®

Title:

DOMUS, USER'S GUIDE, Part 1, Version 3.

Edition:
Author:

[@ 8 REGNECENTRALEN RCSL No:

RC SYSTEM LIBRARY: FALKONERALLE 1 DK-2000 COPENHAGEN F

43-GL8375
January 1979
Knud Henningsen

Keywords:

DOMUS, MUS, Operating System, Loader, Disc.

Abstract:

This manual describes the disc operating system DOMUS for the

RC 3600 line of computers.

(80 printed pages)

Copyright A/S Regnecentralen, 1978
Printed by A/S Regnecentralen, Copenhagen

Users of this manual are cautioned that the specifications
contained herein are subject to change by RC ot any time
without prior notice. RC is not responsible for typographi-
cal or arithmetic errors which may appear in this manual
and shall not be responsible for any damages caused by
reliance on any of the materials presented.

i
.. CONTENTS PAGE
1. INTRODUCTION. e e eecacecoscoccsasccscnsasccccs cecsescscsscescscncses 1
1.1 TEXMINOLOGY « escoeesccscsssssscscscsassacacsssscsccasossns 2
1.2 FileSeeeeeeesecsseccsecsccasceasccasscscscsssnoscsasannsse 5
1.3 Drives and Subcatalogs — Load frOm...ceeeeeeccssccccscccs 6
1.4 The Operating System Process S.ceeeecceccccccccoccs ceceees 7
1.5 Core Storage ManagemMeNt..ceceeccesscccscocsccccsccsaccscscs 8
1.5.1 Core IteMeceeecoaccconss cececesssssseccssssccases .o 8
1.5.2 Core Allocation Strategy..ccsceecececcececcaccccess 9
1.5.3 Core Item Classification...ceceeececcccceccceces 10
1.5.4 Process Hierachy.cceeeececeseccscacesccccccnncoes 11
o : WORKING CYCLE OF Suuuussssssnssneesesesesennnnsnsnnsessssseeennns 12
2.1 The SMOdE.eeeeenececannss tetecesssasseccsacsssseesesanns 12
2.2 Mode ShiftSieeeceseecceescceacccscescsoassocccscsossscnns 12
2.3 EVENES.ceeeeesescensesssassssscssescsssnsccascsscncscances 13
2.3.1 Consocle COMANd. . ccsseecesssccscccccsscsccccnses 13
2.3.2 Internal COMMANd. ...cceeseecssecscccscssscccssnnse 13
2.3.3 Internal RequUeSt.ccececeeccccececeeascccsscecsans 13
2.4 The Operating PrOCESS...ccccscssscscssssaccccscccccsssccss 14
3. THE S COMMAND IANGUAGE. e csesssosccsossscsscsssoscsscnsscscscccs 15
3.1 BaSiC ElemEntS.eececcesscessccccescccosscsssccosscscsasssce 15
3.2 NUMDEL S . e eeescccsosssccssscssccssssassssesssnasccnsss cecssen 15
@ 3.3 TextS....e.... ettt eeeaeeenaeeeaeeeiaaeieanaaaas 16
3.4 NOMES e eeoceeaasosscassscsscscscsssncsss ceescssscsescncecns 16
3.5 THOIS . c coeececceccccasssasessasssacsssssesccscsansssacnse 17
3.6 S=COMMNANAS ¢ e s oo cooeeccccscsssccscsssssscsssesscscscscsscanss 17
3.7 Camments, Blanks, Blind charactersS....cccecceecececccccss 18

ii
CONTENTS PAGE

4, S=FUNCTIONS. e eeceesccescsascsasssscsssssccssssssasssscscsccssasccs 19
4.1 BEGIN..eeeececccccccassscsssccsssosacossscssssnsscossnnans 21
4.2 BOOTeeeeeeesecassacccassasssasssosasssssscssccsscscconces 23
4.3 BREAK. e ccevoecasscccsssccossaccsanscss ceeseccscscnscscsascne 24
4.4 CIEAN. v e -cecevescaccsossssssessscssssssssscssccscoscses 25
4.5 CLEAR: s cecescccccnces teecsecsssessesesacssccssnssscassns 26
4.6 CONNECT . e eceececcssccssscsssnsocscsssasssssacsssocsnvcsns 27
4.7 DRIVE...... cecessss cececccne ceosncnns cecsessssscessacccnns 28
4.8 END.veeeeocoacccoscsacssssssasecssacsccssssccssssssnscnssae 30
4.9 FREE. . ceeeeeececccescsscsssssssosssscssscsssssssossssancsosss 32
4,70 GETuceeeeeccccsoaacassssesssocscsossssssssssscsscnscscassncs 33
4.11 INI e eeeocccscsssccascssscacssccannsssnsanas cecescssssens 26
4.12 1 37
4,13 4 1 11 cesesssscsssssasssecssns cscecesssece 39
4.14 LIST.cecoconass ceceteccsccanes tecesecsccssaessscescnennn 40
4.15 LOPAD. e eseeescccsacssessssssscssacsssncscnsscssocscasenass 43
4.16 RELEASE. . vc0esesessccccssscocsssscccoscsccssnas csscccnes 45
. 4.17 START ..cecaceccsasscssscsssccccssascnncss Gecessecscesacas 47
4.18 STOP.sceeecscescosssscssossasseaccsssacscascssssssoscssanss 48
4.19 Utility program load..cceesccsscccscscccccccccsccccscsasna 49
4.20 AT . e eeeeecssecsscesscssacoasesncocsscsssasscsssanssnns 51

APPENDIXES
A. CHARACTER SET USED BY DOMUS..cecceccescsocccccconsns A-1
B. SURVEY OF S=COMMANDS. . cceccsosacccssscccscsccccnncsss B-1
C. SURVEY OF ERROR MESSAGES AND NUMBERS...cccesccccass C-1
D. SYSTEM ERROR MESSAGES..eccescecccccccccccsss coecess . D~
E. SURVEY OF CORE ADMINISTRATION. cccceevecacsccccsnasene E-1
F SYSTEM BOOTSTRAP. cevesesscccocsssccssssssssscosacsns F-1
G. SYSTEM GENERATION. .eeeeecesscccscccccssacsccocassacscse G-1
H., REFERENCES...cccceeccecessescccscssccscnsccscsssccnsns H-1

INTRODUCTION.

The Disc Operating Multiprogramming Utility System, DOMUS, can
be used with any RC3600 camputer of 32 Kb or larger memory, to-
gether with any cambination of discs and an operator device, e.g.

a teletype.

The main features of DOMUS are:

Parallel processing including interprocess
comunication and interrupt processing.

A strong framework for i/o processing, both
on character level and on record oriented level.

- The operating system takes care of core storage
allocation, program load from disc files, process
creation and removal.

- The operating system itself has only a minor part
resident in core, the major part residing on a
disc. Also user programs can use this facility.

- Easy operation of the operating system by a human
operator or by user programs sending internal
comands to the operating system.

- Support for the MUSIL TEXT EDITOR and the MUSIL
COMPILER and cther utilities, and support for driver
programs for all hardware modules of the RC3600
system.

.1

‘ Terminolegy.

Address

Bit

Character

Text

Descri@r

Ttem

An address may be a word address, which is a 16 bit
unsigned integer, corresponding to a physical address
in core store. Or it may be a byteaddress, which is
a word address left shifted one and with a one

added in bit 15 if the byte addressed within the
word is to the right. Byteaddressing is only pos-
sible in addressing low core storage area (address
<64KB) .

A computer word consists of 16 bits, numbered
from left to right:
BO, Bl, B2,cceceenss B15.

A camputer word is regarded as two 8 bit bytes.
The left one bit0 to bit7 has a even address and
the right one bit8 to bit15 an odd address.

A character is a byte. The common alphabet within
the system is the ASCIT alphabet see appendix A.

A text is a sequence of characters. Starting at
a byte address and containing in a left to right
packing. A text is terminated by a Null character
with byte value zero.

A collection of information, which describes an
object, is called a descriptor. Descriptors are
found as part of items and as part of zones.

An item is a core area, which is headed by a
descriptor, the first part of which usually has
a standard layout. This ensures that an item
always may be in scme chain and possibly also in

1

.1

Field

Queue

Size

a queue. The first words of an item contains the
fields:
ident: nitem/xitem ident

next: next item in a queue

prev: previous item in a queue
chain: next item in a chain
size: the size of the core area of item

name: (3words) A text identifying the item.

