
Title:

DOMUS, System Programmer's Guide, version 3.

U~:~REGNECENTRALEN
RC SYSTEM LIBRARY: FALKONERALLE 1 DK -2000 COPENHAGEN F

RC SL No: 43-GL 8374

Edition: January 1979
Author: mud Henningsen

Keywords: MUS,Operating System, Loader , Disc, Version 3.

Abstract: This manual describes the interface between assanbly

program and IXMJS.

(32 printed pages)

Copyright A!S Regnecentralen, 1978
Printed by A!S Regnecentralen, Copenhagen

Users of this manual are cautioned that the specifications
contained herein are subject to change by RC at any time
without prior notice. RC is not responsible for typogrophi-
calor arithmetic errors which may appear in this manual
and sha" not be responsib Ie for ony damages caused by
reliance on any of the materials presented.

i

mNTENI'S PAGE

1 • ll\rrOODUCI'ION ••••••••••••••••••••••••••••

2. CDRE SI'()RA(;E srRlJeTIJRE •••••••••••••• ••••

2. 1 Core ItatlS •••••••••••••••••••••••••

2.1.1 The Core Item Head ••••••••••

2.1.2 The Free Core Item ••••••••••

2.1.3 The Used Core Item ••••••••••

2.1.4 The Utility Core Item •••••••

2.2 Process Hierachy •••••••••••••••••••

3. PROGRAMSAND PROCESSES ••••••••••••••••••

3. 1 Program Descriptor W:>rd ••••••••••••

3.2 ~ Parameters •••••••••••••••••

3.2. 1 Separ:-ators ••••••••••••••••••

3•2 .2 I tan. 'I'y};:es ••••••••••••••••••
3.2.3 Scanning the Parameters •••••

3.2.4 Parameter Example •••••••••••

4. COMMUNICATIONWITH S •...................
4.1 Event Classification •••••••••••••••

4 •2 Er'I:or r.1e:ssa.ges •••••••••••••••••••••

4.3.1

4.3.2

4.3.3

Inten1al Cat1It'al1d ••••••••••••

Internal. Request ••••••••••••

<£t Messa.ge ••••• ••••••••••••

APPENDICES

APPENDIX A - REFERENCES ••••••••••••••••••••••• 21

APPENDIX B - SYNI'AX OF S-<:QM.1ANDS••••••••••••• 22

APPENDIX C - SURVEY OF S-(.'(M.1ANDS ••••••••••••• 23

APPENDIX D - SURVEY OF ERRORMESSAGESAND

muIVALENI' ERRORNUMBERS •••••••• 25

APPENDIX E - THE 'SYSTEM ERROR' - MESSAGE..... 26

P.PPENDIX F - SURVEY OF CDRE Ar1-1INISTRATION.. • • 27

1

2
2

3

5

6

8

9

10
10
11

11

12

14

15

16
16
17

18

19

20

1

1• INI'RODOCTICN. 1.

The IX)M[]Ssystem consists of the following software

canponents :

M:>nitor

Utility Procedures

Basic I/O
Character I/O

Record I/O
Pagin:j SYstan

Disc Driver
Teletype Driver
File ManagementSystem
Operatin:j System S

The operating system S takes care of core storage management,
program/process load fran disc files, program/process raroval.

It executes ccmnands keyed in fran the teletype or sends to

the process fran another process in the system. It introduces

a process hierachyarrong the processes defining a parenti
child relation be"bJeenprocesses.

2

2. CORE SI'QRAGE STRUCTURE.

2.1 Core Itans.

programs and processes are organized as described in [1J.
After system initialization the available core storage

above the basic system is organized as one large item of
core storage. Whenthe system ~rks, pieces of that core
storage is occupied by additional programs, procedures,
processes, or data. Core storage is allocated in disjoint
pieces, called core itans, all chained together in ascend-
ing order in the one and samechain, the core item chain,

the head of which being addressed by the page zero location:
CORE. The allocation strategy is given in app.F.

