Title:

‘DOMUS, System Programmer's Guide, version 3.

E § REGNECENTRALEN RCSL No: 43-GL, 8374

Edition: January 1979

Author: enni
RC SYSTEM LIBRARY:. FALKONERALLE | DK-2000 COPENHAGEN F vthor Knud Henningsen

Reywords: Mys, Operating System, Loader, Disc, Version 3.

Abstract: This manual describes the interface between assembly
program and DOMUS.

(32 printed pages)

Users of this manual are cautioned that the specifications
confained herein are subject to change by RC ot any time

Copyrlght A/S Regnecentralen , 1978 without prior notice. RC is not responsible for typographi-

cal or arithmetic errors which may appear in this manual

Printed by A/S Regnecentralen, Copenhagen aond shall not be responsible for any damages caused by

reliance on any of the moterials presented.

CONTENTS PAGE
1. INTRODUCTION csecercesccecs Cecncece 1
2. CORE STORAGE STRUCTURE +.eeecacoccse 2
2.7 Core TtefllS .cvcvcevancccanacnacans . 2
2.1.1 The Core Item Headcccnn. 3
2.1.2 The Free Core Item 5
2.1.3 The Used Core TteMl .cceeeoeas 6
2.1.4 The Utility Core Item 8
2.2 Process Hierachy ccceeeeececeaes 9
3. PROGRAMS AND PROCESSES +evcceoscccossocsca 10
3.1 Program Descriptor Wordeoc... 10
3.2 Program Parameters ...ccecscescessces 11
3.2.1 SeparatOrs ...ceeeeeesccscens 11
3.2.2 Ttem TYPES cvveecscsocscscens 12
3.2.3 Scanning the Parameters 14
3.2.4 Parameter EXamplec.. 15
4, COMMUNICATION WITH S cecesanenas .o 16
4.1 Event Classificationc.ceeeeeeen 16
4.2 FError Messages ceesssscassenaa 17
4.3.17 Internal Camandcoece.. 18
4.3.2 Internal Requestceec.. 19
4.3.3 Get MeSSage seesevsceccrccanan 20
APPENDICES
APPENDIX A — REFERENCES ..veecsccascovasncesoen 21
APPENDIX B — SYNTAX OF S—COMMANDS .cvvececceess 22
APPENDIX C — SURVEY CF S—COMMANDS +vvencceeennn 23
APPENDIX D - SURVEY OF ERROR MESSAGES AND
EQUIVALENT ERROR NUMBERS 25
APPENDIX E - THE 'SYSTEM ERROR' - MESSAGE..... 26
APPENDIX F - SURVEY OF CORE ADMINISTRATION.... 27

1. INTRODUCTICON.

The DOMUS system consists of the following software
camponents:

Monitor

Utility Procedures
Basic I/0

Character I/0

Record I/O

Paging System

Disc Driver

Teletype Driver

File Management System

Operating System S

The operating system S takes care of core storage management,
program/process load fram disc files, program/process removal.
It executes cammands keyed in fram the teletype or sends to
the process fram another process in the system. It introduces
a process hierachy among the processes defining a parent/
child relation between processes.

CORE STORAGE STRUCTURE.

2.1

Core Items.

Programs and processes are organized as described in [1]
After system initialization the available core storage
above the basic system is organized as one large item of
core storage. When the system works, pieces of that core
storage is occupied by additional programs, procedures,
processes, or data. Core storage is allocated in disjoint
pieces, called core items, all chained together in ascend-
ing order in the one and same chain, the core item chain,
the head of which being addressed by the page zero location:
CORE. The allocation strategy is given in app.F.

All processes except for the processes in the basic system
are contained in exactly ocne core item. In a core item may
reside several processes. Thus two relations exists between
a process p and a core item C.

1) pinC= p lies inside the core item C
C contains p:
2) powns C =

C's owner is p

2.1.1 The Core ITtem Head.

2.1.1

The core item is headed by 8 word descriptor with the follow-

ing contents:

+0
+1
+2
+3
+4
+5
+6

ident

owner process

current load address

chain

size

name of core item

J

Size

The ident field is used to distingquish between the two

types of items, the N-item and the X-item. The N-item is
restricted for use in allocating low core storage area
only, address roam (0;32 Kw). The X-item can be used in
any core-envirormment with address roam (0;64 Kw). Both

a N-item and an X-item could be allocated in one task, in

which case they are referred to as a camposite item, with
the X-item head pointed out fram the ident field of the N-
item. In the following the term core item is used for a

caomposite item too.

