
Title:

RC 3600 PAGINGS SYSTEM
SYSTEM PROGRAMMERS GUIDE

U~~REGNECENTRALEN
RC SYSTEM LIBRARY: FALKONERALLE I OK -2000 COPENhAGEN F

RCSL i~o: 43-R10142 (FG1)
Edition: October 1975

Author: Philippe Gaugin

Keywords:

Mus, Paging System, Virtual Memory, Address Mapping

Abstract:

This manual describes how to use the RC 3600 pagmg system from assembly
programs under the MUS-system. 19 pages.

Copyright A/s Regnecentralen, 1978
Printed by A/S Regnecentralen, Copenhagen

Users of this manual are cautioned that the specifications
contained herein are subject to change by RC at any time
without prior notice. RC is not responsible for typographi-
calor arithmetic errors which may appear in this manual
and shall not be responsible for any damages caused by
reliance on any of the materials presented.

CONTENTS PAGE

1 . INTRODUCTION... 1
2. PAGING SYSTEM ADDRESSING TECNIQUES 1
3. PAGI NG SYSTEM PROCEDURES................... 3

3.1 Procedure Call 3
3.2 Procedure Goto 3
3.3 Procedure Getadr . 3
3.4 Procedure Getpoint .. 4
3.5 Example... 5

4. PAGING SYSTEM IN A COROUTINE ENVIRON-
MENT 6

4.1 Procedure Comon 6
4.2 Example................................... 6

5. PAGI NG SYSTEM SETUP 7

5 .1 Programs. .. 7
5.2 Processes.. .. 8
5.3 Coroutines................................. 9
5.4 Pages 9

6. PAGING SYSTEM SETUP SUMMARY 10
7. HOW TO USE THE STATPROC " 12
8. ERRORS. 12
9. EXECUTION TIMES 13
10. EXAMPLE '" , 14
11. REFERENCES. .. 16

page 1

1. INTRODUCTION

The RC3600 paging system makes it possible to write large programs and to run them

in a small amount of core storage at the cost of execution time. The programs are,

by the programmer, broken into minor pieces, called pages, which are placed on a

disk. When running the program the system takes care of bringing the pages into

core.

As the hardware on the RC3600 computer does not support virtual memory systems,

such programs are bound to be coded according to some rules, which makes it pos-

sible to detect and check by software every reference to virtual objects that may

cause pages to be read into core and perhaps pages to be written back to disk from

core.

Under the RC3600 paging system the programs are allowed to reference local objects

by means of relative addressing, and core resident objects by means of deferred ab-

solute addressing. The programs may reference objects on other pages by calling some

procedures to obtain a first reference and by indexing to get or modify the objects

on that page.

"fhe system makes it possible to collect some statistics about the perfermance of the

system.

2. PAGING SYSTEM ADDRESSING TECHNIQUE

The paging system extends the address space of a program with almost 32K of virtual

memory. A program is divided into a core resident part and a number of pages of

equal size. The page size should be 256, 512, 1024 or 2048 words, corresponding

to the storage capacity of 1, 2, 4 or 8 disk sectors.

During load of paged programs, normal relocatable code is assigned to absolute add-

resses, while absol ute code is assigned to virtual memory addresses except for absolute

code in page zero locations. Thus the following type of assembly code is legal:

page 2

Type of assembly code Range Is loaded into

absol ute (0, 3778) page zero of core

absolute (PS, 77777 8) virtual memory

normal relocatable (0, 777778) core

byte relocatabl e (0, 1777768) core

PS == page size Note: absol ute addresses (4008' PS-1) are illegal

During run of paged programs the paging system maintains a partial map of virtual

memory addresses into computer word addresses. Any access (read/write/execute) to a

virtual memory location cannot be made before the virtual memory page has been

brought into core, defining the map of that specific page. This is done by means of

some procedures, whi ch operates on addresses and program points.

A program point is a 16 bit quantity representing some place in a program. If bit °
of a program point is zero, the point represents the address of a computer word. If

bit 0 of a program point is set, the remaining part of the point (bits 1-15) represents

G virtual address in the virtual address space of that program.

