. w—

RCSL No: 43-GL 9698
Edition: December 1979

Author: Stig Mpllgaard
Erik Jeppesen

Title:

Assemoler Coded Subroutines (CALI~routines)
in RC BASIC (RC3600/RC7000)

Programmer's Guide

¢ REGNECENTRALEN

: af 1979

Keywords:

RC3600, RC7000, RC BASIC, DQMAC, DOMUS, COPS, Assembler Routines.

Abstract:

This guide describes how to program assembler routines that can be
called fram RC BASIC programs.

Replaces RCSL: 43-GL 6678
(56 printed pages)

Copyright © 1979, A/S Regnecentralen af 1979
RC Computer A/S

Printed by A/S Regnecentralen af 1979, Copenhagen

Users of this manual are cautioned that the specifications
contained herein are subject to change by RC at any time
without prior notice. RC is not responsible for typographi-
cal or arithmetic errors which may appear in this manual
and shall not be responsible for any damages caused by re-
liance on any of the materials presented.

42-1 1286

PAGE

ImowCTION 06 0060000006060 0850000808000 000000000000c0ces00000

CODING OF ASSEMBLY IANGUAGE SUBROUTINES ceccecscsccacnses
2.1 The subroutine Table ..veescececcssscccosccscccsssscs
2,2 Parameter Handling .sessescssccccccccccssscccccnsscs

2.2.1 Parameter TYPES seceeececcscscssesssoscosssscces
2.2.2 Organization of Actual Parameters .c..coeeess
2.3 Calling a soubroutine from RC BASIC .ceccsecccccenss
2.4 Return from a SUbroutine ...ceeeeeeecceccscscccsvssess
2.4.1 Normal RELULTl ecececeecessscesssssenssssonnsos
2.4.2 Return in case Of an EXroreseeeceessceses
2.4.3 Return in case of an Input/Output Error
2.5 System Functions used in Subroutines .eeeeeececcesss
2.5.1 Arithmetic FUNCtions .cevececcccccnsccocccsss
2.5.2 Fetch- and Store—functions .eeeecececccescsses
2.5.3 Input/Output FUNCLIONS teeeessevrsscsonscsnne
2.6 Variables that can be used s.eeceecccercavercscecess
2.7 Calling Local ProcedUreS cesecececesssosscsccscssscssns

s[JRRa]NDIN% m ,IHE S[JBmINE ® @ 0 005 & 008 OSSO ON OSSO DS TISIESE
THE ASSEMBLY AND LOADING OF THE SUBROUTINE cecceesessoces
APPENDIX A - REFERENCES ® S 0 00000 005005000 OSSO OOES O OE eSO ECSDS

APPENDIX B = EXMPLES © 9 0000009200 PONOEPO000SORINISIBIAEBSTLS

(G2 N) B VS SR O)

10
12
12
12
13
14
14
20
24
28
29

32

33

35

37

INTRODUCTION

The RC BASIC System provides facilities which makes it possible
for the user to program assembler—-coded subroutines which can be
called from a BASIC program.

An assembler-coded subroutine may be useful if, for instance, in-
put/output to or from special devices (such as graphic displays
or analog/digital equipment) has to be carried out fast, or if
the user want to perform some kind of operation, which is not
possible to perform directly from a BASIC-program.

The RC BASIC system is a multi-user system, where each user may
be considered as a ocoroutine which is executing reentrant ocode.
This means that each user must use its own data-areas, i.e. the
code itself cannot contain data. To every coroutine corresponds a
coroutine description (also called a user description). This user
description contains information about the current state of the
coroutine and it also contains a data area, which can be used in
the assembler-couded subroutines (see section 2.6). The start of
the description of the coroutine, which is running can at any ti-
me be found in a page-zero location, USER. This means that a lo—
cation in the user description can be accessed like this:

Ida 3, user ; get start of description

Ida 2, offset,3 ; get the word corresponding
to the value of 'offset'

~e

It should be noticed, that the RC3600/RC7000 systems does not in-
clude any kind of memory-protection. This means that the program—
mer, who ocodes his own subroutines should be very careful. It al-
so means, that Regnecentralen cannot take any kind of responsibi-
lity for system break-downs when user-coded subroutines are in-
cluded in the system.

The user-coded subroutines must be coded as a separate process
(see ref. [1]) with the process name UCALL (see section 3). If

Regnecentralen delivers subroutines, these will be coded as a
process having the name RCAILL.

This manual applies to both normal and extended precision sys-—
tems. If there are differencies between the two systems, these
are explicitly stated.

Changes compared to the first edition of this manual (RCSL:
43-GL6678) are marked with a vertical bar in the margin.

CODING OF ASSEMBLY LANGUAGE SUBROUTINES 2.

2.
A module containing one or more assembly language subroutines
must look like this:
Program Head
Subroutine Table
Subroutine(s)
Process Descriptor
The program head and the process descriptor can be generated by
means of two macroes defined in DOMAC, as described in chapter 3.
2.1

The Subroutine Table 2.1

The subroutine table contains the names of the subroutines and

the address of the first word of each subroutine.

The table is organized as follows:

address 1 address 1, address 2 ... address n are
name 1 addresses referring to the first word of
address 2 the first, second ... n'th subroutine
name 2 respetively.

. name 1, name 2 ... name n are the names

. of the subroutines.

address n Each name must fill exactly 4 words
name n (8 bytes/characters).
0 The names must be packed from left to

right and padded with nulls (i.e.
null-bytes).

The subroutine table must be terminated

by a word containing a zero.

Example:
push ; addr of PUSH-routine
txt PUSH<0><0><0><0>.
; hame : PUSH

pPop ; addr of POP-routine
txt JPOP<0><0><0><0><0>.
; hame : POP

0 ; terminate table with zero;

If the starting address of a subroutine is equal to -1, this
means that the subroutine itself is not included.

The name of the subroutine must, however, be placed in the sub—
routine table. This means that it is possible to program the sub-
routines in different modules, which then can be linked together
into one relocatable binary module by means of the linkage edi-
tor, LINK. In the command to LINK, the first inputmodule must
contain the program head and the subroutine table, and the last
module must ocontain the process-descriptor. In the module conta-
ning the subroutine table, the starting address of the subrouti-
nes must be defined as an 'external normal' symbol (.EXIN.) In
the modules containing the subroutines, the starting address must

be defined as an entry point (.ENT).

2.2

Parameter Handling

2.2.1

A subroutine may have any number of formal parameters. For each

subroutine the programmer must specify the number of parameters

and for each parameter a type must be specified. These specifica-

tions must be placed as the very first words of each subroutine

i.e. the address (in the subroutine table) refers to the first of

these specification words.