N-item:

X-item:

ident:=0

ident:=-1 ident :=-1

USED

ident:=0/corresp.x-item. address

The owner process field contains the process description
address of the process which allocated the item.

The current load address field points to the first address

to be used if the core iteam is lcaded with a procedure or
a process.

The chain field points to the next core item or is set to
zero if it is the last item in the chain.

The size field contains the size of the core item.

The name field contains a possible name of the core item.

Three different kinds of core items exists:

The Free Core Item
The Used Core Item
The Utility Core Item.

2.1.2 The Free Core Item.

The item is not used by any process.

Notice:

0/ -1

size

0: N-item;
-1z X-item;

a free item is never composite. 2 free item with
the item head address in lower core is defined
as a N-item. In all other cases the whole item
should rest in lower core to be called a N-item.

2.1.2

2.1.3 The Used Core Item.

The item is allocated by a process.

Ident
Ident

Ident

ident

L T

owner process

l Corresponding
X-item if any.

! oWner process

|

|

chain | chain ‘
size size '

| l
name name

i
o
(X]

N-item allocated only.

X-item allocated only.

A N-item and an X~-item are allocated and

the corresponding X-item is pointed out

fram the N-item. Both items are present

in the core item chain and the correspond-
ing X~item will always be last in chain.

In the case one or more processes/programs are loaded into
one core item, the different parts of the item are pointed
out using an internmal chain. The actual program/process parts
are kept together using an internal ident.

-1 [IDENT
0
+1
+6
< free
T

z &
— C
= T
X
£ [, %
T A3
0
e.
.:LFreeék
5

\

J\

<

J\

IOAD INTO USER ITEM

The program B
consist of a
xrel and a

wnrel part.

The program C
consist of a
xrel and a

nrel part. The
corresp. xrel-
part is addres-

sed from the
nrel-part.

The program D

fconsist of a
nrel-part only.

Current load
address.

The remaining
the allocated
item is free.

INT. IDENT

-1 [INT. CHATN |

Corresponding +1
X-item if any

-f -1
0

.

°
=y
+6

| |
r
The program ’

consist of a

xrel part
only.

B, xrel- <
part.

Current load
address.

part of
camposite 4

-
s

Y4

0: use, -1:

A

EY
¥

.4% ww.

. ,

_...Ad‘w,__._,
__w“lvﬁ__A_

|

i

7
|
I

free else startaddress of
corresp. xpart.

2.1.4 The Utility Core Item.

The item is allocated because of a single load

ident - == =3l -1 |

-——————— -

OwWner process | owner process
|

0 | 0 :
|

) |

chain ! chain |
|

N |

size I size |
!

name of | name of :

load file : load file |

i |

| |

Ident

]
o
.

N-item allocated only.
Ident = -1: X-item allocated only.
Ident <> 0, -1: A N~item and an X-item are allocated

and the corresponding X-item is pointed
out fram the N-item.

Both items are present in the core item
chain and the corresponding X-item will
always be last in chain.

2.2 Process Hierachy. 2.2

The above mentioned two relations between core items and
processes introduce a relation between processes:

Pq parent to P, = there exists a core item C
P, childopr: sothatpz'ECovmedbx
P

All processes except for the processes in the basic system
are children of other processes and all these processes are
organized in a structure with respect to the relation parent

- A

process

core item

&)

®,
BV
: ©

10

3. PROGRAMS AND PROCESSES.

3.1 Program Descriptor Word.

The following bits of PSPEC [1] are used by the system:

BS:

B6:

parameter bit: if this bit is set,
parameters are placed immediately after
the highest N relocation occupied by the
code. If the program contains a process
descriptor the address of the parameter
are placed in ac 1 when the process is
started.

paged program bit: the program is paged
see ref [3:]

reservation bit: the process is a driver
process. Processes using this program are
breaked with cause = 8 if a reserver of
the process is killed.

3.2

11

Program Parameters. 3.2

3.2.1

Program parameters are placed immediately after the loaded
normal relocatable code, that is the last used address of the
allocated N-item. If no N-item is allocated the parameters
are placed immediately after the last used X-item location.