All processes except for the processes in the basic system

are oontained in exactly one core item. In a core item may
reside several processes. Thus bMJ relations exists between

a process p and a core item C.

2) pownsC=
C ownedp:

pinC=]
C oontains p:

J
p lies inside the core item C1)

c·s owner is p

3

2.1.1 The Core Item Head. 2.1.1

The rore item is headed by 8 v.ord descriptor with the follow-

ing rontents:

-1

+0
+1

+2
+3
+4
+5
+6

ident
owner process

.""

current load address
chain

size
nameof core item

Size

The ident field is used to distinguish between the tv.o

types of items, the N-item and the X-item. The N-item is
restricted for use in allocat.in;r low core storage area
only, address rcx:m(0;32 Kw). The X-item can be used in

any core-environrrent with address rcx:m(0; 64 Kw). Both
a N-item and an X-item could be allocated in one task, in

which case they are referred to as a canposite item, with

the X-item head podrrtedout fran the ident field of the N-
item. In the following the tenn core item is used for a
canposite item too.

N-item:

X-item:

FREE

ident:=O

ident:=-1

USED
ident: =0/corresp .x-item. address

ident:=-1

4

The ownerprocess field contzdris the process description
address of the process which allocated the item.

The current load address field points to the first address

to be used if the core itan is leaded with a procedure or
a process.

The chain field points to the next core item or is set to

zero if it is the last item in the chain.

The size field contains the size of the core item.

The nane field contains a possible nameof the core item.

Three different kinds of core items exists:

The Free Core Item
The Used.Core Item

The Utility Core Item.

5

2.1.2 The Free Core Itan.

The itan is mt used by any prcx::ess.

o / -1

0

chain

size

0

0

0

It-

0: N-itan;

-1: X-itan;

Notice: a free itan is never composite. p_ free item with
the itan head address in lower core is defined
as a N-itan. In all other cases the whole item

should rest in lower core to be called a N-itan.

2.1.2

6

2.1.3 The Used Core Item.

The item is allocated by a process.

I ident - - -
owner process

chain

size

name

r

~- --1- -I Corresponding
X-item if any.

I owner process I

1-------
1------
I

chain

size

name

I
L

Ident = 0: N-item allocated only.

Ident = -1: X-item allocated only.

Ident <> 0,-1: A N-item and an X-item are allocated and

the corresponding X-item is p::>intedout

fran the N-item. Ibth items are present
in the core item chain ani the correspond-
ing x-Ltemwill always be last in chain.

7

In the case one or rrore processes/programs are loaded into
one core item, the different Parts of the item are po.lrrced
out using an internal chain. The actual program/process parts
are kept together using an internal ident.

1 !DEN!'
0
1

·
···
6

•••..Free -::;,,-

%" ,
~

F"
-1

4- A~-. c
=F -or

ex

~i= D
:;;it...,

~!P ~1IIIl""

0

I~

•••.... ~ •••

+

+

Free

WAD IN'IO USER ITEl1 -1 r
0'

Corresp:mding+1I

X-itern if any . I

• I

• I

-1
I

:l
• I

+6
I

IThe program
consist of a
xrel part
only .

The program B
consist of a
xrel and a
nrel part. .1 ~

A
TT,

~

k 1
1" Free

~II I I
i

-1 I

1
r

The programC
consist of a
xrel and a
nrel part. The B, xrel-
corresp. xrel- part.
part is addres-
sed fran the
nrel-part.

C

I
I

.!.
T,

L I

I I
CUrrent load r '--1;;;;;;;;;:.....~J
address. I

The programD
consist of a
nrel-part only.

C, xrel-
part.

I
..J CUrrent load

address.
I

! 1-
1Free T
I I
1 ,

. ~ '-- L ,-2 INI'. IDENI' 0: use, -1:
-1 ~~.CHAIN free else startaddress of
+0 corresp. xpart.

The remaininq part of
the allocated composite
i tern is free.