The first word contains the number of parameters, and the next n
words (where n is the number of parameters) describes the type of

the parameters - one word for each parameter.

Example:

push : 2

array + real

real

sub 0,0

Parameter Types

~e ~e ~e

~e

1

the PUSH-routine must be called with
two parameters

type of first parameter

type of second parameter

first instruction of the subroutine

As mentioned before each parameter must be type-specified.

The following types may be specified: RFAL, REAL + REFERENCE,
REAL + ARRAY, STRING, STRING + REFERENCE, STRING + ARRAY.

When a subroutine is called from RC BASIC the type of the actual

parameters are compared with the type-specifications. In case of

a conflict, the BASIC-program is interrupted and an errormessage

is printed (see section 2.3).

2.2

2.2.1

The meaning of the different parameter types are:

REAL

REAIL + REFERENCE

REAL, + ARRAY

STRING

STRING + REFERENCE

STRING + ARRAY

The descriptor words are

the actual parameter may be any nu-—

meric or relational expression (see
ref. [2]).

the actual parameter must be a numeric

variable of a numeric array element.

: the actual parameter must be a numeric

array.

the actual parameter may be any string

expression (see ref. [2]).

the actual parameter must be a string

variable of a string array element.

the actual parameter must be a string

array.

build as follows:

bit no.: g ﬂ 8 9 10 13 14 15

—

) J

dSN NLNT YOI TINTHSTI

%

dsn HHNINg 904 TINAIASHY (

ONTMIS € ‘T¥d 0 *ddAL DISvH

or REFERENCE = 1B0
ARRAY = 1B9
REAL =0
STRING =3

The symbols REAL, STRING, ARRAY and REFERENCE are symbols that
are defined in the RC BASIC symbol tape, BAPAR (see ref. [3])

2.2.2 Organization of Actual Parameters 2.2.2

When a subroutine is called from a RC BASIC program, the actual
parameters (or information about these) are passed to the subrou-

tine in a core area pointed out by a word (U.STK) in the user de-
scription.

If the subroutine has n parameters the core area looks as fol-

lows:
int t by u.stk
N < pointed out by u.s
n words pointing at the actual
) .| parameters or a description of
. . these
b . i
|
—*]
. .| n descriptors of different sizes
L J >each containing an actual para-
. .| meter or a description of one.
(—)
L 1.

The descriptors have different formats according to the type of
the parameter as follows: (The program— and data-segments are de-

scribed in section 2.5.2).

The value of the actual parameter (floating point). In
normal precision versions 2 words, and in extended pre-

cision versions 3 words.

REAL + REFERENCE:
1 word ocontaining the address of the first word of the

variable (in the data-segment).

REAL + ARRAY:
3 words:
word 1 : address of the first word in the first element
of the array (in the data-segment).
word 2 : number of rows in the array.

word 3 : number of columns in the array.

STRING:
3 words:
word 1: address of first byte of the string.
word 2: number of bytes in the string.
word 2: the number of the segment where the string is
stored (0: program—segment, 1: data-segment).

STRING + REFERENCE:
3 words:

word 1: address of the first byte of the string vari-
able (in the data-segment).

word 2: maximum number of bytes that can be hold in the
string variable.

word 3: address of a word (in the data-segment) contain-
ing the actual (current) number of bytes in

the string variable.

STRING + ARRAY:
3 words:
word 1 : address of further description (in the dataseg-
ment) .
word 2 : number of elements in the string—array.
word 3 : length of each element (in words).

Word 1 points to a part of the data~-segment organized as
follows:

pointed out by word 1.

max imum number of bytes in the first string ele-

not used. ment.
actual (current) number of bytes in the first
T string element.

,

;('bytes in first string element.

_N

maximum number of bytes in the second string ele

not used. ment.

actual (current) number of bytes in the second

string element.

> number of words as contained in word 3.

reapeated a number of times corresponding to word
| 2

243

10

The core area that contains the parameter descriptions is as men-

tioned pointed out by a word in the user description, U.STK. The

user description is pointed out by a word, USER, in page-zero, so

the first word of the core area can be loaded into accumulator 1

by the following sequence of instructions:

Ida 3, user H

Ida 2, u.stk, 3 s AC1:= contents (user + u.stk)

Ida 1, 0,2

~e

or

Ida 3, user ;
Ida(®@ 1, u.stk, 3

~e

Calling a Subroutine from RC BASIC

2.3

A subroutine may be called from a BASIC program in a statement

with the following format:

<var>
<svar> <svar>

CALL) ! <var>
<slit>. <slit>

<expr>

—

S

e

Where the meaning of <svar>, <slit>, <var>, <war>, and <expr>

can be found in ref. [2].

Example:

CALL "PUSH", STACK, ELEM
or

NAMES = "PUSH"

CALL NAMES, STACK, ELEM

11

When the CALI~statement is executed the following happens:

Ae

If a module containing user-coded subroutines is pre-
sent in oore, then the subroutine table in this module
is searched for the name of the subroutine. If the

name is found operation continues at point c.

Bs a. except that the searching is carried out in the
module containing subroutines coded by RC. If the sub—
routine is not found then the BASIC program is inter-
rupted with error no. 0046: PROCEDURE DOES NOT EXIST.

Now the number and the type of the actual parameters
are checked against the parameter specifications in
the subroutine (see section 2.2). If a conflict is
found then the BASIC program is interrupted with error
no. 0047: PARAMETER ERROR.

The actual parameters are organized as described in
section 2.2.2 and then a jump is made to the word
following immediately after the description of the

formal parameters (see example in section 2.2).

When the subroutine is entered, the contents of the

accumulators are as follows:

ACO : undefined

AC1 : undefined

AC1 : USER. U.STK (points at the description
of the actual parameters).

AC3 : USER (points at the user description).

12

Return from a subroutine can be carried out in three different

ways depending on whether an error is detected or not.

Normal return is made by means of the instruction RETM (which is
defined in the RC BASIC symbol tape, BAPAR (see ref. [3]).

The BASIC program will continue in the statement following the

2.4 Return from a Subroutine

2.4.1 Normal Return
CALL~statement.

2.4.2 Return in case of an Error

If some kind of error (not input/output errors) is detected in
the subroutine the user might want to return the information a—
bout this error to the BASIC-program. This can be done by means
of the two words

ERROR

<errno>

where <errno> is the number of the error (between 0 and 99) cor-
responding to the RC BASIC error messages.

The function of the ERROR—function is:

a. <errno> is stored in a word in the user—des-

cription.

b. a return is executed by means of the RETO-in-
struction (see sec. 2.7.).

When the return is executed, the BASIC-program will be interrup-—
ted (unless an ON ERR-statement has been executed) and the error-

message will be output.

