR MUSIL code procedure. [IV]

Source text:

s PROCEDURE LOGOR(VAR RESULT: INTEGFR3
; CONST NEWBITS: INTEGER)

RESULT:= RESULT OR NEWBITS? 16 BIT PARALLEL LOGICAL

»
4
v
’

oTITL LOGOR

«RDX 10
«NREL

ROR: s PROC LOGOR:;
JSR a MZSTART+2 ¢ TAKEADORESS(RESULT)
STA 1 RSAVE ’
JSR A MZSTART+3 5 TAKEVALUE(NEWBITS)
LDA a 3 RSAVE ’

; ACO: =~ AC1: NEWBITS AC2: CUR AC3: QLDBITS

COM 1.1 H
AND 1.3 ;
ADC 1,3 H AC3:= ACT1 OR AC3:
’
STA 2 3 RSAVE H
LDA Va CUR M
JMP a MZSTART+1 s+ END LOGOR?
H
RSAVE: 0 + ADDRESS OF PARAMTER 1
«END ROR » ENTRY POINT AODR

OR

Poge 19

Produced Ljsting:

0001 LOGOR DOMUS MACRO ASSEMRLER REV 01.00

01
02 ¢ PROCEDURE LOGOR(VAR RESULT: INTEGER?
03 ’ CONST NEWBITS: INTEGER)7
04
OS e
06 ¢ RESULT:= RESULY OR NEWBITS? 16 BRIT PARALLEL LOGICAL O
o7 H
08
«TITL LOGOR
10 000012 « RDX 10
11 «NREL
12
13 ROR: s PROC LOGOR:
16 00000'006236 JSR A MZSTART+2 H TAKEADDRESS(RESULT)
15 00001'044411 STA 1 RSAVE ;
16 00002'006237 JSR al MZISTART+3 ¢ TAKEVALUE(NEWBITS)
17 ;
18 00003'036407 LDA 8 3 RSAVE ;
19
20 ; ACO: = aC1: NEWBITS AC2: CUR AC3: OLDBITS
21
22 00004'124000 CoM 1.1 ;
¢3 00005'137400 AND 1.3 ;
24 00006'136000 ApC 1.3 / AC3:= ACY1 OR AC3;
25 ;
26 00007'056403 STA a 3 RSAVE H
27 00010'030040 LDA 2 CUR ;
28 00011'002235 JMP a MZSTART+1 /; END LOGOR:;
29 ’
30 00012'000000 RSAVE:Y O ; ADDRESS OF PARAMTER 1
31
32 <END ROR ;5 ENTRY POINT ADDR

0000 SOURCE LINES IN ERROR

0002 LOGOR

ROR 000000 1/32
RSAVE 000012! 1715 1718 1/26 1730

N

3. ASSEMBLY PROCESS
3.1 Prerequisites

Console device
3.2

Page 20

In order to execute the DOMAC assembler the following hardware and

software requirements should be fullfilled:

RC3600 CPU with 32K words

A direct access storage media
DOMUS Operating System

Magnetic tape unit or Paper Tape Reader,

Calling the DOMAC Assembler

DOMAC is invoked by a utility program load command to the DOMUS

operating system S.

Call :

DOMAC [MODE.<modespec>] [LIST, <listfile>] [BIN .<binfile> 1 !
¢ [LINES.<lines>J [PERM.<permfile> 1 [SYMB.<symbfile>] !
! [MACRO.<macrofile>] [XREF.<xreffile> 1 <sourcespec>

where

<modespec>

is a name of max. five characters,

where each character specifies a function
of the DOMAC assembler :

char

A

function

Add referenced semi-permanent
symbols to the cross reference list-
ing.

Overwrite all listing suppression,
i.e. list all source lines,

Skip pass 2 but create a new
permanent symbol table with file-
name : <symbolfile> and with macro
definition filename : <macrofile>,

Do not make a cross reference list-

ing.