2.1.4 The Utility Core Item.

8

The item is allocated because of a single load

ident - -
owner process

0

chain

size

nameof
load file

1- - - - - - - - - -j
- -+1 -, 1

1---------,
, ownerprocess 1
1 1
1 0 1
1 1
1 chain 1
1 ,

I size I
1 ,
1 name of I

1 load file I
'. I
I 1
1 1L- - - .

Ident = 0: N-item allocated only.

Ident = -1: X-item allocated only.

Ident <> 0, -1: A N-item and an X-item are allocated

and the corresp:>ndingX-item is pointed

out fram the N-item.

Both i tans are present in the core item
chain and the corresponding X-item will

always be last in chain.

9

2.2 Process Hierachy. 2.2

The above rrentioned ~ relations between core items and

processes introduce a relation between processes:

there exists a core item C

so that P2 in C ownedby

P1

All processes except for the processes in the basic system

are children of other processes and all these processes are
organized in a structure with respect, to the relation parent
to.

0 = process

D = core item

10

3. PR:lGRAMS AND PRXESSES.

3.1 ProgramDescriptor w:>rd.

The following bits of PSP:OC[1] are used by the system:

B5: parameter bit: if this bit is set,
Parameters are placed :irmediatelyafter
the highest N relocation occupied by the
code. If the programcontains a process

descriptor the address of the parameter
are placed in ac 1 whenthe process is
started.

B6: paged programbit: the program is paged

see ref [3J

B7: reservataon bit: the process is a driver

process. Processes using this programare
breaked.with cause = 8 if a reserver of

the process is killed.

11

3.2 ProgramPararreters. 3.2

Programparaneters are placed iIrIrediately after the loaded
rormal, relocatable code, that is the last used address of the

allocated N-itan. If 00 N-item is allocated the parameters
are placed :imredia.telyafter the last used X-itan location.

Programparameters oonsist of a sequence of items, each of
the fonn:

SEE' TYPE

PARAMETER

An itan always starts at an even byte address. The length of

an itan is the numberof bytes in the itan, odd or even. The

separator is a byte oontaining the ASCIIvalue of the separa-
tor preceeding the item or a zero if the itan was preceeded

by 00 separator. The type is an integer deooting the type of
the itan.

3.2.1 Separators . 3.2.1

The following values mayappear in the separator field:

0: blank, no separator.
44:
46:
47: /
58:
61: =

12

3.2.2 Item Types.

Type 0, names:

10

SEP 0

char 1 char2

char3 char4

charS 0

In a nameitem up to five characters of the nameare placed,

unused p:>sitions being zeroised. Only the first five characters
of a nameare significant.

Type 1, integer:

6

SEP 1

value of integer

Type 2, texts:

n+4

SEP 2

char 1 char2

.
char

n
_1 char

n

If n odd the slack byte

is set to zero.

13

Type 3, canposite item:

nt4

SEP 3

>

0

0 4

parameter sequence
of length n.

The canposite item contains all pararreters enclosed in

parentheses. The sub sequence starts in adr (item)+2.

Type 4, dtmny item:

10

SEP 4

0 0

0 0

0 0

Type 5, end item:

o

o 4

14

3.2.3 Scarming the Parameters.

The first item contains the nameof the filename from where
the program was loaded:

° °
10

file name

The next item is found using the following algorithm:

; ac2 = adr (itan)

;

FErrn NEXTPARAMErr'ER:
length:=item.length;

size:=(length+1) /2;

adr:=adr+size;

FNP:

IDA °
INCZR 0,0

ADD 0,2
ac2 = adr (next i tan)

0,2

Note that the end of the list is found when the length

equals zero. Also note that this algori thrnwill never pass
beyond the end itan, but will rontinuously give you the end

itan.

15

3.2.4 Pa.rarreter Exarrple. 3.2.4

C()lvt-lAND: PIP 987/ ' AB'

PARAMEl'ERS :

10

0 00

80 73

80 0

0 0

6

0 1

987

6

47 2

65 66

0

0 4

16

4. CQM.IDNICATION WITH S.

4.1 Event Classification.

After system initialization the process S goes into its idle
state where it is waiting, ready to execute an S-function.
As an event arrives, S classify it as being one of the follow-
ing types of events.