2.4

2.4.1

2.4.2

2.4.3

13

If one does not want to return to BASIC in case of an error but
still wants to register the error (which can later be fetched by
means of the BASIC-function SYS (7)), this can be done as shown

in the following example:

mov 0,0 szr ; if aco = o then
Jmp lab1 ;
execute ; execute error
erfun ; lsee sec. 2.7!
lab1: . ; !return from error!
ret1 ; !normal return to BASIC !
erfun: ; error:
error ; error (31); SUBSCRIBT;
31. s lreturn to lab1 !

The texts corresponding to error number 90 and 91 are

0090 : USER CALL ERROR 1
0091 : USER CALL ERROR 2

These can be used if none of the standard BASIC error messages

fits the error situation.

Return in case of an Input/Output Error

If an error occurs during an input/output operation this will im—
ply that the input/output function used (see sec. 2.5.3) will re-
turn at (link + 0).

In this case the programmer must call the system function IOERR,
which will set up the error code in the user description, set the
word in the user description corresponding to the user file num—
ber (see sec. 2.5.3) to zero, close the zone in question and re-
turn by means of the RETO-instruction.

2.4.3

2.5

14

The IOERR-function is called by means of a macro, BCALL. As this
macro contains two assembler-instructions, the call can not be
placed immediately after the call of the input/output function.
The following example shows how IOERR may be used:

Ida 0 — : ACO = zoneaddr
Ida 1 — : AC1 = character
Ida 2 cur ; AC2 = cur
f.ochar : f.outchar (zone, char),
jmp err05 ; if error then goto err05
err05: bcall ioerr ; execute ioerror,

return to BASIC

-e

System Functions used in a Subroutine

2’5.1

Arithmetic Functions

If one wishes to perform arithmetic operations on numeric values,
this can be done by means of routines included in the RC BASIC
system. These routines may be called by means of a macro:

BCALL <name>

where <name> is the name of the routine to be used. The macro
BCALL will be assembled as two words

Ida 3, u.s21,3
jsr @ n,3

where the value of n depends on <name>.

2.5

2.5.1

2.5.1 .1

15

U.s21 is a word in the user decription pointing at a table, which -

contains entrypoints to the routines. The macro BCALL is defined
in the RC BASIC symbol tape, BAPAR, (see ref. [3]).

Two sets of functions exist, corresponding to normal and extended
precision. The following two sections shows the appropriate con-
ventions that should be followed.

Normal Precision

In normal precision the numbers are 32-bit floating point numbers

stored in two consecutive words as follows:

S | Exponent FN{0:15]

I T e—

Fraction

FN[16:31]

where S is the sign: 0: positive, 1: negative, the exponent is in
excess- 64, and the fraction is a 6-—digit normalized hexadecimal

fraction.

The functions that can be used are:

FIX: Convert a floating point number to a double-word integer.

call return
ACO 1. word of floating point number result [0:15]
AC1 2. word of floating point number result {16:31]
AC2 irrelevant destroyed

AC3 user user

call: BCALL FIX

After return, AC0[0] is the sign of the result: 0: positive, 1:

negative.

2.5.1.1

16

FIOAT: Convert a double-word integer to floating point.

call return
ACO integer [0:15] result [0:15]
AC1 integer [16:31] result [16:31]
AC2 irrelevant destroyed
AC3 user user

call: BCALL FLOAT

When called, ACO([0] is the sign of the integer.

In order to carry out floating-point arithmetic, the user may
call four functions to add, subtract, multiply and divide, re-
spectively.

The functions all operate on 2 32-bit floating-point numbers, FN1
and FN2. When the functions are called, (ACO, AC1) should contain

(FN2 [0:15], FN2 [16:31]) and AC2 must contain an address poin-
ting at FN1. The exact conventions, which should be followed, are
as follows:

call return
ACO FN2[0:15] result[o:15]
AC1 FN2[16:31] result[16:31]
AC2 addr of FN1 destroyed
AC3 user user

This applies to all of the following four functions:

Floating add: RESULT : = FN2 + FN1
call: BCALL FADD

Floating subtract: RESULT: = FN2 - FN1
call: BCALL FSUB

Floating multiply: RESULT: = FN2 * FN1
call: BCALL FMPY

Floating divide: RESULT: = FN2/FN1
call: BCALL FDIV

2.5.1 .2

17

If FN2 is zero then the return from FDIV is made by means of the
RETO-instruction (error no. 16: ARITHMETIC ERROR). See section
2.7.

Extended Precision

In extended precision the numbers are 48-bit floating point num-

bers stored in three consecutive words as follows:

s FN[0:15]
_ Fraction _
FN[16:31]
FN([32:47]
Exponent

with a 36-bit two's complement normalized fraction and a 12-bit
two's complement exponent.

In the floating point functions a variable in the user descrip-
tion, UWXP is used as working location to hold the third word of

one of the operands and the result.
The functions that can be used are:
FIX: convert a floating point number to a double word integer.

call return
ACO 1. word of floating point number result [0:15]
AC1 2. word of floating point number result [16:31]
AC2 irrelevant destroyed
AC3 user user
UWXP 3. word of floating point number unchanged

call: BCALL FIX

After return, ACO[0] is the sign of the result:

0: positive, 1: negative.

2.5.1.2

18

FLOAT: convert a double-word integer to floating point.

call return
ACO integer [0:15] result [0:15]
AC1 integer [16:31] result [16:31]
AC2 irrelevant result [32:47]
AC3 user user
U.WXP irrelevant result [32:47]

call: BCALL FLOAT

When called, AC0[0] is the sign of the integer.

In order to carry out floating-point arithmetic, the user may
call four functions to add, subtract, multiply and divide, re—
spectively.

The functions all operate on 2 48-bit floating point numbers, FN1
and FN2. When the functions are called, (ACO, AC1, U.WXP) should
contain (FN2 [0:15], FN2 [16:31], FN2([32:47]) and AC2 must con-
tain an address pointing at FN1. The exact conventions, which
should be followed, are as follows:

call return
ACO FN2 [0:15] RESULT [0:15]
AC1 FN2 [16:31] RESULT [16:31]
AC2 addr of FN1 RESULT [32:47]
AC3 user user
U.WXP FN2 [32:47] RESULT [32:47]

This applies to all of the following four functions:

Floating add: RESULT: = FN2 + FN1
call: BCALL FADD

Floating subtract: RESULT: = FN2 - FN1
call: BCALL FSUB

2'5.1 .3

19

Floating multiply: RESULT: = FN2 * FN1

call: BCALL FMPY
Floating divide: RESULT: = FN2/FN1
call: BCALIL FDIV

If FN2 is zero then the return from FDIV is made by means of the
RETO - instruction (error no. 16 ARITHMETIC ERROR). See section
2.7. This is also the case if floating-point overflow occurs in

the arithmetic functions.