3.1

3.2

W,

<listfile>

<binfile>

<lines>

<permfile>

<symbolfile>

<macrofile>

<xreffile>

<sourcespec>

Page 21

is the name of the file or entry to
which the listing is output. If not

specified, no listing is produced.

is the name of the file or entry to
which the binary is output. If not

specified, no binary is produced.

is an integer specifying the number
of lines per page. If more than 63
is specified, 63 is used. If not
specified, a maximum of 60 lines

per page will be produced.

is the name of the file from which

the semi-permanent symbols are read.

Default is DOMPS.

is the name of the file to be used as
symboltable file, Default is DOMST.

is the name of the file to which macro

definition strings are written. Default
is DOMMC,

is the name of the file to which cross

references are written. Default is DOMXEF.

is the source file specification containing
any number of filenames in the following
format :

<filename> | <filename>/$ | <filename>/N

where
/S means skip this file on pass 2.
/N means do not produce a listing of
this source file.
When more than one sourcefile is specified
they are processed in the order net, i.e.

left t> right.

Page 22

<symbolfile>, <macrofile>, and <xreffile> are normally internal

- workfiles only and will be deleted after the assembly.
N.B.: The filenames specified must differ from the keywords.

Default :

DOMAC MODE. <0> LIST. <0> BIN, <0> LINES.460 PERM,DOMPS !
! SYMB.DOMST MACRO.DOMMC XREF.DOMXF

Examples :
Assemble file TEXT producing binary in RLBIN and
listing including cross reference on the lineprinter.
The entry SLPT describing the lineprinter driver exists

on the disc.

DOMAC BIN,RLBIN LIST,$LPT TEXT

Assemble files PARM and PROG producing binary in
PROGR and listing of PROG only in PROGL. PARM

contains parameters only, i.e. no corestore locations.

DOMAC BIN.PROGR LIST.PROGL PARM/S PROG

Create a permanent symbol table file named DOMPS
and a macro definition file named DOMPM containing
the basic instruction definitions and the MUS system

definitions.

DOMAC MODE.S SYMB.DOMPS MACRO.,DOMPM PERM,NIHIL BIPAR MUPAR

NIHIL is a non-existing file and BIPAR is the basic

instruction parameter tape.

3.3

DOMAC Functional Descrip{‘igvn_

In order to fully utilize the capabilities of DOMAC and to under-
stand the different /O error messages that may occur it is

necessary to have a brief understanding of the internal operation

of DOMAC,

DOMAC operates with two scts of symbol table files in addition

to the source, listing, and binary files. These are :

Permanent symbol files consisting of :

DOMPS, containing the semi-permanent symbols, and
DOMPM, containing the semi-permanent macro definition
strings.

User symbol files consisting of :

DOMST, containing the semi-permanent symbols with the
user symbols added,

DOMMC, containing the semi-permanent macro definition
strings with the user macro definition strings
added, and

DOMXEF, containing the cross-references of all user symbols,

When the DOMAC assembler has been loaded, it first checks the
parameters including a check of the existence of all source files.
The source, list, and binary files are opened using CONNECFILE,
i.e. the list and binary file must be non-existing or an entry prior

to loading DOMAC.

Now DOMAC initializes the symbol word by copying DOMPS to
DOMST, DOMPM to DOMMC and if xref is wanted, DOMXF is
created. However, if DOMPS does not exist, a ', XPNG' is execut~
ed in order fo create an empty symbol file. If DOMST, DOMMC,
and DOMXF exists prior to loading DOMAC, they are deleted and

re-created.

3.3

Page 24

The assembly is executed in two passes of the source files. In
pass 1 the symbol table is build and the syntax is checked, and
in pass 2 the assembly of 16 bit binary words is made and listing

including syntax error messages and relocatable binary is produced.

When the assembly is completed, the line:
nnnn SOURCE LINES IN ERROR

is output to the console and optionally to the listing.