1) Console c::x:m:ra.nd

An answer arrives from the teletype indicating

that a hunan operator wants S to perfonn an
S-function.

2) Internal c::x:m:ra.nd

Anoutput massage fran a process in the system
arrives indicating that a process wants S to
perfonn a nmnberof S-functions.

3) Internal request

A control massage fram a process in the system
arrives indicating that a process wants S to
perfonn a final operation on the process it-

self.

4) Get massage

An input massage fran a process in the system

arrives indicating that a process in the system

wants S to deliver a massage from the massage

file.

Whenexecuting console ccmrands, the operatunq process is
defined as S itself. Whenexecuting internal carmands the

operating process is the sender of the message. Internal
requests are only executed if the sender of the massage is
a child of S, and the operating process is then defined as S

17

itself.

Generally S accepts to operate only on core itans ownedby

the operating process. So the only processes S ~uld kill is
the children of the operating process. Scmespecfal, functions,

however, violate these rules. In [2J all functions are
desc:ribed. In appendix B a survey of carmands are listed.

4.2 Error Messages. 4.2

Error messages consist of 3 canponents:

1• An error cause

2. Possibly a name
3. Possibly a number

Whenprinting error rressages on the teletype the error rressage

w:mld look like:

***<text> 8narre8 ~numberin octaJ.8

where the text explains the error cause.

Whenreturning answers to internal messages the error cause
is represented as a positive number, this numberbeing the

left part of the return value of MessO.This value maybe

used as key accessing the error rressage file for a transfer
of the actual error text.

18

4.3 Event Fonrats.

4.3.1 Internal Comland.

Message:

3

COUNl'

ADDRESS

NAMElIDDRESS

The oount is the number of characters to be interpreted by S•.

The address is the byte address of the first character in the

message. The nameaddress is a byte address printing to a 6

byte oore storage area or zero if no area present.

If <CCItm3Ildstring> denotes the rontents of the bytes in

locations address, address+ 1, ••. , address+count-1, the ccmrand
is inteIpreted as if the following ccmnands were keyed in fran

the teletype:

BEGlli <nl><camand string><nl>END<nl><endrredium>

The scan tenninates when the first ENDis met. Note that if the

byteoount is accurate you need not put an ENDas the last
camand in the camand string.

19
Answer:

COUNI'

RESULT* 256

NUMBER

NAMEADDRESS

'!he result is zero if the carmands were executed successfully
otherwise it contains a post ti ve error code, ccrrespondtnq
to an error text, refer to app. D. '!he count is equal to the
count: of the rressage. '!he number is the numberpart in case the

error rressage equivalent to error code 22 is returned else zero,

refer to app. E.

If the narre field exists and contains a non full naroe, that

narre is the naroepart of the error messaoe, Be careful not to
send a rressage to S with an undefined value of mess 3.

4.3.2 Internal request. 4.3.2

Message:

1B8

ADDRESS

NAMFADDRESS

The count and address acts as for inteInal cx:mnands. The

ccmnandstring is interpreted as if the following corrmands
were keyed in fran the teletype:

BEGIN<nl>KILL<sender><nl>
<corrmandstring><nl>END<nl><endmedium>

Answer:

20

RESULT * 256

COON!'

NUMBER

NAMEADDRESS

The answer is given iIrlrediatel y and the process will be
rerroved as fast as poasdbl.e,

4.3.3 Get Message.

Message:

5

CXXJNT>32

ADDRESS

ME'SSAGENUMBER

This messaqe asks for a transfer of the text of the system

messaqe with the number given in mess3. All system measaqes
rrentioned in ref [3] could be called for.

An..c:;wer:

RESULT*256

COUNI'

NUMBER

o

The count; is the number of characters in the text including
a tenninating zero byte. If count of message is too sma.l.l.,
only a part of the text is delivered.