Points in interval Represenl-s

(0, 3778) page zero computer word addresses

(4008' 777778) I other computer word addresses

(1000008 + PS, 1777778) virtual memory word addresses

PS== page size Note: poi nts (l000008' 777778 + PS) represents nothi ng

page 3

3. PAGING SYSTEM PROCEDURES

call continuation link

acO unchanged + 0: point

acl unchanged + 1: possible return

ac2 unchanged

ac3 link link + 1

Executes a subroutine jump to the point given as parameter in the word following the

call. Continues execution with ac3 pointing to a possible return address.

call continuation link

acO unchanged + 0: point

acl unchanged

ac2 unchanged

Gc3 link destroyed

Executes a jump to the point given as parameter in the word following the call.

call return link

acO point unchanged + 0: return

acl unchanged

ac2 unchanged

ac3 link address

page 4

Computes the address of the point given as parameter in acO. If the point is less
than 1000008, the address returned is equal to the point.

The above 3 procedures may change the page map. However, in a non-corouti ne
environment, the calling page would not be involved in the change, i.e. the cal-
ling page is untouched, when using the procedures Call and Goto.

acO
ael

ac2
ac3

call
address

link

return
unchanged

unchanged
unchanged
point

link
+ 0: return

Computes the point corresponding to the address given as parameter in acO. If the
address points to a word inside a frame (a set of locations used to swop a page) the
point corresponding to the virtual address of that word, is returned. Otherwise the
address is returned.

This procedure does not change the page map.

Subroutine: Subrouti ne:

SUBR: STA 3 RETUR, 2
; the routi ne does not

; change the page map

SUBR: MOV 3,0
GETPOINT
STA 3 RETUR, 2

the routine does
; change the page map

JMP @ RETUR, 2

LDA ° RETUR, 2
GETADR
JMP 0,3

page 5

Calls: 1) SUBR not resident

CALL
(Q) SUBR

2) SUBR resident

CALL

SUBR

3) SUBR resident

JSR @) XX

XX: SUBR

page 6

4. PAGING SYSTEM IN A COROUTINE ENVIRONMENT.

If the paging system is used together with the coroutine monitor, the procedures call,
goto, getadr may cause other coroutines to become active, if the referenced page is
not in core. The condition that the calling page would not be involved in the change

of the page map, fails when using coroutines, but the following weaker condition
holds for coroutines: the calling page will be present in core when the referenced
page has been brought into core, although its position in core may have changed.
If so, the register ac3 is changed according to the new position of the page. Returns
from subroutines can be made exactly as shown in the former examples.

In order to ease the handling of coroutine calls from pages, the following procedure
is supplied:

call return link
acO *) *) + 0: coroutine monitor call
acl *) *) + 1 : return
ac2 *) *)
ac3 link corout *) = as for the coroutine monitor call

Executes the coroutine monitor call and arranges a proper return. At return the page
map may have changed.

COMON
WAITSEM

SIGNAL

Note that SIGNAL is called normally, since a call of signal will not oause any
immediate activation of other coroutines.

page 7

5. PAGING SYSTEM SETUP.

The paging system requires some variables to be set up in the beginning of the

program.

pspec
page size
page mask
blocking factor

adr pagetable

Add 1b6 to the program descriptor word.

number of words per page, i. e. 256, 512, 1024 or 2048.
minus number of words per page.
number of sectors occupi ed by 1 page, i. e. 1, 2, 4 or 8.

the address of a table describing where to find the pages
on the disk. The table should contain:
pagetable number of pages in the program: m;
pagetable +

irrelevant, these locations are set up
by the loader.

adr pagemap
pagetable + m
the address of a table describing the map of virtual add-
resses into core addresses. The table should contain:

pagemap 3 (semaphore used by paging routines)
pagemap +

irrel evant, these locations are set up
by the loader.

adr statproc
pagemap + m
the address of a procedure used to collect statistics. This
procedure is called at every pagefault. The procedure is
described later. If no procedure is present, this variable
should be set to zero.

the address of the first word in the core storage area used
to load the pages from disk.

the address of the first word after the core storage area used
to load the pages from disk. This area should contain at
least two frames, i.e. room for two pages.
the address of the next frame to be used for transfer of pages.
This should be set equal to first of frames.