A field is a displacement, which identifies a
piece of information within a descriptor. Same
important fields are predefined in the system
assembler, and/or in the musil compiler.

(linked lenear list). A chain consists of a chain
head and a number of chain elements. The head and
each element point at the next item in the chain,
the last element equals zero.

(doubly linked cyclical linear list). A queue
consists of cne or more queue elements. One of
the elements is the queue head. A queue element
consists of two consecutive words pointing at
the next element in the queue and the previous
element in the queue respectively.

When a queue is empty the head points at itself.
When an element is not in a queue it normally
points at itself.

The term length is used to express the number of
bytes contained in some core area.

The term size is used to express the number of
words contained in some core area.

Program A collection of instructions and data which
may be executed or accessed by one ore more
processes.

Process A sequential execution of programs under control

of the monitor. All information about a process
is collected in a process descriptor.

Monitor The nucleus of the system which implements
multiprogramming, i.e. a parallel execution of
several processes on a single processor.

Device A collection of units which can receive data
fram the processor or transmit data to the
processor, often in parallel with the execution
of camputer instructions.

Driver A process executing a driver program in order
to central i/o to a device.

Disc Any random access storage unit connected to the
canputer.
Drive A disc unit station in the system. All drives

are numbered from zero to a maximum and are
administrated by the cat process.

File A lcgical collection of data residing on a
disc having a name (discfile). Scmetimes we
shall denote a roll of paper tape or a collection
of data between to tape marks on a magtepe reel
as a file too.

Zone A collection of information and associated

storage areas neccessary to perform operation
on files and devices.

1.2

Files.

Files residing on discs are identified with a name consisting
of 5 ascii characters. DOMUS only accepts filenames beginning
with a letter and continued by letters and digits, only the
' first 5 characters being significant.

There exists no explicit type of the different files in the
system, they may however be classified in 4 different types:

- Text Files
Consist of a sequence of ascii characters, the NULL
char (a zero byte) being totally ignored, terminated
by an EM char (byte value 25) or the physical end

cf medium.

- Relocatable Binary Files

Contain a program/process which can be loaded
and started by DOMUS. The file is terminated by
the physical end of medium.

- Absolute Binary Files

Contain a stand-alone program which can be boot-
strapped by DOMUS. The file is terminated by the
physical end of medium.

- Data Files

Contain data produced by user programs.
These files are of no interest for DOMUS.

1

.2

1.3

Drives and Subcatalogs - ILoad from. 1.3

At system bootstrap one of possibly more logical units of the
master device is chosen as current logical unit and the main

catalog of the unit is chosen as current catalog.

This logical unit is hereafter referred to as the master drive
of the system and recognized as drive no. zero in the command
language of 'S' [Fully strictly speaking a logical unit may be
a part of or include several disc drives, ref. 4].

The logical units and the subcatalogs accessible for the system
are those logical units fixed at generation time and described
in the 'CATW' - process, and those subcatalogs described in the

system file 'SSYSC' on unit zero, refer to app. G.

Programs are loaded from the files on the current subcatalog in
use if any, in which case the current drive specification is
dummy.*If no file of the specified nome is present in the subca-
talog or if no subcatalog is specified the main catalog on current
drive is used.

If the program descriptor word indicates, that parameters is
called for, the items are transferred to core immediate following
the last word part of the program. The parameter items are fetched
from the command line, refer to section 3.6.

In case the program itself includes a process dgscription the
program and the process are linked into the monitor queues.
As the monitor-process-scheduler turns cver the control, the
process starts to execute the program loaded. In parallel the

operating system invites for a new command.

*Note: The description given in the 'SSYSC'-file covers the unit
ident. belonging to the subcatalog looked up.

1

.4

The Operating System Process S

The DOMUS-system consists of the following basic software com-
ponents:

Monitor

Utility Procedures
Basic i/o

Character i/o

Record i/o

Paging System

Master Device Driver
Operator Device Driver
File Management System
Operating System S

The operating system S takes care of core storage management, in-
cluding program load from disc files, program/process removal.

It executes commands keyed in on the operator device or sent

to the process fram another process in the system.

1

.4

1.5

Core Storage Management

1.5.1

Core Items

Programs and processes are ordanized as described in ref.1.
After system initialization the available core storage above
the basic system is organized as one large item of core
storage. When the system works, pieces of that core storage
is occupied by additional programs, procedures, processes Or
data. Core storage is allocated in discjoint pieces, called

core items, all chained together in ascending order in the one

and same chain, the core item chain. Refer to app. B.

The core item is headed by a & word descriptor with the
following contents:

-1 coreitem ident
+0 owWner process W
+1 current load address l
+2 chain
+3 size ’
+4 name of core item g
+5 } size
+6
-

1.5

1.5.1

The ident field is used to classify a coreitem as a nitem or a
xitem the former restricted to be used as a low core storage
allocating element only (addressrocm: 0-64KB, ref.2).

FREE USED
NITEM: ident:=0 Ident:=0/corresp.xitem. address
XITEM: ident:=-1 ident:=-1

The owner field contains the process description adress of the
process which allocated the item.

The current load address field points out the first address to
use during load of a program or a process.

The chain field points out the next core item (the head + 0
address) in the item chain, or is set to zero if the item is the
last item in the chain.

The size field contains the size of the core item.

The name field contains the item name.

1.5.2 Core Allocation Strategy. 1.5.2

As mentioned in section 1.5.1 two different types of core sto-
rage allocating elements exist.

The socalled nitem should be used for those program parts working
on byteaddresses, refer to ref 1. Notice: the program descriptor
and the processdescriptor should always reside in low core and
the program descriptor should be the first part of a program.

A correspondence exist between nitems and xitems of the same
name generated in the same task-camposite items - in which case
the corresponding xitem is pointed out from the nitem, which is
placed first in the coreitem chain. Refer to app. E.

1.5.3

10

If a xitem is to be allocated this item is allocated first. The
core item chain is searched for the last free item of sufficient
size, and in this item space is reserved fram the higher end and
backwards.

If a nitem is to be allocated this item is allocated next. The
core item chain is searched for the first free item of sufficient
size, with a lower address than the evt. corresponding xitem.

In this item space is reserved fraom the lower end and forwards.
Notice: the nitem is not allowed to be placed in the higher core,
whereas the xitem could be placed anywhere.

Core Item Classification.

Core items are divided into 3 subclasses:

Free core items: The item is not owned by any process, i.e.
the core is not used.

Used core item: The item is owned by a process, which may
use it for any purpose, e.g. loading of
programs, storing data etc.

Utility core item: The item is automatically allocated to the
owner process during a load, but the item
cannot be used explicitly.

All processes except for the processes in the basic system are
contained in exactly one evt. composite core item. In a evt. compo-
site core item may reside several processes. Thus two relations
exists between a process p and a core item C.

) pinC =} P lies inside the core item C

C contains p:

2) powns C =
— ' .
C ed by p: C's owner is p

11

1.5.4 Process Hierachy

The above mentioned two relations between core items and processes
introduce a relation between processes:

P, parent to p, = there exists a core item C so that
pzchildofp1: p2_'1;n_Candemed§zp1

21l processes except for the processes in the basic system are
children of other processes and all these processes are organized
in a structure with respect to the relation parent to.

| = process

= evt. camposite core item

12

WORKING CYCLE OF S.

2.1

The S mode.

2.2

After system bootstrap the process S goes into its idle state
waiting for an event. The S-process will always be in one of two
modes called external and internal mode respectively. With each
mede a unique set of the variables subcatalog, drive is defined,
and the commands 'CONNECT', 'RELEASE' and 'DRIVE' may change the
value of the current subcatalog or drive associated with current
mode only.

After system bootstrap current mode is defined as external, and
the default valve (cat, 0) = (main catalog, master drive) is
used for the two modesets:

(sub, c‘irive)I : = (sub, drive)E: = (cat, 0);

As the operating system runs in external mode, the mode set
(sub, clrive)I equals the default value.

As the operating system runs in internal mode, the mode set
(sub, d.rive)E is saved.

Mode shifts:

If a command covers the S-function 'BEGIN' or 'INT' and current
mode is defined as external, then current mode is changed to

2.1

2.2

internal and (sub, drive)I : = (sub, drive)E as initialization value.

