RCSL No: 43-GL9546 pp. 205
Edition: October 1979
Author: Marie Louise Mpller
Dan Andersen
Knud Henningsen
Niels Adler-Nissen
Title:
MUS SYSTEM
Programming Guide
Rev. 1.00
¢ REGNECENTRALEN
: af 1979

Keywords:

Multiprogramming, monitor, device handling, input/output,
catalog system.

Abstract:

This manual is intended to function as a programming guide
to the Multiprogramming Utility System for the RC3600 line
of computers.

(210 printed pages)

Copyright © 1979, A/S Regnecentralen af 1979
RC Computer A/S
Printed by A/S Regnecentralen af 1979, Copenhagen

Users of this manual are cautioned that the specifications
contained herein are subject to change by RC at any time
without prior notice. RC is not responsible for typographi-
cal or arithmetic errors which may appear in this mahual
and shall not be responsible for any damages caused by re-
liance on any of the materials presented.

421 1286

TABLE OF CONTENTS

.].

INTRO]IICTION ® 4 5 5 50 5 0560580858 E DS e NS0 88 ¢ 08000

BASTIC OONCEPTS setseeeecocsscecsosesossosssscanssanan

2.1
2.2
2.3
2.4

PrOCESSES ssesessenssncessnrssoscnssorsvssnnss
PrOJraMS sseeesnsescsesssnosasvassvsnsoscoscnns
MesSsages — ANSWEES sevessseccsonces cesssevssane
Initialization of the Descriptors s.eeeesesses

MONITOR smeseassssse ® 6 59 6000608808008 080880008686088668866000sn

3.1

3.2

MONitor DEeSCriptOr secscecsssassssececesssancs
3.1.1 RUNNING QUEUE sevseecassoas cecvserunn
3.1.2 Process Chain seeveessveasssossnnanes
3.1.3 Device Table ceesveeovessssoscsessane
3.1.4 Delay QUEUE seeecesnessnnnnssnnnns oo
3.1.5 Program Chaifn seeeesesscscassssnsocss
3.1.6 Free COre ArCa .eevecceccssscsscncnss
3.1.7 The DUMMY PrOCESS eeeseesnccscssancss
3.1.8 Area Process ChalN eeeesscececscccses
3.1.9 Interrupt Mask seeesvessccscssnassons
3.1.70 Real Time ClOCK svevesconccconncencne
3.1.11 Power Failureececececcecccccccee
MONIitOor FUNCLIONS teeesseracacssnsssnansossaes
3.2.1 Function WAITINTERRUPT ccieveonovcescs
3.2.2 Function SENDMESSAGE c.veeseccecosnns
3.2.3 Function WAITANSWER cevssecessscsoaass
3.2.4 Function WAITEVENT seeevcacssococoves
3.2.5 Function WAIT ..eeeveeecnccnscnncne ..
3.2.6 Function SENDANSWER sececececccsconns
3.2.7 Function SEARCHITEM c.vuiveeccnconsons
3.2.8 Function BREAKPROCESS seeeessancns ces
3.2.9 Function CLEANPROCESS sevesesnccee ces
3.2.10 Function STOPPROCESS seeesssncssccsns

— O O o N

15
15
17
18
19
21
22
22

23
23
23
24
24
24
26
30
32
34
35
37
40
42
43

ii

TABLE OF CONTENTS (CONTINUED) PAGE

3.2.11 Function STARTPROCESS eeeccsssocossces 44
3.2.]2 EunCtion RECHAIN ® 8 0 0 80500 00" eV NIPNS 44
3.3 Initialization of the MONItOr seesessccccscass 47

3.4 Processor EXPanSiOn seseececcecscsccccascssnnans 48

4. DRIVER PROCESSES tevveeescnccsceccsccsnscsssocvssconss 49
4.1 INtrodUCtiOn sesseecescecsccsscncnccsscasssons 49 B
4.2 Device HANALlING seessrananacsssssocssssasscces 50
4.3 Driver Interface ...veeeeieeeerecenncccacnenes 54 —
4.3.1 Control MeSSagesS eeeeceescessscnasons 55
4.3.2 Transput MeSSAgeS ceeesecssssesscanes 59
4.3.2.1 INPUL ceveesnccnnsssssnnes 60
4.3.2.2 10,51 5 o 60
4.3.3 BNSWEYS ceeeessssssssnsssssscnsssanne 62
4.3.3.1 ANSWEY sevessocssscvssonos 62
4.4 System Utility Procedures tesssssssssss 66 -
4.4.1 FOrmats seeeesaceccescssscosccncnncns 66
4.4.2 ProcedUreS seceeecececcsssssssescscssanes 67 —
4.4.2.1 Procedure NEXTOPERATION .. 67
4.4.2.2 Procedure WAITOPERATION .. 71
4.4,2.3 Procedure RETURNANSWER ... 73
4.,4,2.4 Procedure SETRESERVATION . 74
4.4.2.5 Procedure SETCONVERSION .. 75
4.4.2.6 Procedure QONBYTE sceoeess 75
4.4.2.7 Procedure GETBYTE .cecenee 76 -
4.4.2.8 Procedure PUIBYTE 76
4.4.2.9 Procedure MULTIPLY ..cesse 78 —
4,4.2.10 Procedure DIVIDE .sssssesss 79
4.4.2.11 Procedure SETINTERRUPT ... 79
4.5 Driver ReQUIrementsS ceeecscescessscccsscssssnns 81
4.5.1 Break ACtiOn cieeevessssecccasscsccsns 81
4.5.2 Device handling seeececscecssnsssssns 82
4.6 Driver InCarnationS eseeeeececscsvesssossonsaas 83

iii

TABLE OF CONTENTS (CONTINUED) PAGE

5. BASIC I/O HANDLING soveseeoancsosnoansccssensosanancs 86
5.1 General Description cieveeeesceseocensssccenes 86

5.2 Zone FOImat eiveeeecesssesccennvocsosnnssnnccs 90

5.3 Share Descriptor FOIMAL seveesecessocecsosanes 93

5.4 ZONE SEtUP sveevsossvssvossssssssnsassannssssose 96
5.4.1 Zone DesSCriptOr sveeesssseccesssacasns 96

- 5.4.2 Share DesCriptOr sevieeesesssossoosee 97
5.4.3 Message Buffer PoOl SiZ€ cveeeeeoesss 97

5.5 Document Identification sieseeeecesseeseccecee 99

5.6 Exception Handling .eeeeessecececcesossceneses 101
5.6.1 USEr GIVEUD cevvseecrncsesesasnannons 102

5.6.2 Giveup Procedure EXample eeeeseeocess 104

5.7 Repeat ACtiONS seeeevesecsosccsencsssnscnasess 104

5.8 Basic I/O ProCEAULES seeeesocecescosssssonsens 107
5.8.1 Initialization Procedures «.eceeesses 109

5.8.1.1 Procedure OPEN .e.vececess 109

5.8.1.2 Procedure SETPOSITION 110

— 5.8.1.3 Procedure WAITZONE 11
5.8.1.4 Procedure CLOSE ...evs0ee. 111

5.8.2 INPUT/OUTPUT ProceduUresS .v.veeeceeess 14

5.8.2.1 Procedure TRANSFER 114

5.8.2.2 Procedure WAITTRANSFER ... 115

5.8.2.3 Procedure INBLOCK seevseee 116

5.8.2.4 Procedure OUTBLOCK +evss.. 118

6. RECORD I/O sevececasacassssensesossssesansasacsosnoss 120
6.1 Physical/Logical DatabloCK seesecessoccecnnsas 120

6.2 ReCOrd-FOrmats coeeeeseccenscecsncnnssasccnnnss 124
6.2.1 Undefined, Unblocked ...eecececocoees 125

6.2.2 Undefined, Blocked ..vvvveensnencanss 126

6.2.3 Fixed, Unblocked .ievveeessencnnase .a 126

6.2.4 Fixed, Blocked seevesevsceseossonnnse 127

6.2.5 Variable, Unblocked «ieeessesssseecas 127

iv

TABLE OF CONTENTS (CONTINUED)

PAGE

6.3

6.4

6.5

6.2.6 Variable, Blocked ..vveevverecess ceen
6.3.1 Procedure GETREC (Zone, Addr., Bytes)
6.3.2 Pseudo—-Algol Description cieeeeeceecees
6.3.3 Programming EXample sciesessavecascas
PUTREC ceessnsvovorsssvovossossuvonssasoncnsasn
6.4.1 Procedure PUTREC (Zone, Addr., Bytes)
6.4.2 Pseudo-Algol Description eeeeeecceces
6.4.3 Programming EXample .veeecesssscccccss

DDVE 80 6 0600000808000 00 0000 INEIIOCOIOLIOIPIERIINEOESIOELETOETIE

6.5.1 Programming EXampPle eseeeeeeccsssocees

CHARACTER I/O PROCEDURES +tiesvessesonssnssossossasans

7.1

7.2

7.3

7.4

Single Character ProcedUreS sevevecssscsescses
7.1.1 INCHAR veveeoseessosscncsanssncnsonnas
7.1.3 OUTSPACE vevevensssnssenosesoassanses
7.1.5 OUINL seseecsscnsssasanans
String Oriented Procedures ..eeees.
7.2.3 INNAME +euieeencoccscascacsasescsnssos
Utility Procedures eseeeseseesossscsocssoonsons
7.3.1 DECBIN cuceveceacconcscosossascsnconcs
7.3.2 BINDEC ¢esevscncocsossoscccncasscnsnns

Programming EXampPleS ceieeccecssssssassssssass

CATALIOG SYSTEM svveescecccscrcscosssssssascsaosesoncos

8.1
8.2
8.3

Intrcxiuction T O B 5 5 5005 000" s LI I I I B
Catalog System Disc Structure ...eeeeees.. cene
Catalog System ProcedUresS sevevessssosssancses

8.3.1 GENEYAl tieeiecssccrccsnsenssssoncnns

129
129
129
132
137
138
138
141
145
146
148

149
149
149
150
150
151
151
152
152
152
153
153
153
154
155

156
156

157
164

164

AN

TABLE OF CONTENTS (CONTINUED) PAGE
8.3.1.1 Main Catalogs seseesssasae 164
8.3.1.2 Sub CatalodsS seseessscsens 165
8.3.1.3 Procedure CREATEENTRY 165
8.3.1.4 Procedure REMOVEENTRY 167
8.3.1.5 Procedure LOOKUPENTRY 168
8.3.1.6 Procedure CHANGEENTRY 170
8.3.1.7 Procedure SETENTRY ecseeee 171
8.3.1.8 Procedure INITCAT ceeeeces 174
8.3.1.9 Procedure NEWCAT cececoces 175
8.3.1.10 Procedure FREECAT .c¢... 176
8.4 @talm File INPUT/O[II‘PL]’I‘ ® 6 0 0 & 0000 PO OE sSSP GE]78
8.4.1 Procedure OPEN ceeeeoescscsasssasanss 178
8.4.2 Proc@ure SEIIEDSITIOIQ @6 & 0 6 0008 % &0]8]
8.4.3 Procedure CLIOSE eeeeevccrcosescascnsse 181
8.4.4 Catalog Input/OUtput seeeessessasesse 181
APPENDIX
A' REFER.ENCES * 8 8 & 5 9 8" e 0B ® S 0 6 08 0 00 PP OO0 NN e LSO]85
B. T‘ERMINOIJ&;Y ® 9 P O 6 0P 0 W OB O PSSP E S PE OO EE PN Ee NSNS 187
C. DEVICE CDDES ® 9 4 8 0 9 0 0 8 & 0 9 06800 E SO EE OSSO0 P eSO NS SN e S 19]
D. FIRST AND SECOND PAPER TAPE PUNCH DRIVERS seecescencs 194

vi

This page is intentionally left blank

vii

FOREWORD

This publication is to superseed the one currently in use:

44-RT 1306: MUS SYSTEM INTRODUCTION
(part one of two) and

MUS PROGRAMMERS GUIDE

(part two of two)

. August 1976

vii

This page is intentionally left blank

INTRODUCTION.

The Multiprogramming Utility System (MUS) for the RC3600 line of

canputers has the aim

- to simulate parallel processing including interprocess coammuni-
cation and interrupt processing.

- to give a strong framework for I/0 processing, both on charac-
ter level and on record oriented level.

- to support the user in the running of the system, which inclu-
des easy operator communication and an operating system that
takes care of core administration and creation and removal of

processes.

These goals have been reached by creation of the following soft-

ware modules:

- a monitor, implementing multiprogramming.

- driver programs for common devices. These lay down the rules
which are to be followed in ocoding drivers for new devices.
These rules are purely a matter of overall cleanlines, and no
real destinction is made between driver programs and other
programs.

- reentrant I/0 procedures designed around the zone concept,
which has shown to be a clean and tidy way to describe device
peculiarities, buffering, record formatting and - packing in—
volved in any I/O activity.

- a basic operating system, which caters for program load and de-
letion, process creation and removal and start or stop of exis-
ting processes. The operating system is described in a seperate

manual.

The different modules may be put together in a hierarcial manner.

Below is a figure showing the hierarchy. User processes may be
build on top of all modules depending on what is needed to fit

the usage.

Operating
System
RECORD I/o CHARACTER I/G
DRIVERS BASIC I/0

MONITOR

BASIC CONCEPTS. 2.

As an introduction to a detailed description of the monitor this
chapter deals with the three fundamental items: programs, proces-
ses and message buffers, handled by the monitor.

A program is a collection of instructions. The execution of a
program in a given storage area is called a process. A process is
identified by a unique process name, used in all references to

it. Thus other processes need not be aware of the absolute loca-
tion of the process in the storage, but can refer to it by name.

Processes can communicate by sending messages, carried in a mes-
sage buffer to each other. After the processing of a message, the
receiving process returns an answer to the sending process in the

same message buffer,

The term event denotes a message or an answer. When events arrive
to a process from other processes, they are linked to the event

queue which is a part of the process description.

This chapter will apply concepts described later in this manual,
so it is recommended at first only to read it to get an idea of
the contents of program descriptors, process descriptors and mes—
sage buffers and then turn back to it after reading about the mo-

nitor.

All parameter names mentioned in the following are defined as
permanent symbols in the assembler and can thus be applied when
coding assembler programs. The values are the corresponding dis-~
placements in the format descriptions.

Following the three descriptions is an example showing, how they

should be initialized in an assembler program.

2.1

Processes. 2.1

Each process running under the MUS (DOMUS) monitor must have a
process descriptor, where all the information about the process
needed by the monitor to simulate multiprocessing is collected.

The start address of a process (specified after the terminating
.END) should be the process descriptor address. In this way, the
operating system is able to find the process descriptor, when

loading a process.

The first part of a process descriptor must contain the following

parameters, each consisting of one word if nothing else is speci-
fied.

PROC.NEXT': Next process in a queue of processes (see
PROC.PREV) .
PROC.PREV: Previous process in a queue of processes.

Together with PROC.NEXT, this slement is used
to link the process to the running queue or
to the delay queue. If the process is not in
a queue, the parameters both point to the
process itself.

PROC.CHAIN: Next process in the process chain.
All process descriptors are linked together

in a chain.

PROC.CARRY When interrupted the process uses bit 15 of
this field as save location for the carry
bit.

PROC.NAME : Process name consisting of three words.

The process is identified by this text cf one
to five characters; unused character posi-
tions must equal zero.

PROC.EVENT: The event queue head, consisting of two
words. The first word points to the first e-
vent in the event cueue and the second word
points to the last event in the event queue.

If the queue is empty, both words point to

PROC.BUFFE:

PROC.PROG:

PROC.STATE:

PROC.EVENT. The event queue contains messages
and answers to the process.
Head of the message buffer chain which con-
tains all message buffers belonging to the
process.
Address of the descriptor of the program exe-—
cuted by the process.
This location indicates the actual state of
the process. If the process is waiting and
more than one reason is specified it is
started again, when one of the conditions is
fullfilled. Possible states of a process are:
0: running, i.e. the process is linked
to running queue and wants to have
time slices for execution, or:
waiting for software timer, i.e.
the process is linked to delay

queue.

bit 0: stopped, i.e. the process is
stopped.

3 to 63: waiting for interrupt or software

timer. i.e. the process is waiting
for an interrupt from the device
with device no. = state. In addi-
tion, it is linked to the delay
queue and waits for the software
timer,

> 63: waiting for answer. The process

waits for an answer to a message it
has sent in the message buffer with
address = state.

- 1: waiting for event. The process is

started again, when a buffer is

linked to its event queue, i.e.
when either a message or an answer

PROC.TIMER:

PROC.PRIOR:

PROC.BREAD:

PROC.ACO:
PROC.ACT:
PROC.AC2:
PROC.AC3:

arrives.

- 2: waiting for event or software timer.

As above, but if an event has not
arrived when the timer runs out,
the process is started with time-—
out.

-3 to -63:waiting for event, software timer

or interrupt fram device no =

-state.
Timer count. The number of timer periods the
process still may wait in the delay queue. If
the process is in the delay queue, this timer —
count is decremented for each timer interrupt M
and when it becomes zero, the process is
started again.
Priority. Priorities are unsigned 16 bits in—
tegers and zero must not be used. The next
process to use the CPU is chosen cyclically
among the processes with highest priority.
(See ch. 3.1 about the running queue).
Break address. -
This address is entered after a break of the
process, e.g. caused by a program error or
an operator break.
Saved ACO. See below.
Saved ACl. See below.
Saved AC2. See below.
Saved AC3.
Before the process is interrupted the regis-
ters will be saved here and when the process
becomes active again, these locations will be
loaded into the registers such that the state
of the processor is the same when the execu-
tion continues. (The carry bit is saved and

reloaded from the proc.carry field).

After loading the process, the registers are
loaded with the values of these parameters
and the process is started in the address
specified in PSW (see below).

PROC.PSW: Program status word.
When the process is interrupted, the program
counter is saved in proc.psw (0:15). When
the process becomes active again, execution
continues from the word address saved here.
When initially loaded and started the
contents of proc.psw (0:14) is used as a
normal relocable start address for the
process and must be specified as such.
Proc.psw is then reorganized by the loader
and proc.psw (15) is saved in proc.carry
(15).

PROC.SAVE: Work location for the system procedures.

Following these locations, the process descriptor may ocontain any
nunber of optional words. E.g. a driver process using the driver

utility procedures must contain six words directly following the

before-mentioned:

PROC.BUF: Saved message buffer address.

PROC.ADDRE : Current value of address (BUF.MESS2).

PROC.COUNT: Current value of count (BUF.MESS1).

PROC.RESER: Process descriptor address of reserving
process. Zero indicates no reserver.

PROC.CONVT': Conversion table address. Zero indicates no
conversion.

PROC.CLINT: Interrupt handling entry. This address is en—

tered in disabled mode, when an interrupt ar—

rives from a device which the process wants

to supervise.

2.

2

Programs.

The code executed by a process is a program. A program head con-
tains information about the size and name of the program and a
descriptor word.

PROG.PSPEC: The program descriptor word describes the use

of the program.
BIT O: Own bit. Set, if the program con-

tains its own process descriptor

after the program.

Bit 1: Reentrant bit. Set, if the program

is reentrant. _

Bit 5: Parameter bit. Set, if the program
wants parameters transferred from
DOMUS .

Bit 6: Paged program bit. Set, if the pro-
gram is paged.

Bit 7: Reservation bit. Set in a reserv-

able driver process.

PROG.PSTART': Address of the first instruction in the pro-
gram.
PROG.CHAIN: Link to next program in the program chain.

All program descriptors are linked together

in a chain.

PROG.SIZE: Size in words of the program. -
PROG.NAME: Program name in three words. The program is

identified by this text of one to five cha-
racters. Unused character positions must e-

qual zero.

2.3

Messages - answers,

Communication between processes is handled by four monitor func-
tions, which enable the processes to exchange information in such
a way that only one process at a time accesses the information.
The information is carried in a message buffer (short: buffer)

consisting of a head of six words and an information part of four

words.

BUF .NEXT': Next buffer in a queue of buffers (see be-
low).

BUF .PREV: Previous buffer in a queue of buffers.

Together with BUF.NEXT this element is used
to link the buffer to the event queue of a
process. When the buffer is not in use, both
elements point to the buffer itself.

BUF .CHAIN: Next buffer in a chain of buffers. All mes-
sage buffers belonging to a process are
chained together.

BUF.SIZE: Size of the buffer. At present the size e—
quals ten.

BUF.SENDE : Sender process descriptor address. This value
is permanent as the process sends information
in a message buffer belonging to itself.

BUF .RECEI: Receiver parameter.

The value of this parameter indicates the

state of the buffer.

0: The buffer is free and can be used
to send information.

> 0: The buffer contains a message sent
to another process and
BUF.RECEI = receiver process de—

scriptor address.
< 0: The buffer contains an answer fram

a process that has received a mes-—

2.3

10

sage in this buffer, and
BUF.RECEI = —{process descriptor
address of the receiver

of the message being

- answered) .
BUF .MESSO: Information words.
BUF .MESST ¢ Optional contents depending on the use.
BUF .MESS2: > The standard usage in drivers is described in
BUF .MESS3: chapter 4.
PROCESS —
h
BUFFE e BUFFERS: -
CHAIN 0
SENDE o B

Fig. 1

If a process wants to send information to other processes, it

must own a pool of buffers linked together in a chain with head —
in PROC.BUFFE (fig. 1). By means of the monitor function SENDMES-

SAGE the information is copied into the first free buffer within

the pool and the buffer is linked to the event queue of a named

receiver. The receiver gets information about the message by

means of WAITEVENT. After processing of the message, the recei-

2.4

1

ving process returns an answer to the sending process in the same

buffer, which now is linked to the event queue of the sender
(= owner) process. This answering is handled by SENDANSWER. If

the original sender gets information about the answer by means of
WAITEVENT, the buffer has to be released by using WAITANSWER. If

the sender wants to wait for an answer to a specific message, it
suffices to use WAITANSWER.

For further details, see the description of the monitor func-

tions, chapter 3.2.

Initialization of the Descriptors.

Below is shown in an example, how a program descriptor and a
process descriptor with two message buffers are coded. Parameters
marked with * must always be initialized by the programmer with

values as indicated in the example. Unmarked parameters are set
by the system during execution.

2.4

12

;program descriptor:

PGl: 1B0+1B1 ;*this program is reentrant and
;contains its proc.desc.

PG2 h

0 ;*

PC1-PG2 ;

JIXT PXX<0><0>. : *program name, three words.
PG2: . ;program:
PG3: . ;start of execution

-
M ’

PG4: . sbreak address

PCl:

;process descriptor:

PC2-PCl1
JIXT PXX<0><0>.

.+0

o_]

MESBI

PGI1

1B0

187

PG4

PCl

PG3*2

-

; *process name, three words.

;*when the event queue
;*is empty it must point to
; itself

;*1. message buffer, if no
message buffers, it must
be 0.