Integer Functions

The three functions IMPY, IMPYA and IDIV operates on 2 or 3 16-
bit integers (I1, I2 and I3). They should be used as follows:

Integer multiply: PROD = I1 x I2

call return
ACO irrelevant PROD [0:15]
AC1 11 PROD [16:31]
AC2 I2 unchanged
AC3 user user

call: BCALL IMPY

Integer multiply and add: RES = I1 x I2 + I3

call return
ACO 13 RES [0:15]
AC1 11 RES [16:31]
AC2 12 unchanged
AC3 user user

call: BCALL IMPYA

2.5.1.3

2.5.2

20

Integer divide: (QUOTIENT, REMAINDER) : I1 DIV I2

call return
ACO irrelevant REMAINDER
AC1 I1 QOUTIENT
AC2 I2 unchanged
AC3 user user

call: BCALL IDIV

Fetch- and Store-Functions 2.5.2

The running BASIC-program is stored in a so called virtual sto-
rage, which means that at any time only a small part of the BA-
SIC-program will be present in the computers internal core while
the rest will be placed on the disc.

Therefore, data belonging to the BASIC-program (such as actual
parameters to subroutines) cannot be accessed by means of the LDA
and STA instructions. If the user wants to access these data this
can only be done by means of the system—functions

A.PBYTE, A.PWORD, A.PDOUBLE, A.PTRIPLE
A.GBYTE, A.GWORD, A.GDOUBLE, A.GTRIPLE

The virtual storage is divided into two segments: the program
segment (no. 0) and the data segment (no. 1).

Usually the user will only have to access the datasegment, but
when a string literal is an actual parameter, this will be placed
in the program segment.

21

The functions should be used according to the following

description.

a.gbyte: fetch one byte from (segment no, byteaddr)

call return
ACO segment no byte
AC1 byte addr unchanged
AC2 cur cur
AC3 irrelevant user

call: a.gbyte

a.gword: fetch one word from (segment no., wordaddr)

call return
ACO segment no word
AC1 wordaddr unchanged
AC2 cur cur
AC3 irrelevant user

call: a.gword

a.gdouble: fetch two words from (segment no., wordaddr) and
(segment no., wordaddr + 1)

call return
ACO segment no word 1
AC1 wordaddr word 2
AC2 cur cur
AC3 irrelevant user

call: a.gdouble

22

a.gtrible: fetch three words from (segment no., wordaddr),

ACO
AC1
AC2
AC3

(segment no. wordaddr + 1) and (segment no., wordaddr
+ 2)

call return
segment no. word 1
wordaddr word 2
cur word 3
irrelevant user

call: a.gtrible

a.pbyte: store one byte at (segment no., byte addr)

call return (at link + 1)
ACO byte unchanged
AC1 byteaddr unchanged
AC2 cur cur
AC3 irrelevant user
Link + 0 segment no destroyed

call: a.pbyte
segment no.

a.pword: store one word at (segment no., wordaddr)

call return (at link + 1)
ACO word unchanged
AC1 wordaddr unchanged
AC2 cur cur
AC3 irrelevant user
Link + 0 segment no destroyed

call: a.pword
segment no.

23

a. pdouble: store two words at (segment no., wordaddr) and

ACO
AC1
AC2
AC3

(segment no., wordaddr + 1)

call
word 1
word 2

cur

irrelevant

Link + 0 segment no

Link + 1

wordaddr

call: a.pdouble
segment no
wordaddr.

return (at link + 2)
unchanged

unchanged

cur

user

destroyed

destroyed

a.ptriple: store three words at (segment no., wordaddr),

(segment no., woordaddr + 1) and (segment no., wordaddr + 2)

ACO
AC1
AC2
AC3
Link + 0
Link + 1
Link + 2

call

word 1
word 2

cur

user
segment no.
wordaddr

word 3

call: a.ptriple
segment no.
wordaddr
word 3

return (at link + 3)

unchanged
unchanged
cur

user
destroyed
destroyed
destroyed

2.5.3

24

It should be noticed that

1) An attempt to store information outside the part of the
storage belonging to the current user may cause a system

break down.

2) A call of any of the fetch- and store-functions may pro-
voke, that another user will be activated. Therefore, all

subroutines that call these functions must be reentrant.
In systems without a dics the same accessmethod must be used as

the BASIC-programs are organized in the same way as in virtual-

storage systems.

Input/Output Functions 2.5.3

All input/output operations must take place via a zone (see ref.
{1]1). Before input or output can be carried out from or to a
file, this file must be opened (i.e. a zone must be connected to
the file). The opening of a file can only be done in a BASIC-pro-
gram (by means of the OPEN FILE-statement). When an OPEN state-
ment is executed, the address of the zone used will be stored in
one of eight words in the user description. When an input/output
function is used, this zoneaddr must be fetched before the func-
tion is called. The eight words in the user description corre-
sponds to the eight user file-numbers that can be used in the BA-
SIC program. The number(s) of the file(s) to be used in the sub-
routine must be given as parameters to the subroutine. The words
corresponding to the 8 user filenumbers can be found in the user-
description from U.UCH and on, as shown in the following example:

25

.
.

Ida 3 user : AC1 = filenumber
add 1,3 : (0< =acl <= 7)
Ida 0 u.uch,3 ;s ACO:= USER. (U.UCH+FILENO)

The userdescription contains 3 addresses of "standardzones":
P10, CIN and COUT:

PIO (primary input/output) is the zone corresponding to the

terminal

CIN (current input) is usally equal to pio, but may be changed.
In BATCH-mode for instance, cin will be the zone corespon-

ding to the card reader.

COUT (current output) is usally equal to pio, but may be chan-
ged. The RUNL-command for instance will set cout to the

zone corresponding to the lineprinter.

The input/output functions all have two returning points. If an
error occurs during the input/output operation, return is made to
(link + 0).

In this case AC2 [8:15] contains an error code corresponding to
the RC BASIC error-messages with values larger than 100. AC2 [1]
is equal to one. In case of an input/output error the system
function IOERR should be called as described in section 2.4.3.

26

The input/output functions should be used according to the fol-

lowing description.

f.ochar: output one character

ACO
AC1
AC2
AC3

call

zoneaddr

character

cur

irrelevant

call: f.ochar

f.otext: output a text

ACO
AC1
AC2
AC3

call

zoneaddr
byteaddr

cur

irrelevant

return (error)
link + 0

zoneaddr
character
errorcode

user

return (error)
link + 0

zoneaddr
byteaddr
errorcode

user

return (ok)
link + 1

zoneaddr
character
cur

user

return (ok)
link + 1

zoneaddr
byteaddr
cur

user

where 'byteaddr' points at the first byte (character) in the text

to be output.

call: f.otext

The text must be terminated by a null-byte.