Program parameters consist of a sequence of items, each of
the form:

PARAMETER

An item always starts at an even byte address. The length of
an item is the number of bytes in the item, odd or even. The
separator is a byte containing the ASCITI value of the separa-
tor preceeding the item or a zero if the item was preceeded
by no separator. The type is an integer denoting the type of
the item.

Separators. 3.2.1

The following values may appear in the separator field:

0: blank, no separator.
44: R
46: .
47: /
58: :

61: =

12

3.2.2 Item Types.

Type 0, names:

10

char 1 char?2

char3 char4

char5b 0

In a name item up to five characters of the name are placed,
unused positions being zeroised. Only the first five characters

of a name are significant.

Type 1, integer:

SEP 1

value of integer

Type 2, texts:

nt+4

SEP 2

char 1 char?2
If n odd the slack byte

is set to zero.
charn

13

Type 3, camposite item:

nt4

SEP 3

parameter sequence
> of length n.

The camposite item contains all parameters enclosed in
parentheses. The sub sequence starts in adr (item)+2.

Type 4, dumy item:

10
SEP 4
0 0
0 0
0 0
Type 5, end item:
0

14

3.2.3 Scanning the Parameters.

The first item contains the name of the filename from where
the program was loaded:

10

file name

The next item is found using the following algorithm:

; ac2 = adr (item)

FNP: ; FETCH NEXT PARAMETER:
LDA 0 0,2 ; length:=item.length;
INCZR 0,0 ; size:=(length+1) /2;

ADD 0,2 ; adr:=adr+size;
; ac2 = adr(next item)

Note that the end of the list is found when the length
equals zero. Also note that this algorithm will never pass

beyond the end item, but will continucusly give you the end
item.

15

3.2.4 Parameter Example. 3.2.4

COMMAND: PIP 987/'AB'

PARAMETERS :
10
0 00
80 73
80 0
0 0
6
0 1
987
6
47 2
65 66
0
0 4

16

COMMUNTICATION WITH S.

4.1

Event Classification.

After system initialization the process S goes into its idle

state where it is waiting, ready to execute an S-function.

As an event arrives, S classify it as being one of the follow-
ing types of events.

1)

Console command

2)

An answer arrives fram the teletype indicating
that a human operator wants S to perform an
S-function.

Internal cammand

3)

An output message from a process in the system
arrives indicating that a process wants S to
perform a number of S-functions.

Internal request

4)

A control message from a process in the system
arrives indicating that a process wants S to
perform a final operation on the process it-
self.

Get message

An input message from a process in the system
arrives indicating that a process in the system
wants S to deliver a message from the message
file.

When executing console cammands, the operating process is
defined as S itself. When executing internal cammands the
operating process is the sender of the message. Internal

requests are only executed if the sender of the message is

a child of S, and the operating process is then defined as S

4.2

17

itself.

Generally S accepts to operate only on core items owned by
the operating process. So the only processes S would kill is
the children of the operating process. Same special functions,
however, violate these rules. In [2_] all functions are
described. In apperdix B a survey of camands are listed.

Error Messages.

Exrror messages consist of 3 components:

1. An error cause
2. Possibly a name
3. Possibly a number

When printing error messages on the teletype the error message
would look like:

xxx<text> Kknamed] kmumber in octall]

where the text explains the error cause.

When returning answers to internal messages the error cause
is represented as a positive number, this number being the
left part of the return value of MessO. This value may be
used as key accessing the error message file for a transfer
of the actual error text.

4.2

18

4.3 Event Formats.
4.3.1 Internal Camand.
Message:
3
COUNT
ADDRESS
NAMEADDRESS

The count is the number of characters to be interpreted by S..
The address is the byte address of the first character in the
message. The name address is a byte address printing to a 6
byte core storage area or zero if no area present.

If <cammand string> denotes the contents of the bytes in

locations address, address+1, ..., address+count-1, the cammand
is interpreted as if the following camands were keyed in fram
the teletype:

BEGIN <nl><camand string><nl>END<nl><end medium>

The scan terminates when the first END is met. Note that if the
bytecount is accurate you need not put an END as the last
camand in the camand string.