21

APPENDIX A - REFERENCE'S

[1J MusSystem Introduction and
Proc:Jran'mer I s Guide.

[2] IXMJSUser I s Guide Part I

[3] IXMJSUser I s Guide Part II

[4] RC3600Paging System,
System p:rograrmer Is Guide.

[5] RC3600CATAIJ:::X; SYSTEM,

System Pro:! LduuerI s Guide.

22

APPENDIXB - SYNl'AXOF S-a::M-1ANDS.

The following metalinguistic symbols are used:

Sequences of characters enclosed in < and > represent

rretalinguistic variables whose values are sequences of
symbols. The mark ::= rreans 'ma.ybe canposed of' and the
mark I rreans 'or'. The production (rule): <sign> ::= + I -
rreans that anyoccurence of the variable <sign> may be re-
placed by a + or a -. The braces < and > signifies that the

contents should be regarded as a single rretalinguistic

variable. The superscription * means zero or rrore occurrenci.es
of the preceeding variable, whereas the superscri.ption + means

one or rrore occurrencies. The brackets [and] indicates an
optaonal, string.

<axmEnd> ::=
<item> ::=

<ccsrposf,te item> :: =
<name> : :=

<number> : :=

<text> : :=

<dumnyitem> : :=

<sep> : :=

<sign> : :=

<letter> : :=

<digit> ::=
<nl> ::=

<nl> * <name>([<sep8 <item»* <nl>

<name> I <number> I <text> I
<dumnyitem> I <oomposite item>

«itan> { L<sep>] <item>} *)

<letter> (<letter> I <digit» *
[<Sign>] \ <digit> + '} * <digit> +

'<any character except' >'

*
. I / I : I = I ,
+1 -

A IBI C I DI EI FI GI HI II JI KI U MI NI

o IPI Q I RI SI TI UI VI WI XI YI ZI lEI 01 AI

$ I
a t b l c I a: el fl gl hi il jl kl lJ ml nl

o Ipl q I rl sl tl ul vi wi xl yl zI iEl ¢I 0a
0 I 1 I 2 131 41 51 61 71 81 91

ASCII characters LF,vr ,FF, or CR

The ASCII characters: SP and HTand the sequence ! <any characters
except !>~ are blind outside texts, except for being tenninators of
names and numbers.

23

APPENDIXC - SURVEYOF S-(XM.WIDS.

Read a sequnce of carmand lines
fran the teletype. Tenninate at

an ENDccmnand.
Bootstrap a stand-alone program.

Break the selected process.
Stop and clean the selected process.
Kill all processes in the corei tan

if specified else kill all processes
in all utility coreitens.
Select the specified subcatalog at
current subcatalog.

Select the specified drive as current
drive.
Tenninate a sequence of carmands and

execute these ccmnands.
FREE<coreitern> Free the specified coreitem.
cer <corei tern> [<size> I <size> <size>J

Get the specified coreitan.
rnrr <driveno> Initialize the catalog on the disc drive.

lNI' <file> Read a sequence of ccmnand lines fran the
specified file. Tennina.te at an rnD

cx:mnand.
KILL<process> Kill the specified process.

LISl' [iCOREI /P:roGRAM]<name>*

BEGIN

F:OJI' <filename>

BREAK<process>
CLEAN<process>
CLEAR[<corei~

~ <subcaname>

DRIVE<dri veno>

END

List all or selected processes, programs
or coreitens.

WAD [;<coreitern> [/<size> I /<size> /<size>]J
{{ <file> 1 «file> <PCirams>~[/<p~) +

Load a core item fran the specified
file (s) .

RELEASE Release current subcatalog and select
the main catalog on current drive.

24

STARI'<process>
SI'OP <process>
<filename><pa.rams>

Start the specified process.

Stop the specified process.
Load a utility corei tan fran the

specified file.
WAIT the specified number of sees.WAIT <Timer>

25

APPENDIX D - SURVEY·OF ERroR·MESSAGES AND·EQ.JIVALEN:r ERroR NUMBERS.