If a command covers the S-function 'END', current mode set is
reset and current mode is then defined as external, that is:

I

Current mode was external: (sub, drive) I:
Current mode was internal: (sub, drive)I:= (cat, 0) and
(sub, d_rive)E:= (sub, drive)E saved.

(sub, drive)E = (cat, 0);

13

2.3 Events: 2.3
An event may be classified as given below.
If mode is set to internal, the 'END' command must be included
in the command sequence to force S into its idle state
(mode = external) waiting for a new command.
If an error occurs, current mode set is reset and S returns to its
idle state (mode = external).
2.3.1 Console Command 2.3.1
A human operator has keyed in a command to be executed.
Mode : = external. The command may cause a mode shift.
2.3.2 Internal Command. 2.3.2
A process in the system has sent a message to S containing a
sequence of commands to be executed. Mode : = internal.
The command sequence is autcomatically augmented with an 'END'
command.
2.3.3 Internal Request. 2.3.3

A process in the system has sent a message to S, wanting S
to kill itself and execute a sequence of commands. Mode : =
internal. The command sequence is automatically augmented
with an 'END' command.

S starts to execute the first command. The command may force S
to read more commands from the operator device or to read rore
camands from a file on current subcatalog/drive. All commands
are executed ir a strict sequentiel manner and scme commands
may be treated differently depending on whether the execution
was initiated via the console or not.

2.4

14

As the S-functions only take "a short time" to execute, you
may always expect S to be ready to accept a console command,
i.e. ready to perform a quick operator intervention.

If an error occurs while executing a console command S will

print an errormessage on the operator device. If an error occurs
vwhile S is executing an internal command or request, S will send

an appropriate answer containing information about the error.
When S receives an internal request containing no commands it
will just kill the process and print the message: FINIS
<process name> on the operator device.

The Operating Process.

When executing console commands, the operat’ng process is de-
fined as S itself. When executing internal commands the opera-
ting process is the sender of the message. Internal requests
are only accepted if the sender of the message is a child of
S, and the operating process is then defined as S itself.

Generally S accepts to operate only on core items owned by the
operating process. So the only processes S would kill is the
children of the operating process. Same special function, how-
ever, violates this rule.

2.4

15

THE S COMMAND LANGUAGE.

3.1

The following metalinguistic symbols are used, in the descrip-
tion of the S cammend language:

Sequences of characters enclosed in < and > represent metal-
ingquistic variables whcse values are sequences of symbols.

The mark Emeans "may be composed of" and the mark | means
"or". The production (rule): <sign> ::= + | - means that any

occurence of the variable <sign> may be replsced by a + or a -.

The braces {and} signifies that the contents should be re-
garded as a single metalinguistic variable. The superscription
* means zero or more occurrencies of the preceeding variable,
whereas the superscription + means one Or more occurrencies.
The brackets [and] indicates an optional string.

Basic elements.

3.2

Syntax:

<letter> ::= A|B|C|D|E|F|G|B|I|T |K|L|M|N]
olplQ|R|s|T|U|vIW|X|Y|Z|Z|2|A|8
alb|c|dle|£|g|h[i]] [k|1|m|n]
o|p|qa|r|s|tu|v|w|x|y|z|=|8|&|

<digit> ::= 0[1]2]3]4)56]7|8 0

<nl>

ascii characters LF, VT, FF or CR

Numbers.

<integer> <digit>’
<sign> 1= 4|

<radix> ::= <integer>'
<numbers> : 1= [<sign>] [<radix>] <integer>

3.1

3.2

. 3.3

16

Semantics:

A number represents a 16 bit integer quantum. If no sign is
present the number is regarded as positive.

If - is present the two's camplement of the number is used.

If no radix is present the integer is interpreted as a deci-
mal number. The radix denotes that the following integer
should be converted digit by digit as follows:

Nurber : =number*radix+digit. All nubers are treated modulo 2'°.
A number is terminated by the first non digit follcwing the
number.

Texts

3.4

Syntax:

<text> ::= '<any character except'>'

Semantics: '

A text represents a sequence of characters of any length.

Names

Syntax:

<name> ::= <letter> { <letter>| <digit>}”

Semantics:

A name is used to identify a file, a process, a program an
S-function or it has a special meaning depending on the S-function
or utility program using the name.

Only the first 5 characters in the name are significant. The

name is terminated by the first non letter or digit following the

name.

3.3

3.4

17

3.5 Ttems 3.5
Syntax:
<item> ::= <pame> | <nunber>| <text>|
<dummy item>|<composite item>
<composite item> si= (<itan>{[<sep§] <item>} ™)
<dummy item> =k
<sep> ::=.|/|:]=l,
Semantics:
Items are the fundamental entities forming S—commands. Each item
is treated as a unit by the cammand intepreter of S, and anv se-
parators appearing in front of an item are related to that item.
Items and the preceeding separator (if any) are packed into a
internal form by S. Consult ref 2 for further information on
the representation of items.
The dummy item denotes the absense of a parameter. The camposite
item denotes a record ¢f parameters consideres as one parameter.
3.6 S—Cammands. 3.6
Syntax:
<cammand> ::= <S-function> { [<sep>] <item>} *<n1>|
<filename> { [<sep>] <item>} *<nl>|
<nl>
<S-function» :s= <name>
<filename> s 1= <name>
Semantics:

If the first item is the name of an S-function, that function is
executed with the remaining items considered as parameters to the
S-function. If this is not the case the actual name is treated as
a filename and a look-up of the name is made. If a look-up is
succesfully done and the entry forms a program, this program is
loaded to core. If the actual command was divided into more items
all items of the command are treated as parameter items for the
program. The format for the representation of items is given in
ref. 2.

3.7

18

Camments, Blanks, Blind characters.

The NULL character is totally blind.

The ascii characters: SP and HT and the sequence

! <any characters except !>! are blind outside

texts, except for being terminators of names and numbers.

3.7

19

S=FUNCTIONS.

S-functions are executed by S itself. If it is impossible to
execute the function properly, an errormessage is printed on
the operator device if the S-function was executed as a con-
sole command. If the execution was initiated via an internal
command or request an answer containing the error cause is re-
turned. See ref. 2 for further information. When an error oc-
curs, the function is aborted and S skips remaining commands
in a command sequence and goes into the idle state.

Errormessages consist of 3 components:

1. An errorcause

2. Possibly a name

3. Possikly a number
When printing error messages on the operator device the mes-
sages has the format:

***<text> [<name>] [<number in octal>]

where the text explains the error cause. A list of errormes-
sages are presented in appendix C.

In the following each S-function is listed using this scheme:

S-FUNCTION: name of S-function.
FORMAT': format of commands activating the function.
FUNCTION: explanation of the function when executed

-as console command.

EXAMPLES: one or more examples of the use.

ERRORS:

INTERNAL
EXECUTION:

20

list of errormessages that may appear and an
equivalent errormumber. The following error-
messages may appear in all contexts:

***SYNTAX (1)

*%x*TO0 MANY PAREMTHESIS (2)

***END MEDIUM FILE <filename or (4)
operator device>

*%*T00 MANY CCMMANDS (5)

*%*SYSTEM ERROR <number> (22)

modifications - if any - to the above explanation
of the function when the ccmmand is executed

as an internal cammand or request.

4.1 S-FUNCTION:

FORMAT':

FUNCTION:

21

BEGIN
BEGIN

S is forced to read a sequence of cammands from
the operator device continously until and END-
command is read. Then the coammands are executed
in the order as given up to and including the
first END, INT or BEGIN command.

No internal commands and/or internal requests will
interrupt this sequence.

If current mode is external then mode is changed
to internal and (sub, drive)I:= (sub, d.rive)E.
If current mode is internal neither the mode ncr
the mode set is changed.

The internal mode set will be redefined anytime
a DRIVE or CONNECT/RELEASE - ccmmand is interpre-
ted in the command sequence, whereas the external
mode set is left unchanged.

CONNECT SUBCO
DRIVE 0 ! Ext mode set: SUBCO,0!
BEGIN
IOAD PTIR ! Int mode set: SUBCO,0!
LIST PIR
CONNECT SUBC1
DRIVE 1 ! Int mode set: SUBCT,1!
I0AD PTP
END ! Ext mode set: SUBCO,0!
RELFASE ! Ext mode set: CAT,0!