The core-resident parts of DOMST, DOMMC, and DOMXF are
written back to disc if an xref listing is to be produced or the

mode is S,

If an xref listing is to be produced, an internal request is sent to
the father of DOMAC containing the command: DOMXR <symbolfile>.
If no xref listing is to be produced, an internal request is sent to

the father of DOMAC containing an empty command, i.e. 'FINIS'.

The DOMAC assembler may produce two kinds of error messages;
the one letter error indications in the listing (or if no listing is
produced, on the console) as a result of syntactical or semantical

errors in the source input, and the fatal error messages from the

The first category is explained in section 4.1 below and the second

4. DOMAC ERROR MESSAGES
DOMAC assembler itself.
category in 4.2,

4.1 Syntax Errors

Syntax errors are indicated by one-letter codes in the first three
columns of the listing line in which the error occurs. If no listing
is produced, the line with error indication will be output to the
console. Below is a list of all possible error codes with a short
explanation and an example showing one or more source lines that

would result in the error.

A Addressing Error

Indicates that a memory reference instruction references an

address outside the addressing range.

E.g.:
I1SZ TEMP ; addressing error
LOC 4256, ;
TEMP: 0
B Bad Character
Indicates an illegal character appearing in the line, e.g.:
A%B: 1 ; percent is illegal in a label
C Macro Error

Indicates either an attempt to do a nested macro continuation

or that more than 63 arguments are specified.

4.1

Pauae 24

Radix_Error
Indicates either an attempt to change current radix to a
value outside the legal range or an attempt to input a digit

outside current radix.

E.g.:
.RDX 40 ; radix error
.RDX 2 ;
23 ; radix error

Equivalence Error

Indicates that an equivalence contains an undefined symbol

on the right side of the equal sign.

E.g.:
= B ; B undefined results in equivalence error

Format Error

Indicates an illegal format for the type of operation, i.e.

too many or too few operands.

E.g.:
MOV 1,2,3,4; format error

GloboL Error

Indicates an external or entry symbol error.

E.g.:
LENT NIHIL ; nihil undefined
LEXTN LOCAL; local is defined
LOCAL: 0 H

.END

7

Input Parity Error
Indicates that a character with the value 26 (SUB) is found

in source input. This character is listed as back slash (\).

E.g.:
LDA | T\MP ; parity error

i

K

Conditional Error
Indicates a superflous ,ENDC, i.e. a .ENDC without a
.DO.

E.g.:
.DO 14 ;
.ENDC ; end do
LENDC ; conditional error

Location Counter Error

Indicates that a .LOC or .BLK expression is undefined or
outside range,
E.g.:

.LOC -14 ; location counter error

.LOC 30000. ;

.BLK 10000. ; location counter error.

Multiple Definition Error

Indicates that a symbol is defined more than once within

a program,

E.g.:
TWIN : 0 ; multiple definition error
TWIN : 0 ; multiple definition error

Number Error

Indicates that a number exceeds the legal range, i.e.

integers must be less than 2]6.

E.g.:
.RDX 10. ;
100000 ; number error

Page 27

Page 28

Overflow Error

Indicates that an instruction operand exceeds the legal
range. It may also indicate over- or underflow when using
the pseudo-operations: .PUSH, .POP, and .TOP,

E.g.:
LDA 5, TEMP ; overflow error
MOVZL 1,2,10 overflow error

Phase Error
Indicates that DOMAC has detected an unexpected difference
between pass 1 and pass 2 of the assembly, normally a symbol

with different value in pass 1 and pass 2.

E.g.:
TITL A LJITL B
.NREL NREL
0 PHASE : 1
.EOT .END

If above two source files are assembled and the first file (A)
is skipped on pass 2, then the label PHASE will cause phase

error.,

DOMAC LIST.SLPT A/S B

Questionable Line

Indicates improper use of # or @ or when a page zero reloca-

table value is used where an absolute value is expected,

E.g.:
.ZREL
A: 0
.NREL

LDA 0O A,3 ; Q-error
MOV # 2,3 ; Q-error

Relocation Error

Indicates that an expression does not evaluate to a legal
relocation property or that the expression is a mix of

page zero- and norme! relocative symhols.