counts the number of pages read into core. This should be

fi rst of frames

top of frames

victim

pages read

set to zero.

pages wri tten

page in

page out

adr input message
inpu t message

adr output message :
output message

pager flag
working locations

page 8

counts the number of pages written back to disk. This should

be set to zero.
contains at the call of the statproc the pagenumber of the
page which is going to be read into core. Initial contents
irrel evant.
contains at the call of the statproc the pagenumber of the
page which is going to be written back to disk. Initial
contents irrel evant.
the address of the following word.
contai ns the message used by the pagi ng system to load
pages into core. It should be initialized to:
mess 0 9 (operation).
mess 1 number of bytes per page.
mess 2 byte address of victim.

mess 3 irrel evant.
the address of the following word.

contai ns the message used by the pagi ng system to wri te
pages back to disc. It should be initialized to:
mess 0 11 (operation).
mess 1 number of bytes per page.
mess 2 byte address of victim.
mess 3 irrel evant.
o.
. BLK PWSIZE.

The paging system also requires a variable to be set up in the process:

ccorout should be set to zero if the process does not use the
coroutine monitor. Otherwise it should be set to point
to the fi rst corouti ne .

Also add one extra message buffer to the process, to be used by the paging system.

page 9

5.3 Coroutines-----------------
If the process uses the coroutine monitor, some working locations should be set up in
every coroutine, just after the variable caclsave:

working locations .BLK PCWSIZE.

These locations may be used by the coroutine but are
destroyed at every pagefault and at every call of COMaN.

The first word on every page should contain the following:

virtual address of this page + page descriptor.

pagedescri ptor bit 15 o read only page.
1 read/write page.
o non locked in core.
1 locked in core for the moment.

bit 14

It is the users responsibility to use the lock bit properly

6. PAGING SYSTEM SETUP SUMMARY

pspec
starting adr
chain
size

name

page size
page mask
blocking factor
adr pagetable
adr pagemap
adr statproc
fi rst of frames
top of frames
victim
pages read
pages written
page in
page out
adr input mess.

input
message

oclr output mess.

output
message

pager flag

working
locations

PROGRAM PAGETABLE

- + 1B6- m

.BLK m

PAGEMAP

256 x n

V
3

- 256 x n
n (=1,2, 40r 8) .BLK m-
(evt = 0)

l~
STATPROCEDUR

0----

== first of frames
0
0
0
0

t. + 1 -P resident code
9 part 1

2 *- page size
2 * first of frames

0
. + 1 -J11

2 *- page size
2 *' first of frames ..

0
0

. BLK PWSIZE

i.,
I resident code resident codelpart 1 !J part 2

-.....••

-

top of program

page 10

no of pages
se ctor adr 1. page

sector adr last
page

semaphore
map of 1. page

map of Iast page

E

first frame

last frame

page 11

PAGING SYSTEM SETUP SUMMARY (continued)

PROCESS

name COROUTINE

· /··
(or 0)
···

• BLK PCWSIZE

···

ident
link
exit
clatop
creturn
cac 1save

next
pnev
chain
size

ccorout

one extra
message
buffer

worki ng area
at pagefaul t

PAGE

fi rst on page ·+ page descr.

page 12

7. HOW TO USE THE STATPROC.

The statproc should fulfi I the conventions:

call return link

acO destroyed + 0: return

acl destroyed + 1 : special return

ac2 program unchanged

ac3 link destroyed

At the entry the following variables in the program are set to relevant values:

victim
pages read
pages wri tten
page in
page out

frame to be used for transfer.
number of pages read before this pagefault.
number of pages written before this pagefault.
page to be read.
page to be wri tten .

It is possible but not recommendable to change victim in the statproc. If this is done,
the return should be made to link + 1 where victim will be checked and the statproc
will be reentered with the new values of victim and page out.