4.3.2

RESULT * 256

COUNT

NUMBER

NAMEADDRESS

The result is zero if the commands were executed successfully
otherwise it contains a positive error code, corresponding
to an error text, refer to app. D. The count is equal to the
count of the message. The number is the number part in case the
error message equivalent to error code 22 is returned else zero,

refer to app. E.
If the name field exists and contains a non full name, that

name is the name part of the error messace. Be careful not to
send & message to S with an undefined value of mess 3.

Internal request.

Message:

1B8

COUNT

ADDRESS

NAMEADDRESS

The count and address acts as for internal camands. The
camand string is interpreted as if the following commands
were keved in fram the teletype:

BEGIN <nl>KIT.I<sender><nl>
<command string><nl>END<nl><end medium>

4.3.2

20

Answer:

RESULT * 256

COUNT

NUMBER

NAMEADDRESS

The answer is given immediately and the process will be
repoved as fast as possible.

4.3.3 Get Message.

Message:

COUNT>32

ADDRESS

MESSAGENUMBER

This message asks for a transfer of the text of the system
message with the number given in mess3. All system messages
mentioned in ref [3] could be called for.

Answer:

RESULT*256

CQOUNT

NUMBER

0

The count is the number of characters in the text including
a terminating zero byte. If count of message is too small,
only a part of the text is delivered.

21

APPENDIX A - REFERENCES

[1_] Mus System Introduction and
Prograrmer's Guide.

2] DOMUS User's Guide Part I
[3] DOMUS User's Guide Part II
[4] RC3600 Paging System,

System Programmer's Guide.

(5] RC3600 CATALOG SYSTEM,
System Programmer's Guide.

22

APPENDIX B — SYNTAX OF S—COMMANDS.

The following metalinguistic symbols are used:

Sequences of characters enclosed in < and > represent
metalinquistic variables whose values are sequences of
symbols. The mark ::= means 'may be composed of' and the

mark | means 'or'. The production (rule): <sign> ::= +| -
means that any occurence of the variable <sign> may be re-
placed by a + or a —. The braces < and > signifies that the
contents should be regarded as a single metalinguistic
variable. The superscription * means zero or more occurrencies
of the preceeding variable, whereas the superscription + means
one or more occurrencies. The brackets [and] indicates an
optional string.

<cammand> ::= <nl> * <name>{ [<sep>] <item>}* <nl>

<item> ::= <name> | <number> | <text> |
<dumy item> | <composite item>

<composite item> ::= (<item> { [<sep>] <itew} *)

<name> 1:= <letter> { <letter> | <digit>} *

<number> ci= [<sign>] (<digit>T 1 <digitr *

<text> ::= '<any character except'>'

<durmy item> S

<sep> = L/l =1,

<sign> s:= +1| -

<letter> ::= A|BICID E FI Gl H II J KI I M Nj
OIPIQIRISI TI U VIW XI YI 24 El @1 Al
g |

albi ctdl e £t g hiil jI ki I ml ni
olplgitrlsl tf ul viwl xl vyl 4 & ¢l &
0111 2131 41 51 61 71 81 9l

ASCII characters LF,VT,FF, or CR

<digit>
<nl>

The ASCII characters: SP and HT and the sequence ! <any characters
except !>! are blind outside texts, except for being terminators of

names and numbers.

23

APPENDIX C — SURVEY OF S—COMMANDS.

BEGIN

BOOT <filename>
BREAK <process>
CLEAN <process>
CLEAR [<coreiten>_]
COMNNECT <subcaname>
DRIVE <driveno>

END

FREE <coreitem>

Read a sequnce of cammand lines

from the teletype. Terminate at

an END command.

Bootstrap a stand-alone program.
Break the selected process.

Stop and clean the selected process.
Kill all processes in the coreitem
if specified else kill all processes
in all utility coreitems.

Select the specified subcatalog at
current subcatalog.

Select the specified drive as current
drive.

Terminate a sequence of commands and
execute these comands.

Free the specified coreitem.

GET <coreitem> [<size> | <size> <size>]

INIT <driveno>
INT <file>

KILL <process>

Get the specified coreitem.

Initialize the catalog on the disc drive.
Read a sequence of cammand lines fram the
specified file. Terminate at an END
command.

Kill the specified process.

LIST [/cORE | /PROGRAM] <name>

List all or selected processes, programs

or coreitems.