E.g.:
.ZREL
Z: 0
NREL
N: 1

N +N +N ; relocation error

N + Z ; relocation error

Undefined Symbol Error

Indicates that o symbol is used but not defined.

E.g.:
LTITL UNDEF
JMP HOME ; undefined error
.END

Assembler Lobeﬂiwfrror

Indicates an error in the usage of the pseudo-operation

.GOTO

Text Error

Indicates an error in an 'angel bracket' construction within

a string.

E.g.:
JOXT 'TEXT ERROR- <2 + 3 + >

Page 29

4.2

Page 30

I/O Error Messages 4.2

Section 3.3 describes the internal function of DOMAC which
includes a comprehensive input/output activity, that may cause
error situations to arise and some of these are fatal and will cause

DOMAC to terminate and output an error message to the console.

In addition to the standard 1/O error messages, the following error

messages may be produced:
0270 *** INTERNAL ERROR: nnnnn

This message indicates that an internal error situation has
been detected. It should, however, be nearly impossible
to get this message. Please contact the RC3600 BASIS group.

0271 *** DOMAC BREAK, NO: nn
0272 *** INSUFFICIENT CORE
0273 *** PARAMETER ERROR

Before the assembly is started, DOMAC checks the existence
of all specified source files and this message may indicate

a non-existing source file as well as a syntactical error in

the DOMUS load command.

0274 *** VIRTUAL CORE ERROR

DOMAC symbols are placed in a virtual core file on disc.
Each segment of this file contains its own logical segment-
number. When a segment has been read into core, the
segmentnumber is checked and, if it is found to be erronous,

assembly is terminated with this error message.

A number of symbols are predefined in the DOMAC assembler,

permanent symbols and semi-permanent symbols.

S. PREDEFINED SYMBOLS
cannot be redefined by the user,
5.1 Permanent Symbols

Permanent symbols

These symbols, which are also called pseudo-operations or assembler

directives, are defined inside the assembler itself and are used as

commands to the assembler. Below is a Iist of ail permanent symbols,

the ones marked with asterisk are described in this manual .

.DALC
.DIO
.DMR
.DUSR
.END
.EOT
LEXTU
JAFG

. LIST
.MCAL
.NOLO
.PASS
.RDX
.TOP
.IXTF
LJXTO

ARGC .BLK i
.DIAC .DICD
.DIOA .DISD
.DMRA .DO *
.DXOP .EJEC
.ENDC = LENT o+
LEXTD = LEXTN +
.GOTO .IFE
JFL FN
LOC o+ .MACR
.MSG .NOCO
.NOMA .NREL *
.POP .PUSH
.RDXO LOTL =
JIXT * . IXTE
JXTM + . TXTN
XPNG * JZREL

()]

5.2 Semi-permanent Symbols

ACO
AC3
ADDRE
AREAP
BREAD
BUF
CALL
CCORO
CDIsC
CEXIT
CIDEN
CLEAR
coMm
COMON
CORE
COUNT
CPRIN
CRESE
CTERM
CTOUT
CUR2
DELAY
DIB
DIVID
DOC
EVENT
FREES
GETBY
GOS
HACTI
HDELA
ILS
INCHA
INITC
INTA
INTEN
IORST

000017
000022
000026
000064
000016
000025
006355
000041
000112
000001
177777
100166
100000
006354
000361
000027
006341
000116
000114
006342
000112
000061
061400
006177
063000
000007
006210
006174
006000
000043
000045
102032
006207
006352
061477
060177
062677

PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
P5
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS

ACI
ADC
AFIRS
BINDE
BREAK
BUFFE
CBUFF
CDELA
CDUMP
CHAIN
CLATO
CLINT
COMLI
CONBY
CORES
CPASS
CrU
CRETU
CTEST
CUDEX
CWANS
DEVTA
DIC
DOA
DSZ
EXIT
FREQU
GETPO
GOT
HALT
IEQ
INBLO
INE
INL
INTBR
INTGI
I1SZ