8. ERRORS.

If an error occurs, the process wi II be breaked wi th errornumber = 7, and ael
containing an errorcause:

acl = 0 addressing error.
ac 1 = 1 too many frames locked.
ac 1 1: 0 and 1 : disk error, ac 1 = status.

page 13

9. EXECUTION TIMES.

Execution times for procedures when no pagefaults:

COMaN (- coroutine monitor call)
executed from resident part

140,.)J

68,JJ

CALL point (0 : 0) set
otherwise

74/"
24jJ

GOTO point (0 : 0) set
otherwise

70jJ
20jJ

GETADR point (0; : 0) set

otherwise

69.)J

19jl

GETPOINT result point (0 0) set
otherwise

If a pagefault occurs, add the time for a pagefault to the above execution times.

Pagefault administration
input transfer
output transfer
coroutine adm.

300 }J
1000 }J

1000 }J

200 }J

1300 - 2500J1

Transfer time of 1 page to/from disk
average

4 - 200 ms
70 ms

page 14
10. EXAMPLE.
111 ; p ~ 0 G R A ivi I',1f\. (; E X A (¥' P L F: P AGE D PRe G RAM
02 .TITlE EXAMP
", .N~fL
,4 GU001? .ROX 11)

(15 0(10001 ••TXii'i 1
()f-

01
C8
09
1 ('
1 1

nnOUU'1111000 PGO: 180+H'6 ; PSPEC
(lUOO' '002£177' p (; 1 ; Sl/lhiTING ADDRESS
(1(Hl02' OOOC(lO n ; CHAiN
IJI)(1(;3 ' U 0 2 1 G 4 PG1 \j-PGC) · S II E,

• r x r .I:X~i"p. ; N AIVE
flount.' C42~:dO
f)O(J05'(l40515
OlJOli6'U5()IlQO

12 001000 PVSIZt:=')1? · S I If: OF PAGES IN VIRTUAL !'-lEMORY,
1 3 (lOOOC3 pVNo=3 ; NO OF PAGES 1"- Vl~TUAL MEMORY
14
1 5 00007' U01 OOCI f'VSIZE · PAGE SIZE,
1f 0OOlU'177UOO .PVSlZE: · P A (, F.: MASK,
17 00011 'OU(JO()2 PIISIH1256 · RLOCKING FACTOR,
18 0OO12'OO()O5.3' P (j1 Af-~ ; PAGE TARLE
A" 00013'000057' PGr., A P ; PAG!: i>1AP

00014'000063' PGS1Al · PAGE STATISTICS PROCEDURE. -' ,
21 00015'000077' PCiFOF · FIRST OF FRAMES,
22 00016'002077' P(;TO~ ; TOP OF FRAMES
23 00017'000077' PGFOF ; V I C T 1!'-1
24 00020'000000 0 ; PAGES READ
25 00021'000000 0 ; PAGES WRITTf:N
26 000022 PAGEIN=.-PGO
27 00022'000000 0 · PAGE IN#

28 00023'000000 0 · PAGE OUT,
29 00024'000025' .+1 · ADl>RESS INPUT MESSAGE#

30 00025'000011 9 ; INPUT MESSAGE: OPERATION
31 00026'002000 PVSIlE*2 · PAGE LENGTH,
32 00027'000176" PGFCF*2 ; FIRST ADR
33 00030'000000 0 ·,
34 00031 '000032' .~1 · ADDRESS OUTPUT iV1ESSAGE,
35 o 0 f)~ ,: ' 000 a 13 11 · OUTPUT MESSAGE: OPf:RAlION,
36 00 un ' 00 2 0 00 PVSIZE*2 · PAGE l.ENGTH,
37 000.54'000176" PG~Of*2 ; FIRST ADR

uuo s . '000000 i) ·#
J"; 0005'000000 n · PAGER fLAG,
4C 000014 • H lI(pi",SIZt · wORKING LOCATIONS,
41
42 O(jQ~j'OOOOO3 PGTAB:PVr-O · Io'AGE TAf:'LE,
43 nOOOC3 .Bll< PVNO ·,
44
45 OUU57'OOOOO3 P G "1A P : .~ · PAGE MAP•
46 OOOOC3 .8LK PVtli\J ·,

page 15

· ST,QISTIC PROCEDURE,
3 PG S "11 C 01'1PU T E FREQUENCY COUNT PER PAGE
3 PA(itIH,2 · Ae3:= PAGE TO LOAD,
1 PGSTO · A C 1 := AOR FREQUENCY COUNT TABLE,