27

f.oblock: empty an output-buffer

ACO
AC1
AC2
AC3

f.ichar: input one character

ACO
AC1
AC2
AC3

call

zoneaddr
irrelevant
cur

irrelevant

call: f.oblock

call

zoneaddr
irrelevant
cur

irrelevant

call: f.ichar

return (error)
link + 0

zoneaddr
destroyed
errorcode

user

return (error)
link + O

zoneaddr
destroyed
errorcode

user

f.cheof: see if end of file has been reached

ACO
AC1
AC2
AC3

call

zoneaddr
irrelevant
cur

irrelevant

call: f.cheof

return (true)
link + 0

zoneaddr
unchanged
cur

user

return to link + 0 if end of file
return to link + 1 if not end of file

return(ok)
link + 1

zoneaddr
destroyed
cur

user

return (ok)
link + 1

zoneaddr
character
cur

user

return (false)
link + 1

zoneaddr
unchanged
cur

user

2.6

28

f.setpos: set position to a certain record number

call return (error) return (ok)
ACO zoneaddr zoneaddr zoneaddr
acC1 record no record no record no
AC2 cur errorcode cur
AC3 irrelevant user user

call: f.setpos

It should be noticed, that

a) If the user file has not been opened, the corresponding
word in the userdescription will be equal to zero. If an
input/output function is called with zoneaddr. equal to
zero, this will cause a system-break-down.

b) Incorrect use of the input/output functions may cause
system-break-down, and in certain cases data can be de-
stroyed (on a secondary storage).

c) A call of any of the input/output functions may cause

that another user will be activated. Therefore, all sub—
routines that call these functions must be reentrant.

Variables that can be used

As mentioned in section 1, the subroutines should as a main rule
be reentrant. This is especially important if a change of user

can occur when the subroutine is executed. (A change of user may
occur if any kind of input/output is .performed or if the "fetch~
and store functions" (section 2.5.2) are used). In order to pro-

vide the possiblility of coding reentrant subroutines, there must

be a data-area for each user that might enter the subroutine.

This data-area is a part of the user-description and therefore it

must always be accessed relatively to the current value of USER.

2.6

29

21 consequtive words may be used:
USER.U.S00 - USER.U.S20, for instance
Lda 3, user

Ida 0, U.S01,3
sta 2, U.S18,3

2.7 Calling Local Procedures 2.7

As mentioned before, the subroutines must be reentrant. This
means, that if a local procedure is used the return—address can

not be saved locally. Gonsider the following example:

; start of call routine
. 7

.
® 7

A) jsr proci ; first call of procedure
B) jsr proci ;second call of procedure
[4
’ i
ret ; return to BASIC

proci: start of procedure

~e

sta 3, proc2 save return address

~e

jmp @ - proc2 return

-e

proc2: 0

~e

30

If one user calls the procedure at B) then proc2 = B) + 1. Now if
a change of user occurs in the procedure, and the next user calls
the procedure at A) then proc2 = A) + 1. When the first user re-

turns from the procedure, he will return to A) + 1 instead of B)

+ 1.

In order to avoid this problem, another way of calling a local
procedure has been implemented in the RC BASIC system. A
procedure can be called by means of the instruction

EXECUTE
<procedure>

where <procedure> is the address of the actual procedure (i.e

proc! in the example). The return-address is automatically stored
in the actual user description by the system. Returning from the
procedure can be carried out by means of one of the instructions

RETO, RET1, RET2
return to the first word after <procedure>

RET1: return to the second word after <procedure>
RET2: return to the third word after <procedure>

]

The example might now look like this:

start of call-routine

~e

execute ;

proci 2

jmp octl ; if ret0

jmp oct2 ; if reti
W : if ret2

execute

proci

31

proci: . ; start of procedure
mov 0,0 snr ; if ACO = 0 then
ret0 s ret0 else
inc#0,0 snr ; if ACO = -1 then
ret ret1 else
ret2 . ret2

The BASIC-system calls the user—coded subroutine by means of the
EXECUTE-instruction. If return is made by means of RETO, this is
interpreted as if an error has occured (i.e. the BASIC-program
will be interrupted). Otherwise (RET1 or RET2) execution of the
BASIC-program continues after the CALL-statement.

32

SURROUNDINGS OF THE SUBROUTINE

The user-coded subroutines must be included in a MUS-process (see
ref. [1]). This means, that the module containing the subroutines
must be started with a programhead and concluded with a process-—
descriptor. The RC BASIC symbol tape, BAPAR (see ref. [3]) con-
tains two macro-definitions which, when used, will make DOMAC
assemble a program-head and a process descriptor respectively.

Besides the program—head, the macro PRDE1 also defines the fol-

lowing:

.title ucao
.nrel ; relocatable binary output from DOMAC
.rdx 10 ;s radix 10
Ltxtm 1 : packed from left to right
txtn 1 ; no null-bytes if even number
: of bytes

Furthermore the PRDE1 macro oontains two instructions which will
make the process stop when it is loaded.

The first word after the macro PRDE1 must be the first word of
the subroutine-table (see section 2.1).

The macro PRDE2 defines a process-—descriptor which must be placed

after the subroutines

ex.: PRDE1 ; program head
. ; subroutine table
and subroutines

-e

PRDE2 - process—descriptor and

~e

; .end-operation.

The name of the defined process is UCALL.

Appendix B contains an example showing a subroutine-sourcetext
and a listing proceduced by DOMAC.

33

THE ASSEMBLY AND LOADING OF THE SUBROUTINES

When the programmer has prepared the module containing the source
text of the subroutines(s), this module can be assembled using
the DOMAC-macro—-assembler. Before doing this, the user must be
sure, that the semi-permanent symbols and macroes defined in
BAPAR (see ref. [3]) are 'known' by DOMAC.

The cammand

DOMAC BIN.BCALL LIST.SLPT ACALL

will assemble the sourcetext in ACALL. A listing will be produ-
ced on the lineprinter and the relocatable binary output will be
stored in the file BCALL.

For further information about DOMAC, please see ref. [4].

When the subroutines have been assembled, they can be loaded (in
a moving-head-disc system) by means of the cammand LOAD BCALL.
The subroutines must always be loaded before the RC BASIC-inter-
preter (COPS). In a processor—-expansion system the subroutines
must be loaded in the same cpu as QOPS.