000020
102000
000065
006232
006012
000011
000054
006334
000077
000002
000002
000032
000362
006173
000070
006345
000077
000003
006340
000053
006337
000370
062400
061000
014000
000056
000066
006360
002000
063077
102415
006205
102414
102033
000230
000226
010000

PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS

PS'

PS
PS

AC2
ADD
AND
BIT
BSIZE
CACI1S
CCONY
CDEVI
CERAS
CHANG
CLEAN
CLOSE
COMNO
CONVT
COROU
CPOSI
CREAT
CSEND
CTOP
CUR
DECBI
DIA
Div
DOB
EFIRS
FFIRS
GETAD
GETRE
GOTO
HANSW
IGR
INC
ING
INNAM
INTDS
INTPR
JMP

Page 32

000021
103000
103400
000101
000012
000004
000i 15
000050
00011
006350
006011
006220
000363
000031
000017
000113
006346
006364
006367
000040
006233
060400
073101
062000
000057
000060
006357
006200
006356
000044
102433
101400
102432
006223
060277
006225
000000

PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS

PS
PS
PS
PS
PS
PS
PS
PS
PS
PS
PS

PS
PS
PS
PS
PS
PS
PS
PS

Page 33

JSR 004000 PS LATIM 000042 PS LDA 020000 PS
LOOKU 006347 PS M 000040 PS MASK 000067 PS
MCORO 000052 PS MESSO 000006 PS MESSI 000007 PS
MESS2 000010 PS MESS3 000011 PS MONIT 000054 PS
MOV 101000 PS MOVE 006224 PS MSEM 000051 PS
MSKO 062077 PS MUL 073301 PS MULTI 006176 PS
MZSTA 000234 PS NAME 000004 PS NEG 100400 PS
NEXT 000000 PS NEXTO 006164 PS NIO 060000 PS
@) 000025 PS op 000034 PS OPEN 006221 PS

OPMAS 177776 PS OUTCH 006212 PS OUTEN 006214 PS
OUTNL 006213 PS QuUTOC 006216 PS OUTSP 006211 PS

OUTTE 006215 PS PC 000033 PS PCWSI 000006 PS
PFIRS 000052 PS POWIN 000076 PS PREV 000001 PS
PRIOR 000015 PS PROCE 000054 PS PROG 000012 PS
PROGR 000071 PS PSPEC 000000 PS PSTAR 0oooCt PS
PSW 000023 PS PUTBY 006175 PS PUTRE 006201 PS
PWSIZ 000014 PS R 000032 PS READS 060477 PS

RECEI 000005 PS RECHA 006015 PS REMOV 006351 PS
RESER 000030 PS RETUR 006165 PS RTIME 000054 PS
RUNNI 000054 PS SADDR 000002 PS SAVE 000024 PS
SAVEI] 000025 PS SAVE2 000026 PS SAVE3 000027 PS
SAVE4 000030 PS SAVES 000031 PS SBLOC 000111 PS

SBN 000007 PS SBUSY 000103 PS SCOUN 000001 PS
SDATA 000112 PS SDEVI 000104 PS SDEV2 000105 PS
SDEV3 000106 PS SDISC 000101 PS SEARC 006010 PS
SEM 000114 PS SENDA 006007 PS SENDE 000004 PS
SENDM 006004 PS SEOF 000110 PS SEQ 102414 PS
SETCO 006172 PS SETEN 006353 PS SETIN 006170 PS
SETPO 006217 PS SETRE 006171 PS SEZ 000006 PS
SFIRS 000006 PS SGR 102432 PS SIGCH 006344 PS
SIGGE 006365 PS SIGNA 006343 PS SILLE 000107 PS
SIZE 000003 PS SKP 000001 PS SKPBN 063400 PS
SKPBZ 063500 PS SKPDN 063600 PS SKPDZ 063700 PS
SLS 102033 PS SNC 000003 PS SNE 102415 PS
SNEXT 000004 PS SNG 102433 PS SNL 102032 PS
SNR 000005 PS SOFFL 000102 PS SOPER 000000 PS
SPARI 000113 PS SSIZE 000007 PS SSPEC 000003 PS