1 , :3 · F P. E QUE r~C y CQUNTCPAGEIN):=,
(1,3 ; FRE:GUENCY COUNTCPAGEIN) + 1 ;

PGST1 ; RETURN
•-1

01 PGSTAT:
02 U0063'054413 Sf A
';3 (:0064'035022 LOA

(1l)U65'(;24405 LI)~

1!0066'13'(000 liD!)

nOu67'011400 I~Z
(J l) n 7 0 ' (\ U 2 4 0 6 J tvl P 6',
n o U71 ' 0 II 0 7 7 7 J i'lP
tJ I) 0 7 2 ' U 0 () u 7" ' P G S T U : • + ()
n007:~' ounono u
OOOi'4'(!IJ0(10U Ii
(1 0 0 7 5 ' (Io 0 0 0 0 U
(10076' OllOOUU p(;S T 1 ~n

4

05
Of-
0(
UI:!
C9
10
1 1
12
1 .3
14
1 5
16
17
18
19
20
21
;;>~

01000
01001
U1002
01003
01004
01005
01006
01007

PvSllF
; *************** PAG[1
PV1: .H'
PV10: LOll

GUADR
p, i) D
LOA
GI:TAr)'<
J ~1P

P V1 1: ;,)p v 3 1
.LOC ./PVSIZE+1*PV5IZE

UC!100U PGFOF: .LuC

001000
0204(;6
006567
137UOO
021400
006367
001400
103003
002000

002000
006366
105001
006365
101001
003000

PV11

u,3

; *************** PAGE ?
PV2: .+ll
PV20: CALL

j,-,p V 3 o
GOTa
iilPV10

.LOC ./PvSIZr.+1*PVSIZE

; FRf-GUEI'lCY
; PAGE 1
; PAGE 2
; IJAG~ 3

COUNT TAbLE

24
25
26
27
28
29
30
31
32
33
31.
35
36
37
38
39
40

02000
02001
02002
02003
02004

; FlkST OF FRAMES:

; RE.AD ONLY PAGE
; AeO:= POINT CASE TABLE
; GET ADDRESS OF CASE TA8L~
·,
; Aeo:= POI"'T(l)
; G~l ADDRESS OF POINTeI)

(,010 POINT(l)
; POINT eASE TABLE
; FILL UP SPACE

****** .•*******
; RE/ID ONLY PAGE

; FILL UP SPACE

; *************** PAGE 3
PV3: .+0
PV30: INC

J i"lP

; CASE JARLE
030(, i 02001 PV.31: @PV 20
03 o :-1.'. i 02001 ;'w v 20

-, _ 03U;j' 002102' PG2
004000 .LOC ./PVSIZE41*PVSIlE ; FILL UP SIJACE

; ***************************************
o n 2 a 7 7 , • L0 C P v S I H * 2 + IJG F 0 F ; T iN 0 P< A r'j E S

PGTOF: ; fOP OF FRAMES
PG1: Lf)4 1.0 ; START: 1:= (I;

GOTO

03000 003000
03001 125400
03002 001400

43
44
45
46
47 02077'0240,5
4A 0210(J'()06365
49 02'101'101001
5 (\ (I 2 1 Ii2 ' U3 0 U.:.0
51 U21fJ3'(106013
52
53
54
5~
Sf>

'1

1,1
0, :~

;,1PV 1(:
P(,2: ll)A "2 CUR

STOPPROCE:SS
; ********** PkOCESS
PG10:

*"'**1!*********
; READ ONLY PAGE
; SUBROUTINE: 1:=
; RETUI<I\I

1+1 ;

·,
IHS(RIPTOh

·.'
002145 I .LOC PGlIl+((OROUl

('?145' (100000 II

nU~104'.tNf) PGHI

page 16

11 . REFERENCES.

1 . MUS - SYSTEM INTRODUCTION
AND

MUS PROGRAMMERS GUIDE

RCSL: 44 - RT 759

2. DGC - EXTENDED ASSEMBLER MANUAL

DGC: 93 - 000040