1 *** SYNTAX

2 *** 'lID MANYPARENTHESES

3 *** PARAM
4 *** END MEDruM., FILE <filename>

5 *** 'lID MANYCXMv1ANDS

6 *** srATUS, FILE <filename><status>

7 *** UNKNa-JN, FILE <filename>
8 *** RESERVATION, FILE <filename>
9 *** CDREITEM EXISTS, ITEl·l <itannaIre>

10 *** SIZE
11 *** CDREITEM OOES oor EXIST, ITEM <itemname>
12 *** CDRElT.EMmr CLE'.ARED, ITEM <itan>

13 *** ENl'RY mr A FILE, ENl'RY <catalog entry>
14 *** srATUS, DE.VICE <device name><status>

15 *** oor ALIDWED

16 *** 00 SPACE FUR PAGES, FILE <filename>
17 *** ILLEGAL PKlGRAM, FILE <filenarre>

18 *** SIZE ERroR, FILE <filename>
19 *** am:::::KSUM ERroR, FILE <filename>

20 *** VIRI'UAL ADDRESS ERroR, FILE <filename>
21 *** P:ro::ESS OOES oor EXIST, PRXESS <process>
22 *** SYSTEM ERroR <number>

23 *** PRX:ESS EXISTS, PRX:ESS <process>
24 *** ~, SUBCATAI.OG <filenama>

26

APPENDIXE, THE'SYSTEMERroR' - MESSAGE.

The 'Systen error' - measaqe is given the error no. 22 which is
equivalent to the follcwing message:

***SYSTEMERroR <number>,
where the number refers to the following list:

!lOOtstrap errors

The error occurs during the l:x:xJtstrapof the rx:MJS systen

1

2

3

4

5

6

7

10-16

Operator device malfunction

Master drive undefined

Master device malfunction

File managementsysten malfunction
Paging file error
Systen configuration error

Error message file error
Systen mal.functuon

Rlmtimeerrors

21 Internal request error. An error occurs

after the sending process is rerroved,

Non fatal error.

22 JXt..1[JSstack overflow < An implementation

restriction has been violated. Fatal error,

the system may fail to operate properly.

24 Error measaoe file error.
Fatal error, the systen may fail to operate

properly.

25 Core storage structure destroyed. Fatal

error, the system may fail to operate

proJ;€Xly.

27

APPENDIX1'; SURVEYOF CDRE Ar:MINISTRATION

Fig. 1, corei tern and program relationship:

IXMJS

BASIS

SYSTEM

Program

P1 nrel

P2 nrel

Free

P2 xrel

Program

P1 xrel

Load of P3
)

Coreitem C1'
nitern part.

Corei tern C2,
nitern part.

Iaver core part.

Higher core part

Corei tern C2,
xi tern part.

Coreitern C1
xitern part.

IXMJS

BASIS

SYSTEM

Program

P1 nrel

I
P2 nrel I

I
I
I

P3 nrel

Free

P3 xrel

P2 xrel

Program

P, xrel

28

Fig. 2, storage allocation scheme:

~

0 Coreitem chain: 1 ident xrel address here,,/
0 owner if no xrel-part

/' +1 CIA then zero
P3 ~

,/" +2 chain CIA: current
,/ +3 size I load

./ , I- +4 narre: address.
+5
+6

Fund.aIrental

I
part:

NREL.L \PARI' procesSdescr. +
P5 ~ i;.. ~rogranrlescr. +

;:::::::: --,. Q.Pny byteaddress -- T~
related code +

<, frarres if any
<, (paged programs) •

<,
0 <,

..•..•.••...

FREE

ITEM

u

Higher corepart. -1 ident
/0 owner

+1 CIA

+2 chain

+3 size
+4 narre:

+5
+6

/

/
/

/

Coreitern. ident.

-1 always.

CIA: current

load
address.

Non fundarrental

Coreitern.head. ~ REL -".,..- - -Jpart, i