The process—name of the module containing user coded subroutines
is UCALL, i.e. the routines can be removed by means of the KILL
UCALL-command. If a system contains subroutines coded by Regne—
centralen, then the processname of these is RCALL.

If the subroutines should be included in a floppy-disc-system,
they must be linked together with the other modules contained in
such a system. In the link—cammand, the module must be placed
before COPS.

34 |

This page is intentionally
left blank.

35

APPENDIX A — REFERENCES

(1]

(2]

(3]

MUS SYSTEM Programming guide Rev. 1.00.

Keywords:

Abstract:

RC BASIC,

Keywords:

Abstract:

Multiprogramming, monitor, device handling,
input/output, catalog system.

This manual is intended to function as a pro—
gramming gquide to the multiprogramming utili-
ty System for the RC3600 line of computers.

Operating Guide.
RC BASIC, DOMUS, Logical Disc.
This manual describes how to use the RC BASIC

system under the DOMUS operating system. The

creation and use of logical discs is shortly
described.

BAPAR, RC BASIC Symbol Tape.

Keywords:

Abstract:

DOMAC, QOPS, RC BASIC, RC3600/RC7000.

Definition of symbols used, when the COPS/
RC BASIC system is assembled by DOMAC.

36

[4] DOMAC, DOMUS Macro Assembler
User's Guide

Keywords: RC3600, Macro Assembler, User's Guide

Abstract: This paper describes the RC3600 Macro Assem-
bler language and operation of the DOMAC Macro
Assembler.

37

APPENDIX B - EXAMPLES

The following pages show an example of a module containing the
two subroutines PUSH and POP.

The example illustrates the use of the macroes PRDE1, PRDE2 and
BCALL. Also the use of some of the fetch- and store-functions,
local procedures and the return mechanism is shown.

The module is shown in two 'versions':

1) The source text.

2) The listing produced by DOMAC, when the module is as-
sembled.

38

B,1 EXAMPLE, SOURCE TEXT.

PRDE1 § MACRO: PROGRAM HEAD

We Ne Ve We e Ne Ne Ve We Ve %0 Ns Ve e Ve Mo Ve Na We %o Ve Ne Sy Np N We Ne Ve e Ve Ve Ne Be Ve Ne Ve N Ne Na s Ve N N

39

CALLING SEQUENCES:

PUSH: <STN> CALL

POP: <STN> CALL
WHERE :

<STND> IS

<MVAR> IS

AS

<EXPR> IS

"PUSH" ,<KMYARPD,<KEXPR>

"POP",<MVAR>,<NVARD>

A

A
A

A

STATEMENT NUMBER.

NUMERIC ARRAY TO BE USED
STACK,

NUMERIC FXPRESSION TO BE

PLACED ON TOP OF THE STACK,

<NVAR> IS A NUMERTC VARIABLE OR
NUMERIC ARRAY ELEMENT TO
RECEIVE THE VALUE ON TOP
OF THE STACK,

A

THE FIRST ELFMENT OF <MVAR> MUST RE INITIALIZED

T0 0O,

IF 0010 LOWBOUND=1
0020 DIM A(N)

THEN:

0100 caALL

CORRESPONDS TO

"PUSH" A, X+Y

0100 LET A(1)=A(1)+1
0110 IF AC1)>DN THEN STOP <% ERROR 31 #*>
0120 LFT ACA(1))=X+Y

AND
0200 CALL

CORRESPONDS 7O

"Pop"'A’Z

0200 IF A(1)=0 THEN STOP <% ERROR 31 x>
N210 LET Z=AC(A(1)); A(1)=A(1)=1

Ve Ne Wa We Ve Ve Vs e Ve Ve Ne Ve Ws Vs Ve Ve Ve Ve Ve Ve Ve We Ve Ne

40

; SURROUTINE TABLE

PUSH ; STARTING ADDRESS OF 'PySK!'
«TXT "PUSHLNDD>CO><C0>" ; NAME: 8 BYTES

POP 3 STARTING ADDRESS OF 'POP!

e TXT "POPKO>KDDKODKO>KO>" ; NAME: 8 BYTES

0 ;5 TERMINATE TABLE WITH ZERO

UPON ENTRY TO PUSH THE COREAREA POINTED OUT BY
UaSTK LOOKS AS FOLLOWS:

STACK + (02 X
+ 1 Y
X2 + 22 ADDRESS OF <MVAFD>
+ 3: NUMRER OF ROWS
+ 4L: NUMBER OF COLOUMNS
Y + 52 <EXPR> (FIRST WORD)
+ At (SECOND WORD)

AND UPON ENTRY TO POP:

STACK + 0: X
+ 1 Y
X3 + 2: ADDRESS OF <MVAR>
+ 3: NUMRER OF ROWS
+ 4! NUMBER OF COLOUMNS
Y + 5: ADDRESS OF <NVARD

PUSH:

pPSHO:

POP:

poPQ1:

41

2
ARRAY+REAL
REAL
SURZL 1,1
EXECUTE
PSPOP
RETO
STA 1 PSHO1
LDA ¢] +3,2
LPA 1 +4,2
LDA 2 CUR
A.PDOUBLE
1
0
RETH1
Ve
ARRAY4REAL
REFERENCE+REAL
ADC 1.1
EXECUTE
PSPOP
RETC
INC 101
INC 1,1
suBZt 0,0
LDA 2 CUR
A.GDQUBLF
LDA 3 UaSTK,3
LDAD 3 +1,3
STA 3 POPO1
A.PDOUBLE
1
0

RETA1

JPROCEDURE PUSH

;C VAR A* ARRAY OF REAL,
X: REAL)?

BEGIN

ADJUST(1,ADDRESS)
IF ERROR THEN RETURNG;,

ACACI)) z=X

Wa %e We ME Wa Ne N2 %a Vs e N2 Ve e

END?

;PROCEDURE POP

;(VAR A: ARRAY (OF REAL:s
; VAR X3 REAL)?

JBEGIN

ARJUST(=1,ADR)

IF ERFOR THEN RETURNO:

VALUE::=AC(A(T1)+1)
ADDR :=ADDRESS(X)?

Xe=VALUE

WME Wa WE s Ve NE %s We Ne Ve W Ve s Ve N

END/

PSPOF:

PSPO1:

ER31:

42

LDA 2 +0,2
STA 1 U.S00,3
LDA 1 +0,2
SURZL 0,0
L.DA 2 CUR
AL.GDOURLE
BCALL FIX
LDA U UaSCO0,3
ADD Ur1
LOAR 2 UaSTK,3
LDA 0 +1,2
SGF 1,0
movzL 1,0 SzC
JMP ER31
LDa 2 +0,2
ADD 2.0
STa ¢ U.S00,3
STA 2 PSPO1
SUB c,0
BCALL FLOAT
LDA P CUR
A.PDOUBLE
1
0
LDAR 2 U.STK,3
LDA 1 U.S00,3
RET1
ERROR

31,

.
’
"
’

We Ne s Na Ns Ve e Ve Ve Ve Ve Ve Wy Ve Vs Ve e Ve Ne Ve Vs N2 W Ne s N

e N

PFOCEDURE ADJUST(ADD,

ANDDRESS)?