LOAD LPT

4.1

ERRORS:

EXECUTTON:

22

The PTR-program is loaded from the subctalog
SUBCO described on the master drive, or if no
file is present, from the main catalcg on the
master drive.

The PTP-program is loaded fram the subcatalog
SUBC1 cn the master drive, or if no file is pre-
sent, from the main catélog on drive no.1.

The LPT-program is loaded fram the main catalog
on the master drive.

*%% PARAM {3)

The command is dummy. It should be kept in mind
that the internal command request itself defines
a internal mode state of S. In that the BEGIN-
command is dummy, the internal set of mode vari-
ables is not redefined at entrance:

(sub, drive)I := (cat,0).

Of course the internal mode set will ke redefined
during the command sequence if called for.

4.2

S-FUNCTION:

FORMAT':

FUNCTION:

EXBECUTTON:

23

BOCOT 4.2

BOOT <filename>

The function loads an absolute binary program from
the file specified. The file should reside on cur-
rent subcat described on the master drive or on the
main catalog on current drive. The command termina-
tes the normal execution of the DOMUS system and re-
places it with a stand alone program, perhaps being
another MUS system or the like.

BOOT BACRES !terminate the DOMUS system and
bootstrap the program BACRES!

*%*xPARAM (3)
*%*STATUS, FILE <filename> <status> (6)
*%*UNKNOWN, FILE <filename> (7)
*%**RESERVATION, FILE <filename> (8)
%[LLEGAL, PROGRAM, FILE <filename> (17)

The file does not contain a absolute
binary program.
*%**SIZE ERROR, FILE <filename> (18)
No more core available during the
creation of the absolute core image
of the program.
*%*CHECKSUM ERROR, FILE<filename> (19)

As described above.

4.3

S—-FUNCTION:

FORMAT':

FUNCTION:

EXAMPLES

ERRORS

EXBECUTION:

24

BREAK

BREAK <process name>

The function performs a break on the process
given by <process name>. The processes in the
basic system including S itself are not allowed
to be breaked. The process is started in its
break address with errornumber = 2.

BREAK MAIN

*%%*PARAM (3)
*%*NOT ALLOWED (15)
*%*PROCESS DOES NOT EXIST, PROCESS (21)

<process name>

As described above.

4.3

4.4 S-FUNCTION:

EXAMPLES:

ERRORS:

EXECUTION:

25

CLEAN

CLEAN <process name>

The function performs a stopprocess and a clean-
process on the process given by <process name>.
The processes in the basic system including S
itself are not allowed be cleaned. The func-
tion should not be used unless you know the con-
sequences of cleaning processes, and should on-
ly be used during program debugging.

CLEAN MAIN
*%xPARAM (3)
*%*NOT ALLOWED (15)
*%*PROCESS DOES NOT EXIST, PROCESS

<process namre> (21)

As described above.

4.4

4.5 S-FUNCTION:

FORMAT:

FUNCTION:

EXAMPLES

ERRORS:

EXECUTION:

26

CLEAR 4.5
CLEAR [<core item name>]

The function clears either the specified core
item or if no core item name is present, all
utility core items owned by the operating process.
The actual item could be a composite item as well.

Clear specified core item:

CLEAR <core item name> clears the core item spe-
cified in the following way: First zll processes
inside the core item are killed (see KILL),
causing the load address to be adjusted to the
lowest possible address. If the core item is a
utility core item, the core item is returned to
the pool of free items. It is not allowed to
clear a core item not owned by the operating
process.

Clear all utility items:
CLEAR acts as a sequence of clears on all utility
core items owned by the operating process.

CLEAR A

*%*PAPAM (3)

*%x*COREITEM DOES NOT EXIST, ITEM (11)
<core item name>

*%*NOT ALILOWED (15)

As described above.

4.6 S—-FUNCTION:

FORMAT':

FUNCTION:

EXAMPLES:

ERROPRS:

EXFCUTION:

27

CONNECT 4.6

CONNECT <subcatalog name>

Current subcatalog is released and <subcatalog name>
is connected as current subcatalog. The main ca-
talog could be specified as current subcatalog
together with existing subcatalogs described in

the system file 'SSYSC', refer to app. G.

If no subcatalog of the name described on the mas-
ter drive, an error is returned and the main ca-
talog is inserted as current subcatalog. Notice:
mode is then changed to external.

CONNECT SUBC1

*%*PARAM (3)

*%*UNKNOWN, SUBCATALOG <subctalog name> (24)

As described above.

4.7

S—-FUNCTION:

FORMAT':

FUNCTION:

EXAMPLFES:

28

DRIVE 4.7
DRIVE <driveno>

The function selects the drive specified by
driveno as the current drive, and the current
mode set value of drive is updated according

here to. This drive remains the current drive
for all succeding executions of commands until the
END command or another DRIVE command is executed.

As indicated earlier the current value of DRIVE

is supressed if a subcatalog is specified. This

is due to the fact that only subcatalogs described
on the master drive are accessible, ref. 4. If
however the actual file does not exist on current
subcatalog in use, the main catalog on the current
drive is examined.

This strategy is used accessing files executing
the "INT', 'LOAD', 'BOOT' and'Utility load com-
mands.

The connection between drives and the physical
enviromnment on an installation is fixed at system
generation time. The DRIVE command does not check
if the selected drive is operable.

Let file 'scom’' on drive 2 have the following con-
tents:
ICAD ABC
END

Then the files A,B and C on that drive could be
loaded using one of the two set of commands gi-
ven below:

ERRORS:

EXBCUTION:

29

RELEASE ! Ext mode set: (CAT,2)!
DRIVE 2
INT 'scom’

BEGIN
RELEASE
DRIVE 2 ! Int mode set: (CAT,2)!
INT ‘scom’

END

If the ext mode set defines no subcatalog the
release command is dummy

#*%*PARAM (3)

As described above apart from the fact that no
release command is required.
! Int mode set: (CAT,O0):
DRIVE 2 ! Int mode set: (CAT,2):
INT ‘scam’
END

30

4.8 S-FUNCTION: END
FORMAT': END
FUNCTTION: The cammand acts as terminator for a sequence

of commands, when S is reading, either fraom
operator device caused by the BEGIN cammand,

or from a disc file caused by the INT cammand.
When the command is executed S returns to its
idle state. The internal caommand/request is au-
tamatically augmented with a END command.

Current mode is defined to external. If the com-
mand was given in external mode, (sub, drive)I
is reset to (CAT,0) else the external mode set
is reset to (CAT,0).

EXAMPLES:

CONNECT SUBCO ! Ext mode set: (SUBCO, 1)!
DRIVE 1
BEGIN

: ! Int mode set: (SUBCO, 1)!

Evt. changed

END ! Int mode set: (CAT, Q)!
LOAD PTIR ! Ext mode set: (SUBCO, 1)!
CONNECT SUBC1
LOAD LPT ! Ext mode set: (SUBC1, 1)!
LIST LPT
END ! Ext mode set: (CaT, 0)!
CONNECT CAT . Ext mode set: (CaT, 0)!

DRIVE 0O

31

ERRORS: None
INTERNAL
EXECUTION: As described above apart fram the fact that the

BEGIN cammand is a dummy command. Notice that
current mode is internal always.

32

S~FUNCTION: FREE
FORMAT': FREE <core item name>
FUNCTION: The function returnes the evt. composite core item

specified to the pool of free core. The core item
should be owned by the operating process, and it
may not contain any process.

EXAMPLE: FREE A
ERRORS: *%*PARAM (3)
*%**COREITEM DOES NOT EXIST, ITEM
<core item name> (11)
*%*COREITEM NOT CLEARED, ITEM
<core item name> (12)

The item contains a process descriptor.
Clear the item, using the CLEAR command.
*%*NOT ALLOWED (15)
The owner of the item is not the opera-

ting prccess.

EXBCUTION: As described above.

-

4.10 S—-FUNCTION:

FORMAT':

FUNCTION:

33

GET 4.10
GET <core item name> Esize> |<size><size;]

The function allocates a evt. composite core item
with the specified name. If size is specified

the function allocates a core item with size equal
to the number of words specified, or larger using
the strategy given in section 1.8. The owner of
the core item is set to the operating process and
the current load address is set to the first word
after the core item head. After a succesful allo-
cation, the core item is a used core item owned
by the operating process. Notice: The last 4 words
of the core area is reserved and can not be allocated.