*used to find the

program descriptor

~e ~e ~e

-e

; e.g. when the process is
; removed.

;*state = stopped

; during load.

;

;*zero must not be used.

; *address entered

; at break.

; *proc.desc.addr
; must be in AC2 at start.

;*execution is started
; in PG3 with carry = 0
; and the reyisters loaded

: with the four values above.

; opticnal words in
; process descriptor.

~e

14

MESB1:

PC1

.BLK 4

MESB2:

PC1

.BLK 4

PC2:

.END PCI]

Example 1.
Initialization of descriptors.

initialized by the programmer.

;message buffers: —
7

H

; *next message buffer

ok
7

; *sender.proc.desc.addr.
;*buffer free

; messO-mess3 irrelevant

7

i _
;*¥last in chain

e

’
; *sender.proc.addr.
;*buffer free
;messO0-mess3 irrelevant
; optional words in

; process desc —

send of process desc.
;*the start address

; must be the process
; desc.addr.

Parameters marked with * must be

15

MONITOR. 3.

3.1

The primary purpose of the monitor is to implement multiprogram-—

ming that is simulation of parallel execution of several active

processes on a single physical processor.

In order to do this, the running process is interrupted at regu-
lar intervals (20 msek.) by a Real Time Clock device, RIC. When
such an interrupt occurs, the monitor gains control of the pro-
cessor, saves the registers of the interrupted process and deter—
mines, which process is to get the next time slice for instruc-—
tion execution. Switching framn one process to another is also
performed, whenever a process must wait for the caompletion of in-

put/output.

Another purpose of the monitor is to execute indivisible func-
tions in disabled mode, which is necessary to implement multipro-
gramming. E.g. functions allowing synchronization between proces—
ses and exchange of information in such a way that only one pro-
cess at a time access the information. Also interrupts fram all
other devices than RIC are intercepted by the monitor, and the
interrupt handling monitor functions give processes the ability
to synchronize with the devices. The monitor functions are de-

scribed in chapter 3.2.

Monitor Descriptor. 3.1

The monitor is itself organized as a process. Its process de-—
scriptor contains variables and tables for the monitor. Only the
first part of the monitor process descriptor, corresponding to a
normal process descriptor, is shown here. Some of these parame—
ters are used as the corresponding parameters in the normal pro-—
cess description in order to let the monitor run as a dummy pro-

cess when no other process wants execution time. The remaining

16

locations are used for monitor variables and constants.

+2:
WORK1 @
WORK?2 s

TABLE:
TOPTA:

DFIRS:
+1:

+2:

PFIRS:
+1:

RUNNI :

+1:

EXIT:
EFIRS:
FFIRS:
DELAY:
+1:
+2:

AFIRS:
FREQU:

MASK:
CORES:

PROGR:
+1:

+2:

First process in running queue.

Last process is running queue.

Head of running queue.

First in process chain.

Monitor work location.

Monitor work location.

Ref. to start of device table.

Ref. to top of device table.

First process in delay queue

Last process in delay queue.

Head of delay queue.

Ref. to break process—function.

First in program chain.

State. Monitor state is always zero, because the moni-
tor is always in running queue.
Ref. to head of running queue (= 408).
Priority. Monitor priority is zero, which is the lowest
possible.

Monitor exit address.

First in free core.

Last in free core.

Ref. to head of delay queue.

The dunmy program. (jmp .+0).

Psw of dummy process. (.-1).

Ref. to head of area process chain.

First in area process chain.

Frequency of RIC. Must always be zero, which corre-
sponds to 50 Hz (=20 msek).

Interrupt mask.

Core size.

Ref. to head of program chain.

Address of monitor clear interrupt routine.

Address of RIC clear interrupt routine.

3.1.1

17

RTIME: Real time count. Two words, where the number of real
time clock interrupts is counted. The number is
(RTIME+0)*216 + (RTIME+1).

POWIN: Power failure. The number of power failures since dead
start.

Running Queue.

The first two locations of the monitor process descrip-
tor contain the head of the running queue. All proces-
ses wanting to compete for time slices are linked to
the running queue. The first process in the running
queue is the one that is actually running, and there-
fore a process can always find its process descriptor
address in CUR (except in a drivers clear interrupt
routine. See chapter 4). This process is called the

current process.

The priority of a process is a 16 bit integer. The priority of
the monitor process i.e. the dummy process is zero, which is the
lowest possible and must not be used by other processes. Inser-—
tion in the running queue is done in order of the priority that
is, the process with the highest priority is inserted as the
first in the queue. Amcng processes of the same priority, a new

is inserted as the last one (see fig. 2).

At each interrupt from RTC, the current process is relinked as
the last process with that priority and the process that now is

first in the queue, becomes the current process.

3.1.1

18

e . T
running 1BO + 4 1B0 1B0 128 priority N
queuve head
A B C D

After insertion of process E with priority 1B0 the running queue

is as follows:

'——7 ‘ D — L > & - >
running 1BO + 4 1BO 1BO 1B0 128 priority
queue head
A B C E D
Fig. 2
- 3.1.2 Process Chain.

All process descriptors are linked together in a process chain.

The chain field is word no. two relative to the start of the pro- -
cess descriptor, but the contents of the field is the address of

the first word of the next process descriptor in the chain. The _
predefined symbol PROCE contains the address of the monitor pro-

cess descriptor and can therefore be used as reference to the

head of process chain.

3'] '3

19

Device Table.

All interrupts fram devices are intercepted by the monitor, and
processes can then synchronize with devices by using the inter-

rupt handling monitor functions. A device table, containing one

word for each device number, is maintained by the monitor. When a

process wants to supervise a device, it inserts its own process
descriptor address in bit 0-14 of the device table entrance be—
longing to the device. Only one process, called a driver process,
can supervise a device. If a driver process wants to wait for an

interrupt from a device, it calls the monitor function WAITIN-
TERRUPT, which removes the process fram the running queue and

sets its state to waiting for interrupt (fig. 3).

When an interrupt arrives, bit 15 in the appropriate device table
entrance is set and the process descriptor is used to find the

clear-interrupt routine (in proc.clint), which is then executed.
If the driver process is waiting for interrupt, bit 15 is cleared
again and the process is linked to the running queue. If not, bit
15 indicates that an interrupt is pending and next time the pro-
cess wants to wait for an interrupt, it is immidiately relinked
to the running queue.

Driver processes are described in detail in chapter 4.

3.1.

20

K L

running
queue head
delay
queue head 3 state
512 timer
C
3
]
k
63
device
table

state

Device no. k is supervised by process A and device no. j is su-

pervised by process C, which is waiting for interrupt from the

device, or for software timer.

Fig. 3.

2]

e E—

running delay

queue head 0 0 queue head 1 212 timer
768 256 1024 1BO priority
A B C D

After the next interrupt from RTC, the timer in process C

becomes 0 and the situation will be as follows.

IS - g L’I, i
running delay
queue head 0 0 0 queue head 211 timer
1024 768 256 1B0 priority
c A B D
Fig. 4

During the initialization of the system, the monitor process is
inserted as supervisor for all devices. I.e. if an interrupt ar-
rives fram a device which is not supervised by a driver process,
the monitors clear interrupt routine is executed. This routine
clears the interrupt and counts the number of such "unknown"

interrupts in a variable located just in front of the first in-
struction of the routine.

Delay queue. 3.1.4

If a process is not running, it may be waiting for an event (i.e.
a message or an answer), waiting for an interrupt or stopped. In
all cases of waiting, the monitor function used makes it possible
to specify a maximum number of timer periods, it wants to wait.

22

If this possibility is used, the process is linked to the delay
queue and the specified number of periods is inserted in the pa-

rameter TIMER in the process descriptor. For each timer (RTC)
interrupt, PROC.TIMER is decreased by one for all processes in

the delay queue. When the timer count for a process becomes zero
it is started, i.e. removed fram the delay queue and inserted in

the running queue, according to its priority (see fig. 4). DELAY
contains a reference to the head of the delay queue.

Program Chain 3.1.5

All program descriptors are linked together in a program chain.
PFIRS is the head of this chain and PROGR is a pointer to the

head of the program chain and can be used as start address when
searching for a specific program in the chain (see SEARCHITEM,

Free Core Area. 3.1.6

During the initialization of the system, the core size is found

and inserted into the parameters (ORES and FFIRS. EFIRS is used
by MUS and points at the first free location in core, while DOMUS

uses the parameter CORE (not shown here) as head of a chain of

3.1.5

chapter 3.2).
3.1.6

free core items.
3.1.7

The Dunmmy Process. 3.1.7

As mentioned before, the monitor process descriptor is organized
as a normal process descriptor, containing the parameter values

necessary to let the monitor run a dummy process when no other
process wants to run. The program executed by the dummy process

is the instruction JMP.+0. The location corresponding to PROC.PSW

23

points to the dummy program, Other parameters needed to enable

the monitor to run as a dunmy process are state and priority,
which are both zero. Zero is the lowest priority possible and

must not be used by other processes.

Area Process Chain. 3.1.8

A pool of free area processes are linked together in a chain with

head in AFIRST. AREAP is a reference to this head. Area processes

Interrupt Mask. 3.1.9

A copy of the hardware interrupt priority mask is kept in MASK.
The MUS system initialization applies a zero mask, i.e. interrupt
requests are enabled from all devices, and the system does not
support the use of the instruction MSKO. It is not recammended to
use this instruction but if necessary, it must be carried out in
disabled mode and the value needed to disable interrupts fram the
priority levels wanted must be or'ed to MASK and the result re-
stored in MASK (also in disabled mode) before the interrupt mask

out instruction is applied with the new mask.

After a power failure the system is again supplied with a zero

3.1.8

are described in chapter 8.
3.1.9

interrupt priority mask.
3.] .]0

Real Time Clock. 3.1.10

Fran software it is possible to select between four real time
clock frequencies, but in the MUS/DOMUS system, 20 msek. is

always used.

3.1.11

24

Power Failure. 3.1.11

At power failure the accumulators and the program counter are
saved in the process descriptor of the current process and a jump

instruction to the power restart routine is saved in location 0.

At power-up, an IORST instruction is executed and all processes
in the device table are break'ed with error number —4. (See

BREAKPROCESS, chapter 3.2).

3.2 Monitor functions. 3.2
This chapter describes the monitor functions. Monitor functions
are executed in disabled mode and are called fram assembler pro-
grams by writing their names. In the assembler, they are defined
as permanent symbols and are substituted with jump-subroutine—in-
structions. In the following 'link' is the address of the first
instruction after the function-call, and it is automatically
contained in AC3 when the function is entered. The return value
of AC3 is for all functions the process descriptor address of the
calling process (cur). If nothing else is mentioned, the function
returns to the address 'link'.

3.2.1 Function WAITINTERRUPT. 3.2.1

call return

ACO unchanged
ACI device device
AC2 delay cur
AC3 link cur

1ink+0 timeout
link+l interrupt

25

The corresponding entry in the device table is checked for an in-

terrupt. If an interrupt is pending, return is immidiately made
to (link+1).

If no interrupt is pending, the process is removed fram the run-

ning queue and is inserted in the delay queue. 'Delay' (AC2) is
inserted as timer count in the process descriptor and the process

is stopped with state waiting for interrupts or software timer
(state = device).

If delay = 0, a maximum delay period of 65535 timer periods (25

minutes) is used. If delay = 1, the waiting period is between 0
and 20 msek. Waitinterrupt may be used as a pure timer when

device = 0. In this case state = 0 is preserved.

If an interrupt arrives before the time specified by 'delay' runs
out the process is set running (i.e. removed from delay queue

and inserted in running queue with state = 0) and return is made
to link+1. Otherwise, the process is set running when the delay

period runs out and return is made to link.

Note: Before any call of WAITINTERRUPT with device <>0, the de-
vice table must be initialized to process-descriptor-add-
ress*2, This may be done by procedure SETINTERRUPT (see
chapter 4).

26

EX: —
JSR DGCOM, 2 ;start device
LDA 1 DGDEV, 2 sload device no.
LDA 2 512 :load timer N
WAITINTERRUPT swaitinterrupt (device,
;delay); -
JMP DGTIM ;+0: timeout return
. ;+1: interrupt return —
DGTIM: . -
Example 2.
3.2.2 Function SENDMESSAGE. 3.2.2
call return error return _
ACO unchanged unchanged
ACI address address address
AC2 name address buf error number

AC3 link cur cur

27

Selects a free message buffer belonging to the calling process
and copies the four message words placed fram 'address' and on-—
wards into this message buffer (BUF.MESSO-BUF.MESS3). The message
buffer is then linked into the event queue of the receiving pro-
cess with name placed in 'name address' and onwards. The recei-
ving process is activated, if it is waiting for an event. The
calling process continues execution after being informed about

the address of the message buffer in AC2.

If a process with the given name ocould not be found in the pro-
cess chain SENDMESSAGE returns with error number = -2. If the

message buffer pool of the sending process does not contain a
free message buffer, the function returns with error number = ~3.

Ex:

MESAD:

INSTR:

STADR:

Example 3.

28

'+.|

JIXT . TTY<0><0>.

ot
1

80
INSTR*2

.BLK 40

DA 1 MESAD
LDA 2 TTYNA

SENDMESSAGE

MOVZL# 2, 2 SzC
JMP ERROR

WAITANSWER

»

~e

;address of message
;mess0
smess]
;mess?2

;ymess3, irrelevant here

;message address

:name address
:sendmessage (mesad,

s ttyna)

;if TTY not found

;then got error

selse wait for answer to
;that buffer

Before SENDMESSAGE:

y BUFFE

PROCESS

SENDER-

29

BUFFER

SENDER

RECETVER-

PROCESS

EVENT QUEUE HEAD

3.2.3

After SENDMESSAGE

SENDER-
PROCESS

BUFFE

30

Fig. 5

Function WAITANSWER:

ACO
ACl
AC2
AC3

call

buf
link

BUFFER RECEIVER-

PROCESS

return
first
second
buf

cur

EVENT QUEUE HEAD

When a process has sent a message, the answer to it will be re-

turned in the same message buffer. WAITANSWER delays the process

until an answer arrives in the message buffer given as a para-

meter. The first two words of an answer (i.e. BUF.MESSC and
BUF.MESS1) are copied into ACO and ACl1 and the message buffer is

3.2.3

31

released.

Note that WAITANSWER is the only monitor function that releases a
message buffer. This means that WAITANSWER must also be used if

the process has received information about the answer by means of
WAITEVENT or WAIT (see these functions).

Ex:

LDA 3 CUR H

LDA 2 BUFFE, 3 :

WAITANSWER ;waitanswer (1.mess buf-
_ ; fer)

MOV# 0,0 SZR ;if buf.mess0<>0 then

JMP ERROR ;jgoto error;

. ;the message buffer

. ;1s now released.

Example 4,

32

After WAITANSWER: _

BUFFE)
- NEXT
SENDER _
PROCESS BUFFER
Fig, 6
3.2.4 Function WAITEVENT. 3.2.4
call return
ACO first o
AC] second
AC2 buf next buf —
AC3 link cur
Link+0 answer
link+1 message

The process is delayed until an event (a message Or an answer) is

linked to its event queue after the message buffer given as para-

33

meter. If 'buf' is zero, the event queue is examined fram its

beginning. The calling process is supplied with the address of
the new event in AC2 and with MESSO and MESS1 fram the event in
ACO and ACl1. If the event arrived is an answer, the function
returns to link+0; otherwise link+1 is chosen.

Note that if an answer arrives, WAITANSWER must be used to re-
lease the message buffer.

Ex:
SUB 0,0 sbuf:= 0
WAITEVENT ;waitevent
- JMP ANSW ;+0: answer
. ;+1: message
ANSW: WAITANSWER ;release message buffer

Example 5

3.2.5

34

Function WAIT.

call return return
(answer or message) (timeout or interrupt)

ACO delay first unchanged
ACI device second device
ac2 buf next buf cur

AC3 link cur cur

link+0 timeout
link+1 interrupt
1link+2 answer

link+3 message

This function performs the combined functions of WAITINTERRUPT

and WAITEVENT. 'Delay' is inserted as timer count in the process
descriptor and the process is linked to the delay queue. If "de-
vice' is non-zero, the device table is checked for an interrupt.

Then it waits, either for an interrupt, a timeout or an event af-
ter the buffer given as a parameter. If 'buf' is zero, the event

queue is examined fram the beginning.
The return depends on, what happens first as listed above, and
the contents of the registers are as for WAITEVENT or WAITINTER-

RUPT depending on the return.

Note again that if an answer arrives, the message buffer should
be released by means of WAITANSWER.

3.2.2

3.2.6

Example 6

Function SENDANSWER.

LDA
Lo
LDA
SUB
WAIT

JMP
JMP
JMP

35

ACO
ACl
AC2
AC3

call
first
second
buf
link

512
DEV’ 2

DT'IM
DINT
DANS

return
first
second
buf

cur

;delay

:sdevice

shuf: = 0

;wait (delay, device,
; buf)

;+0: timeout

;+1: interrupt

;+2: answer

;+3: message

'Buf' is the address at the message buffer which the calling pro-

cess wants to answer. 'First' and 'second' are copied into MESSO
and MESS1 of the message buffer and the buffer is then delivered

as an answer in the event queue of the original sender (i.e. the
owner of the buffer). If the calling process also wants to return
information in MESS2 and MESS3 of the buffer, this information
must be stored directly in BUF.MESS2 and BUF.MESS3 by the calling
process before SENDANSWER is called.

3.2.6

Ex:

Example 7

36

WAITEVENT

JMP DANS
STA 2 BUF, 3
SUB 0,0

LDA 1 COUNT, 3
LDA 2 BUF, 3
SENDANSWER

; H0: answer
; +1: message

shandling of message

|
(o]

sbuf.messl: =

sbuf .mess] cur .count

.
+

3.2.7

After SENDANSWER:

P o

ORTGINAL
SENDER-
PROCESS

EVENT QUEUE HEAD

NEXT

SENDE

Fig. 7

Function SEARCHITEM.

ACO
ACI
AC2
AC3

call

chain head

name addr
link

BUFFER

return
unchanged
chain head
item

cur

RECEIVER-
PROCESS. (Sender of the answer).

3.2.7

If the chain with the address of the chain head placed in AC]

contains an item with the name placed in 'name address' and on-—

38

wards, the address of this item is delivered; otherwise a zero is

del.ivered.

The address of the head of the process (program) chain is con-
tained in the monitor parameter PROCE (PROGR). An item in the

process chain can be found as shown in ex. 8.

EX:

NAADR: .+l
LTXT PTR<O><0>.

START: LDA 1 PROCE
LDA 2 NAADR
SEARCHITEM
MOV# 2,2 SNR
JMP NOTFO

L]
*

»

Example 8

;process chain head
;name address
;searchitem (PROCE, PIR)
;1f item not found
;then goto notfo.

;else continue

Ex:

Cl:

CIREF:

NAADR:

START:

Example 9

.+3
5101
. TXT

o3
5102

39

.P100<0>.

.P101<0>.

.P102<0>,

P103<0>.

.+1-CHAIN
C1-CHAIN

o+
. TXT

LDA
LDA

.P102<0>.

1 CIREF
2 NAADR

SEARCHITEM

MOV#
JMP

2,2 SNR
NOTFO

;chain
;Size

;hame

;chain
1size

;name

:chain
;size

;hame

schain
:size

;name

;ref. to head of chain Cl
shead of chain Cl

~e

;chain head

;name address
ssearchitem (Cl1, name)
;if item not in Cl1 then

;goto notfound;

40

3.2.8 Function BREAKPROCESS. 3.2.8
call return

ACO error number error number

aCl unchanged

AC2 proc proc

AC3 link cur

The process given as parameter with process descriptor address in

AC2 is started at its break address with the following accumula-

tor contents:

ACO error number

ACl unchanged

AC2 proc

AC3 PSW (its old program counter)

The following error numbers are used by MUS/DOMUS system proce-

dures:

-4: All processes inserted in the device table are break'ed with
error number -4 at power interrupt.

-3: Fram the coroutine monitor procedure CSENDMESSAGE. No system
operations available to send messages. [3].

1: The break'ed process has received a message from a process
which has been cleaned after it has sent the message (see
function CLEANPROCESS).

2: The process is break'ed by the operator.

Ex:

41

A MUSIL program is break'ed with error number 3 if it reaches
the end.

The status returned from a zone contains a hard-error-bit
which is not set in the giveup mask of the zone (see
WAITTRANSFER, chapter 5).

Fram the coroutine monitor procedures SAVELINK and RETURN.
Stack over— or underflow. [3].

a) Page system break.

b) Break from the coroutine monitor procedure WAITGEN. No
system operation available for receiving messages although
reserved. [3].

Reserver removed. Only reservable (driver) process that is

processes with bit 7 set in the program description word.

LDA 1 PROCE ;

LDA 2 NAADR ssearchitem (process-
SEARCHITEM schain, name)

MOV# 2,2 SNR ;1f proc not found

JMP ERROR ;item goto error

LA 0 .16 ;else

BREAKPROCESS sbreakprocess (16, proc)

Example 10

3'2'9

42

Function CLEANPROCESS.

call return
ACO unchanged
ACl unchanged
AC2 proc proc
AC3 link cur

Messages to the process given as parameter are answered with sta-
tus (= MESS0) = 0 and bytecount (= MESS1) = 0. Answers to the
process are released. Messages fram the process are released and

the receivers are break'ed with error number = 1.

The function is used to tidy up, e.g. the operating system S app-

lies it before killing a process.

CLEANPROCESS must be used with special care, as it may cause the
processor to run in disabled mode for an unpredictable time.

ExX:

LDA 2 CUR ;the process
CLEANPROCESS ;cleans itself

3.2.9

3.2.10

Ex:

NAADR: .+l

LTXT .P22<0><0>,

START: LDA 1
LDA 2
SEARCHITEM
MOVi# 2,2
CLEANPROCESS

Example 11

Function STOPPROCESS.

call
ACO
ACI
AC2 proc
AC3 link

PROCE
NAADR

SZR

return
unchanged
unchanged
proc

cur

-

~e

H
ssearchitem (PROCE, P22)

;if P22 in processchain
;then CLEANPROCESS (P22)

The process is set in state stopped and removed fram the delay-

or running queue. If it was waiting for event or answer, PSW is

decreased by 1. This ensures that the monitor function is called
again if STARTPROCESS is performed.

Ex:

LDA 2
STOPPROCESS

;the process
;stops itself.

3.2.10

44

return
unchanged
unchanged
proc

cur

If the process is in state stopped, it is set running. Otherwise,

3.2.11 Function STARTPROCESS.
call
ACO
AC]
AC2 proc
AC3 link
the function is dummy.
ExX:
LDA 1
LDA 2
SEARCHITEM
MOV# 0,0
JMP
STARTPROCESS
Example 12
3.2.12 Function RECHAIN.