BEGIN

SO0:=ADD»
VALUE:=A(1);
VALUE:=FIX(VALUE)
VALUE:=VALUE+ADD;
IF (VALUE>=A,D1) OR
(VALUE<QO) THEN
ERROR(31) 2

! INDEX ERROR !
ADDRESS:=A.ADR+VALUEX2;

VALUE:=SFLOT(VALUE)?

A(1):=VALUE

ND 2

ERROR: SET ERRORCODE:

RETURNOD;

PRDE?

L]
»

43

MACRO:

PROCESS=DESCRIPTOR

B.2

44

EXAMPLE, DOMAC-LISTING.

n00g1 UCAD1 DOMUS

K|
02
03
04

06
07
08
09
10
11
12
132
14
15
14
17
18
19
20
21
22
23

.
’

«TITL
«NREL
000012 .ROX
000601 TXTWM
000001 JTXTN

PPOO:

00000100001
00001000007
00002'00000Q0
0Cc003'000125
000041052503

040514

046000

PP0OS:
0Qp07'006013
oue1nr'coore?

MACRO ASSEMBLFR

PRDE1
UCADI

10
1
1

180+1R15
PPOS

Q
PP10=PPO
«TXT

STOPPROC
JMP

¢+ MACRO:

-

Ne Ns N

0
<UCALL,

ESS
PPOS

RADTIX
PACKED FROM LEFT TO RIGHT
NO NULL=-BYTES TF EVEM NUMBER OF RYT

10

=
’
.
’
.
’
.
L4
.
L4
.
’

s Yo W

REV 01.05

PROGRAM HEAD

USER=CODED SUBRCUTINES 78,05,01

PROGRAM START
DESCRIPTOR
START

CHATN

SIZE

NAME

45

10002 UCAQ1
01
02
03
04
05
06
07
nR
09
10
11
12
13
14
‘5
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
YA
35
36
37
38
39
40
41
42
43
44
45

e

CALLING SEQUENCES:
PUSH: <STN>
POP: <STND>

WHERE :
<STN>

<MVAR

<EXPR

<NVAR

T0 O.

IF 0010
0020
THEN:
0100

0100

0110

0120
AND

0200

CORRESPONDS T

We Ne Ne s e Ve WE Ve Ve %o Ve Ne Nu Ve Nam s Ve Ve Ve Ve Ne Ve Ve N Ve Ve Ve Ve Ve N Ve e Ve Ve We Ne e e Ve Ve e we Ve

CALL

CALL

TS

> IS
AS

> IS

"PYUSH" ,<KMVARD> ,<EXPR>

"pOP" ,KMVARD> ,<NVAR>

A

A
A

A

STATEMENT NUMBER.,

NUMERIC ARRAY TO RE USED
STACK 4

NUMERIC EXPRESSION TO BE

PLACED ON TOP OF THE STACK.

> IS A NUMERIC VARIABLE OR
A NUMERIC ARRAY ELEMENT TO
RECEIVE THE VALLE ON TOP
OF THE STACK.

THE FIRST ELEMENT OF <MVAR> MUST BE INITTIALIZED

LOWBOUND=1

DIM A(N)

CALL

CORRESPONDS TO

"PUSH" »A,X+Y

LET A(1)=A(1)+1
IF AC1)>N THEN STOP <% ERROR 31 *>
LET ACAC1))=X+Y

CALL

0

"poP",A,Z

0200 IF A(1)=0 THEN STOP <% ERROR 31 x>
0210 LET Z=ACA(1)): A(1)=AC1)~-1

10003 UCAO?

01
02
03
N4
0s
06
07
08
09
10
11
12
13
14
15
14
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

00011'000024"
00012'050125
051510
000000
000000
00016'000043"
00017'050117
n50000
000000
000000
00023'000000

s

e e U Ve Ve Ve W Ve Ve Wa Ve Ve Ve Ve Ve Ve Ve e Ve W Ve Vs Ve we

46

5 SUBROUTINE TABLE

PUSH 5 STARTING ADDRESS OF 'PUSH!'
« TXT "PUSHLO>K0>K0><0>" ; NAME: B BYTES

POP 5 STARTING ADDRESS OF 'POP'
«TXT "POPKO>CO>CNDN>C>” ; NAME: 8 BYTES

0 5 TERMINATE TARLE WITH ZERO

UPON ENTRY TO PUSH THE COKREAREA POINTED OUT BY
U.STK LOOKS AS FOLLOWS:

STACK + 03 X

I §

2: ADDRESS OF <MVAR>

3: NUMRER OF ROWS

¢+ NUMBER OF COLOUMNS
5: <EXPR> (FIRST wORD)
6: (SECOND WORD)

X

Y

+ 4+ 4+ 4+ + &
b

AND UPON ENTRY TO POP:

STACK + O3 X
+ 1 Y
X3 + 2¢ ADDRESS OF <MVARD>
+ 3: NUUMBER OF ROWS
+ 4L: NUMBER OF COLOUMNS
Y 4+ S5: ADDRESS OF <NVARD>

10004 UCAD1

01
02
03
04
0%
06
N7
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
A
35
36
37

.
’

00024'000002 PUSH:

00025'300100
00026'000000
000271126520
00030%'002240
000311000066"
000%2'002241
00033'0446406
(0034021003
00035'025004
000361030040
00037'007105
00040'000001

00041 '000000 PSHOT:

00N42'002242

ovna3'oonnn2 POP:
000441000100
QuN&s5'100000
00046'126000
00047'002240
00050'000066"
00051'002241
00052125400
00053125400
00054102520
00055'030040
00056007102
00057'035463
n0o06en'037401
00061'054403
000e62'007105
001n63'000001

00064 'NVOON0O POPDT:

00065'002242

47

2
ARRAY+REAL
REAL
SUBZL 1.1
EXECUTE
PSPQOP
RETO
STA 1 PSHO1
LDA (0 +3,2
LDA 1 +4,2
LDA 2 CUR
A.PDOUBLE
1
0
RET1
2
ARRAY+RFAL
REFERENCE+REAL
ADC 1,1
EXECUTE
pPsSpPoP
RETO
INC 1,1
INC 1,1
suBzL 0,0
LDA 2 curR
A,GDOUBLE
LDA 3 UeSTK»3
LDAR 3 +1,3
STA 3 POPO1
A.,PDOUBLE
1
Q
RET1

sPROCEDURE PUSH

;(VAR A: ARRAY OF REAL:
Xt REAL);