The item may be camposite or not depending on the
<sizey—-part.
No <size» specification:
A nitem of maximal size is created covering
the rest of low core part.

1 <size>—-parameter specified:
A nitem of the specified size is created.
If a '+' is specified a maximum nitem is

created.

2 <sizep-parameters specified:
A nitem and a xitem are created according
to the specified value of the first and the
second size parameter respectively. The parame-
ters are interpreted as mentioned above. If
two items are created they are referred to as
a composite item. To generate a xitem only, the
first <sizey-parameter should be of zero value.

34

The <size>-parameter:

The size asked for should include the head
area of the item wanted except for the ident
field. The size-field of the allocated item
will equal the parameter value except for the
three cases mentioned below:

<size>:= 0:
No item is allocated.
This mode is included to allow for a pure
xitem allocation using the command:
GET COREX 0 X.
<size>: = =*:
A maximum item is allocated.
If a xitem is asked for high core storage
area should be available. If this is not the

case a size-error is returned.

0<'<size>'<7:

A size~error is returned.

1) GET COREO 512

2)

GET CORE1 512

LIST/CORE COREQO CORE1

Result of list command:

COREO 16334 1000 16343 S
CORE1 17335 1000 17344 S

GET COREO 512 512

LIST/CORE

Result of list command:

: !High core available!

COREO 16324 1000 16343 S 176774 Initem!
17335 157436 17344
COREO 176774 1000 177003 S xitem.

ERRCORS:

EXECUTION:

35

3) GET COREO * 512
LIST/CORE
Result of list command:
! High core available!

CORE0 ~ 16334 61445 16343 s 176774
100001 76772 100010

COREQ. 176774. 1000 177003 S

! Low core available only!

COREO 16334 60437 16343 S 76774
QOREO 76774 1000 77003 S

#%*PARAM (3)
**x*COREITEM EXISTS, ITEM
<core item name> (9)

it is impossible to get an item with the

name cf an already existing core item name.
***SIZE (10)

It is impossible to get an item of

the specified size.

As described above.

4.1 S-FUNCTION:

FORMAT:

FUNCTION:

ERRORS:

EXBECUTION:

36

INTT

INIT <drive no>

The function sends an init catalog message

to the file handler containing the specified
driverno, see ref 4 . The master drive is al-
ways operable, but the other drives in the
system cannot be used before the INIT cammand
has been executed for that drive.

INIT 1 ! Initialize drive 1!
*%*PARAM (3)
***xSTATUS, DEVICE <device name> (14)

Drive not operable

As described above.

4.12

S-FUNCTION:

FORMAT':

FUNCTION:

37

INT 4.12

INT <filename>

The function causes S to read a sequence of com-
mands fraom the file specified. The file should
reside on current subcat described on the master drive
or on the main catalog on current drive. The rea-
ding continues until an END commend has been read.
Then S starts to execute the cammands one by one
up to and including the first END, INT or BEGIN
camand. Note that no other commands can interrupt
the above sequence before an END command has been
executed. By putting INT commands in a cammand
file you can chain a number of command files. If
you do this make sure that the chain is finite.

: ! MODE = EXT OR INT!
CONNECT SUBC1

DRIVE 1

INT 'scomi’ ! scaml is interpreted in

current mode!

(X3

! MODE is changed to EXT
caused by the END command.

Contents of file 'scomt :'
IOAD A B
INT ‘scom2’
END

Contents of file 'scom2 !
! 2s mode is internal the
BEGIN command is dummy!
BEGIN
I0AD C
END
RESULT: A, B and C will be loaded.

ERRORS:

EXECUTTON:

38

*%x%*PARAM

*%*STATUS, FILE <filename>
**x*UNKNOWN, FILE <filename>
*%**RESERVATION, FILE <filename>
*%*ENTRY NOT A FILE, ENTRY <filename>

As described above.

(3)
(6)
(7)
(8)
(13)

4.13

S-FUNCTION:

FORMAT':

FUNCTION:

ERRORS:

EXECUTION:

39

KILL

KTIL <process name>

The function kills the specified process in
the following way. All core items owned by the
process are cleared (see CLEAR function) and
are returned to the pool of free items. Then
the process itself is removed, and if the sur-
rounding core item is a utility item, the item
is also returned to the pool of free items,
otherwise the load address of the surrounding
core item is adjusted. The adjustment of the
load address is done if there are no processes
in the core item with a process description ad-

dress higher than the process description address

of the process to be removed, and the load ad-

dress is reset to the value used when the process
was originally loaded. It is only allowed to re-

move a process being a child of the operating

process.
KIIL, MAIN
*%*DPARAM (3)
*%*NOT ALIOWED (15)
***PROCESS DOES NOT EXIST, PROCESS

<process> . (21)

As described above.

4.13

4.14 S=FUNCTION:

FORMAT':

FUNCTION:

40

LIST
LIST [/PROGRAM|/CORE] <name>*

The function lists items in one of three chains,

the process chain, the program chain or the core

item chain. The items are listed on the operator

device. The function lists selected items or, if

no <name> is present, all items in the chain. All
nurbers are printed in octal.

Process list:
LIST <name>* selects the process chain, and the
output has the following format:

<name> <address> [@] [<core item name>]
<name> is the name of the process, augmented
with the subcatalog no., if the process is a

subcatalog process

<address> is the process description address of

. the process.

(® indicates that the process is a driver pro-
cess and that no process has reserved the driver.

<core item name> is the name of the surrounding
core item, blank if the process reside in the ba-
sic system. If the core item was allocated be-
cause of a utility load, core item name is
augmented with the subcatalog/drive no. used at
load time, blank if zero.

41

Program list:
LIST/PROGRAM <name>* selects the program chain
and the output has the following format:

<name> <address>

<name> is the name of the program.

<address> is the address of the program head,
ecual to the relocatable base cof the program
when it was loaded.

Core item list:
LIST/CORE <name>* selects the core item chain,
and the output has the following format:

[<name><address><size><current load address>
<owner process name>[<corresponding xitem address>]

<name> is the name of the core item, blank if

the core item is free. If the coreitem was alloca-
ted because of a utility load, name is augmen-
ted with the subcatalog/drive no. used at load
time, blank if zero.

<address> is the address of the core item head.

<size> is the size of the core item.

<current load address> is the relocatable base
for the next load into this core item, or it is
printed as if the item is a utility item.

<owner process name> is the name of the process
owning the core item, blank if the item is free.

42

<corresponding xitem address> is the address of
an evt. xitem part of a composite item, blank
if the item is free.

Generally:

If a name appears in the name list: <name>* and
it does not exist in the selected chain, no out-
put is generated for that name.

EXAMPLES:: LIST LPT SPT
LPT 40377
!NOTE THE PROCESS SPT DID NOT EXIST!

LIST/CORE SPT :

SPT 40370 276 S

LIST/CORE

CAPS8 16374 1136 CAT

SFILE<020> 50370 400 S 60772
50771 10000 51000

SFILE<020> 60772 200 S

! The file SFILE is loaded fram
current subcatalog SUBCO:

ERRORS: *%*PARAM (3)

EXECUTION: The command is dummy.

4.15 S-FUNCTION:

FORMAT':

FUNCTION:

43

IOAD

LOAD [/<ccre item name>[/<size> | /<size>/<size>]]
{{<filename>l (<filename> <params>)}
[/<process name>]} +

The basic function of S, making it possible

to load programs from files. The

function loads a list of files specified by
<file name> or (<file name> <params>).

If the program accept parameters, the first
form results in <filename> being the only para-
meter, and the second form results in <filename>
<params> being the parameters. If the file con-
tains a process descriptor the address of the pa-
rameters are delivered to the process through an
accumulator, see ref. 2 for further information
Each process loaded can be renamed by adding the
/<process name> to the filename. Otherwise the
process name in the process descriptor is used.

Ioad into free core:
LORAD {{<filename>l (<filenane><params>)}
+
[/<process name>]}

The core allocation strategy is given in sec-
tion 1.5.2. When each file has been loaded and
the parameters are appended to the program, the
core item is cut to the minimal size still contai-
ning the program. The name of the evt. composite

core item is set to the name of the file from where

the program was loaded. The name is augmented with
the subcatalog/drive-no. used at load time, blank
if zero. The load address is set to zero and the
owner to the operating process.