ACO
ACI
AC2
AC3

call
old
new
elem
link

PROCE
NAADR

SNR
ERROR

return
old
new
elem

cur

H

;searchitem, (process-—
;chain, name addr)

:1f process found

H

;then start it;

error return
old

new

-3

cur

The parameters 'old' and 'new' are chain head addresses and 'e-

lem'

chain and inserted in the new chain.

is the address of an item. This item is removed fram the old

302. Vi

45

Error return: If the element does not exist in the old chain, the

function returns with AC2 = -3,
Ex:
Cl: 3 ;chain
S100 :size
JTXT .P100<0>. shame
.+3 :chain
5101 ;Size
- LTXT P101<0>. snhame
CHEIM: 43 :chain
5102 :size
LJTXT P102<0>. ;name
0 :chain
S103 :size
LTXT P103<0>. jnhame
C2: 0 ;empty chain
CIREF: .+1~-CHAIN ;ref to head of chain Ci
-— C1-CHAIN shead of chain Cl
_ C2REF': .+1-CHAIN sref to head of chain C2
C2-CHAIN shead of chain C2
ELEM: CHELM-CHAIN :P102
START': LDA 0 CIREF ;0ld: = chain Cl
LpA 1 C2REF snew: = chain C2

LDA

RECHAIN
MOVZL#

JMP

Before RECHAIN:

C1

c2

v

P100

46

ELEM

SzC

ERROR

P101

;elem: = P102

;rechain (elem, old, new)
;if elem not in chain

s then

;goto error

P102 P103~"”i1_

3.3

47

After RECHAIN:

P100 P101 P103 z

c2 7 »

P102 =

Example 13

Initialization of the Monitor. 3.3

When the basic system is loaded, the initialization module (MUI)
is started. After an IORST has been performed and the real time
clock has been started, all processes in the basic system are
linked into the process chain and the running queue and their
programs are inserted in the program chain. The process descrip-
tor addresses of processes in the basic system are found fram lo-
cation 4028 and on, where they have been inserted by

system generation programs. This sequence stops with the value
-1. Then the device table is initialized with the program status
word (PSW) of the dummy process, which means that if an interrupt

appears fram

3.4

48

a device not supervised by a driver process, the clear interrupt

routine specified in the monitor process descriptor is executed.
This routine counts all such interrupts in a variable, placed

just in front of its first instruction.

At last the core size is calculated and the first process in the
running queue, which is S because S has the highest priority, be—
cames active. As MUI is always placed after S in a basic system,
it is overwritten when the first process is loaded by the opera-

tor. .

Processor Expansion. 3.4

The processor expansion system, which makes it possible to

cammunicate between processes placed in two different processors,

consists of a software module, XCOMX, a copy of which is placed -
in each processor. XCOMX is a normal MUS process which takes care

of sending messages and data destined for processes in the other _
processor and returning answers the other way. The system is de-

scribed in [4]. The only monitor function that takes special care

of XCOMX is SENDMESSAGE. When a message is sent, SENDMESSAGE

searches for the receiving process in the process chain. If it is

found, the message is inserted in its event queue, but if it is

not found, the function will instead search for XCOMX. If XCOMX

is present, the message is linked into the event queue of XCOMX, Co-
which then takes care of sending it to the other processor. In

addition the name of the receiving process and the address of the —
buffer are stored in a table starting in the monitor variable

COMLIST. This information is needeed by XCOMX. COMLIST and the

lenght of this table, COMNO, is set by XCOMX, when it is loaded.

49

DRIVER PROCESSES.

4.1

Introduction.

A driver process is a normal process seen fram the monitor, but
it is dedicated to camunicate with a device. Under special cir-
cumstances it might take care of several devices. E.g. console
input and console output driver.

The reason for introduction of processes dedicated to device con—

trol are:

- to let more than one process camnunicate with a de-
vice. Without a driver as interface this would demand

explicit arrangements among involved processes.

- to handle devices in a more uniform way. That is, in-
troduction of standard operations, standard status

information and blocking of all input/output, also
for character oriented devices.

- to realize simple and time-saving conversions of cha-

racters directly from input or output to the devi-
ces.

Other processes must then request the driver process to perform

input/output by means of messages, and the driver processes are
thus the only processes which actually execute I/0 instructions

and take care of the device dependant interrupt service.

The messages accepted by the driver process should conform to the
below mentioned standards, and the answers should also be of a

standard form.

As the zone procedures used by the application program expect
special reactions in connection with the exception handling all

4.1

4.2

50

nmessages must be returned by the driver within a finite time.
Furthermore, the driver must enter a reject state after return of
a hard error status, in which all transput messages are rejected

with a non—-processed status.

This reject state is important and necessary when input/output is
of a sequential nature, as the errormarked message must be in-
put/output before the following transfer request are granted when
multibuffered input/output is used.

This driver reaction is not used in the handling of devices with
an input/output structure more complex than simple sequential in—
put/output transfer.

The driver reject state must be cleared by special messages serd

by the user process.

Device Handling.

Before any I/0 instructions are executed, the driver process

should clear the device in question by the device specific I/0
instruction (normally a NIOC DEVNO).

Then the driver must insert its process descriptor address
shifted one left (bit 15 = 0) in the corresponding device table
entry, either directly or by a call of the procedure SETINTER-
RUPT, which will also execute the above mentioned NIOC instruc-
tion.

4'2

51

ex.:

; DIRECT INSERTION IN DEVICE TABLE

-
’

LDA 3 E000
LDA 1 E001
ADD 1,3
LDA 2 CUR
MOVZL 2,0
STA 0 +0,3
E00Q: DEVTA
EO0OT DEVNO
Example 14A

USE OF PROCEDURE SETINTERRUPT

~e

-

LDA 1 E002
SETINTERRUPT
E002: DEVNO

Example 14B

-e

-e

e

-.

e

-

~e

-

~e

ADDR: = TABLE
ADDR: = TABLE + DEVNO;
WORD(ADDR): = CUR

SHIFT 1;

ADDRESS OF DEVICE TABLE
DEVICENUMBER

SETINTERRUPT (DEVNO);
NIOC DEVNO

52

When the device table word is initialized, all interrupts fram

the device will cause the call of a user defined interrupt proce-

dure given by its address in the process descriptor with the dis-

placement CLINT (see fig. 8).

DEVNO

77

Device table ADDRE:

COUNT':
RESER:
CONVT':
CLINT:

Fig. 8 Organisation of device table, process descriptor and in-

process descriptor

terrupt procedure in a driver process.

The user defined interrupt procedure must obey the following con-

ventions:

Interrupt

procedure

53

User interrupt procedure

Call Return
ACO - destroyed
ACI device unchanged
AC2 process descriptor addr unchanged
AC3 link destroyed

The procedure is called by the monitor in disabled mode and it
must not change this state. It must return with the device inter—

rupt request cleared, and it must not call other system proce-

dures or use any system variables. (The standard variable CUR

t.ex. points to the interrupted process and not to the driver
process) .

The amount of data processing must be as small as possible since

it affects the system overhead.

Priorities in interrupt service by means of the hardware MASKOUT
feature is not supported. Instead, the interrupt service time
should be kept at a minimum in the disabled interrupt service
routine, and the priority between different devices can then be
achieved by the process priority, as active processes are assig-
ned CPU time according to the process priorities. Data handling
should also be done outside the interrupt service routine as all
system variables and procedures can be used freely in this case.

The system offers a standard interrupt procedure which only exe—
cutes a NIOC <device>. This procedure can be selected by the sys—~
tem address CLEAR.

If at return the driver process is in a state waiting for inter-

rupt fram the interrupting device, the process is set running.

4.3

54

If the process is in any other state, the interrupt is indicated

by the monitor setting bit 15 in the device table word, thus in-
dicating one or more interrupts fram the actual device.

This bit is only cleared if the process calls the WAITINTERRUPT
function, in which case the return fram WAITINTERRUPT takes place
immidiately, or when the bit is cleared by an initialization as
mentioned above, using the procedure SETINTEFRUPT.

If the process start or interrupt indication is not wanted, the —
return can be made by an indirect jump to the monitor exit action
(JMP@ EXIT). —

No check is performed on the selected device code, and special
care must be taken to secure that two driver processes do not use

the same device code.

The device oodes 0, 1, 2, 3, 4, 148 and 778
are used exclusively by the system and must not be used by any -

driver.

Devicecode 148 is the real time clock (RTC) and code

778 is the CPU. Other standard RC 3600 device codes
can be found in the appendix.

Driver Interface. 4.3

User programs communicate with a driver by means of messages with
two standard formats: control and transput. A control message in-
dicates an operation which does not imply any actual input or
output but performs positioning, selects diftferent facilities
such as parity, density, baud rate, conversion etc. A transput
message requests input to or output from a message defined core-

area.

Regardless of the message type, the answer returned when a mes- —

sage has been processed by the driver process contains a status —

55

word, which describes the success of the requested operation.

4.3.1 Control Messages. 4.3.1

The standard format of a control message is:

0 14 15
MESSO MODE 00
MESS] SPECIAL 1
MESS2 SPECIAL 2
MESS3 SPECIAL 3

The mode is any array of bits which specifies the actions to be
taken.

An action is performed if the corresponding bit is one. The in-
terpretation proceeds normally from bit 13 to bit 0. Not all ac-
tions are relevant for specific driver processes and some com~
plex drivers will give other reactions than the standard reac-

tions described below:

56

2 3 4 5 6 7 8 9 10 11 12 13 14 15

E D P T C R 0 0

i J
reservation

conversion

termination

position

disconnect

erasure

not standard
use
(stream number)

Fig. 9 Standard mode bits in RC 3600 MUS system.

The standard mode bits can be seen in the word layout in fig. 9.

Reservation

If bit 13 is set in the MESS0 word, the action depends on the
contents of MESS1 as follows:

MESS1<>0: The sender of the message is set as reserver
of the driver, i.e. the sender gains exclu-
sive access to the driver process, and mes-

sages from other processes are rejected.

MESS1=0: The gained reservation is cancelled and the
driver process will accept any message again.

57

Conversion

If bit 12 is set in the MESSO word, the MESS2 part (special 2) is

taken as a byteaddress of a oconversion table.

A table address of zero specifies no conversion. Format and in—
terpretation of the table is dependent on the driver. Note that
if conversion is used, reservation ought to be done.

Termination

Normally used only by output devices, as it indicates that the
data, which has previously been output, must be terminated logi-
cally. E.g. for a magnetic tape, a file mark is written and for a

paper tape punch a leader is punched.

The termination action is taken, if bit 11 of the MESSO word is

set.
Position

The document is positioned according to the information in the
message, or the special parameters are taken fram the message
words MESS2 and MESS3.

If the message is interpreted as a true position cammand, MESS2

(special 2) is taken as the wanted file position and MESS3 (spe-
cial 3) is taken as the new block position.

In special cases, the maximum value of MESS3 is too small and the

wanted blockposition is calculated by taking the first byte of
MESSO as the most significant part and MESS3 as the least signi-

ficant part.

As the presence of bit 10 in the MESSO part of the message nor-
mally indicates parameters in MESS2 and MESS3, this bit is nor-

58

mally the only one set in the word and thus it is not used to-
gether with actions indicated by other bits.

Disconnection

If bit 9 of the MESSO part is set, the device in question is set

local if possible. E.g. a magnetic tape is rewound and the sta—
tion is set off-line.

Erasure

Only relevant for output devices, which are able to cancel pre-

vious output. E.g. some inches of magnetic tape are erased or a
flexible disc sector is marked as a skip sector.

General

If all bits are zero in the MESSO part, a sense of the device is

executed by the driver.

If the driver is able to handle a number of devices connected to
the same controller with a single device code, the first byte can

be used as a stream number and the above mentioned actions can
then be done for the stream in question. E.g. several VDU's

connected to a multiplexer.

4.3.2

59

14g 40g MESSO

0 - MESST
17777, 2 MESS?2
- 108 MESS3

Example a) Control message with request for reservation and
conversion table address 17777

8.
(I/0 procedure OPEN).
b) Control message requesting position to file 2, block

]08
(I/0 procedure SETPOSITION).

Transput Messages. 4.3.2

A transput message requests an operation, which involves transfer
of data to or fram a core area. The core area can be transferred
by the driver either byte by byte with programmed input/output or
directly from the core area by hardware controlled DMA transfer
(DMA = Direct Memory Access), but seen from the user process

there is no difference as the data is handed over as a whole
block.

The standard format of a transput message is:

60

403.2.1 Inputo 4.304.' T
MESS0 cperation 01
MESS1 bytecaunt
MESS2 byteaddress B
MESS3 special -
4.3.2.2 OQutput. 4,3.2.2
MESSQ gperation 11 B
MESS] bytecaunt -
MESS2 byteaddress —
MESS3 special

Fig. 10 Standard formats of input and output messages.

The operation field of MESSO transmits information about the mode - -

of transfer. E.g. parity, format or special actions.

The bytecount in MESS1 specifies the number of bytes to be trans-
ferred to or fram the core area, pointed out by the first byte
given in the MESS2 word of the message (byte address).

MESS3 contains special information concerning the transfer t.ex.
the block number of the wanted block to be read/written on a ram
dam accessible device. --

61

The first byte of MESSO can be used as a stream number or as an

extension to the special information in MESS3.

Bit 8 set in MESSO is normally used to indicate that MESS2 should
be interpreted as a wordaddress.

The core area to input or output must have a layout as seen in

fig. 11. The bytes are packed left to right in the memory words
with the first byte in the lowest memory address.

’/ byte address

byte 1 byte 2 bytecount bytes

~ byte 3 | byte 4 (n+1)

e ey {

byte n byte n+1

MMM—N\J

Fig. 11 Layout of core area pointed out by a transput message.

4.3.3

62

a)

10

12765

Example 15: a) Input message requesting transfer of 108 bytes to

address 12765

b) Output message requesting transfer of 208 bytes

fran address

Answers.

4.3.3.1

The answers returned in the message buffer is independent of the

~l

20

13775

8-

13775

g8 and on.

message type received and the format is:

Answer.

MESSO status

MESS1 bytecaunt
MESS2 special 1
MESS3 special 2

Fig. 12 Standard answer

MESSO

MESS1

MESS2

MESS3

4-3.3

4.3.3.1

63

The MESSO part of the message is an array of bits called status,

which conveys information about device errors or call errors and
gives information about the success of the device action

requested by the received message.

The different bits have been given special meanings in order to

standardize error recovery in the user input/output procedures.
The status returned on a successfull operation should be zero,
except for the below mentioned bits 3, 4, 5 which have device de-

pendent informative functions only.

The standard status bit interpretation is:

bit mnemonic clean

0 disconnected * The device is not pre—
sent.,

1 off-line * The device is or has been
off-line. The device is
not ready.

2 device busy * The device was tempora-
rily not able to execute
the operation.

3 device spec 1 Device dependent, infor-
mative.

4 device spec 2 Device dependent, infor-
mative.

5 device spec 3 Device dependent, infor-

mative. Document write
protected. (Returned with
'illegal' when output

10

11

12

illegal

eof

block error

data late

parity

end medium

position error

64

transfers are attempted)

Device reserved.
Operation illegal or un-—
known.

Logical end of document
is detected. E.qg. file

mark read, end of trans-

mission.

The core area specified

is too small to hold the
input block, or the out-

put block was too big for
the document.

The high speed data chan-

nel responded too late,
and data was lost.

One or more invalid cha-

racters were input or one
or more characters were

output badly on the docu-
ment (device read after

write feature).

Physical end of medium.

E.g. end-of-tape, paper

tape reader empty, paper
out on printer.

The requested position
was nonsense or not
found.

65

13 Not used by driver. Used
by I/0 procedures to in-
dicate the absense of the

driver process.

14 timeout * An expected interrupt was
not received within a
maximum driver specified
time.

15 rejected * The message was returned

without any treatment,
because a previously re-

turned answer contained a
cleanbit as marked in
this table.

All statusbits marked with * are called cleanbits. This means
that all the following transput messages received after the re-
turn of one or more of these bits should be rejected with status
bit 15. This enables the user to reestablish the original se-
quence of messages in the driver event queue after an error reco-
very. The driver accepts transput messages ajain after reception
of a control message.

Special care must be taken when status is returned on control
messages. Logical meaningless status as block length error or pa-
rity error on position messages should be avoided.

The bytecount of answer specifies the number of bytes actually

transferred.

Special 1 and special 2 can be used for special information con-
cerning the transfer or operation, and they normally hold the
filecount (special 1) and blockcount (special 2) if position in-

formation has meaning in connection with the actual device.

4.4

66

System Utility Procedures. 4.4

4.4.1

Formats. 4.4.1

As an aid to the driverprogrammer a number of actions, which fre-
quently have to be executed in any driver, are collected as re-
entrant routines. Furthermore, these routines are designed to
give the standard driverinterface expected by the basic I/0 pro-
cedures used for standard I/0 operations.

If these procedures are used, the process descriptor should con—
tain a number of extra words after the standard variable SAVE.
These words are given by the displacements below and can be
fetched relative to the process descriptor (CUR):

BUF': Address of the current message buffer found
by the procedures NEXTOPERATION and WAITOPE-
RATION when returning. It is also used as a
call parameter to these procedures set by the

programmer or the procedure RETURNANSWER.

ADDRE: Value of MESS2 of the current message buffer
i.e, the first byte address of the data in
case of a transput message. Used by the
procedure RETURNANSWER for calculation of the

bytecount in the returned message.

COUNT': Value of MESS1 of the current message buffer,
i.e. the number of bytes in case of a trans-

put message.

RESER: Word ocontaining the address of the reserver-
process description set and cleared by the
procedure SETRESERVATION and checked by the
procedures NEXTOPERATION and WAITOPERATION.

4.4.2

CLINT:

STTAB:

Procedures.

4.4.2.1

67

Word containing the conversion table address
fetched fram the message indicated by BUF

when SETCONVERSION is called.

Address of the interrupt procedure to be
called by the monitor when the device
requests an interrupt. System address CLEAR
can be used if only a NIOC <devno> is
wanted.

Standard conversion table address. Used by
sane drivers supporting standard conversion.

If the user requests no conversion, this
address is taken as the conversion table

address. STTAB is set by special system
programs.

4.4.2

Procedure NEXTOPERATION. 4.4.2.1

ACO
ACI
AC2
AC3

call

cur

return (+0, +1, +2):

mode

count

cur
buf

+0: control message received,

+1: input message received.

+2: output message received.

SAVE:

destroyed

set by procedure

set by procedure

set by procedure

68

'Mode' returned in ACO is equal to MESSO SHIFT -2. This procedure
is used when the driver is ready for a new operation, and wiil
delay the driver process until a relevant message arrives in its

event queue.

If the word BUF in the process descriptor is set equal to -1
either by the programmer or the procedure RETURNANSWER, indica-—
ting return of a hard error in a previous answer, the procedure
will automatically return all transput messages received, with
the not processed status (1b15) and zero bytecount, until a con-
trol message is received. At the receival of a control message,

the BUF is reset and the procedure returns.

If a message is received with a sender different fram a nonzero
reserver word (RESER) in the process description, this message is
returned autamatically with illegal status, and the procedure
will not return but continue to examine the event queue.

If a transput message is received with zerc bytecount (MESS! = 0)
this message is returned with zero status and zero bytecount. The
procedure thus saves the program from testing the special case of
zero bytecount, and the standard instruction decrement and skip

if zero (DSZ)can be used freely on the word COUNT in the process

description.

If a control message (MESSO(15:15) = 0) is received, the message
buffer address is saved in BUF, and COUNT and ADDRESS is set
equal to MESS1 and MESS2 of the message buffer. Return is to the
word following the call.

If a transput message (MESS0(15:15)=1) is received, the message
buffer address is saved in BUF and COUNT and ADDRESS is set equal
to MESST and MESS2. Return is to the second word following the
call if the operation is input else to the third word.

BUF
ADDR
COUNT
RESER
CONVT
CLINT

Fig. 13

Process

69

First message buffer

A

MESSO
MESS1
MESS?2
MESS3

70

l ENTRY
MESS1: = 0
»—| SENDANSWER > WATITEVENT
< STATUS : =1b6
A
STATUS:=1b15

MODE : =MESS0/4
BUF :=MESSAGE

COUNT': =MESS1
ADDR : =MESS0
RETURN

Fig. 14 Procedure NEXTOPERATION flow

4.4.2.2

71

Procedure WAITOPERATION.

Call return +0, +1 return +2 return +3, +4, +5
ACO timer unchanged destroyed mode
ACl deviceno unchanged destroyed count
AC2 cur destroyed destroyed cur
AC3 - cur cur but
+0: Timer expired
+1: Interrupt received
+2: Answer received or the procedure has returned a buffer
automatically.
+3: Control message received
+4: Input message received
+5: Output message received
SAVE: Destroyed
BUF': Set by procedure
COUNT': Set by procedure
ADDRES: Set by procedure

'"Mode' returned in ACO is MESSO SHIFT -2. This procedure may be
used by a driver process when it is necessary to wait for either

device interrupt, timeout or a message.

The procedure will treat the received messages as described in
the procedure NEXTOPERATION, i.e. check the reserver, transput—

message with zero bytecount and reject action if BUF equals -1.

If the timer given as parameter in the call expires before any

message or answer 1is received, the procedure will return to the

address following the call. The procedure can be used without the

interrupt

return if the given devicenumber is set to zero, thus

indicating a wait for the real time clock.

4.4.2.2

BUF

72

The timer is given in units of 20 ms.

When called, the process descriptor word BUF must be equal to 0,
indicating wait for any buffer, or -1, indicating wait for any
buffer but reject transput messages received.

If wait for a message following a buffer in the event queue is
wanted, BUF must contain the address of this buffer.

PROCESS DESCRTPTOR
WITH EVENTQUEULE BUF%t 1 BUFS 2 BUF & 3

e

)

BUF 41

Fig. 15 1If BUF in process descriptor contains the address of
message buffer BUF#1, the address of message buffer

BUF#2 is returned by procedure WAITOPERATION.

Return is made to the third word if the procedure returns a mes-
sage with the not processed status or illegal status, or if it

returns a transput message with zero bytecount.

4.4.2.3

73

If an answer is received, return is made to the same address and
the answer can then be fetched by a call of the procedure WAIT-

ANSWER on the relevant message buffer.

The address of the answered message buffer is not returned by the

procedure.

Note that when the procedure is called, BUF must be equal to 0 or

-1 or point to a message buffer in the event queue, otherwise a
system breakdown may occur as there is no check on the parame-

ters.

Procedure RETURNANSWER.

Call Return
ACO status status
ACI MESS2 to buf destroyed
AC2 cur cur
AC3 - destroyed
SAVE: Destroyed
BUF': Set to zero if no hardbits present in status (bit 0-2,

bit 6-14) else -1.
COUNT: Undefined
ADDRE: Undefined

The parameter status is set into MESSO of the message buffer
pointed out by BUF.