LOAD [/<coreitem> [/<size> | /<size> /<size>]]

{{«fi1e> | (<file> <params>)} {/<Pr°°“amf’3> :

Load a coreitem fram the specified
file(s).

Release current subcatalog and select
the main catalog on current drive.

24

START <process> Start the specified process.
STOP <process?> Stop the specified process.
<filename><params> Ioad a utility coreitem from the

specified file.
WATIT <Timer> WAIT the specified number of secs.

25

APPENDIX D - SURVEY OF ERROR MESSAGES AND BQUIVALENT ERROR NUMBERS.

1 *%% SYNTAX

2 *%% TOO MANY PARENTHESES

3 *%%* PARAM

4 **x% END MEDIUM, FILE <filename>

5 *%% TOO MANY COMMANDS

6 *x% STATUS, FILE <filename><status>

7 *%*% UNKNOWN, FILE <filename>

8 *%x%* RESERVATION, FILE <filename>

9 **% COREITEM EXISTS, ITEM <itamname>

10 *%%x STZE

11 *%x% COREITEM DOES NOT EXIST, ITEM <itemmame>
12 *%% COREITEM NOT CLEARED, ITEM <item>

13 *%*% ENTRY NOT A FILE, ENTRY <catalog entry>
14 *%% STATUS, DEVICE <device name><status>

15 *%x% NOT ALLOWED

16 **% NO SPACE FOR PAGES, FILE <filename>

17 *%x% TLLEGAL, PROGRAM, FILE <filename>

18 *%*x SIZE ERROR, FILE <filename>

19 *%% CHECKSUM ERROR, FILE <filename>

20 *%% VIRTUAL ADDRESS ERROR, FILE <filename>
21 *%% PROCESS DOES NOT EXIST, PROCESS <process>
22 **% SYSTEM ERROR <number>

23 **% PROCESS EXISTS, PROCESS <process>

24 *%x% UNKNOWN, SUBCATALCOG <filename>

26

APPENDIX E, THE 'SYSTEM ERROR' - MESSAGE.

The 'System error' - message is given the error no. 22 which is

equivalent to the following message:

*%*xSVSTEM ERROR <number>,

where the number refers to the followino list:

Bootstrap errors

The error occurs during the bootstrap of the DOMUS system

~N O W N e

10-1¢6

Runtime errors

21

22

24

25

Operator device malfunction
Master drive undefined

Master device malfunction

File management system malfunction
Paging file error

System configuration error

Error message file error

System malfunction

Internal request error. An error occurs
after the sending process is removed.
Non fatal error.

DOMUS stack overflow. An implementation
restriction has been violated. Fatal error,
the system may fail to operate properly.

Error messace file error.

Fatal error, the system may fail to operate
properly.

Core storage structure destroyed. Fatal

error, the system may fail to operate

rroperly.

APPENDIX E

27

SURVEY OF CORE ADMINISTRATION

Fig. 1, coreitem and program relationship:

DOMUS
BASIS
SYSTEM

Program
P, nrel

P, nrel

Free

P, xrel

Program

P, xrel

Icad of P

Coreitem C1 '
nitem part.
Coreitem C2,

nitem part.

Lower core part.

DOMUS
BASTS
SYSTEM

Program
P1 nrel

P, nrel

P, nrel

Free

Higher core part

Coreitem C2 ’
xitem part.

Coreitem C
xitem part.

P3 xrel

P2 xrel

Program

P. xxrel

28

Fig. 2, storage allocation scheme:

= ¥
0 Coreitem chain:
T v
2 ;3 = -
d
. gy / ‘
¥ 3
—] d . .
— Coreitem.ident.
- Coreitem.head.
P5
== -
5 E
~
~
~
0 | -
' =
é === T Lower corepart.
fJ’Higher corepart.
FREE
TTEM /
/
/

/
/

Coreitem. ident.

Coreitem.head.

+1
+2
+3
+4

+5

+6

ident xrel address here,
owner if no xrel-part
CLA then zero
chain CLA: current
size load
name: address.
Fundamental
part:
NREL
PART process:descr. +

:j_'_f._progranﬁescr. +
=xany byteaddress -
| related code +

frames if any

(paged programs) .

-1} ident -1 always.
0 | owner
+1 | CIA
+2 | chain CILA: current
+3 | size load
+4 | name: address.
+5
+6
Non fundamental
2 £
TXRL F
™|