Thus a utility item is created.

EXAMPLES:

44

Load into a specific core item:

LOAD / <core item name>[/<size>|/<size>/<size>]
{{<file name>1(<file name><params>)}
[/<process name>]

When using this format, each file is loaded into

the specified core item, starting at the current

load address of the core item. When each file
has been loaded and the parameters are appended
to the program, the current load address is ad-
justed.

The load can never exceed the core storage oc-—
cupied by the core item. The size parameter
forces S to check that the load does not over-
write the core storage behind the first <size>
locations of the evt. composite core item. The
first size-parameter specifies a nrel size and
the second size-parameter specifies a xrel
size. The format is not the same as the one used
for a 'GET' command.
<size> not specified:

No restriction on load size.
<size>=*: Not allowed.

Tt should be noticed that load into a pure xitem
is not allowed.

It is only allowed to load into a core item owned
by the operating process.

I0OAD PIR !load of a paper tape reader driver.
IOAD SPT/LPT 'load of a serial printer driver and
renaming the process to LPT!
IOAD PTP (PIP 1 2 3)
'load of a paper tape punch driver
and a utility program with parameters.
LOAD/A PPP !load the program PPP into the

core item Al!

ERRORS:

EXBCUTION:

45

*%x*PARAM
Errors in the format. Note that the
format is checked before any load.
***STATUS, FILE <file name> <status>
*%x*UNKNCWN, FILE <file name>
***RESERVATION, FILE <file name>
***CORE ITEM DOES NOT EXIST, ITEM
<core item name>
*%*ENTRY NOT A FILE, ENTRY <catalog
entry>
*%%NOT ALLCWED
*%*NO SPACE FOR PAGES, FILE <file name>
The disc file used for saving the
pages of paged programs is filled during
the load of the program on file <file

name>, Usually a system generation error.

*%*ILLEGAL PROGRAM, FILE <file name>
The file <file name> does not con-
tain a relocatable binary program.

*%%SIZE ERROR, FILE <file name>
No more core available for the load
of the program on file <file name>.

**%*CHECKSUM ERROR, FILE <file name>
Checksum error during load of the
program on file <file name>

*%x*VIRTUAL ADDRESS ERROR, FILE <file
name>
The program contains an illegal virtual
address or an errornecus page map.

*%*PROCESS EXISTS, PROCESS <filename>
The file cannot be loaded because a
process exists with the same name as
the filename.

As described above.

(3)

(6)
)
(8)

(1)

(13)

(15)

(16)

(17)

(18)

(19)

(20)

(23)

4.16

S-FUNCTION:

FORMAT':

FUNCTION:

ERRORS:

EXECUTION:

46

RELEASE 4.16
RELEASE

Current subcatalog is released and the main ca-

talog is inserted as current subcatalog. If an

error return mode is changed to external.

***PARAM (3)

As described above.

4.17

S=FUNCTION:
FORMAT':

FUNCTION:

EXECUTION:

47

START

START <process name>

The function performs a startprocess on the
process given by <process name>.

The processes in the basic system including
S itself are not allowed to be started.

START MAIN
*%*PARAM (3)
#*#*NOT ALLOWED (15)
*%*PROCESS DOES NOT EXIST, PROCESS

<process name> (21)

As described above.

4.18

S—=FUNCTION:

FORMAT':

FUNCTION:

ERRORS:

EXBCUTION:

48

STOP 4.18

STOP <process name>

The function performs a stopprocess on the
process given by <process name>.

The processes in the basic system including
S itself are not allowed to be stopped.

STOP MAIN
*%*PARAM (3)
*%*NOT ALLOWED (15)
***PROCESS DOES NOT EXIST, PROCESS

<process name> (21)

As described above.

4.19

S-FUNCTION:

FORMAT:

FUNCTION:

EXAMPLES:

ERRORS:

49

Utility program load

<file name>[<params>)

if <file name> is not identical to any other
S-function, the command works as the command:

IOAD (<file name> [<params>]).
See I0AD for further information

PRINT PIP

*%*PARAM

*%*STATUS, FILE <file name><status>

*%*UNKNOWN, FILE <file name>

***RESERVATION, FILE <file name>

***ENTRY NOT A FILE, ENTRY <file name>

*%%*NO SPACE FOR PAGES
The disc file used for saving the
pages of paged program is filled du-
ring load of the program on file
<file name>. Usually a system genera-
tion error.

*%*TLTFGAL PROGRAM, FILE <file name>
The file <file name> does not con-
tain a relocatable binary program.

*%*STZE ERROR, FILE <file name>
No more core available for the load
of the program on file <file name>

**x*CHECKSUM ERROR, FILE <file name>
Checksum error during load of the
program on file <file name>

*%%*VIRTUAL ADDRESS ERROR, FILE
<file name>
The program contains an illegal vir-
tual address or an errorneous page
map.

(3)
(6)
(7)
(8)
(13)
(16)

(17)

(18)

(19)

(21)

4.19

EXECUTTON:

50

*%*PROCESS EXISTS, PROCESS filename
The file cannot be loaded because a
process exists with the same name as
the filename.

As described above.

(23)

4.20

S-FUNCTION:

FORMAT':

FUNCTION:

EXAMPLES:

ERRORS:

PRESCRTPTTION:

o1

WAIT 4.20
WAIT <Timer-value>

The operating system is forced into its idle

state and S will not be ready to execute any

camand in the specified time periode.

WAIT 3 Wait 3 seconds!

*%*PARAM (3)

As described above. It should be noticed that

a WATT-Cammand not keyed in from the operator
console will delay the operating system invisib-
ly to other users.

52

APPENDIX A, CHARACTER SET USED BY DOMUS

V N C vV N C V N C V N C
0 NUL blind | 32 SP blank | 64 @ ill. 9% \ 1ill.
1 SOH ill. 33 | 65 A 97 a
2 STX ill. 3 " ill. 66 B 98 b
3 ETX ill. | 35 # 4i11. | 67 C 99 ¢
4 EBEOT ill. 36 g8 68 D 100 d
5 ENQ ill. 37 ¢ ill. 69 E 101 e
6 ACK ill. 38 & ill. 70 F 102 £
7 BEL ill. 39 ! 71 G 103 g
8 Bs ill. 40 (72 H 104 h
9 HT blank | 41) 73 I 105 i
10 ILF nl. 42 * 74 J 106 3j
11 VI nl. 43 + 75 K 107 k
12 FF nl. 4 , 76 L 108 1
13 CR nl. 45 - 77 M 109 m
14 SO ill. 46 . 78 N 110 n
15 SsI ill. 47 / 79 O 111 o
16 DLE ill. 48 0 80 P 112 p
17 DC1 ill. 49 1 81 Q 113 g
18 DC2 ill. 50 2 82 R 114 r
19 DC3 ill. 51 3 83 S 115 s
20 DC4 ill. 52 4 84 T 116 t
21 NaRK ill. 53 5 85 U 117 u
22 SYN ill. 54 6 86 V 118 v
23 EIB ill. 55 7 87 W 119 w
24 CAN ill. 56 8 88 X 120 x
25 EM em. 57 9 89 Y 121 vy
26 SUB ill. 58 90 2 122 z
27 ESC 1ill. 5 ; ill. 91 B 123 =&
28 FSs ill. 60 < i1, 92 @ 124 ¢
29 Gs ill. 61 = 93 A 125 &
30 RS ill. 62 > ill. 94 A ill.| 126 ~ ill.
31 Us ill. 63 ? ill. 95 € ill.| 127 DEL ill.
V = 7 bit value of character
N = name of character
C = comments

If no comments the characters are recognized by DOMUS according
to the syntas of S commands.

ill. means that the character is illegal outside texts and comments.

em. means that the character signifies end of medium.

nl. means that the character is regarded as +he terminator of 2
command line.

APPENDIX B, SURVEY OF S—-COMMANDS

BEGIN

BOCOT <file name>

BREAK <process name>

CLEAN <process name>

CLEAR <core item name>

Read a sequence of cammand lines fram the
operator device. Terminate at an END cam—
mand.