The number of bytes (MESS1) is calculated by subtracting the ori-

ginal byte address still remaining in the message buffer (MESS2)
fram the updated byte address found in ADDRE in the process de-

scription.

4.4.2.3

74

If one of the clean bits is set in status, the BUF word is set to

-1, indicating that following transput messages must be returned
with the not processed status (1B15).

The message buffer is returned to the sender process by means of
the SENDANSWER procedure. The word BUF must point to a message
buffer in the driver event queue, otherwise the call will cause

system break down.

4.4.2.4 Procedure SETRESERVATION. 4,4.2.4
Call Return
ACO operation operation/2
AC] - destroyed
AC2 cur cur
AC3 - destroyed

RESER: Set by the procedure.

If bit 15 of the operation (reservation bit of MESSO when shifted
2 to the left by NEXTOPERATION) is nonzero, MESS1 of the message
buffer given in BUF is examined. If this word is nonzero, the
sender of the message is inserted as reserver of the process
(RESER word), otherwise the word RESERVER is set to zero,
indicating no reserver process.

75

Return

operation/2
destroyed
cur

destroyad

If bit 15 of the parameter operation (conversion bit of MESSO
when shifted 3 left by NEXTOPERATION and SETRESERVATION) is non-
zero, the OONVT is set equal to MESS2 of the message buffer given

4.4.2.5 Procedure SETCONVERSION.
Call
ACO operation
ACI -
AC2 cur
AC3 -
CONVT: Set by the procedure.
in BUF.
4.4.2.6 Procedure CONBYTE.

ACO
AC]
AC2
aAC3

Call

byte

cur

Return

newbyte
destroyed
Ccur

destroyed

The returnvalue 'newbyte' is the bytevalue found at relative lo-

cation 'byte' in the conversion table specified by the process

descriptor word CONVT. The conversion table address must be a

byteaddress, and the new bytevalue is fetched as:

4.4.2.5

4.4.2.6

76

LDA CONVT, 2 ; —
GETBYTE :

If the convertion table address is zero, the procedure is dummy

and the byte returned is the same as given in the call.

4.4.2.7 Procedure GETBYTE. 4.4.2.7
Call Return
ACO - byte
ACl byte addr byte addr
AC2 - cur
AC3 - destroyed —

Fetch the byte at the given byte address. The wordaddress of the
word containing the byte is taken as (byte addr)/2, and if bit 15
is set in the byte address, the rightmost byte is delivered, else
the leftmost.

4.4.2.8 Procedure PUTBYTE. 4.4.2.8
Call Return
ACO byte unchanged
ACI byteaddr byteaddr
AC2 - cur
AC3 - destroyed

77

Store the byte value given as parameter at the given byteaddress.
The byteaddress is interpreted as in the GETBYTE procedure. The

remaining part of the word containing the
the byte given is in the range 0 to 255.

; Procedure MOVEBYTES

: call return

; ACO count destroyed
; ACI to-addr destroyed
; AC2 from—addr cur

; AC3 - destroyed

The procedure moves 'count' byte to the

~e

; fram the byte address fram—-addr

~e

MBYTE: STA 3 LINK ;
STA 1 TOADDR ;
STA 2 FRADDR ;
STA 0 BCOUNT ;
LOOP: LDA 1 FRADDR ;
GETBYTE :
LDA 1 TOADDR ;
PUTBYTE :
ISZ TOADDR H

byte is unchanged if

byte address to—addr

MOVEBYTES:

REPEAT

GETBYTE (FRADDR, BYTE);

PUI'BYTE (TOADDR, BYTE);
TOADDR :=TOADDR+1 ;

4.4.2.9

LINK:

BCOUNT :
TOADDR :
FRADDR:

Example

Procedure MULTIPLY.

ISZ
DSZ
JMP
JMP

o O O O

ACO

ACl
AC2

AC3

SAVE:

Call

opl
op2

Destroyed

78

FRADDR ; FRADDR:=FRADDR+] ;
BCOUNT ; CDUNT:=COUNT-1
LOoP ; UNTIL QOUNT = 0
LINK ; RETURN

EY) e -e

~e

16 Use of PUTBYTE and GETBYTE

Return

result(0:15) high part
result(16:31) low part
cur

destroyed

Computes the unsigned double length product of the two single

length operands, result:=opl*op2. The result is 32 bits long.

4.4.2.9

79

4.4.2.10 Procedure DIVIDE.

4.4.2.11

Call Return
ACO dividend quotient
ACI divisor divisor
AC2 - cur
AC3 - remainder
SAVE: Destroyed

Performs a short division of the 16 bit dividend extended with
zeroes by the divisor, giving single length quotient and remain-
der.

quotient:= dividend//divisor

remainder:;= dividend REM divisor

Division with a zero divisor is not checked and delivers unpre-—
dictable results.

Procedure SETINTERRUPT.

Call Return
ACO - destroyed
AC1 deviceno deviceno
AC2 - unchanged
AC3 - destroyed

The procedure is executed with interrupt disabled. It includes

the process as user of the device. The device given by 'deviceno'
is cleared by a NIOC <deviceno> instruction.

Any interrupt request fram deviceno will cause a call of the

interrupt procedure defined by CLINT in the process descriptor.

4.4.2.10

4.4.2.11

80

A standard system procedure is CLEAR, which executes a NIOC in-

struction.

LOOP:

CONTR:

ILLEGAL:

OK

NEXTOPERATION
JMP

JMP

JMp
SETRESERVATION
SETCONVERSION
MOVZR 0,0
JMP

LDA 0
JMP

LDA 0
RETURNANSWER
JMP

CONTR
ILLEGAL

SILLE

LOOP

~e

-e -

~e

~e

~e

-

~e ~e ~e -e ~e ~e ~e

~e

-

~e

~e

LOOP:

NEXTOPERATION (MODE);
+0: GOTO CONTROL;

+1: GOTO ILLEGAL;

+2: OUTPUT

GOTO OKSTATUS;

CONTROL:
SETRESERVATION;
SETCONVERSION;

IF TERMINATION THEN
BEGIN

END;
GOTC OKSTATUS

ILLEGAL:
STATUS := ILLEGAL

OKSTATUS :
STATUS:= 0
RETURNANSWER;

81

In the previous sections a number of driver standards have been
mentioned. These standards are fulfilled if the MUS utility pro—
cedures are used and if the messageformats described are accepted

by the drivers and the answers returned are of standard layout.

When drivers are designed, it should be noted that I/O instruc-
tions are not checked by the system and it is then the program-

mers responsibility that other system camponents are left un-—
touched in all situations. Therefore the use of IORST,MSKO in-
structions is not allowed and special care must be taken if INTDS
and INTEN instructions are used, as the system performance can

decrease rapidly when too much driver code is executed in dis-

It should also be noted that the system offers no memory protec-—
tion and even small programming errors can have disastrous ef-

4.5 Driver Requirements.

abled mode.

fects on the whole system,
4.5.1 Break Action.

The driver can, as all processes, be breaked with a number of
causes, e.g. if a message buffer is removed fram its event queue
by the monitor after a process kill or at system start up after
power failure,

Whenever the driver is breaked it must stop all operations in
progress on the device and clear the device table entry for in—
terrupt indications. This can normally be done by call of the
procedure SETINTERRUPT, which will clear both the device and the
device table.

If the break cause is not power failure, the reserver must be
cleared, hereby releasing the driver e.g. on request from the
operator.

4.5

4.5.]

4.5.2

82

If continued operation on the device is impossible without loss
of data, this must be indicated in the answer to the next message
received, and the user process must then take care of the error
recovery. Continued operation is normally only possible on de—
vices, which supports repetition of the previous operation, and
can not be done on other devicetypes, as the process state before
the break can not be reestablished.

Device handling.

The device handling depends heavily on the actual device, but all
synchronization with the device must be achieved by means of in-

terrupts, as busy waiting will use too much CPU-time in a multi-
programmed system.

The devices are normally designed such that interrupts are only

requested after the device has been started by the programmer
with a S or P pulse.

It is a general rule that interrupt requests are awaited only for
a maximum device specific time, and if it is not received within
this time, the status timeout is indicated and the device is

cleared to prevent an interrupt after the timeout (procedure
SETINTERRUPT) .

The normal procedure for device handling is then:

4.5.2

4.6

83

NIOS DEVNO
LDA 1 .10
LDA 2 .DEVNO
WAITINTERRUPT

JMP TIMO

«DEVNO: DEVNO

TIMO: SETINTERRUPT
LDA 0 STIMER

Example 17

Driver Incarnations.

~e

~e ~e ~e ~s ~ e ~e

~e

~e

-e

-

-

SETUP DEVICE PARAMETERS

START (DEVNO)

WAITINTERRUPT (DEVNO,
10*20 ms)
+0: GOTO TIMEOUT

TIMEOUT:
SETINTERRUPT (DEVNO)
STATUS := TIMEOUT;

If a number of devices of the same type are connected to the sys-—

tem, the code to handle the devices will only differ on few
points. To save memory space, the driver for the first incarna—

tion can be coded reentrant, which means that other incarnations

of the same driver need only to be the process descriptor execu-

ting the same code as the first driver.

The driver can be coded reentrant if all device specific varia-

bles, constants and instructions are fetched relative to the pro-

4.6

84

cess description, and placed in the process descriptor following
the words used by the utility procedures. This can be seen in
example 18. (Note that I/O instructions must also be placed in
the process descriptor, as the device number is an integral part

of the instruction).

The connection of a second process description to the program in
question can be done using a small program, which searches in the
program chain for the reentrant program and, when found, reas-
signs the process break address, interrupt procedure address and
jumps to the program start.

Appendix D contains as an example a listing of the paper tape

punch driver and the second paper tape punch driver.

85

use og i/o instructions

DNIOS = P10 - P1 ;
Reentrant LDA 2 CUR :
driver program JSR DNIOS,2

First process, Process name P1. Second process, Process name P2,

P1: P2:
e~ e~
T T
CLEAR CLEAR CLINT
10 20 Device no.
P10:| NIOS 10 P20:| NIOS 20 NIOS Procedure
JMP + 0,3 JMP + 0,3
DIA 0 10 DIA 0 20 DIA Procedure
JMP + 0,3 JMP + 0,3

Example 18 Process incarnations.

86

BASIC I/0O HANDLING. 5.

5.

1

" General Description. 5.1

The I/0 operations in the MUS system is based on dedicated device

handling processes, called drivers.

All user reguests for operations on a specific device are trans-—
ferred to the corresponding driver process by means of the funda-
mental monitor functions SENDMESSAGE and WAITANSWER. As previous —
described, the information to the driver is transferred in a mes-—

sage buffer containing 4 16 bits words, which is interpreted by

the driver process. -

In order to ease the use of the driver process and to simplify

the possibility of using multibuffered input/output, a number of
reentrant I/0 procedures have been included in the MUS-system.

The procedures work on a data structure called zone or filede-

scriptor. —

The fundamental concept that all camnunication is done by means
of messages, is not broken, and the basic 1/0 procedures must be
viewed as the first level on top of the monitor functions.
Correspondingly, the character and record input/output procedures
are the next level on top of the basic I/O procedures.

87

Basic I/0 procedures.

roTTTTrTeT T 1
] k)
Character Record ! User f
1/0 1/0 ' I/0 :
A J
2 (== m e e -
H '
Basic ' User f
1/0 ' I/0 !
b e e
Monitor
Functions

Fig. 16 The procedure hierarchy in the MUS system.

It is then possible for the user to build his own dedicated pro-
cedures at all levels over the monitor functions, if the offered

procedures do not fit the actual usage.

All MUS high level procedures work on a zone, which is a collec-

tion of information and data buffers, normally pointed out by the

programmer by its wordaddress.
The zone contains three parts:
.~ 1) The zone descriptor
- It contains informations about the document and the device
that holds it. It holds furthermore information concerning the
- data accessible to the user, i.e. the storage area which

2)

3)

88

is not involved in device input/output and thus can be fetched
or filled by the program.

The share descriptors

The share descriptor holds information about the data buffer

associated with it, and the state of data, i.e. if the data is
or has been processed by the driver. It holds moreover a copy

of the message, which requested the data transfer, conse-
quently repetition of the transfer is possible if it was re-—

jected because of an error.

The buffer area

The area from/to which the actual data transfer is done by the
driver on request from the I/0 procedures.

89

The memory layout of a zone with two shares is then:

Zone

Descriptor

a

\

Fig. 17

Zone Descriptor

Share Descriptor 1

Share Descriptor 2

Data Buffer 2

Data Buffer 1

5.2

On

1)

3)

90

fig. 17 the following references can be seen:

In the file descriptor a pointer to the share involved in user
I/0. The pointer is updated by the I/0 procedures.

In the share descriptor a pointer to the data buffer connected
to the share descriptor. The pointer is static.

The share descriptors are linked cyclically. In this way the

next share descriptor and its associated data buffer can be

selected by the pointer mentioned in 1), when the data buffer

has been filled with data and a message has been sent to the

driver requesting the transfer to the document. The pointers -

are static.

Zone format. 5.2 -

The zone is in all procedure calls identified by the word add-

ress of its first location, and the words in the zone descriptor

can be fetched by the user by means of this address and the dis-

Placements below recognized by the assambler:

ZNAME The document name (drivername) 6 characters, 3 words.

This process will receive all messages generated by the
I/0 procedures.

SIZE Size of zone descriptor area.

ZMODE The operation.

This word is used as operation code in all transput
messages to the driver. All central procedures transfer
the first byte of this word as the first byte in the -

operation code to the driver.

ZKIND

ZMASK

ZGIVE

ZFILE

ZBLOCK

ZCONV

ZBUFF

ZSIZE

ZFORM

ZLENG

9

If the last two bits are equal to 11 the operation is

output. If the are equal to 01 the operation is input.

The word is set by the procedure OPEN.

The kind used for errorhandling and initialization

actions (see later).

The giveupmask.

This mask is campared with the status received fram the
driver. If cammon bits are set, the defined giveup pro—
cedure is called.

The address of the user giveup procedure. The procedure
is called, if an error is returned and the errorbit is
present in the giveupmask

Used for file position with some document kinds.

Used for block position with some document kinds.

Conversion table address.

This address is transferred to the driver in an OPEN
call.

Buffer address.

Used by MUSIL interpreter.

Size of buffer.

Used by MUSIL interpreter.

Format ocode for records.

Used by Record I/0 procedures.

Length of current record.

ZFIRS

Z2T0P

ZUSED

ZSHAR

ZREM

z0

92

Used by Record I1/0 procedures.

First of record.

Used by record and Character I/0 procedures. The byte

address of the first byte in the current record.

Top of record.

Byteaddress of the first byte after the current record.

Used share.

Word address of the currently used share descriptor.
See fig. 17.

Share length.

The number of bytes in each data buffer.

The number of bytes in the current data buffer not yet
processed, or the number of bytes left in the data buf-
fer to output.

Status.

The status returned on the last checked transfer. Only
defined in the giveup procedure.

The zone contains a number of auxiliary words, exclusively used

by the procedures.

The number of these are given by the assembly constant ZAUX,

which also includes the above mentioned Z0 word.

The total size of a standard zone descriptor is given by the

93

assembly constant Z.

5.3 Share Descriptor Format.

A share descriptor is identified by the word address of its first
location. The share descriptor of the current share can be found
in the zone descriptor word ZUSED.

The share state can then be found as:

; AC2 = zone address

LDA 3 ZUSED,2 ;
LDA 0 SSTAT, 3 ;
SOPER Operation to the driver

MESSO in the message generated
SCOUN Number of bytes transferred
MESS1 in the message generated

SADDR Address of the data buffer
MESS2 in the message generated

SSPEC Special
MESS3 in the message generated

These four words are used as the message to the docu-
ment and are unaltered when the answer is received. In
this way it is possible to repeat the operation if the

transfer was unsuccessful.

SNEXT Next share
The wordaddress of the next share descriptor. All share

descriptors are linked cyclically.

SSTAT

SFIRS

94

State of share

Value
0 The data buffer can be used.
<>0 The data buffer is involved in transfer to

the device. The word contains the address of
the message buffer carrying the transfer re-

quest.

First byte address.
The byte address of the first byte in the associated

data buffer. The address is transferred to ZTOP in zone
descriptor, when the next share is made available to

the user after input of data or before output of data.

The size of the standard share descriptor can be found as the

standard assembler constant SSIZE.

95

ZNAME,

SIZE
ZMODE
ZKIND *
ZMASK *
ZGIVE *
ZFILE

ZBLOCK
ZCONV *
'''' zé ZBUFF
ZSIZE

ZLENG
ZFIRS
2TOP
ZUSED * word address of current sharede-
ZSHAR * scriptor

ZREM

N e T N Py

rv—\./\ml\,
C ZAUX

— Fig. 18 2zone layout. All words marked with * must be set by the

programmer before use.

SSIZE ¢

SOPER

SCOUNT

SADDR

SSPEC

SNEXT

SSTAT=0

L‘ L

SFIRS

*

*

96

wordaddress of next share descriptor.

byte address of first data byte

Fig. 19 share descriptor layout. All words marked with * must be

set by the programmer before use.

5.4 Zone Setup. 5.4
When the zone data structure is used in the assembler, a number
of words in the zone descriptor and share descriptor must be pre—
defined by the programmer.

5.4.1 Zone Descriptor. 5.4.1

The
The
The
The
The

The
The

The
The

document name must be initialized.
kind must be set. (See chapter 5.5)
giveupmask must be set.

giveupprocedure address must be defined.

conversion table must be defined as a byteaddress (0

conversion).

record format must be defined. (see chapter 6.)

if no

record length must be defined if fixedlength formats are

going to be used.

address of the used share descriptor must be defined.

share length (data buffer size) must be set as a number of

bytes.

5.4.2

97

Share Descriptor. 5.4.2

5.4.3

All sharedescriptors must be linked cyclically in the words
SNEXT.

Sharedescriptor status must be set to 0.

The first byte in the associated data buffer must be set in the
sharedescriptor word SFIRS.

Message Buffer Pool Size. 5.4.3

A number of message buffers must be set up too. If the process

uses n zones, each with Nj gpares, the number of message
buffers must be

n
s = (-1

This number is sufficient if all I/0 is done with the Basic I/0

procedures. Else all user generated messages must be added.

If the zones are used in a coroutine environment (see [3]), the
number af message buffers must be

s

i=1 Ni

TOO0O01 2
L T’x‘l‘

.RDX 10

«BLK
TO061 :

T0062=
.BLK
T0069:

98

LSLPT <0>.

T0061-T0001

0

1

2
1110001111111110

P0099
0

1

0
T0061
T0069-T0061
0

0
T0062
T0062
T0061
512
512
ZAUX

o O O O

T0061

T0062
.*2
512/2

Example 19.

LIST ZONE DESCRIPTOR
NAME

~e

~e

SIZE
MODE
KIND

~e ~e

~e

MASK

-~

GIVEUP
; FILE
; BLOCK
CONVERSION
BUFFER
SIZE OF BUFFER
FORMAT
LENGTH
FIRST
TOP
USED SHARE
SHARE LENGTH
REMATNING
AUXILIARY
LIST SHARE DESCRIPTOR
OPERATION
COUNT
ADDRESS
SPECIAL
; NEXT SHARE

~e

NEONE NI NS N N NS NBE Ne SE Ne Ne N s e

~

; STATE

; FIRST SHARED

+ FIRST SHARED:

; MAKE ROOM FOR SHARE
;TOP OF BUFFER:

5.5

99

Document identification.

A document is a physical medium, which is able to contain data

and which is mounted on a device.

In the zone descriptor, the document in question is described
by:

1) The name of the driver process, which controls the device.

2) The mode, which describes the operation requested at the dri-
ver when data is transferred to the document. E.g. if charac-
ters should be output with or without parity check informa-
tion.

3) The kind of the device.
An array of bits, which describes, how transfer errors should

be handled and special actions on each transfer or control
operation,

The following bits are at present defined:

Bit 15: character oriented

Set if the device transfers characters one by
one. If an error is returned before output of
the whole data block and the transfer is re-
peated in the users giveup procedure, only
the characters not yet output are requested
to be transferred. Examples are papertape
punches and lineprinters used in unformatted
mode.

5.5

bit 14:

bit 13:

bit 12:

bit 11:

bit 0:

100

Block Oriented.

Used, if the datablocks are transferred as a
unit to/from the device. If repetition is ne—
cessary, the whole block must be transferred
again.

Examples are cardreaders and punches, magne—
tic tapes, discs and line printers used in
formatted mode.

Positionable.

Set, if positioning has any effect. Must be
set, if the document has to be repositioned

before a datatransfer is repeated.
Examples: magnetic tapes and discs.

.

Repeatable.

Set, if automatic repetition can be performed

by the system on special status bits.
Examples: magnetic tapes and discs.

Catalog file.

Must be set, if the filesystem is used. Auto-
matic creation and removal of catalog area
processes is performed and any input/output
is requested with 512 bytes buffer size. (See
chapter 8).

Coroutine bit.

Set, if the process uses the RC 3600 Corou-
tine Monitor (see [3]). Call of Basic 1I/0
procedures will not delay the whole process

but only the calling coroutine by a call of

5.6

101

the procedure CWANSWER.

Exception Handling. 5.6

In the input/output procedures the user may select certain status
bits which, if set in the answer to a message to the driver, will

transfer control to a user defined procedure.

Before the user procedure is called, a number of autamatic error
recovery actions are performed, depending on the zone kind.

The statusbits returned fron the driver are interpreted as:

name error type
bit 0 disconnected hard error
bit 1 offline hard error
bit 2 device busy repeat error
bit 3 device bit 1 informative
bit 4 device bit 2 informative
bit 5 device bit 3 informative
bit 6 illegal hard error
bit 7 end of file hard error
bit 8 block length error hard error
bit 9 data late repeat error
bit 10 parity error repeat error
bit 11 end medium hard error
bil 12 position error hard error
bit 13 driver missing hard error
bit 14 timeout hard error

If the error is classified as a repeat error and the zone kind is
repeatable, the operation is repeated up to 5 times, before the
users giveup procedure is called. If the kind word has the posi-
tionable bit set, the position is adjusted to the file count
specified in ZFILE and the blocknumber ZBLOCK-1 before the

102

repetition is performed.

When repetition takes place, the whole data block is requested to
be input/output again, but if the kind is characteroriented, only
the part of the buffer not yet output is requested to be trans-—
ferred.

An operation is repeated a maximum of 5 times., If it is still

erroneous, it is classified as having a hard error.

When a hard error is detected, the users giveup mask is compared
with the status received. If one of the hard error bits present
in status is not set in the giveup mask, the process is breaked
with errorcode = 5, and the status in accumulator 1.

If however the giveup mask bit 15 is set, the giveup procedure is

called unconditionally.