BEGIN '

ADJUST(1,ADDRESS)
TF ERROR THEN RETURNO;

ACA(1)) =X

We We WE %e Ns Ve Vs Ve Ve Ve Ne Ne N

END

;PROCEDURE POP

;(VAR A: ARRAY OF REAL;
VAR X: REAL):;

BREGIN
ADJUST(=1,ADR)

IF FRROR THEN RETURND;

VALUE:=AC(A(1)+1)"

%e e Ws %o Ne %e N %e e Ne Ve S

ADDR:=ADDRESS(X);

Xs=VALUE

Ns Na %e Nw N

END»

10005 UCAOD
01

02

03 00066'031000
04

05

06 D0067'045464
07 00070'025000
08 00071'102520
09 00672'030040
10 00073'007102
11

12 00074'035511
13 00075'007400
14 00076'021464
15 00077107000
16 001001033463
17 00101'021001
18 001021122032
19 00103'121122
20 001041000417
21 00105'031000
22 N0106'143000
23 00107'041464
24 001101050407
25 00111'102400
26

27 00112'035511
2R 00113°007401
29 00114'030040
30 00115'007105
31 00116'000001
32 00117'000000
33 00120'033463
34 00121'025464
35 00122'002242
36

37 00123'006244
38 00124'000037

.
14

PSPOP:

PSPO1:

ER31:

48

LDA 2 +0,2
STA 1 Ua.S00,3
LDA 1 +0,2
suBzL G.0
LDA 2 CUr
A.GDOUBLE
BCALL FIX
LDA 3 UaS21.3
JSRa +0,3
LDA 0 UaSO0,3
ADD 0,1
LDAG 2 UeSTK 3
LDA 0 +1,2
SGE 1,0
MmovzL 1,0 S2¢C
JMP ER31
LDA 2 +0,2
ADD 2,0
STA 0 JaS00L,3
STA 2 PSPO1
SuB 0,0
BCALL FLOAT
LDA 3 UaS21,3
JSRg +1,3
LDA 2 CUR
A,PDOUBLE
1
0
LDAM 2 UeSTK -3
LDA 1 U.S00,3
RETHY
ERROQOR
3.

sPROCFDURE ADJUST(ADD,

4

We %e %2 Ns Ws Ve Vs N Na Se v Na N %e Ne %3 %a Be Ve

We N8 %o Na Sa %a W

sERROFR:

ADCRESS)

BEGIM

SON:=A0D:

VALUE:=A(1):;
VALUE:=FIX(VALUF);

VALUE:=VALIUIE+ADD?

IF (VALUE>=A.D1) OR
(VALUECO) THEN
ERROKR(31):
! INDEX ERROR !
ADDRESS:=A_ ANR+VALUE*?Z;

VAL UE:=FLOT(VALUE)?

A(1)e=VALUE

END

SET ERRORCODE?
RETURND;

10006 UCAQ

01
02
03
04
05
06
07
N8
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

0N00 SOURCE LINES

00125'000000
00126'000C0N0
00127'000000
00130'000025
00131'052503
040514
046000
00134'000134"
00135'000134"
00136'000000
00137'000000"
00140'000000
001414000000
00142'000001

-00143'000007"!

00144'000125"
00145'000000
00146'000125"
00147'000000
00150'000016"
g0151'000000

L X

FP10:

PP15¢

49

PRDE?2

0
0
0

PP15=PP10

« TXT

«+0
o=
0
PPOU
0

0

1
PPOS
PP1G
n
PP1(
G
PPUS%2
0

IN ERROR

+UCALL.

<END

We %s Ne W2 we W

We Ne Wa Ne Ne NeT Ne Ne Ne Ne Vs wE %o N

-
’

MACRO: PROCESS=DESCRIPTOR

PROCESSDESCRIPTOR:
NEXT

PREV

CHATN

SIZE

NAME

FIRST EVENT
LAST EVENT
BIFFE
PROGRAM
STATE
TIMER
PRIORITY
BREAK

ACO

AC1

AC2

AC3

PSW

SAVE

PP10

0007

ALLAS
ALLOC
ALSIZ
BCALL
CILAS
CIS1Z
comus
ER31
FADD
FOTIV
FILAS
FILER
FISIZ
FIX
FLOAT
FMPY
FSUB
DIV
IMPY
IMPYA
I0OERR
MAINC
MCALL
MCLAS
MCSTZ
POP
POPO1
PPOQ
PPDS
PP10
PP15
PRDE1
PRDE?2
PSHO1
PSPO1
PSPOP
PIJSH
TILAS
TIMIN
TIS1Z

JCAD1

007106
0n7074
000012
000000
007137
000003
007134
000123!
177775
177772
007130
007106
000022
170777
177776
177773
177774
177767
177771
177770
1777646
007137
007000
007150
000011
000043"!
000064"
goo0o00n?
000007
000125"
0ou152!
000211
000276
000041
000117
000066
000024"
007134
007130
000004

mc

mMC
mMC

5/11

5/20
5/12
5712

5/12
5712
5712
5/12
5/12
5/12
5/12
5/12

3/09
4/33
1711
1/13
1/15
6/09
1/03
6/03
4/10
5/24
4/08
3/04

50

5/26

57137
5/14
5/14

5/14
5/14
5714
5/14
5/14
5/14
5/14
5/14

4/19
L/36
1/15
1/20
6/05
6/28

4/16
5/32
L/24
4/03

5/27
57127

5/27
5/27
5727
5/27
5/27
5/27
5727
5/27

6/16
1/22
6/069

5/03

5/29
5/29

5/29
5129
5/29
5/29
5/29
5/29
5/29

6/20
6/21

6/25
6/23

6729

RETURN LETTER

Assembler Coded Subroutines (CALL-rout.)
Title: in RC BASIC (RC3600/RC7000) RCSI. No.: 43-GL 9698
Programmer's Guide
A/S Regnecentralen af 1979/RC Computer A/S maintains a continual effort to im-
prove the quality and usefulness of its publications. To do this effectively we need
user feedback, your critical evaluation of this manual.

Please comment on this manual’s completeness, accuracy, organization, usability,
and readability:

Do you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Name: Title:

Company:
Address: _ _ R

Thank you

42-i 1288

................. Do not tear - Fold hereand staple
Affix
postage
here
¢REGNECENTRALEN
af 1979

Information Department
Lautrupbjerg 1

DK-2750 Ballerup
Denmark