Load an absolute binary program.

Break the specified process.

Stop and clean the specified process.

Clear specified core item, or all utility
items.

CONNECT <subcatalog name? Connect the specified subcatalog.

DRIVE <driveno>

FREE <core item name>

GET <core item name>
[ksize>|<size><size>]

INIT <driveno>

INT <file name>

KTLL <process name>

Select the specified drive as the current
drive.

Terminate a sequence of commands and exe-
cute these commands.

Free the specified core item.

Get the specified core item.

Initialise the catalog on the specified
drive.

Read a sequence of command lines from the
specified file. Terminate at an END com-

mand.

Kill the specified process.

B-2

LIST [/PROGRAM]/CORE] List all or selected processes, programs

<name>* or core items.

LOAD [/<core item name>[/<size>|/<size>/<size>)
{{<file name> | (<file nan‘e><params>)} [/<process nameﬂ}+
Load the specified file(s).

RELEASE Release current subcatalog.
START <process name> Start the specified process.
STOP <process name> Stop the specified process.
<filename> [<params>] ILoad the specified file.

WAIT <timer-value> Wait specified no. of seconds.

APPENDIX C, SURVEY OF ERROR MESSAGES AND NUMBERS

***SYNTAX
The camand to S does not fulfill the syntax
described in appendix A (all functions).

*%*TO0 MANY PARENTHESES
The command to S contains too many parentheses.
Implementation restriction (all functions).

*%*PARAM
The selected S-functions cannot interprete the
parameters in a meaningful way (BEGIN, BOOT,
BREAK, CLEAN, CLEAR, FREE, GET, INIT, INT, KILL,
LIST, LOAD, START, STOP, Utility program load) .

*%*END MEDIUM FIL <filename>
The reading from a file is terminated due to
physical end of medium on a file, or an end medium
character during command reading (all functions).

*%%*TO0 MANY COMMANDS
The camand (sequence) too long, beca se there is
not encught free core storage availsble, or because
of an implementation restriction (all functions).

**%*STATUS, FILE <filename> <status>
The reading fram a file is terminated due to a
status error from the file management system.
The octal status is shown (BOOT, INT, LOAD,
Utility program load).

*%*UNKNOWN, FILE <filename>
The filename does not exist in the directoxry on
the current drive (BOOT, INT, LOAD, Utility
program load) .

10

11

12

13

14

15

***RESERVATION, FILE <filename>
The file is reserved for exclusive use by
another process in the system (BOOT, INT,
LOAD, Utility program load).

*%**COREITEM EXISTS, ITEM <ccre item name>
The core item should not exist in order to
execute an S-function (GET).

*%*STZE
Not enough core storage available to execute
an S-function (GET).

***COREITEM DOES NOT EXIST, ITEM <core item name>
The core item should exist in order to execute
an S-function (CLEAR, FREE, IQAD).

*%x*COREITEM NOT CLEARED, ITEM <core item name>
The core item contains some processes, when
it should not (FREE).

*%*xENTRY NOT A FILE, ENTRY <filename>
The filename does exist in the directory on the
curent drive, but it is not a disc file (BOOT,
INT, LOAD, Utility program load).

***STATUS, DEVICE <device name> <status>
Communication trouble with a process. The octal
status is shown (INIT).

*%*NOT ALLCWED
The execution violates some restrictions. Check
with description of S-functions (BREAK, CLEAN,
CLEAR, FREE, KILL, LOAD, START, STOP).

16

17

18

19

20

21

22

23

24

*%*NO SPACE FOR PAGES, FILE <filename>
(LOAD, Utility program load).

*%x*ILLBGAL PROGRAM, FILE <filename>
A relocatable or absolute binary program does
not fulfil the conventions for these type of
files (BOOT, LOAD, Utility program load).

***STZE ERROR, FILE <filename>
A program is to big to be loaded at the moment.
Try to FREE more core (BOOT, LOAD, Utility program
lcad).

*%*CHECKSUM ERROR, FILE <filename>
Checksum error in a relocatable or absolute
binary file (POOT, LOAD, Utility program load).

**x%xVIRTUAL ADDRESS ERROR, FILE <filename>
Illegal coding in paged programs (LOAD, Utility
program load) .

***PROCESS DOES NOT EXIST, PROCESS <process>
The process should exist in order to execute
an S-function (BREAK, CLEAN, KILL, START, STOP).

*%**SYSTEM ERROR <number>
The S process cannot execute the cammand. See the
list of system errors in appendix D (all functions).

***PROCESS EXISTS, PROCESS <process>
The process should not exist in order to execute an
S-function (LOAD, Utility program load) .

*%*UNKNOWN, SUBCATALOG <filename>
The subcatalog does not exist.

Cc-4

***BREAK <cause> <acl1>
The S process has been breaked. Malfunction of
the system. The message appears on the teletype.
The system may fail to operate properly.

D-1

APPENDIX D, SYSTEM ERROR MESSAGES

The format of a system error message is:
*%*SYSTEM ERROR <number> where the number refers to the following

list:

Bootstrap errors

The error occurs during the bootstrap of the DOMUS system

N o O s W N =

10-16

Runtime errors

21

22

24

25

Operator device malfunction
Master drive undefined

Master device malfunction

File management system malfunction
Paging file error

System configuration error

Error message file error

System malfunction

Internal request error. An error Occurs
after the sending process is removed.
Non fatal error.

DOMUS stack overflow. An implementation
restriction has been violated. Fatal error,
the system may fail to operate properly.

Error message file error.

Fatal error, the system may fail to operate
properly.

Core storage structure destroyed. Fatal
error, the system may fail to operate

properly.

APPENDIX E, SURVEY OF CORE ADMINISTRATION

Fig. 1, coreitem and program relationship:

DOMUS
BASTS
SYSTEM

Program

P1 nrel

P2 nrel

Free

P, xrel

Program

P, xrel

Ioad of P

Coreitem C1 ’
nitem part.

Coreitem C2 ’
nitem part.

Lower core part.

DOMUS
BASIS
SYSTEM

Program
P1 nrel

P2 nrel

P, nrel

Higher core part

Coreitem C2 .
Xitem part.

Coreitem C1

P, xrel

P, xrel

Program
P, xrel

E-2

Fig. 2, storage allocation scheme:

WY

H

1
7

0
+1
+2
+3
+4
+5

+6

ident xrel address here,

owner if no xrel-part

CLA then zero

chain CLA: current

size load

name: address.
Fundamental
part:

NREL

PART processdescr. +

%_ :_i..iprogranﬁescr. +

_%any byteaddress -

related code +
frames if any
(paged programs) .

~.

~—
-1 ident -1 always.
/7 0

owner
+1 | CTA
+2 | chain CLA: current
+3 | size load
+4 | name: address.
+5
+6
Non fundamental

4 i part.

= =,

=X REL %

z =

0 Coreitem chain:
- /7
2 ;3 £ 7
/7
¥ T |7
— Coreitem.ident.
N Coreitem.head.
P5
= =
-3 z
~
~
— ~ _
¥ P
== = T Lower corepart.
\LHJ.gher corepart.
FREE
TTEM /
/
/
/
...1 -1 < Coreitem. ident.
P5 & | Coreitem.head.
=
-1 ‘- - — -— —
b
P4

____Mn

APPENDIX F, SYSTEM BOOTSTRAP

The DOMUS system is usually bootstrapped using the master
drive of the system. The dis~ should be initialized using

the program SYSGEN, and should be mounted on the master drive.
If you use the RC3€52 2.4 Mb disc drive as master drive, mount
the discpack in unit 0, set the frontpanel switches on the CPU
to bit0 = 1, device selection switches = 73 (octal), and press
the autoload-bottom. In case of other disctypes set the device
selection switches as specified by RC.

The bootstrap is then placed in core and outputs the query
"SYSTEM:". Input must be a bootstrap commandfile containing a
list of discfiles, which are linked together generating the
DOMUS-system. The normal commandfile supplied is S$3600, and
can be selected by typing CR og NL immediately. During input
"rubout® can be used to erase last character(s) input, and any
control character (CR, NL, ESC) will terminate input.