After the standard check, the status is compared with the user

giveup mask. If any bits are common, the giveup procedure is

» called.
5.6.1 User Giveup. 5.6.1
call return (normal return, repeat share)
ACO - -
AC] status status
AC2 zone zone
AC3 return address return address

The Z0 word in the zone is the status of the call.

The ZREM word is the actual number of bytes input or the share-
length, if the operation was output.

The ZTOP word contains the byteaddress of the first byte trans-

103

ferred.

Depending on the giveup action, return can take place in three

different ways:

1) A jump to the main program.

2)

3)

The error is accepted and the transfer is unsuccessful.

Return to the given return address.
The error is accepted and the transfer is unsuccessful. Return

is made to the procedure which caused the transfer.

Pleace note that character and record I/0 procedures will not
return with zero bytes transferred, i.e. the procedure call is

repeated until any bytes have been transferred, and this can
easily cause loops in the program.

The operation can be repeated by a jump to the repeataction.
This is done with the predefined instruction .REPEATSHARE.
Please note that if the repetition of the operation is suc-

cessful, the final return is made to the procedure which
caused the faulty transfer.

I1/0 effecting procedures on the same zone must not be called in

the giveup action, if return to the calling I/0O procedure is
wanted by means of .REPEATSHARE or via the given return address.

When the basic procedures handle an answer, the status word is

augmented with the following bits:

bit 13: Set, if the receiver process is not loaded.

bit 13: Set, if a oontrol operation with cammand
(14:15) = 10 1is checked.

5.7.2

104

’

-e

~e

~e

- ~e

-

~e ~e e

~.

5.6.2

IF ZONE.ZREM <>0 THEN

IF STATUS AND 1b7+1Dbl11
<>0 THEN

BEGIN

PUTBYTE (EM,ZONE.ZTOP);

ZONE, ZREM:=1;

STATUS :=0;

SAVE LINK
SAVE ZONE
EOF, EM STATUS
CHARACTER M

5.6.2 Giveup Procedure Example.
The giveup procedure is used with a zone, to which input is made
by the INCHAR procedure. Errors indicating end of file or end of
medium are converted to input of the character EM (25):
GIVE: LDA ZREM, 2
MoV 0,0 SZR
JMP +0,3
LDA 0 EMSTAT
AND 1,0 SNR
JMP HARDERROR
STA 3 LINK
STA 2 ZONE
LDA 1 ZTOP, 2
LDA 0 »EM
PUTBYTE
LDA 0 .
LDA 2 ZONE
STA 0 ZREM, 2
LDA 3 LINK
SUB 1,1 .
JMP +0,3
HARDER: .
LINK: 0
ZONE: 0
EMSTAT': Tb7+1bl1
.EM: 25
5.7 Repeat Actions.

5.7

When a driver returns a harderror, it enters a reject state, in

which all transput messages are returned with the non-processed

status (1b15). This state is only changed, if a control operation

is received. The basic I/0 procedures will repeat a message with

105

the nonprocessed status automatically after a harderror status.

These procedures concerning harderrors, guaranties that the right

sequence of messages is maintained in the drivers event queue.

As an example, see the following drawings of multibuffered error

recovery:

ERROR IS DETECTED AT THE DRIVER

DRIVER

AWATTING PROCESSING PROGRAM

4

USED BY DEVICE

F'S

5

6

1

@ORMAL OPERATIOQ l 2 ’

3 * USED IN PROGRAM

PROCESSED BY DRIVER

106

AFTER ERROR
-1 — T |
57" 6" 1
T Y
DEVICE IN
ERROR
1 6 IS 4 »
L -)\ J
rejected error

ERROR RECOVERY

REPATR OPERATION

DEVICE
RECOVERY

-

7

v

ERROR RECOVERY

error

5.8

107

DEVICE READY

3 I.\ REPEAT

Fig. 20.

Basic I/O Procedures.

_l__r'“L.J— —1.
6

L J v

- T

ALI, REJECTED

5 —| WAIT FOR 4
. J

The basic I/0 procedure calls are predefined in the system

assembler. The procedures are thus called by their names, and the
return address is then given by the CPU in AC3.

If procedures must be called with another return address, the

same names can be used with a leading character '.'

5.8

108

Example:

Normal use:

LDA 0 .3 ;

LDA 2 ZONE ;

OPEN H

; RETURN HERE

Special use:

LDA 0 .3 H

LA 2 ZONE H

LDA 3 RETAD ;

.OPEN ;
RETAD: LABLE
LABLE: ; RETURN HERE

When basic I/0 transfer procedures return, the following values
have been updated:

ZBLOCK is set equal to MESS3 of the answer if the zone is set
to be positionable and if status <>1b6, 1bl3 and
1b15.

If the zone is not defined to be positionable, ZBLOCK
is incremented with one for each block successfully

input/output.

ZFILE is set equal to MESS2 of the answer if the zone is set
to be positionable and the status <>1b6, 1bl13 and
1b15.

5.8.]

ZREM if the mode is input, ZREM is set equal to the number
of bytes input or, if mode is output, equal to

ZSHAREL.,

ZTOP is set to the byteaddress of the first byte in the cur-
rent data buffer. The address is fetched fran SFIRST in

the used share.

Initialization Procedures.

5.8.1 I-‘

Procedure OPEN.

Call
ACO operation
ACI -
AC2 zone
AC3 -

return

destroyed
destroyed

zone

destroyed

The operation is placed in the modeword (ZMODE) of the zone de—
scriptor. The remaining bytes of the zone (ZREM) is initialized

either to zero, if the operation is input, or to sharelength
(ZSHAREL) 1if operation is output. The top of the zone points to

the first byte in the data buffer.

<

ZREM = 0 or sharelength

v

P

{
"t 21op

To initialize the transfer, a control message

is sent to the pro-

cess specified by ZNAME. The message requests reservation and

conversion.

5.8.1

5.8.1.1

110

Message generated:

MESSO | ZMODE (0:7) 148

MESS1 <> 0

MESS2 ZCONV

MESS3 -

5.8.1.2 Procedure SETPOSITION.

Call Return
ACO block destroyed
ACI file destroyed
AC2 zone zone
AC3 - destroyed

This procedure first waits for all transfers by means of the pro-

cedure WAITZONE. Then a position message is sent to the process

with the name given in ZNAME.

ZREM and ZT0OP are defined as for OPEN.

Message generated:

MESSO

MESS]
MESS2

MESS3

ZMODE (0:7) | 40g

FILE
BLOCK

5.8.1.2

5.8.] .3

Procedure WAITZONE.

5.8.] .4

ACO
ACI
AC2
AC3

Terminates the current activities of the zone.

Call

zone

111

Return

unchanged
unchanged
zone

destroyed

If the zone is

opened for output, the last block is output as if OUTBLOCK was
called, and then all pending transfers are awaited and checked,

i.e. the giveupprocedure may be called.

If the zone is opened for input, all transfers are awaited, but

not checked.

If the last block is output, the message generated is:

MESSO
MESS1
MESS2
MESS3

ZMODE

ZSHAREL - ZREM ¥

ZUSED.SFIRST

ZBLOCK

ZREM and ZTOP are defined as for OPEN.

Procedure CLOSE.

ACO
ACT
AC2
AC3

Call

release

zone

Return

destroyed
destroyed
zone

destroyed

The zone is first set neutral by means of WAITZONE.

* ZSHAREL if

ZKIND(11)=1

5.8.1.3

5.8.1.4

112

If the zone is opened for output, a termination, and if 'release'

is nonzero also a release-reservation and disconnection control
message is sent to the process with the name given in ZNAME.

If the zone is opened for input, a sense, and if 'release' is

nonzero a release-reservation and disconnection control message

is sent.

ZMODE is then set to zero and the control message is awaited an-

swered by the WAITZONE procedure.

ZMODE
output input
RELEASE
0 termination sense
1 release relcase
termination disconnect
disconnect

113

Message generated:

MESSO
MESS1
MESS2
MESS3

OP is specified

All zonepointers and values are undefined.

ZMODE (0:7))3

0

Z2BLOCK

in the table above.

Example:
LDA ZONE
LDA .3
OPEN

LOOP: LDA 0 BLOCK
LDA 1 FILE
SETPOSTTION
SUB 1,1
CLOSE
LDA 0 .3
OPEN
LDA 0 ZFILE, 2
STA 0 FILE
LDA 1 .10
SUB 1,0 SZR
JMP LOooP
CLOSE

Exanple 20.

-e ~e

~e

~e .

~e

.
’
.
14

.
14

OPEN(ZONE 3);
REPEAT
SETPOSITION(ZONE, FILE,

BLOCK) ;

DATA PROCESSING

FILE:=FILE+1;

CLOSE (ZONE, FALSE) ;
OPEN(ZONE, 3)

;UNTIL FILE=10

.
’

.
’

-
I

-e

CLOSE(ZONE, TRUE) ;

5.8.2

114

INPUT/OUTPUT Procedures.

5.8.2.1

Procedure TRANSFER.

Call Return
ACO operation destroyed
ACI length destroyed
AC2 zone zone
AC3 - destroyed

Initiates a transfer operation given by 'operation' and with
bytecount 'length' to/from the databuffer pointed to by the used

sharedescriptor.

After a call, the state of the sharedescriptor is set to the ad-
dress of the messagebuffer, which was sent to the process given
by ZNAME.

The used share is updated to the next sharedescriptor in the
sharedescriptor chain.

The procedure does not check the state of the currently used
share. If the state is nonzero, the messagebuffer address saved

is lost and the message buffer is never released for use.

Message generated:

MESSO operation

MESST1 length

MESS2 ZUSED.SFIRST

MESS3 ZBLOCK >

All zone pointers and values are undefined.

5.8‘2

5.8.2.1

115

5.8.2.2 Procedure WAITTRANSFER. 5.8.2.2

Call Return
ACO - destroyed
ACI - destroyed
AC2 zone zone
AC3 - destroyed

If state in the used sharedescriptor is free the procedure re-—

turns immidiately, otherwise it waits for an answer to the mes—
sage placed in the message buffer given by state and when the an-

swer is received, it sets the state to zero (free).
When the answer arrives, the status is checked as described in
Exception Handling and the user giveup procedure can then be

called.

After return, the pointers are updated as:

ZREM

J
)|

|
| JzTop I ZFIRST

n If a repetition of the message is generated, either by the user

or by the system, the message sent is:

5.8.2.3

116

ZMODE (0:7) Op

ZFILE
ZBLOCX

OP = +1bl0 (position) if ZKIND (13) =1
+1b8 (erasure) if status (10) = 1 (parity) and zone is
opened for output.

Example:

The procedure INBLOCK can only ke coded with the fundamental pro-
cedures TRANSFER and WAITTRANSFER.

All data buffers are sent tc the input driver and then the first

one sent is awaited.

ANEXT: LDA 3 7USED,2 ;

LDA 3 SSTATE,3 ; WHILE ZONE.USED.STATE
: =0 DO

MOV 3,3 SZR ;

JMP AWAIT :

LDA 0 JMODE,2 ; TRANSFER (ZONE,ZSHAREL,
: ZMODE) 3

LDA 1 ZSHAREL, 2 ;

TRANSFER ;

JMP ANEXT ; b

AWAIT: WAITTRANSFER WATTTRANSFER (ZONE);

~e

Procedure INBLCOCK.

Call Return
ACO - destroyed
AC] - destroyed
AC2 zone zone

Ac3 - destroyed

5.8.2.3

117

Administrates the basic cyclic buffering strategy for input pro-
cedures like INCHAR and GETREC.

The databuffers are represented by circles. INBLOCK starts the
transfer of 1, 2 and 3. Then it waits for buffer 1, after which

the data is ready for processing. The second call will request
transfer to buffer 1 and wait for 2.

After return ZREM and ZTOP are defined as:

ZREM = bytes input

-

4

{zroP

5.8.2.4

The messages generated are:

118

MESSO ZMODE

MESS1 ZSHARE

MESS2 ZUSED .SFIRST
MESS3 ZBLOCK

Procedure OUTBLOCK.

Call
ACO -
ACI -
AC2 zone
AC3 -

Administrates the basic cyclic buffering of output.

At first, buffer 1 is filled with output and after a call of OUTs

BLOCK, the first buffer is sent for processing. Buffer 2 is then
ready to be filled. When buffer 1 is reached again, the answer is

awaited and checked before the data buffer is ready to receive

data again.

Return

destroyed
destroyed

zone

5.8.2.4

119

The message generated is:

ZMODE
ZSHAREL ~ ZREM | * ZSHAREL if ZKIND(11)=1
ZUSED.SFIRST

ZBLOCK

After return, ZREM and ZTOP are defined as:

. ZREM = ZSHARE
I

.

[
I
TZTOP

120

RECORD I/0. 6.

6.

1

Physical/logical Datablock. 6.1

When dealing with a physical data transfer to/from a certain de-
vice mounted document as to example a magnetic tape roll, the da—

ta are gathered in groups of data, called physical datablocks.

From a MUS-system point of view, interchange of data between do-
cuments 1s handled as a transport of physical datablocks between
socalled zones (chapter 5). A zone contains information about the
document in use and about data to be processed. To establish a
link between the zone and physical datablock concept, the docu-
ment to use and the process-buffer concept of the MUS-MONITOR

system, the basic I/O-procedures are implemented (chapter 5).

From a programmers point of view, a physical datablock should not
always be looked upon as a logically indivisible whole of data.

Often, a logical datablock surrounded by some header or tail in- \
formation, and after some documents/device dependant physical

features calls for unmatching moving information between diffe-

rent documents. To example:

Ex. I: Information hold on punched cards is to be transferred
to disc files for future processing. This calls for
reading dataklocks og 80 bytes in length, transforming
them into datablocks of 512 bytes in length. To easily
access the information transferred, a logical block

concept could be of great help.

Ex. II: Skipping information parts, according to some
identifier-part of the physical datablock. If the third
logical block is false, then skip the physical block,
reading the next logical third block.

121

Thus to easily take care of handling logical information parts
not necessarily fitting the physical blocklength, a logical data
block concept a record is introduced. In the following, the
physical datablock is referred to as a datablock or simply as a
block.

122

LAYOUT of zonebuffer.
Datablock and record.

zone Notice:

descr. Z name . . .
a record is contained in a

block which is contained in
a buffer.

Record-formats
recnrd~length (bytes)

First byte address of current record
Z form

NN

2 leng Tast byte address of current record + 1
Tt ()
Z top harelength in bytes:
{7 used | available buffarea
Z share
7 rem Remaining bytes in current block

7T

share
descr.
sfirst
=
£
/ W One record -
buffer // //
area : L 1!
£ ¥) One datablock
\\\\\\\\\\§ & One buffer
\ \]
3

z

bt T

Example 21

123

As mentioned earlier, the physical datablock (block) is used by
the basic I/0 procedures, f.ex. INBLOCK and OUTBLOCK, as infor-
mation interchange element. Therefore, to introduce a logical da-
tablock (record) information element, the record I/0 procedures
GETREC and PUTREC are developed as a second I/0 procedure level,
interfacing the basic I/0 procedures to care for transfer of lo-
gical datablocks between a zone and its document.

GETREC reads in the next record to process here after defining
this record as the current record, thus stepping through the re-
cords in the current block reading in a new block if necessary or

so wanted.

PUTREC makes the next record to process available as the current
record in reserving space for it in the current block. If no more
space is left or the rest is not to be used, the current record
and the records behind it, if any, belonging to the current
block, are output and space is reserved in a new block. So, PUT-
REC does not actually care about how data is transferred to the
current record. Current record is only made available for proces-—

sing.

If a record is to be transferred from an inputzone to an output-

zone, you must call GETREC on the inputzone to access the record.
Then PUTREC must be called on the output to reserve space for the
record and hereafter the record must be interchanged, calling f.

ex. MOVE (chapter 6) on current records.

The current record is printed out according to ZFIRST, ZTOP and
ZLENGTH in the zone (see ex. 21). The current record length ocould
be initially set up or handled over as call value.

When talking about a block being processed, you should notice
that:

Using GETREC sharelength of bytes is asked for in input using IN-
BLOCK. Bytecount of answer is put to ZREM, which then defines

current block length in use.

6.2

124

Using PUTREC only the record areas actually reserved are output
to the document as a physical datablock, except for a document of

disc kind. In this case, 512 bytes are transferred.
Sc when creating a zone, the block-length is not in all future
ejqual to ZSHAREL. ZSHAREL actually defines the maximal

block-length to be used.

Using the concept block-transfer, current block is found running
the buffer wheel, if multibuffering is used (see chapter 5).

Record-Formats.

A varity of record formats exist as listed below, cammon to
GETREC and PUTREC.

zone . ZFORM Mnemonic Description
0 U ; Undefined recordlength, unblocked
1 UB ; Undefined recordlength, blocked
2 : F Fixed recordlength, unblccked
3 : FB ; Fixed recordlength, blocked
4 : vV ; Variable recordlength, unblocked
5 : VB ; Variable recordlength, blocked
Table 21.
Unblocked means: only one record is contained in one block.
Blocked means: one or more records are contained in one

block.

Below an illustrating treatment of the various formats are given.
For details about the block, record and unused buffer space rela-

tionship, refer to section 6.3 and 6.4,

6.2

125

6.2.1 Undef ined,Unblocked. 6.2.1
NB R | R | m] wr In8{ R NB
R = Record

NB = New Block is called.

One record equals one block. Each time GETREC/PUTREC is called, a
block is transferred from or to the document. This format is
suitable simple to use, when data processing is f.ex. stright
forward datatransfer and the document is not known in advance.

Ex. I: Reading from a card reader, one card is transferred to
the zone, if the length in bytes of one card <ZSHAREL.

Ex. II: Reading from a paper tape reader, share length of

bytes are transferred.

Ex. ITI: Reading from magnetic tape, one block of data is trans-
ferred, if ZREM < ZSHARELENGTH.

GETREC returns the current recordlength found (no. of bytes

transferred).

The number of bytes to be transferred using PUTREC, is given as
call parameter and should not exceed the value of ZSHAREL. If
this is the case, you will get an error indication, reading the
status Tb8 + 1b15 in your GIVEUP procedure. If this status is ac-—
cepted in this procedure or if no GIVEUP procedure is defined (a
zero in the zone-entry), then return is made from PUTREC with
ZSHAREL put into the call parameter, and thus space is made
available for a record of length ZSHAREL.

Notice: This error information is only delivered when dealing

with a block (1b8: block error) but i1s valid for any

126

format in use calling PUTREC. As it is to be seen on

the next pages, a somewhat different error handling is
made in case of GETREC-call.

ne|R| R [R|we[R|MB|R] R |R]MB

One block contains one or more records, not necessarily of the
same record length, which is set up using GETREC and PUTREC in
this case. Each time of call of GETREC/PUTREC recordlength of

bytes are made available reading in/putting out the current

This format could be used, when the data transfer is not simple
sequential, f.ex. if data are augmented with head and tail re-—
cords not to be processed or if data error indication marks,

causing you to skip the next record, are given.

6.2.2 Undefined, Blocked.
block, if necessary.
6.2.3 Fixed, Unblocked.

NB R |m] R |m8| R |mB

Each block contains one record. Each record is of equal length.
The record length is initially set up in ZONE.ZLENGIH. This for-
mat is to be used, if the record-length is known in advance. It
provides you with an error indication, whenever GETREC is called
and a record of the right size iz not found, standard error
1b8+1bl15. 1bl5 is set too, to indicate that 1b8 is not driver

set.

If the error is accepted, the record is delivered as a short re-
cord: the block is not filled up. Using PUTREC the current block
is simply output and space reserved in the next block for a re-
cord of length ZONE.ZREM if possible.

6.2.2

6.2.3

6.2.4

127

Notice: error handling should be defined in a user defined
GIVEUP procedure (chapter 5).

Fixed, Blocked. 6.2.4

6.2.5

R R | Rjm[r | R | ”|w

The block size should be an integral multiplum of the record
length leaving no space behind. The record length is initially
set up in ZLENGTH and all records should be of equal length. This
format is very useful in handling wellknown documents, say to

example a magnetic tape with a file containing card-image-records
or a discfile with some database sort of linking of the records.
As caompared with the format F, a better utilization of the zone-
concept is provided for here, especially in case of very small

records, saving I/0 overhead.

As for P-formats, a record-length check is performed on each re-—
cord processed. Again a short record can be delivered - if the

error is accepted - at return from GETREC.
Using PUTREC space is simply reserved for next record. If not

enough space is left, no error is given, but space is reserved in

a new block. If this is not possible, error is given.

Variable, Unblocked. 6.2.5

NB| €1 c2 R NB| 1| c2| R |mB

¢t—— [[2 ———t

L1

I\
v

IBM's record format V. One block contains one record. Block
length and record length are not to be known in advance, but
supplied to

128

the user at call of GETREC. Call of PUIREC results in creation of
the fields C1 and C2 and reservation of space for a record. The
record length (and hereby information about L1, L2) is delivered

as call value.

Incorrect block size: 1b8+1bl5 is set in status.

Cl: 4 bytes in length.
The first 2 bytes contain the value of L1, thus defi-
ning a block length. The value of the two last bytes is

zero.

C2: 4 bytes in length.
The first two bytes contain the value of L2, thus defi-
ning a pseudo recordlength, the value of the 2 last

bytes is zero.

The recordlength equals (L2-4) bytes, which is the va-
lue delivered from GETREC and the value to deliver,
using PUTREC.

NOTICE: FErrorhandling is performed as described in the section
dealing with F formats with the very one exception:

If using GETREC, having in progress a short record,
then this situation is not reported as an error situa—
tion, if discfile is in use. That is: a short block is
delivered without status indication. Notice that the
transferred number of bytes always can be found in the
return parameter of GETREC.

129

_____ 6.2.6 Variable, Blocked. 6.2.6
lcifce]l r Jelrlwm[alce] r |

L L'I >

g

L2
—

’ ——

< L1 >

IBM's recordformat VB. One or more records contained in one
block. The records must fill up one block (no free space left).
In case of incorrect block length, a short block is delivered, if

the error is accepted.

Call of PUTREC results in creation of the field C2, if current
block must be changed, the fields Cl and C2 are created.

Notice: Cl is updated each time PUTREC is called, to provide
for the increasing record number. The record length is
delivered as call value using PUTREC. Cl1 and C2 are
defined as illustrated in section 6.2.5

- Blockerror: 1b8+1bl5 is set, refer to the section dealing with FB
formats. Again in case of dischandling using GETREC an exception

as the one mentioned above is made.

6.3 GETREC. 6.3
6.3.1 Procedure GETREC (Zone, Addr., Bytes). 6.3.1
. Call Return
ACO bytes bytes
AC] addr
AC2 zone zone

AC3 link destroyed

130

Next record is made available in the current input buffer. IN-
BLOCK is called, if current block covers the demand for a record

insufficiently according to the various formats.