SSTAT 000005 PS STA 040000 PS START 006014 PS

Page 34

(et STATE 000013 PS STIME 000117 PS STOPP 006013 PS
- SUB 102400 PS SZC 000002 PS SZR 000004 PS

TABLE 000045 PS TIMER 000014 PS TLENG 000036 PS

TOPDE 000464 PS TOPTA 000046 PS TRANS 006204 PS

TRECO 000047 PS TRETU 000046 PS WAIT 006002 PS

WAITA 006005 PS WAITC 006336 PS WAITE 006006 PS

WAITG 006366 PS WAITI 006003 PS WAITO 006167 PS

WAITS 006335 PS WAITT 006202 PS WAITZ 006222 PS

Z 000032 PS 70 000024 PS Wi 000025 PS

Z2 000026 PS 73 000027 PS 74 000030 PS

Z5 000031 PS ZAUX 000006 PS ZBLOC 000011 PS

ZBUFF 000013 PS ZCONV 000012 PS ZFILE 000010 PS

| ZFIRS 000017 PS ZFORM 000015 PS ZGIVE 000007 PS
< ZKIND 000005 PS ZLENG 000016 PS ZMASK 000006 PS
ZMODE 000004 PS ZN 000041 PS ZNAME 000000 PS

ZREM 000023 PS ZSHAR 000022 PS ZSIZE 000014 PS

ZTOP 000020 PS ZUSED 000021 PS .0 000055 PS

N 000120 PS .10 000126 PS .1024 000106 PS

12 000127 PS .120 000141 PS .127 000142 PS

.128 000111 PS .13 000130 PS .15 000131 PS

16 000114 PS 1638 000102 PS .1BO 000101 PS

.1B1 000102 PS .1BIO 000113 PS .1B11 000114 PS

JIB12 000115 PS .1B13 000116 PS .1B14 000117 PS

JIB15 000120 PS .1B2 000103 PS .1B3 000104 PS

.184 000105 PS .1B5 000106 PS .1B6 000107 PS

! .187 000110 PS .1B8 000111 PS .1B9 000112 PS
i .2 000117 PS .2048 000105 PS .24 000132 PS
.25 000133 PS .255 000143 PS .256 000110 PS

.3 000121 PS .32 000113 PS .3276 000101 PS

. 000116 PS .40 000134 PS .4096 000104 PS

.48 000135 PS .5 000122.PS .512 000107 PS

.56 000136 PS .6 000123 PS .60 000137 PS

.63 . 000140 PS .64 000112 PS .7 000124 PS

.8 000115 PS .8192 000103 PS .9 000125 PS

.CLEA 002166 PS .CLOS 002220 PS .CONB 002173 PS

.CR 000130 PS .DIVI 002177 PS .EDOC 000124 PS

JEVEN 000124 PS .FF 000127 PS .FREE 002210 PS

.GETB 002174 PS .GETR 002200 PS .INBL 002205 PS

JNCH 002207 PS .LF 000126 PS .MI6 000146 PS

.M256 000147 PS .M3 000144 PS M4 000145 PS

.MESS
NEXT
. OPER
. OUTE
. OUTS
.PUTR
.RTC
.SETP
. TRAN

000123
002164
000035
002214
002211
002201
000127
002217
002204

PS
PS
PS
PS
PS
PS
PS
PS
PS

LMULT
NL
.OUTB
.OUTN
.OUTT
.REPE
.SETC
.SETR
WAIT

002176
000126
002206
002213
002215
002203
002172
002171
002202

PS
PS
PS
PS
PS
PS
PS
PS
PS

JNAME
. OPEN
. OUTC
.OUTO
.PUTB
.RETU
LSETI
.SS1Z

Page 35

000116
002221
002212
002216
002175
002165
002170
000124
000150

PS
PS
PS
PS
PS
PS
PS
PS