If bootstrap is successful the message:

DOMUS REV nn.mn
will be output on the operator device.
If there exists a file on the master drive named SSYSI, the
commands in this file will be executed as if you had entered
the command INT SSYSI on the operator device. Otherwise the
system will invite you to enter commands by printing a

>S

on the operator device.
In case bootstrap is unsuccessful an errormessage is cutput

on the operator device, and the query "SYSTEM:" is output
again.

Possible

-2

€rrors are:

NOT FOUND, FILE:<filename>
File given by <filename> is not present on the
master drive.

TTLFEGAL BIOCK TYPE, FILE:<filepame>
A relocatable block other than start, title
or data is found on file <filename>.

TIIEGAL FILETYPE, FILE:<filename>

File <filename> is not a bootstrap camendfile as
the first name found <>"BASIS", or the file is not
a datafile (Attribute entry only).

CHECKSUM ERPOR, FILE:<filename>
One of the relocatable blocks on file <filename>
has an checksum error.

SIZE ERROR <octalnumber>

Not enough space in core to load the system,
<octzl number> is the maximal number of words
that can be used by the bootstrap program.

END MEDIUM, FILE:<filename>

Physical end of medium on file <filename> has
been found before logical end of file. I.e. "EMD"
name in cammandfile or relocatable start block

missing in file.

HARD ERROR ON DISC <octal number>

The disc is malfunctioning. <octal number> is
the hardware status without modifications. Please
consult hardware manual for further information.

F-3

Generation of bootstrap cammandfile.

The bootstrap command file is a number of ASCII filenames
describing relocatable files on the master disc. This way
of describing the DOMUS-system makes it flexible and eases
change of modules in the system in case of new releases or
new hardware configuration.

The camandfiles are made as normal text files by the
RC3600 Text Editor, but they must however obey following
rules:

1) First filename has to be "BASIS", in this way telling
the bootstrapprogram that the file is a bootstrap
comand file. The name is checked but skipved.

2) The following names should be the names of relocatable
modules or drivers, which are going to be present in
the DOMUS-system. Each name is describing a catalog
file in the catalog on the master disc, and

3) The last name in the file must be "END" terminating
the file list.

4) Filenames to generate a well functioning DOMUS-system
following modules must be present:

MUS - Monitor

MUS - Utility Procedure Module
MUS - Basic I/0 Module

MUS - Record I/0 Module

MUS - Character I/0 Module

MUSIL Interpreter

Operator Console Driver (TTY)

Master Disc Driver

MUS - Catalog System

Catalog System Description Process (CATW)
DOMUS Operating System Process

MUS - Initialization Module

It is recommended that the MUS-Monitor is taken as the first
module followed by all non-process modules, and then all dri-
ver processes. The last two modules must be the DOMUS Opera-
ting System and the MUS-Initialization Module in the given
order, as the Initialization Module is removed after system
start, and the Operating System expects rest of free memory
above own code.

The presence of the above mentioned modules is checked by
the Operating System after start, and if one is missing it
results in a system—error output on the operator device,
and the system will halt.

G-1

APPENDIX G, SYSTEM GENFRATION

A DOMUS system is installed on a disc using the program
RC36-00422. The program generates a DOMUS disc using magtape,
flexible disc or paper tapes.

If the disc is going to be created fram scratch (NEW command)
and the input device is flexible disc, the autoloaded disc
contains the first part of the systemfiles. (This disc is
labled DOMUS OPERATING SYSTEM No. 1). When loaded the pro-
gram prints:

INPUT DEVICE (MT/PT/FD):

When this question is answered with MT (magtape) FD (flex-
ible disc) or PT (paper tape) the next question is:

INITIALIZE CATALOG (NEW/OLD):

If the answer is NEW the disc is formatted and an empty ca-
talog will be written on the disc. Then the necessary files
will be created in order to use the disc as a DOMUS master
disc. If the answer is OLD the disc is already a DOMUS disc,
i.e. it has been used before as a DOMUS disc and the program
uses the old catalog on the disc.

Now the standard device descriptors, that not already exists,
will be created. Each descriptor created is verified on the
operator device.

If the input device is magtape a number of files will be
copied to the disc and the names are verified on the operator
device. A

If the input device is flexible disc a number of files will
be copied to the catalog and the names are verified on the

operator device.

G-2

When a flexible disc has been copied the text

MOUNT NEXT DISCEITE
IF CONTINUE THEN NL ELSE STOP

is output on the operator device, and the next discette can
be mounted. If all flexible discs are copied STOP must be
typed, and the program terminates, else NL must be typed and
the system generation will go on.

If the input device is paper tape each tape loaded is copied
to a disc file with the name specified by the operator when
the question

FILE NAME

is printed. When the bootstrap program is loaded the file
name specified must be BOOT.

Already existing but not writeprctected files are overwrit-
ten. If a file is writeprotected a message is printed on
the operator device and the program continues with the next
file. ‘
When the program has finished the message:

END SYSGEN
is printed and the program stops.

Now the disc is formatted in the following way:

sector 0 — 31: used by the bootstrap system and the

file management system.

sector 32 - N: used as file space, N depends on the
disc tvpes.

’. file: SY¥YS

MAP

SSYSP
QSYSP
SSYSE
SSYSC

Below is shown a
>S
INT SYSG

>SYSG

G-3

the catalog file, see ref. 4.

the sector allocation map file, see ref. 4
used by S for saving pages of paged programs.
used in processor expansion systems.

the error message file.

contains links to accessible subcatalogs.
administrated by the DOMUS Utility Pro-

gram 'SUBCA'. A link is a fully descrip-
ticn and as such contains to example the
unit number for the subcatalog described.

run of a sysgen program.

DOMUS SYSGEN PROGRAM

INPUT DEVICE (MI/PT): MT
INITIALIZE CATALOG (NEW/OLD): NEW

THIS IMPLIES THAT ALL EXISTING FILES ARE DELETED.
. CONFIRM (YES/NO): YES

PCDR

M
MUC
TTO05

CAP8
MT@XX

END SYSGEN

BREAK 3

APPENDIX H, REFERENCES

0]

(2]

(3]

Keywords:

Abstract:

Keywords:

Abstract:

Keywords:

Abstract:

MUS-SYSTEM INTRODUCTION (T) and
MUS PROGRAMMER'S GUIDE (II).

Multiprogramming, monitor, device
handling, i/o-utility, record i/o,
operator communication, operating
system.

(I) This manual is intended as an
introduction guide to the Multi-
programming Utility System.

(II) The manual is mainly intended
for readers who are going to use the
system. The user is assumed to be
familiar with the general principles
of the system as well as with the
assembler language.

DOMUS System Programmer's Guide.

MUS, Operating System, Loader, disc.

This manual describes the interface
between assembly programs and DOMUS.

RC 3600 PAGING SYSTEM
SYSTEM PROGRAMMER'S GUIDE

MUS, Paging System, Virtual Memory,
Address Mapping.

This manual describes how to use the
RC 3600 paging system from assembly
programs under the MUS-system.

[4] RC 3600 CATALOG SYSTEM
SYSTEM PROGRAMMER'S GUIDE

KReywords: Catalog system, file system, area process,
subcatalog.

Abstract: This Manual describes how to use the
RC 3600 file system from Assembler
programs. The user must be familiar
with the MUS system.

[5] MUSIL

Keywords: RC 3600 MUS System Software,
Programming Language.

Abstract: Syntax Rules for MUSIL language.
Description of standard procedures.
Explanation of I/O handling.

[6] MUSIL COMPILER

Keywords: RC 3600 MUS, MUSIL, Compiler
Operators guide.

Abstract: This manual describes the parameters
to the MUSIL campiler.

[71 DOMUS User's Guide PART IT

Reywords: DOMUS, MUS, Operating System, Loader,
disc.

Abstract: This manual describes the utility system
for the disc operating system DOMUS for
the RC 3600 line of camputers.

(8]
[o]

Keywords:

Abstract:

Keywords:

Abstract:

TEXT EDITOR

Introduction to DOMAC Assembler.

Beginners guide, DOMUS, DOMAC, RC3600,
assembler.

This manual contains a short introduc-
tion to the RC3600 assembler language,
a description of how to inwvolve the
DOMAC assembler, and a list of possible
error messages fram the DOMAC assembler.

DOMUS Linkage Editor.

DOMUS, MACRO Assembler, Linkage Editor.

This manual describes the linkage editor
for the disc operating system DOMUS
for RC3600 line of computers.