Parameters in use:

bytes: call value is used in case of UB format only

to set up zlength. At return, the value of
bytes is set to zlength or blockerror — re-

turn value:

Non error return: U: bytes:= zlength:= zrem
UB: bytes:= zlength:= bytes
F, FB: bytes:= zlength (constant, initi-
ally set up)
V, VB: current record length in bytes is

set up in zlenath using C2.
Bytes: = zlength.

Error return: bytes:= zrem;
addr: ZFIRST (byteaddress)
zone: ZONEADDRESS (wordaddress)

After call of OPEN (zone, operation) the bufferarea of used share

is pointed out as shown. Operation = input:

&

v

ZSHAREL

4

T ZTOP
ZREM: = 0, ZFIRST undefined. No data transfer.

Fig. 22.

131

First call of GETREC (zone, bytes):

INBLOCK is called.
At INBLOCK-return ZREM:= bytecount of answer.

Internal return: e | @ A
< ZREM o unused

] i)
H) 1
T ZT0P

ZFIRST is undefined. Datatransfer is done

Fig. 23.

Hereafter the current record is pointed out according to the va-

rious formats in use:

Return from GETREC:

External GETREC return.

ZLENGTH

4

) ZREM ~———ren

= nnnnn ‘l = - g |]

_—JZFIRST tzrop
8 bytes are left behind in case of V and VB format.

Fig. 24.

Succeding calls of GETREC (zone, bytes):

If ZREM covers the demand for a record insufficiently INBLOCK is
called and the action illustrated above in fig. 23 and fig. 24 is
repeated for the next buffer to use. If this is not the case, re-
fer to fig. 25.

6.3.2

132

External GETREC return: ZREM
B
8 ZLENGTH
bytes ¢
C2

{sesesese] 636364]
P2 &aT2943 T HIKY i

cl, 2 Ll
FIRST ZTOP

4 bytes left behind (VB only)

— V and VB only

Fig. 25.

Pseudo—Algol Description.

In the following, a detailed pseudo-algol-description of GETREC

is given according to the various formats:

Local procedures: BLOCKERROR and UPDATE and GETHEAD.

c

A buffer is made available for processing containing a data-

block. In case of let us say paper tape in usage as input
medium (zone.zname = PTR) , the datablock fills up the buf-
fer where as usage of card as input medium results in one
card being read defining one datablock not necessarily fil-

ling up the buffer.

repeat INBLOCK until Zrem> 0;
bytes:= Zlength:= Zrem;
UPDATE;

0: sGETREC return

g

|2

FB:

133

Bytes characters are made available for processing. If IN-
BLOCK is called, refer to comments given above.

Zlength:= bytes;

If bytes <> Zrem, then repeat INBLOCK until Zrem > Zlength;
bytes:= Zlength;

UPDATE;

0: ;GETREC return.

Notice: Zlength should be initially defined.

Zlength of bytes are made available for processing.
Comments as for U except that data read left unaccessed
results in blockerror, which is of interest using discfiles

as input medium in that INBLOCK results in 512 bytes being
read and therefore requires Zlength:= 512.

1: If Zrem < 0, then BLOCKERROR;
repeat INBLOCK until Zrem > 0;
bytes:= Zlength;
if bytes > Zrem
then goto 1

UPDATE;
0: ;GETREC return

If INBLOCK is called, refer to comments given above. If this
is not the case, notice that zlength of bytes is being ac—
cessed:

bytes:= Zlength;
if bytes > Zrem
then goto 1;
UPDATE;

0: ; GETREC return

|

Z

134

This format equals the IBM V-format. Incorrect format length
is handled as for F-formats. Please notice that in case of
discfile as input medium, rounding off input block is
provided for. Decoding of block- and recordlength is made
acc. to the description given earlier (GETREC/PUTREC -
format) and accomplished for in the local procedure

GETHEAD:

2: repeat INBLOCK until zrem >0:
GETHEAD; !a local variable l.bytes is declared.!
If l.bytes <> zrem then
Begin
If zone.zkind (11) < 1 then BLOCKERROR;
Zrem:= l.bytes !a short block is delivered!
end;

5: If Zrem = 0 then goto 2;
GETHEAD;
bytes:= Zlength;
UPDATE;

0: GETREC return

This format equals the IBM VB-format. If INBLOCK is called,
refer to comments given above:

if Zrem = 0 then goto 2;
GETHEAD;

bytes:
UPDATE;

0: ;GETREC return.

Zlength;

135

PROCEDURE GETHEAD;

if zrem < 4 then BLOCKERROR;

zrem:= zrem -—4;

ztop:= ztop +4;

zfirst:= ztop -4;

l.bytes:=C;! C equals Cl1 OR C2!
l.bytes:=C - 4;
zlength:= l.bytes;
if l.bytes >zrem then BLOCKERROR:
END GETHEAD;

PROCEDURE UPDATE (bytes);

///// BEGIN: zrem:= zrem - bytes;
ztop:= ztop + bytes;
zfirst:= ztop - bytes;

END;

END UPDATE;

PROCEDURE BLOCKERROR
BEGIN
Z0:= 1b8 + 1bl5;
IF Zgiveup <> 0 then go to GIVEUP;
bytes:= zrem;
UPDATE;
GOTO 0 H

END BLOCKERROR;

136

Notice that if a GIVEUP procedure is called, ZREM must differ in
value from zero at GIVEUP bottom-out return. If ZREM equals zero,
the GIVEUP procedure is called again and a loop is established in
your program.

6.3.3 Programming Example.,

137

; Use of GETREC, no. of bytes on tape:600.

LDA .1

LA 2 UZONE

OPEN

GETREC

STA 0 GNORW

GETREC

GNORW: 0

UZONE ¢ .+l

«TXT . PTR<0><0>.

0

1

65535

UGIVE

.LOC UZONE + ZCONV
0

.LOC UZONE + ZFORM
0

. LOC UZONE + ZSHAR
512

UGIVE:

HALT
Example 22.

;UZONE OPENED FOR INPUT,
; ZMODE is defined

;512 bytes are asked for
;GNORW:= no delivered
;The first byte of cur-
;rent record is addres—
:sed via AC1.

;Notice:

;88 bytes are delivered
;OK but status M is

; found. Return is made to

;GIVEUP. The CPU is

; stopped.

;No of bytes read

;Zone in use.

;Document: 6 bytes name
;s ZMODE: undefined
;ZKIND: char oriented
;ZMASK: errormask for
1giveup

; 2GIVEUP address

;No conversiontable
;Undefined, unblocked
;Bufferarea in bytes
;For a fully set up of

s zonedescr., sharedescr.
;+ buffers refer to ch.5

;Stop CPU.

.3.3

138

6.4 PUTREC. 6.4
6.4.1 Procedure PUTREC (zone, addr., bytes). 6.4.1
Call return
ACO bytes bytes
ACI - addr
AC2 zone zone
AC3 link destroyed

In current output buffer, space for next record is reserved. If

no space is left or format is unblocked, then current block is

output using OUTBLOCK, and hereafter space is reserved in next
output buffer of the bufferwheel.

Parameters in use.

bytes:

addr:

zone.:

call value is used in case of U, UB, V, VB to
set up zlength. In case of F and FB-format,
zlength should be initially defined.

Return value equals zlength in all cases of non

block error return else zrem.

zfirst (byteaddress).

Zoneaddress (wordaddress).

139

After call of OPEN (zone, operation), the buffer area of used

share is pointed out as shown.

Operation = output.

A

ZSHAREL

A2

T

T Z2TOP

ZREM:= ZSHAREL,

ZFIRST is undefined. No datatransfer.
Fig. 26

First call of PUTREC (zone, bytes).

External PUTREC return.

<+— ZREM: =ZREM~ZLENGTH-(C1,C2) —=*
<+— ZLENGTH —*

H]
} 1 !

TZFIRST TZTOP No datatransfer

Cl and C2 are defined in V and VB formats
— else no space is left behind.

Fig. 27.

Next call of PUTREC (zone, bytes).

In case of unblocked formats, OUTBLOCK is called with bytecount
- equal to ZSHAREL-ZREM. In case of discfiles in use, ZREM is put

to zero unconditionally.
— At OUTBLOCK-return ZREM:= ZSHAREL:

140

Internal return.

ZSHAREL \g

4

4

T ZTOP
ZREM:= ZSHAREL.
ZFIRST is undefined. Datatransfer is done.
Fig. 28.
Return from PUTREC:
External return:

C1,C2 +— ZLENGTH—®¢— ZREM:=Z2REM-ZLENGTH-(C1,C2)~*>

| | | |
I 1

1
T ZFIRST TZ’IOP
-V, VB formats only.

Fig. 29

In case of blocked formats, next call of PUTREC is done according
to fig. 28 and fig. 29, if OUTBLOCK is called. If this is not the

case (zrem covers the demand for a record), refer to fig. 30.

141

Return from PUTREC, no datatransfer.

External return:

c1,C2 C2 +—— ZLENGTH~®¢——— 7, REM >
[P 12020 o S E R (21512 &0 0 S | {
t2FIRST tzrop *

ZREM:= ZREM-ZLENGTH-C2;
Fig. 30.

6.4.2 Pseudo-Algol Description. 6.4.2

In the following, a detailed pseudo-algol-description of PUTREC

is given acc. to the various formats.

local procedures: UPDATE and BLOCKERROR

Call of PUTREC (zone, bytes):

U: Current block of data is put out. Then space is reserved in
the next buffer for the record to be output next time PUTREC
is called.

zlength:= bytes;
OUTBLOCK;
if zrem <zlength then BLOCKERROR;
UPDATE (0); !init. of zfirst.!
UPDATE (zlength)

0: ;PUTREC return

UB:

F:

FB:

If no room for

142

next record of length 'bytes'

called.

zlength:= bytes;

< bytes then OUTBLOCK;
if zrem < zlength then BLOCKERROR;
if ztop = sfirst then UPDATE (0);
lafter call of outblock.!
UPDATE (zlength);
;PUTREC return.

if zrem

OUTBLOCK 1is

Comments as for U-formats. Notice that zlength should be
initially defined.

bytes:= zlength;

zlength:= bytes;

OUTBLOCK;

if zrem < zlength then BLOCKERROR;
UPDATE (0);

;s PUTREC return

Comments as for UB-format. Notice that zlength should be
initially defined.

bytes:= zlength;
zlength:= bytes;

< bytes then OUTBLOCK;
if zrem < zlength then BLOCKERROR;
if ztop = sfirst then UPDATE (0);
UPDATE (zlength);
;PUTREC return

if zrem

143

IBM-V-format. Cl and C2 are defined. Comments as for U-for-

E

mat.

60 bytes:= bytes +4;
zlength:= bytes;
OUTBLOCK;
is zrem < zlength then BLOCKERROR;
UPDATE (4); !reservation of space for C1!
1: UPDATE (zlength); !reservation of space for C2 and the
record.!
insert (C2, zlength); !local production: C2:= zlength!
zlength:= zlength - 4; !record alone defined.!
zfirst:= zfirst + 4;
l.zlength:= ztop - sfirst;
evaluate (C1, l.zlength);!Cl is updated acc to current
length of current block.

Note: sfirst is used.!

O: sPUTREC return

VB: IBM-VB-format. Cl1 and C2 are defined. Comments as for UB

format.

bytes:= bytes + 4;

zlength:= bytes;

if zrem < bytes then OUTBLOCK;

if zrem < zlength then BLOCKERROR;
sfirst then UPDATE (4);

if ztop
goto 1;

144

PROCEDURE UPDATE (bytes);
BEGIN

ZREM:= ZREM - bytes;
ZT0P:= ZTOP + bytes;
ZFIRST:= ZTOP - bytes;
END;

PROCEDURE BLOCKERROR;

BEGIN
Z0:= 1b8 + 1bl5;
If Zgiveup <>0 then goto GIVEUP;
bytes:= ZREM;
UPDATE (bytes);
GOTO 0;
END;

Notice that if a GIVEUP procedure is called, ZREM must differ

fram zero at GIVEUP bottom—out return. If ZREM equals zero, the
GIVEUP procedure is called again and a loop is established in

your program.

145

6.4.3 Programming Example. 6.4.3
;Use of PUTREC ;TZONE should be defined
LDA 0 .3 ;ACO:= 3
LDA 2 OZONE H
OPEN ;OZONE OPENED FOR OUTPUT

+ ZMODE is defined
;bytes not defined here

PUTREC
LpA 3 PADDR ;Parameter address for
;s MOVE
'''' . LDA 2 ZFIRST, 2
STA 0 +0,3
STA 2 +1,3
LpA 2 IZONE
LDA 2 ZFIRST, 2
STA 2 +2,3
MOV 3,2
""" MOVE ;FROM IZONE TO OZONE
LDa 2 OZONE ;space is made for 144
PUTREC ;bytes {(return from
; GIVEUP)
MOVE
- LDA 2 OZONE ;400 bytes are trans-
PUTREC ;ferred to mag. tape and

;256 bytes are reserved

6.5

146

OZONE: .4

JIXT JMTO0<0><0>.
0
13
65535
UGIVE
.LOC OZONE + ZCONV
0
.LoC OZONE + ZFORM
2
256
.LOC QOZONE + ZSHAR
400
UGIVE:
JMP +0,3
Example 23.
MOVE.
Procedure MOVE (param.addr)
Call Return
ACO - destroyed
ACI - destroyed
AC2 param.addr param.addr
AC3 link destroyed

;zone in use
; ZNAME

; ZMODE

s ZKIND

; ZMASK

; ZGIVEUP

H
:Fixed blocked
: ZLENGTH defined

-
7

H
;Return to call point
; in PUTREC

6.5

147

Parameters in use.

Param.addr: count, no of bytes to be
transferred.
Param.addr+1 : to address

where to put the first byte

Param.addr+2: from address
where to take the first byte.

Param.addr+3: work location.

Param.addr: wordaddress,

Example of use:

ZFIRST OF INPUTZONE zone ,ZFIRST
fran (IN#M): o so80000688]

to (OUT?): osssssttmmmmmmm—
ZFIRST OF QUTPUTZONE zone . ZFIRST

The 'to'- and 'from' - strings need not to be disjoint. In case
of IN=OUT the procedure may fail to work, if 'to—address' is
greater than 'from-address' (data in 'from' may be destroyed
before they should be used).

Notice: The parameter area pointed out by the parameter address
is destroyed.

6.5.1

Programming Example.

Eks:

LDA

MOVE

PADDR: PSTAC

PSTAC: MCOUNT
MOTO
MOFRO

Example 24.

148

PADDR

-
’

-
’
.
r
.

1

sParameter field.

;bytecount
;To address
:From address

swork location

6.5.1

149

7. CHARACTER I/0 PROCEDURES. 7.

The single character — and the string oriented transfer proce-
dures are contained in the module MUC.

These procedures can be looked upon as a special case of the re—
cord I/0 procedures. Thus the oconcepts around the fundamental
datastructure, the zone, are equally valid.

The character I/0 procedures are augmented with the two utility

procedures DECBIN and BINDEC.

7.1 Single Character Procedures. 7.1

Before call:

;;;;;; ZREM
k } {
?
ZTOP
After call
‘1 ZREM A
1
- Z2TOP
7.1.1 INCHAR 7.1.1
Call Return
ACO - - - destroyed
ACI -— - character
AC2 zone zone

AC3 link destroyed

Gets the next byte from the zone. INBLOCK (see chapter 5) is

called if ZREM upon entry equals 0.

7.1.2 OUTCHAR. 7.1.2
Call Return
ACO - - - unchanged
ACI character destroyed
AC2 zone zone
AC3 link destroyed
Outputs the character contained in AC! onto the zone. OUTBLOCK
(see chapter 5) is called, if ZREM upon entry equals 0.
7.1. OUTSPACE. 7.1.3
Call Return
ACO - - - unchanged
ACI -—-— destroyed
AC2 zone zone
AC3 link destroyed

Calls OUTCHAR with a preloaded character value equal to 32

space) .

(ASCII

7.1.4

151

7.1.5

OUTEND. 7.1.4
Call Return

ACO - == destroyed

ACI character destroyed

AC2 zone zone

AC3 link destroyed

Outputs the character onto the zone by means of OUTCHAR. In order
to avoid any blocking effects on character oriented devices,
OUTBLOCK will be called if the device is character oriented. Thus

the share will be emptied by outputting that part presently being
filled with characters.

E.g. the temminating line, when outputting a disc file on the TTY
could else be displayed in two steps, if the line was spanning
across two disc sectors.

OUTNL. 7.1.5
Call Return

ACO - - - destroyed

ACl . destroyed

AC2 zone zone

AC3 link destroyed

Calls OUTEND with a preloaded character value equal to 10 (ASCII

New Line).

152

7.2 String Oriented Procedures. 7.2
7.2.1 CUTTEXT. 7.2.1
Call Return
ACO address (byteaddr) destroyed
ACI - - = destroyed
AC2 zone zone
AC3 link destroyed

Outputs the text by means of OUTCHAR, until a character equal to
0 is encountered. The terminating 0 will not be output.

7.2.2 OUTOCTALS. 7.2.2
Call Return
ACO value destroyed
ACI - - - destroyed
AC2 zone zone
AC3 link destroyed

Converts the value to a 6-digit octal character and outputs this

string onto the zone by means of OUTCHAR.

E.g. 115 will be output as 000163

153

7.2.3 INNAME . 7.2.3
Call Return
ACO - - - destroyed
ACI address (word addr) destroyed
AC2 zone zone
AC3 link destroyed
Calls INCHAR repetively until the character string being input
follows the definition of name (from 1 to 5 characters long and
having unused positions equal to 0).
E.g. '<32><32>NAME<13>' will be stored as 'NAME<0><0>'
7.3 Utility Procedures. 7.3
The user must realize that the utility procedures are using the
location SAVE, SAVEl and SAVE2 or CUR+24, CUP+25 and CUR+26,
where the displacements are octal.
7.3.1 DECBIN. 7.3.1
Call Return
ACO - = - destroyed
AC] address (byteaddr) value
AC2 cur cur
AC3 link destroyed

The address must point at a sequence of ASCII characters and the
procedure will deliver its binary equivalent in 'value'. The

procedure will terminate, when the first non-digit character (a
character outside the range of 48 to 57) is encounted. No check

for overflow is made. If address upon entry is pointing at a

7.3.2

154

non—-digit character (e.g. a sign character) the value delivered

will be O.

E.g. '+123' will be returned with value 0
'12<32>34" will be returned with value 12.

BINDEC. 7.3.2
Call Return

ACO value destroyed

ACI address (byteaddr) destroyed

AC2 cur cur

AC3 link destroyed

The binary value 'value' is converted into a 5 decimal and a <0>
byte string.

E.g. value =123 will be converted into '00123<0>'.

7.4 Programming Examples.
OTEXT': .+l
- TXT OUTPUT STRING.

.

LDA
INCHAR

LDA
OUTCHAR

LDA
MOVZL
LDa
OUTTEXT

LDA
LDA
INNAME

155

IZONE

IZONE

OIEXT
0'0
IZONE

WORK
IZONE

~e

~e

~e

~e

.
’

-e

7.4

GET CHARACTER

OUTPUT CHARACTER

ADDRESS :=BYTEADDRESS
OQUTPUT TEXTSTRING

GET NAME

156

CATALOG SYSTEM.

8.1

Introduction.

RC3600 file system makes it possible to divide a disc drive into
smaller independent units, files. These files are identified by
names, with a length of 5 characters. The descriptions of the
files, entries, are kept in a catalog stored on the disc. The
entries give among other things the name, the length, and the
starting position on the disc of the file.

RC3600 file system allows up to 255 discs to be connected to the
same RC3600 central unit. Each disc is handled independent of all
others as it holds one or more catalogs of its own. Each catalog
and the disc space covered by the catalog files is called a
catalog unit. Up to 255 catalog units can be handled by the file

system, and more than one catalog unit can be placed on the same
physical disc pack or cartridge. Files on different catalog units
may have the same name, and it is therefore necessary to give the

nunber of the catalog unit, when accessing a file.

With the RC3600 file system you can create, remove and change

files, and read or write into existing files.

Operations involving update of the catalogs are handled in a
special catalog handler process, CAT, and this process

administrates the creation and removal of area processes. The

area process will when created act as a normal driver process,
and file read/write operations are directed to this area process,
which will modify and read data only on the file with the same
name as the area process. Moreover the area process administrates
the current position in the file for up to three different user
processes, and takes care of the different kinds of user

reservations.

8.1

8.2

157

A file may be a new catalog (sub catalog) for a number of files.
To access files in a sub catalog, a catalog process must first be

created for that sub catalog. Creation and removal of catalog
processes are also done by the process 'CAT'. All operations on

the sub catalog and the files within it are carried out by
sending messages to the catalog process for the sub catalog in

question.

Catalog operations are in the basic level of procedures requested
by sending messages to the process CAT. A detailed description of

the message interface can be found in [5].

In the MUS Basic I/0 system a number of procedures have been
build to ease the use of the catalog system. These procedures are

working on the file descriptor (zone) structure as described in
chapter 5, and enable the user to work on well known structures

and with simple exception handling by means of the defined giveup
procedure.

Catalog System Disc Structure.

The smallest unit accessible on an RC3600 disc is one sector,
each with 512 bytes data. Each file created by the catalog system
consists of a number of sectors random distributed over the disc
surface, and the relative position on the disc of each sector is
collected on one sector, called the indexblock. In order to get
fast access to each sector in the file the sectors are collected
in physical contiguous blocks called slices, each consisting of a
fixed number of sectors.

The indexblock contains then a number of slice discriptions each
describing a collection of contiguous slices. The first word of
the indexblock gives the number of slice descriptions in use. The

maximal number of slice descriptions for a file is 127.

8.2

158

A slice description consists of two words. The first word gives
the number of sectors and the next word gives the start address

relative to the catalog start.

If a file is extended the catalog system will use the physically
next slice on the disc, if possible. Thus it suffices to increase
the number of sectors occupied by the last slice description in
the indexblock. I.e. if a new disc is created all files will be
physical contiguous and described by only one slice description

in the indexblock.

§£ice 1
INDEX BLOCK .Isector with 512 bytes
No. of desc.
slice size
address L
12
6
e glice_% and 3
- slice
....‘ = .
i
' 1
! ——4
, ||
!
i p—t (=
]
l e | ——
i
i L4
|
M\/\/v_/\/' L
| slice 4

Fig.31 : Index block structure. The index block is the first

segment in the first slice.

159

The reference to the file indexblock is placed in a file entry

which also ocontains the filelength, name and specifications bits
(attributes).

All file entries on a catalog unit are collected in a standard
data file SYS. This file can be read by the user, and the file
only differs in the fact that its indexblock is fixed on sector 6

and it is protected against user writing and removal.

SYS INDEX (6) SYS FILE
1
6

G

Reference to
FILE -
ENTRY _file index

Sector

A

Fig.32 The catalog file SYS. Please note that the entry SYS is
represented in the file itself.

Each entry in the SYS file is represented by 16 words with the
layout given in fig.33.

160

Entry name

Optional words 1

Entry attribute

Entry filelength P Entry
Address of indexblock

Reserved length

— Optinal words 2 —

Fig.33 Entry layout in file SYS.

Entries not occupied in the catalog file are given by a zero
name, and all entries are placed in the file SYS by means of a
hashkey value computed from the entryname.

Entries with the same hashkey are thus found in the sectors Kk,
k+n, k+2n,.... in the catologfile, where k is the hashkey and n
is the SYS-size, which is an integral multiple of the slice size.
A new entry is inserted in sector k (the hashkey), but if this
sector is occupied sector k+n is used, an so on. The catalog is
extended and the added sectors are zeroized if no space is found

in existing sectors.

161

Sysslicesize = n.

sector sector sector
B 0 : n-l n : 2n-1 2n : 3n-1 .
Hashkey = 0
‘‘‘‘‘‘ Hashkey = 1
- _—] -]

Hashkey = n-~1
n-1

Fig.34 Hashkey organisation in file SYS.

As seen from the entry layout two lengths are connected to each
file, the filelength and the reserved length. The reserved length

is always an integral number of the number of segments in a slice
minus the one occupied by the indexblock, and the relation

file length < reserved length

is therefore valid, as the file length is the number of user

accessible segments {data segments) on the file, and the reserved
length is the number of segments occupied on the disc by the

current file.

162

Each slice on the disc is mapped on a bit in the map sector,
which means that if a slice is included in a file and placed in
the fileindexblock, the equivalent mapbit is zeroized, else it is

set to one.
Further information about the catalog unit structure is kept in a
fixed sector on the disc. These informations are catalog size,

slicelength and data sector start.

The map sector and disc description sector are placed in a user
accessible datafile too, called MAP.

first data sector

0,1,2,3.4.5 6,7 8 9,10 11,12 13 . X
KA T
L. Not used
Map block
Disc description block
MAP index block

Catalog (SYS) index block
System bootstrap

Fig.35 Disc and catalog organisation

163

When the MAP file is read the first Sector contains the following

information :
Word 0 SYS size must be an integral multiple
1 slice size af slice size.
2 number of sectors
3 | number of free sectors
4 first data sector
5 top data sector

Not used

AN AN

Fig.36 Disc description sector.

The next sector is the bitmap. A free slice is indicated as a one

in the appropriate bitposition.

The physical position on the actual disc configuration of each
catalog unit can be found in a seperate description program,
which gives the connection between the catalog unit and the name
of the used disc driver process and the start address of the
first sector on the disc. The description program is created as
an assembler program containing a predefined data structure. The
catalogprocess CAT is then the same in all system configurations
and the actual configuration is given by the tables in the
description program with the fixed name CATW. A part of the disc
description sector is read and moved to the description program

when the actual catalog unit is initialized.

A detailed description of the formats in the CATW program can be
found in |5].

8.3

164

Catalog System Procedures.

8.3.1

General.

8.3.] .1

When catalog system procedures are called a fixed parameter is
always the file descriptor address. By this reference to the
file descriptor the name of the file to be manipulated and the
giveupprocedure to be called in case of errors, are defined. In
addition the conversion table address in the file descriptor
(zone.zconv) is used to specify if the catalog procedure should
be performed on a main catalog or on a sub catalog. When
accessing files in a sub catalog the conversion table address

should point to a string containing the sub catalog name.

Main Catalogs.

If zone.zconv = 0 the operation is send to the process CAT, which
handles operations on main catalogs. The document name in the
file descriptor must hold the name of the file to work on (zero
characters for unused positions), and the main catalog unit num-

ber in the last byte of the name.

Operations which can be performed on main catalogs are:

1)
2)
3)
4)
5)
6)
7)
8)

Createentry
Removeentry
Lookupentry
Changeentry
Setentry
Initcat

Newcat

Freecat

8.3

8.3.1

8.3.] -1

165

If zone.zconv < 0 the operation is send to a process with name

pointed out by the byteaddress in zone.zconv. This name should be
the name of a catalog process consisting of the 5 character sub

catalog name followed by a sub catalog number as the 6. character.

The sub catalog number is gained from the catalog system when the
catalog process is created by using the catalog procedure NEWCAT.

The document name in the file descriptor must hold the name of
the file to work on (zero characters for unused positions) in the
first 5 characters. The 6. character is automatically supplied
with the sub catalog number specified as the 6.th character of

the catalog process name.

Operations which can be performed on sub catalogs are the same as
for main catalogs except for 6, 7 and 8. Before the operations
can be used the catalog process must be created by using the
procedure NEWCAT. Catalog processes are removed by the procedure

8.3.1.2 Sub Catalogs.
FREECAT.
8.3.1.3 Procedure CREATEENTRY.

Call: Return:
ACO attributes destroyed
ACI size destroyed
AC2 zone zone
AC3 - destroyed

The file given by the document name in zone is created with the

given size and the given attribute mask.

8.3.1.2

8.3.1.3

166

The attribute mask has the following interpretation:

bit 15

bit 14

bit 13

bit 12

bit 11

bit 10

bit 1

bit 0

The file should be extendable, else the file is
created with fixed length, i.e. it is not allowed
to change the file length.

Not used in createentry. Device descriptor in
DOMUS.

Not used in createentry. Entry only.

The file is writeprotected, i.e. it is allowed
only to read fram the file.

The file is permanent, i.e. removal and change

(except attribute change) of the file is not

allowed.

Not used in createentry. Link entry.

Sub catalog. The file is a sub catalog.

Catalog file. Can be read by the user, but is -

protected against write, change and removal. Only

system use is allowed. -

If other bits are set in attribute mask, the giveup procedure is

called.

For status, see table 1.

8.3.1.4

167

Create the file PIP on catalog unit O:

FDO:
.TXT .PIP<0><0>.

WMASK : 1B12+1B15

FDI1 : FDO

ENTRY : LDA 2 FDI
LDA 1 .1
LDA 0 WMASK
CREATEENTRY

Example 25.

Procedure REMOVEENTRY .

ACO
ACl
AC2
AC3

Call

zone

Return

destroyed
destroyed

zone
destroyed

~e

~e

LY

-

.
4

~e

’

~e ~e ~e -e

~e

ZONE

STANDARD LAYOUT

REF ZONE

ATTRIBUTE:= 1B12+1B15;

CREATEENTRY('PIP', 1,
ATTRIBUTE) ;

8.3.1.4

8.3.1.5

168

The entry given by the document name in zone is, if allowed, de—

leted, and the slices reserved are released for other files.

Status: see table 1.

Remove the file PIP created in example 1:

FD2: FDO ; REF ZONE

ENTRY : LDA 2 FD2 :
REMOVEENTRY ;

Example 26.

Procedure LOOKUPENTRY.

Call Return
ACO - destroyed
AC] storage area. destroyed
AC2 zone zone
AC3 - destroyed

The catalog entry given by the document name in the filedescrip-
tor is transferred to the 32 bytes area given by the word address
storagearea. The entry can then be examined for its length,

8.3.1.5

169

attributes and optional words.

The entry format is:

WORD 0-2 : Entry name

WORD 3-5 : Optional words

WORD 6 : Attributes

WORD 7 : File length (in segments)

WORD 8 : Sector address of indexblock relative to
catalog start

WORD 9 : Reserved length (sectors)

WORD 10-15 : Optional words.

Status: see table 1.

Find the length of the file PIP created in example 25:

FD3: FDO : REF ZONE
LENGTH = 7 ;
AREA: o+ ; AREA:
«BLK 16 H
ENTRY: H
LDA 2 FD3 ;
. LDA 1 AREA H
- LOOKUPENTRY ; LOOKUPENTRY('PIP',
; STORE);
- LDA 3 AREA ;
LDA 0 LENGTH,3 ; LENG:= STORE.LENGTH;

.
~e

Example 27.

8-3'] '6

170

Procedure CHANGEENTRY

Call Return
ACO - destroyed
ACI storage area destroyed
AC2 zone zone
AC3 - destroyed

The storage area is destroyed after call.

The function is to change the name, filelength, attribute or op-
tional words of the entry given by the document name in the file-
descriptor.

The parameter storage area is the word address of a 32 byte memo~
ry area, with a layout as the area used in LOOKUPENTRY.

If the name has to be changed, the first 3 words of the area must
hold the new name, else the first word must be set to zero, or

the name must equal the filename.

If the file attribute has to be changed, word 6 of the area must
hold the new attribute mask, obeying the same rules as given in
CREATEENTRY. If the attribute has to be unaltered, the word must
be equal to -1,

If the filelength has to be changed, word 9 of the area is de—
fined equal to the new length, else the word must be equal to -1,
meaning no change in filelength.

It is allowed to change both name, optional words, attribute and
length or a mix of these in the same call. Status can be found in
table 1.

8.3.1.6

8.3.1.7

Change the name of the file PIP to PAP using the same filede-

scriptor as in example 25.

FD4: FDO
ARFEA: .+
LTXT PAP<0><0>.
0
0
0
~1
0
=1
.BLK 6
ENTRY: LDA 2
LDA 1
CHANGEENTRY
Example 28.

Procedure SETENTRY .

ACO
ACT
AC2
AC3

Call

storage area

zone

Return

destroyed
destroyed
zone

destroyed

~e

-

~e ~a ~e ~-e ~e - ~e ~e

~e

~e ~e

-e

REF ZONE

OLD ATTRIBUTE

OLD LENGTH

8.3.1.7

172

This is an extended CREATEENTRY function as all the parameters
are taken from the storage area pointed out by the word address

storagearea.

With this function the optional words are copied to the file
entry, and they can then be used for a number of user information

concerning the file.

The storage area has the same layout as shown in the LOOKUPENTRY
call, and only word 7 and 8 are set by the catalog system.

If the catalogbit no. 13 (entry only) is set in the word defining

the attribute mask, the length of the file is set to zero by the
catalog system. _ _

The catalog unit and entry name are taken from the first three
words of storage area, i.e. the file descriptor is only used to

define the user giveup action and the sub catalog.

Status: see table 1.

173

Create an entry PIP with the same user information in the optio-

nal words.

FD5:

ENTRY:

SET:

FDO

.+l
LTXT PIP<0><0>.

b12+1b15

o O = O O O

LDA 1 ENTRY
LDA 2 FD5

Example 29.

~e

- ~-e ~e ~-e ~e ~a -e

~e

- ~e

~e

~e ~e

~e

REF ZONE

NAME (USER SET)

OPTIONAL

ATTRIBUTES (USER SET)
LENGTH (SET BY CAT)
INDEX BLOCK (SET BY
CAT)

RES.LENGTH (USER SET)
OPTIONAL (USER SET)

SETENTRY (ZONE, ENTRY);

8.3.1.8

174

Procedure INITCAT.

Call Return
ACO - destroyed
ACl unit destroyed
AC2 zone zone
AC3 - destroyed

The catalogunit given by parameter 'unit' is initialized, i.e.
made accessible to the process running. During initializaticn,
the number of free segments are ocounted and the catalog descrip-
tion in the configuration program CATW is updated. This procedure
must be called before any access to the unit in question, either

by the user program or by the operator by a command to the opera-
ting system if this supports disc.

The filedescriptor reference is only used for definition of the

giveup procedure.

Status: see table 1.

FD6: FDO ; REF FILE DESCR
ENTRY: LDA 2 FD6 ;
LDA 1 .0 ; UNIT:=0;
INITCAT ; INITCAT(UNIT);
LDA 1 .1 ; UNIT:=1
INITCAT ; INITCAT(UNIT);

Example 30.

8.3.1.8

8.3.1.9

175

Procedure NEWCAT.

Call Return
ACO key destroyed
AC1 destroyed
AC2 zone zone
AC3 - destroyed

This procedure creates a catalog process for the sub catalog spe-

cified by the name starting in the byte address in zone.zconv.
The first 5 characters should contain the name of a sub catalog

(zero characters for unused positions). The 6th. character is
updated by the procedure. A sub catalog number delivered by the

catalog system is inserted into this character, and the name of
the created catalog process consists of all six characters. The

sub catalog mumber is also delivered in zone.zfile.

BEach sub catalog has a sub catalog key (sub-key), which is
checked against the parameter 'key'. The result is delivered in

zone.zblock, which thus gives an indication of the use of the sub
catalog. If zone.zblock = 0, then only reading should be done. If

zone.zblock <> 0, then all operations are legal.

Zone.zblock is calculated in the following way:

if ('key' = sub~key or sub-key = 0) then
zone.zblock:= < 0

else if 'key' = 0 then zone.zblock:= 0;
In all other cases the status error illegal will be

returned.

8.3.1.9

8.3.1.10

176

The parameter 'key' should thus be used in the following way:
If only reading is wanted, then 'key' = 0.
If other operations will be used on the sub catalog, then

'key' = sub-key.

A sub-key equal to zero will never result in an 'illegal' sta-

tus.

NOTE The catalog system does not check the usage of a sub cata-
log, except for this key checking.

If zone.zconv = (0 or points to a string containing 'CAT<0><0><0>'

then the operation is dummy.

Procedure FREECAT.

Call Return
ACO destroyed
ACI destroyed
AC2 zone zone
AC3 - destroyed

The sub catalog pointed out by zone.zconv is released. The sub
catalog name must be the full name including the sub catalog num-
ber as the 6th. character. If the catalog process has no more
users and no more area processes for files in the sub catalog

exists then the catalog process is removed.

If zone.zconv = 0 or it points to a string containing
' CAT<0><0><0>"' then the operation is dummy.

8.3.1.10

177

(0 = sureu) sureu buoam ‘ (<») 9zTS buoam ‘enqrriie buoaMm :

I0IIs Jajaurexed i

TTnF O0Tq Xoput

TTnF O0Tq Xsput

a0 TIngF dew 10 TNy dew ¢ql + zldl
- 1STXO AIBU MON - - ISTX0 ATyuyg cqL + LL9l
- TTng os1d - - TInF OSTa €qL + L9l
9sn ut aTTd
psutrispun 3Tuf) 9sn Ut S1Td
xI0OIID
Isy3ueTed pouTISpun 3TUf pauTIspun 3Tun
pouTjepun 3TUn Jusuewrad T4 POULIOpUN JTUn Jusueurad STTJd xIOIT0 JIojaureIed €ql + 99l
JSTXS 30U ISTXS 30U
s20p ATjug soop Axjud - eqlL + L9l
JIOIID IOIID IOIID o115 UDasAS e
- ue3sAs 3e) weysis Jed weysis 3e) & FEO gL + 09l
IYD LINI KAINTIONVHD AAINAMDIOOT AL TNHHANAOWTT AINALIS/ AIINTALYIIOD snjeqls

*(*0o38 ATred ‘SUTTIJO) JOIID SIEMPIRY UR S9}ROTPUT
pal pue gql 3Tq Snjels JO O gdl UITM poxIew ST welsds borejzeo

OU} WOIT POATSO9I SN3els TIY 0 = Snie3s *o°'T Mo uotieasdo
IT pauxoyaad sT 2anpoooad-dn-oA1b JO TTeO ON *saanpeoold borejed

JO TTe0 I93Je WwolsAs HOTeIed 9yl WOAT POATS0SI Snieas

Sl w.mﬂm._w

8.4

178

Catalog File INPUT/OUTPUT. 8.4

8.4.1

When accessing data on a catalog file normal zone procedures can
be used. The only difference is that the kindbit 11 must be set,

which is checked by the basic I/0 procedures when performing
OPEN, CLOSE and block shifts.

Procedure OPEN. 8.4.1

A create area process messadge is send to the catalog process if
zone.zconv = 0, otherwise to the sub catalog process given by the

name address in zone.zconv//2. If the mode is input, the opening
process is inserted as user. If the mode is output, the process

is inserted as exclusive user.

If no area process exists, a free area process is taken from a
common pool and initialized with the file characteristics read

fram the file entry.

The file can be read/written in two modes random or sequential.
When sequential mode is used, the file is read/written fram the
last defined position, i.e. the position can be initialized or
reset by a SETPOSITION command. If random mode is selected, the
block number to read/write is taken from the MESS3 part of the
resulting message. MESS3 is fetched from the zone record word
ZBLOCK, which then must be set by the user before the block is
input/output.

-

~e

~-e

’

179

AC2 equals zone address

LDA 0
OPEN

LDA 0
STA 0
INBLOCK

.5

.10
ZBLOCK, 2

~e ~e ~e

~-e

)
1

-e

OPEN (ZONE,
RANDOM INPUT);

BLOCKNO:= 10:;
INBLOCK(ZONE) ;

When PUTREC is used, the procedure only makes space in the
zone, i.e. the block number must be specified before the next

PUTREC procedure causing a block transfer.

AC2 equals zone address (UB format).

LDA 0
OPEN

LA 0
PUTREC

MOVE DATA TO BUFFER

LpA
STA
LDA
PUTREC

Example 31.

‘7

.512

']0
ZBLOCK, 2
.512

-e ~e -e -e - ~-e

~e

-e ~e

-.

OPEN (ZONE,
WRITE RANDOM)

PUTREC(ZONE, 512);

MOVE (DATA, ZONE);

BLOCKOUT:= 10;

PUTREC(ZONE, 512);

180

MODE/RESR Randam Sequential
Read 5/USER 1/USER
Write 7/EXC .USER 3/EXC.USER

Fig. 37 Modes for read/write operation and reservation status.

In fig. 37 the possible modes can be found. Other modes are al-
lowed too, but only the last three bits of the modeword is
checked by the catalog system (bit 13, 14, 15), and the mode bits
8, 9 ... 12 are transferred unmodified to the disc driver in
question, thus enabling use of special disc driver features as
read after write, word address etc. Please consult the disc dri-

ver description for further information.

During read/write only one sector is transferred, and the user
sharelength must then be defined as 512 bytes, else a blocklength

error is indicated, and no data is transferred.

For each OPEN call (create area process) the user OPEN/CLOSE
count is incremented by one. This count indicates how many zones
the user has opened to the same file and is used by the catalog
system in the decision when to remove the area process, as this
happens only when all 3 user OPEN/CLOSE counts has reached zero.
(Further details, see procedure CLOSE).

8.4.2

181

Procedure SETPOSITION.

The user position is set to the block parameter, which indicates
number of sectors fram file start, i.e. the first sector is sec-

tor 0. The file parameter is ignored. Negative block numbers are
illegal and positions outside the file are rejected by a status.
See table 2 for status.

After normal close action, a remove area process command is sent

to the catalog system or to the sub catalog process as indicated
by zone.zconv, if the release parameter is nonzero. When the re—
move cammand is received the user OPEN/CLOSE count is decremen—

ted, and if zero, and no other user reservations exist, the area

process is removed and included in the common pool of free area

Please note that when release parameter is zero no remove area
process command is send, i.e. the sequence

CLOSE(zone, 0);

OPEN(zone, mode);
increments the OPEN/CLOSE count and removal of the process is on-
ly possible, if CLOSE with nonzero release parameter is called

8.4.3 Procedure CLOSE.
processes.
twice.

8.4.4 Catalog Input/Output.

During input/output bytecount must equal 512 bytes, else the
message is rejected with blocklength status. It is then a general

rule that if kind bit 11 is set (which it must be when OPEN/CLOSE
is used) the whole share is output/input independent of the ac~

tual state of zone pointers and values, i.e. the zrem record ele-

8.4.2

8.4.3

8.4.4

182

ment does not give the number of bytes output, except when zrem

equals 512 and defines no bytes to be output. After input to a
zone with kind bit 11 set, zrem is always defined to 512. This

fact can cause trouble when the formats F, FB, V and VB are used
in connection with disc files with the Record I/O procedures if

the record size does not fit in a 512 bytes block.

Special care must also be taken, if partiel updating of single
file sectors is wanted, i.e. mixed read/write are performed.

PROCEDURE PART UPDATE

~e

~e

; CALL RETURN

; ACO SECTOR DESTROYED
; ACI VALUE DESTROYED
; AC2 ZONE ZONE

; AC3 LINK DESTROYED

-

WORD 10 IN THE GIVEN SECTOR IS SET EQUAL THE VALUE GIVEN IN ACIl.
THE SECTOR IS OUTPUT AFTER MODIFICATION. BEFORE CALL THE ZONE
MUST BE OPENED IN MODE 5 (RANDOM READ);

AFTER RETURN THE ZONE IS OPENED IN MODE 5 AND NO BYTES DEFINED
INPUT.

~e ~e ~e -

-e

PAROO:

PARO1 ¢
PAROZ2:

183

STA 3
STA

STA 0
INBLOCK

LDA 3

MOVZR 3,3
LpAa 1

STA 1
LDA 1
STA 1
DSZ

JMP
LDA 1
STA
OUTBLOCK
LDA

STA

LDA

STA

JMP@

0

0

-—

o O O O

Example 32,

PAROI1

PARO2
ZBLOCK, 2

ZTOP,2

PARO2

+10,3

7
ZMODE,, 2
ZBLOCK, 2

.0
ZREM, 2

.5
ZMODE, 2
.0

ZREM, 2
PARO]

- - ~e ~o - e -e ~e ~e - ~s -. -e - -e ~e

~e

- -e -e -e - -

-e

PART UPDATE:
ZONE. ZBLOCK:= SECTOR

INBLOCK(ZONE) ; !ONLY
ZTOP DEFINED!

WORD(ZONE . ZTOP//2) :=
VALUE

ZONE.ZMODE:= 7; !WRITE!
ZONE . ZBLOCK :=
ZONE. ZBLOCK-1;

ZONE.ZREM:= 0;
OUTBLOCK(ZONE) ;

LINK
SAVED VALUE

The example can be used for more special update tasks if the

assigning of word 10 is replaced with appropriate code.

It should be noted that the zone in question is defined with a
single share, as multibuffering in random access makes no sense.

184

S3TIM SATSNTOXS I0F PoATasal O[T ‘()=) Sweu Tebo[TI

POpoSOXS
JUNOoS I98N) PaL + ziql
STTF
SPTSINO UOTITSOd
J2Sn 30N I9sn 10N I9sn 0N Iasn 30N - valL + LLqL
I0IID JOIID _ B _
ybust ooTd ybusT ooTd pal + 84l
_ _ 3 ssanoxd
B3IR 9943 ON PaL + L4l
STePUSIXS 30U 9TTI 0> UOT3TSod
*»TebaTTI *TeHOTTI ¥ TeBOTTI xTebaTTI xTeBaTTI vaL + 9ql
PRATSSSI SS2001d peATSSDI SS9001d - - PeAISSOI $S9001d 9q|
_ _ _ _ 1STXO
jou seop A1jud paL + Lql
JIOIID WS3SAS Je) IOIID WO3SAS 3B) JIOIID uP3sAs 3e) IOIXD Wo3sAS 3e) IOXID WR3ISAS 3©) ¥l + 09l
INdILNO LOdINT NOILISO4LdS 48010 NHIdO snjels

YAl YITM pOMIRW ST POATS09I snjels TIV
= snje3s 9T ‘YO uotrjexado JT pautogiad sT aanpoooid-dn-sath JO TTED ON

*sempeooad O/T pue NOILISOALAS ‘dSOID ‘NAJC seampeooid

JO TTe0 933 uP3sAs HoTe3es syl WOII POATEOSI SN3els

iz oTqeL

REFERENCES .

Ay

(2]

131

(4]

Keywords:
Abstract:

Keywords:

Abstract:

Keywords:
Abstract:

Keywords:
Abstract:

185

DOMAC, Domus Macro Assembler,

User's Guide.

RC3600, Macro Assembler, User's Guide.

This paper described the RC3600 Macro Assemb-
ler Language and cperation of the DOMAC macro
Assembler,

RC3600 Pagings System,

System Operators Guide.

MUS, Paging System, Virtual Memory, Address
Mapping.

This manual describes, how to use the RC3600
paging system from assembly programs under
the MUS system.

Extended RC3600 Coroutine Monitor.
Programmer's Manual.

RC3600, Coroutine Monitor, MUS.

The coroutine monitor is a set of reentrant
utility procedures for RC3600 MUS, with faci-
lities for mutual synchronization and ex-
change of data between cooperating parallel
activities. This manual is the MUS program—
mer's reference for the extended monitor.

XCOMX, Processor Expansion.

User's Guide.

RC3600, MUS, Processor Expansion.

This manual describes the use of the proces—
sor expansion system, XCOMX, under the MUS
monitor for the RC3600 line of computers.

(5]
Keywords:
Abstract:
L6]
Keywords:
Abstract:
L17]
Keywords:
Abstract:
(8]
Keywords:
Abstract:
19}
Keywords:
Abstract:

186

RC3600 Catalog System.

System Programmer's guide.

Catalog system, file system, area process,
subcatalog.

This manual describes, how to use the RC3600
Catalog System from assembler programs. Also
the organization cf the disc(s) is described.
The user must be familiar with the MUS sys-
tem,

DOMUS Linkage Editor.

DOMUS, Macro Assembler, Linkage Editor.

This manual describes the linkage editor for
the disc operating system DOMUS for RC3600
line of computers.

DOMUS, USER'S GUIDE, Part 1, Version 3
DOMUS, MUS, Operating System, Loader, Disc.
This manual describes the disc operating
system DOMUS for the RC3600 line of campu—

ters.

DOMUS, System Programmers Guide, Version 3
MUS, Operating System, Loader, Disc, Version
3.

This manual describes the interface between

assembly programs and DOMUS.

MUS Operating System, User's Guide

MUS, Operating System, Master Device Media
This manual describes the cperating system S
contained in the MUS system for the RC3600

line of computers.

TERMINOLOGY .

address

bit

character

text

descriptor

item

187

An address may be a word address, which is a

15 bit unsigned integer, corresponding to a
physical address in primary storage. Or it
may be a byte address, which is a word add-

ress left shifted one bit and with a one ad-
ded into bit 15 if the byte addressed within

the word is the rightmost.

A computer word consists of 16 bits, numbered
from left to right:

BO' Bl, Bz, oo.-o---lB]S.

A computer word is regarded as two 8 bit
bytes. The left byte B0 to B7 has an even

address and the right byte B8 to B15 an odd
address.

A character is a byte. The cammon alphabet
within the system is the ASCII alphabet.

A text is a sequence of characters. Starting
at a byte address and left justified. A text

is terminated by a Null character with byte

value zero.

A collection of information, which describes
an object, is called a descriptor. Descrip-
tors are found as part of items and as part

of zones.

An item is a primary storage area, which is
headed by a descriptor, the first part of
which usually has a standard layout. This en-
sures that an item always may be in some
chain and possibly also in a queue. The first
words of an item contain the fields:

field

chain

gqueue

length

188

next: next item in a queue
prev: previous item in a queue
chain: next item in a chain
size: the size cf the storage

area of the item
name: (3 words) a text identi-

fying the item

A field is a displacement, which identifies a
piece of information within a descriptor.
Same important fields are predefined in the
system assembler, and/or in the musil compi-
ler.

(linked linear list). A chain consists of a
chain head and a number of chain elements.
The head and each element points to the next
item in the chain, the last element equals

2ero.

(doubly linked cyclical linear list). A queue
consists of one or more queue elements. One
of the elements is the queue head. A queue
element consists of two oonsecutive words
pointing to the next element in the queue and
the previous element in the queue respec—

tively.

When the queue is empty, the head points to
itself. When an element is not in a queue, it
normally points to itself,

The term length is used to express the number

of bytes contained in some storage area.

size

program

process

monitor

device

driver

disc

drive

file

189

The term size is used to express the number

of words contained in some storage area.

A collection of instruction and data which
may be executed or accessed by one or more

processes.

A sequential execution of programs under con-
trol of the monitor. All information about a
process is ocollected in a process

descriptor.

The nucleus of the system which implements
multiprogramming, i.e. the parallel execution
of several processes on a single processor.

One of a ocollection of units which can re-
ceive data from the processor or transmit da-
ta to the processor, often in parallel with

the execution of computer instructions.

A process executing a driver program in order
to ocontrol input/output to a device.

Any randam access storage unit connected to

the computer.

A disc unit station in the system. All drives
are numbered fram zero and to a maximum and

are administrated by the cat process.

A logical oollection of data residing on a
disc having a name (discfile). Sometimes we
shall denote a roll of paper tape or a ool-
lection of data between two tape marks on a
magtape reel as a file too.

196

zone A collection of information and associated

storage areas necessary to perform operation

on files and devices.

191

C. DEVICE CODES. c.

Decimal Octal

code code Mnemonic Maskbit Device
01 01 Extended Memory

wawawa 02 02
03 03
04 04

B 05 05 ASL Autamatic System Load
06 06
07 07
08 10 TTI 14 Teletype Input
09 11 TTO 15 Teletype Output
10 12 PTR 11 Paper Tape Reader
11 13 PTP 13 Paper Tape Punch
12 14 RIC 13 Real Time Clock
13 15 PLT 12 Incremental Plotter

SPC2 9 Third Standard Parallel
Controller
14 16 CDR 10 Card Reader
15 17 LPT 12 Line Printer
16 20 DSC 4 Disc Storage Channel
17 21 SPC 9 Standard Parallel control-
_ ler
) 18 22 SPCI1 9 Second Standard Parallel
controller

Second Dial-up Controller
19 23 PIRI 1 Second Paper tape Reader
20 24 AMX3

N

Fourth 8 Channel Asynchro-
nous Multiplexor

TMX10 0 Second 64 Channel
21 25 ™X11 1 Asynchrounous Multiplexor
22 26 ™X0 0 64 Channel Asynchronous
23 27 TMX] 1 Multiplexor

192

Decimal Octal

code code Mnemonic Maskbit Device
24 30 MT 5 Magnetic tape
25 31 PTP1 13 Second Paper Tape Punch
26 32 TTI2 14 Third Teletype Input
OCP-Function, Button Out
27 33 TTO2 15 Third Teletype Input
OCP-function, Button IN
28 34 TTI3 14 Fourth Teletype Input
OCP~Numeric Reyboard In
29 35 TTO3 15 Fourth Teletype Output
DISP 7 OCP-Display
30 36 OCP-Autoload
31 37 LPS 12 Serial Printer
32 40 REC 8 BSC Controller
33 41 XMT 8
34 42 RECI 8 Second BSC Controller
35 43 XMT'1 8
36 44 MT1 5 Second Magnetic Tape
37 45 cip 12 Charaband Printer
38 46 FPAR 3 Inter Processor Channel
Receiver
39 47 FPAX 3 Inter Processor Channel
Transmitter
40 50 TTI1 14 Second Teletype Input
41 51 TTO] 15 Second Teletype Output
42 52 AMX 2 8 channel Asynchroneous
Multiplexor
43 53 aMxi 2 Second 8 channel Asynchro-
neous Multiplexor
44 54 HLC 8 HDLC Controller
FPAR2 3 Third Inter Processor
Channel Receiver
45 55 HLC1 8 Second HDIC Controller
FPAX2 3 Third Inter Processor

Channel Transmitter

193

Decimal Octal

code code Mnemonic Maskbit Device
46 56 CDR1 10 Second Card Reader
47 57 LPT 12 Second Line Printer

LPS2 12 Third Serial Printer
48 60 SMX Synchronous Multiplexor
49 61 FDD 7 Flexible Disc Drive
50 62 CRP 10 Card Reader Punch
51 63 CLP1 12 Second Charaband Printer
52 64 FDDI 7 Second Flexible Disc Drive
53 65 LPS3 12 Fourth Serial Printer
54 66 DI 9 Digital Cartridge Control-

ler

LPS4 12 Fifth Serial Printer
55 67 LPS1 12 Second Serial Printer
56 70 DST Digital Sense
57 7 DoT Digital Output
58 72 ONT Digital Counter

Dial-up Controller

59 73 DKP 7 Moving Head Disc Channel
60 74 FPARI] 3 Second Inter Processor

Channel Receiver

61 75 FPAX1 3 Second Inter Processor
Channel Transmitter

62 76 AMX2 2 Third 8 channel Asyn-
chronous Multiplexor

63 77 CPU Central Processor

D. FIRST AND SECOND PAPER TAPE PUNCH DRIVER. D.

10002 PPAN?

01
ne

&
05
0k
nz
OR
09
10
1

1?7

13
14
15
16
17
18
19
20
21
22
2%
24
25
2h
27
2R
29
30
31
37
33
34
35
34
37
38
39
40
41
42
43
L4
45
LA
47
4R
49
50
51
52
5%
S4
55
56
57
58

nannng
nneo1?2

NnnnOY1I4N401
nonpt1rnonpn?7?
Qoo ' nonpoo
nenNa3rTnOnO?3
nNorG4'NSN124
nsnaonn
nnnooag

OpnnN7e126400
nNNN1OY1G1123
NNRO11*045030
Nnn12'02503%4
0nNn43'006170
NHN14'N06164
nanN1s5'NnN6171
NOODTIATNNN4LTT
NNB17'041033

0nn201025026
NoN21'006174
NON22'00AK173%
nNNNg3¢N38033
N4 '175005
onNnegs'0nn4e110)
NO02AY1INS32N
OON27Y1270N04
nonz3Inynnn?7??
NHON31'175263
NON32'177240
NON3I3IT175300
QON3L¥1630NY
nNOon45Y005037
NDOCIATN2503%%
nNNNR7tn301413
DUD4LGTOINA0N3
nNea1 T npne1t
NOOL2'011026
NOaNEIYNH1ISN?27
NONLL'NN0TR4G
NNNEs*INSN3sS
CONLAYN200114
(O0L7Y125202
BuOsHINANLNT

nOes1r102401
npnNs2tN20117

nyns3IT0GCA165
0npos4arnonyis

STXTN 1
LRDX 10
LTITL PPQOOZ
+NREL
H sk ok ok K PAPER TAPE PUMCH NRIVER X de i d ek
DC4: ; PROGRAM:
TRN+TRI+1R7+1 H SPECTFICATION
ne1n H START
0 H CHAIN
NCO=DC4 ; SIZE
LTXT JPTPCODCN>, H NAME
PC10: sun 1,1 ¢+ RREAK:
roviL 0,0 SNC ; TF =,POWFRINT,. THEN
STA 1 RESFRVFR,2! RESERVER.CUR:=0?
DC11: LDA 1 DCDFVICE,Z2, START:
SFTINTERRIPT H SFET INTERRUPT(DEVICE.,CUR);
NFXTOPERAYION ; NEXT QOPERATION(MODE ,COUNT,BUF,
SFTIRESFRVATION H +0r CONTROL,
JWP bC15 ; +11: YRR)?
STA n DCMQODF,2 2 MODE,L,CURI=MODE?
DC12: J NEXT CHAR:
{DA 1 ADDRESS,2 ADDR:= ADDPESS.CURS
GETRYTE H GETBYTE(ADDR,CHAR);
CONRYTE H CONBYTE(CHAR);
LNA 3 DCMODES2 2
Moy 2,3 SNR : IF MODELC>() THENM
JMp nca2n : BEGTN
MAyzs 0,1 ;
ADD 1,1 SZR H PARITY::=PARITY(CHAR)’
JMP =1 :
mOyCR 3,3 SHNC H IF MODE=EVFN THEN
ARDOR 3,3 ; PARTTY:==,PARITY;
MOYS 3,3 : CHAR:=CHAR ADD PARITY SHIFT 7;
ADD 3,0 H FND,
DC120 3SR DCDOAS,2 H DOAS ,CUR(CHAR) ?
I.DA 1 DCPEVICESZ?
Lna 2 .32 :
WATTINTFRPUPT H WAITINTERRUPT(PEVICEL.CUR,32):
dMp PC14 : +0: TIMER;
17 ADPDRESS,2 IMCRCADDRESS CUR) 2
Pez COIINT,? ; TF DECR(COUNT ,CUR)ICOD THEN
AMp PC1? H GOTO NFXT CHAR?
JSR nCHTA,? H DIA,CUR(WORD)?
L ha 0 SEM ;
MOYR 1,1 S87¢C ; IF WORD(15)=1 THEN
JMP DC14 H GOTO RFTIRN ANSWER(EM);
pDC13: ; DONE:
SUR n,0 SkpP H STATUS:= O, OR —
DC14s ; TIMER:
LDha N STIMFR H STATHS := TIMER?
DC141*RFTURMNANSWER : RETURN ANSWER(STATUS);
JMP DC11 H GOTO START?

NON3 ppang

N1
7
N3
&
0,5
tik
ny
(V%
Ha
10
11
1?
13
16
15
164
17
4 R

NENSK INGATT72
NOINGAYTINNS
s eNnNnz7e
ANPENTNS4111
ONORTYOSKN27

PHRR21102400
NOHNAEIYNOOSHRY?
NONAGYD 285034
NLOEKYN3EINT1 3
NN/KAATNINANNG
NUCKR7INONTAZR
nNONzZNENI85027
S ARK I AL
nenz2t00nNysy

nr15:

DC1A:

195

SFTCONVERSTON

vOy 0,0 SnR

AMp ne13

Lna 3 L.12R

STA 3 conny,?
SR n,n

JSp NCPOAS,?2
Y 1 NCOEVICE,?
{ha 2 .32
WATTINTERRUPTY

JMP nC14

ANy COUNY,?
JMe NC16A

JMpe net3

W8 M@ %e Ne N3 We Ns W %8 e Ve Ne e e s Ve Ne

COMTROL =
SET PESFRVATTION(MODE);
SFY CONVFRSION(MODE);
TF MODF=(THEN
GOTO DONE?

COUNT.CNR =128
REPEAT

POAS . CHK(N) S
WAYTTINTERRUPT(DEVICELCUR,32):
+0: TIMER;

HMYTL COUNT=0,

GOTO DONFS

2 e e D s A

PO

1y
i
N2
TR
(AR
us "
(1F tee
ne

(R
1y e
i o0
119 e
12 0
13 1y
14
18 i
16 b
17
18
16 o
;r e
21 i
27 1
2R

24)
25 N
PR
27
PERNEY
29
30

31 iy
37
34
4

38 (i
A (0
37
IRy
3G i
fils

41

L7

A

Lt
{ifynn

Jiooa

B N T T T e

>~ N

Doy
DEGIR R
Lo nnng 0
LEREATREATANY] t
vanepng €
SRS TR AN | NCZ2=-NnNCHL
20050124 JTxT JPTeCL><n>,
A8 1NOND
(RICIARSERNY
ranngng! RCOH+EVEMNT
LERERNAR NA R NCU+EVEMT
AYDLOGO0 t;
QPG ! rea
A rannGto i
YN 0nngG {
e annng 10
1v000007°" rC10
INNLNAT Y Hnen
LENONO 1
LAYNan7 st oet
Stornnnn »
PN EARREANE IV 010G x2
ARSI PR S LN 0
[N ATARR VRIS .
LESIRTATRE N 1)
LESRSEARSNARN |
[NaVREa YN aNN {
AT S I (
SPY1NTAA (L FAR
N R4 RCMODET =N CD
PO N
DL RCDFVYT (RS =N
AL RSTRYRTRE WA Ty
e Mg petas =n0G
YN L LT 0 nTa 1 pPIP
VG400 Ap 10,3
NI I AN AN ol Rl AN N SR
2V k1114 ~Oas (. PR
1400 g +0,,3
P
; 'TEE R A Froo OF

JEMR NN

DCF LTRSS Jr FLROR

196

; PROCESS DFRRTPTOR:
M MEXT
; PREVY
; CHATH
; ST7F
. HAME
; FIRST tVEMT
; LASTY FVFLTY
H RUFFFR
; PROGRAN
; STATEH
: TIMER COUNT
H PRINKRTTY
s RRFAK ADLPESS
H AC(
ACH
af?
ACS
PSW
SAVF
QPTTONAL ¢
BUF
ANNDRFSS
cCOouUnNT

PESFRVER = D

CONVERSTOM TARLE =
(LEAR TMTFRPHPY

MODF

BFYTCF = P1F
PTA(PTPR,L,ACT)
RFETHIRY

DOAAS(PIP,ACH)
PFETHRMN,
TOP

Na %a WE % %e % N3 Na Be Mr N3 %4 Ny Na %a Ws %e s Ve We a2 Ve W

PAPFR TAPF PUMCH DRTVFER

OF PROCFSS DFSCRIPTOR:

%k ok ok ok ok

1s:Qv2 PPLVO
v

A2

A4
7S
e
1
na
ol
BV
']
"0
3
14
5
L)
*7
*8

fQ

24

52

>3
24
5
26
37
>8
29

197

voyoutl JTXIM 1
vovo12 kDX 10

oTINL
«NRLL

PPtyo0

; kxxxx PAPER TAPE PUNCH

DC4:
wlul0u®1890ut
vOu01'uoyoo07?
v0u02'u0u000
vwO0uv03'0000c4
vdv04'9Sytcd TXI

vS5u0ol
v0uouo

w0u07°'u24071 DC1yg:
vovtvftutlyago
Youti'vde0lo
vwlule* 155005
voul3'000771
vOu 14t pT5001
vouts'utg040
vwluln'ys5501L6
voutl7'901iay0

vov29'v09021' ,PTP:

vOv2i'usSyt124
vSu0090
v0900o0

18o+181+¢1

0C1y

0

DCo=~-DCA

LDA 1 PROGRAM
LDA c LPTP
SEARCHITEM

MOV Z2¢3 SNR

JMP DC1o
LDA 3 PSTART,¢
LDA ¢ CUR

STA 3 BREAD,?2
JmMp 0,3

o t1

«IXT PTP<Q><0>,

DRIVER Axaxix

-
4
i
.
4
.
14
.
[4
’

WMs W WE WMe W2 WMe WMe WMo Wy

?

PROGRAM?

SPECIFICATION
START

CHAIN

SIZE

NAME

START:

SEARCHITLM(,PTIP,PROGRAM, RESULT)?
IF RESULT=0 THEN

GOTO START;

STARFTADD:=START ,RLSULT;

BREAKADDRLCURS=STARTADD;
GO10 STARTADD3

NAME OF MOTHER;

1¢30% PPLyO

" GO0y031 PTPg=¢S H

n DCO: 3 PROCESS DESCRIPTOR:
B33 wIv24'000000 0 ; NEXT

=4 900025909000) H PREV

25 wiu?0'0u00000 0 ; CHAIN

N6 wOu27'000041 DCe-DCO H S12t

m7 00w uSVI2E LTXT PTPL<y>, ; NAME

ne uSv0otl

n9 v0u0uo

0 vOu¥3'g09033 DCO+EVENT ; FIRST EVENT
€ vO0urq'y0v03T! DCO+LVENT H LAST EVENT

¥2 v0ul5'u0u0yo 0 ; BUFFER

€3 v0ulo'vd9I0V0" DLy ; PROGRAM

3 wOul7'v00000 0 H STATE

5 v0Jau*'u00000 0 H TIMER COUNT
6 v0ual*109000 189 H PRIORITY

07 G0uB2'U0V00T! DCty ; BREAK ADDRESS
8 ¢0ua3'uoy02y: DCo ; ACO

49 y0vaq*'¢000y0 0 ; ACt

29 w0V853'4090c4U! DCo H AC2

24 v0vlas'voyouo 0 ; AC3

22 w0va7'yogote" DCtgx2 H P3SW

23 wO0uSU'u09000 0 ’ SAVE

24 3 OPTIONAL:

25 vOuS1i'90V090 0 H BUF

26 v0uSc'000000 0 ; APDRESS

27 vOuS3'¢00090 0 ; COUNT

28 wivS4'yv0O0V0 0 ; RESERVER = ¢
29 O0uS5>'v0u00u0 0 H CONVERSION TABLL = 0
Yy vOuSo'loviob CLEAR 7 CLEAR INTERRUPT
.71 V00033 DCMODE=,=DCy ; MOPE

32 wouST'uv09000 0 ;

X3 v00034 DCDEVICE=,~DCyg H

X4 wO0uvb0*'00V031 PTPe ; BEVICE = PTP
15 v090035 DCDIA=_=DCO H

26 vOubltub4ait DIA 1 PTP2 3 BIA(PTP,ACYH)
37 viuhe'v01490 JMP tde3 3 RETURN

18 v0v037 DCDOAS=,=DCy ;

19 vlubs'ubilll DOAS 0 PTP2 POAS(PTP,ACO)
8y v0ukqte0Lay0 JMP +0,3 RETURN?S

a DCe2: 3} TOP OF PROCLS$S DLSCRIPTOR:
ag

83 ; A AKXk Kk EEND OF PAPER TAPE PUNCH DRIVER
LT}

a5 +LND DCy

29dv SUURCE LINLS IN ERROR

198

- RETURN LETTER
Tide: MUS SYSTEM, Programming Guide, Rev.1.00RCSI. No.: 43-GL9546
A/S Regnecentralen af 1979/RC Computer A/S maintains a continual effort to im-
prove the quality and usefulness of its publications. To do this effectively we need
user feedback, your critical evaluation of this manual.
) Please comment on this manual’s completeness, accuracy, organization, usability,
and readability:
— Do you find errors in this manual? If so, specify by page.
How can this manual be improved?
Other comments?
Name: Titler : S —
Company: _ . . o o e
Address: , .
- Date: o 5
Thank you e
S P

 CREGNECENTRALEN
af 1979

Information Department

Lautrupbjerg 1

DK-2750 Ballerup

Denmark

..................

o

Affix
postage
here

I A/S REGNECENTRALEN af 1979

HEADQUARTER: LAUTRUPBJERG 1 - DK 2750 BALLERUP — DENMARK
Phone: + 452658000 - Cables: rcbalrc - Telex: 35 214 rcbaldk

N e

5

