Title:

RC 3600 PAGINGS SYSTEM
SYSTEM PROGRAMMERS GUIDE

A REGNECENTHALEN RCSL MNo: 43-RI0142 (2cA)
E Edition: October 1975
Author: Philippe Gaugin

RC SYSTEM LIBRARY: FALKONERALLE 1 DK-2000 COPENFRAGEN F

Keywords:

Mus, Paging System, Virtual Memory, Address Mapping

Abstract:

This manual describes how to use the RC 3600 paging system from assembly
programs under the MUS-system. 19 pages.

Users of this manual are cautioned that the specifications
contained herein are subject to change by RC ot any time

Copyr ight aA/S Regnecentralen, 1978 without prior notice. RC is not responsible for typographi-

cal or arithmetic errors which may appear in this manual

Printed by A/S Regnecentralen, Copenhagen and shall not be responsible for any damages caused by

reliance on any of the materials presented.

CONTENTS PAGE
INTRODUCTION ottt i e e e e 1
PAGING SYSTEM ADDRESSING TECNIQUES 1
PAGING SYSTEM PROCEDURES 3
3.1 Procedure Call 3
3.2 Procedure Goto vviiiii i 3
3.3 Procedure Getadr o, 3
3.4 Procedure Getpointoiiiiia, 4
3.5 Example ... 5
PAGING SYSTEM IN A COROUTINE ENVIRON-
MENT oot e e e e 6
4.1 Procedure Comonuriiniiinnennnann 6
4.2 Example, 6
PAGING SYSTEM SETUP ..ottt e 7
S5.T Programs ...t i e e 7
5.2 PrOCESSES o i ittt e e e 8
5.3 Coroutines e 9
5.4 Pages ... e 9

6. PAGING SYSTEM SETUP SUMMARY 10

7. HOW TO USE THE STATPROCivvivn... 12

8. ERRORS .. o, 12

9. EXECUTION TIMES ..ottt e e e i i 13

10. EXAMPLEo e 14

11.

page 1

1. INTRODUCTION

The RC3600 paging system makes it possible to write large programs and to run them
in a small amount of core storage at the cost of execution time. The programs are,
by the programmer, broken into minor pieces, called pages, which are placed on a

disk. When running the program the system takes care of bringing the pages into

core.

As the hardware on the RC3600 computer does not support virtual memory systems,
such programs are bound to be coded according to some rules, which makes it pos-
sible to detect and check by software every reference to virtual objects that may
cause pages to be read into core and perhaps pages to be written back to disk from

core.

Under the RC3600 paging system the programs are allowed to reference local objects
by means of relative addressing, and core resident objects by means of deferred ab-
solute addressing. The programs may reference objects on other pages by calling some
procedures to obtain a first reference and by indexing to get or modify the objects

on that page.

the system makes it possible to collect some statistics about the perfermance of the

svstem.

2. PAGING SYSTEM ADDRESSING TECHNIQUE

The paging system extends the address space of a program with almost 32K of virtual
memory. A program is divided into a core resident part and a number of pages of
equal size. The page size should be 256, 512, 1024 or 2048 words, corresponding

to the storage capacity of 1, 2, 4 or 8 disk sectors.

During load of paged programs, normal relocatable code is assigned to absolute add-
resses, while absolute code is assigned to virtual memory addresses except for absolute

code in page zero locations. Thus the following type of assembiy code is legal:

page 2

Type of assembly code Range Is loaded info
absolute o, 3778) page zero of core
absolute (PS, 777778) virtual memory
normal relocatable (0, 777778) core

byte relocatable (o, 1777768) core

PS = page size Note: absolute addresses (4008, PS-1) are illegal

During run of paged programs the paging system maintains a partial map of virtual
memory addresses into computer word addresses. Any access (read/write/execute) to a
virtual memory location cannot be made before the virtual memory page has been
brought into core, defining the map of that specific page. This is done by means of

some procedures, which operates on addresses and program points.

A program point is a 16 bit quantity representing some place in a program. [f bit 0
of a program point is zero, the point represents the address of a computer word. If
bit 0 of a program point is set, the remaining part of the point (bits 1-15) represents

v virtual address in the virtual address space of that program.

Points in interval Represents

0, 3779
(4008, 777778) other computer word addresses
(]000008+ PS, 1777778) virtual memory word addresses

page zero computer word addresses

PS= page size Note: points (1000008, 777778 + PS) represents nothing

3. PAGING SYSTEM PROCEDURES
3.1, __ Procedure_Call (point)

call continuation
acO unchanged
acl unchanged
ac2 unchanged
ac3 link link + 1

page 3

link
+ 0: point

+ 1: possible return

Executes a subroutine jump to the point given as parameter in the word following the

call. Continues execution with ac3 pointing to a possible return address.

acO
acl

ac?

a3

call continuaticn
unchanged
unchanged
unchanged

link destroyed

link

+ 0: point

Executes a jump to the point given as parameter in the word following the call.

acO
acl
ac?

ac3

Procedure Getadr (point, address)

- - - - — o o - ——

call return

point unchanged
unchanged
unchanged

link address

link

+ 0: return

page 4

Computes the address of the point given as parameter in acO. |f the point is less

thar 100000g, the address returned is equal to the point.

The above 3 procedures may change the page map. However, in a non-coroutine
environment, the calling page would not be involved in the change, i.e. the cal-

ling page is untouched, when using the procedures Call and Goto.

call return link
ac0 address unchanged + C: return
acl unchanged
ac2 unchanged
ac3 link point

Computes the point corresponding to the address given as parameter in ac0. If the
address points to a word inside a frame (a set of locations used to swop a page) the
point corresponding to the virtual address of that word, is returned. Otherwise the

address is refurned.

This procedure does not change the page map.

page 5

Subroutine: Subroutine:

SUBR: STA 3 RETUR, 2 SUBR: MOV 3,0

; the routine does not GETPOINT

; change the page map STA 3 RETUR, 2
; the routine does

; change the page map

JMP @ RETUR, 2

LDA 0 RETUR, 2
GETADR
JMP 0,3

Calls: 1) SUBR not resident

CALL
@ SUBR

2) SUBR resident

CALL
SUBR

J) SUBR resident
JSR @ XX

XX: SUBR

page 6

4. PAGING SYSTEM IN A COROUTINE ENVIRONMENT.

If the paging system is used together with the coroutine monitfor, the procedures call,
goto, getadr may cause other coroutines to become active, if the referenced page is
not in core. The condition that the calling page would not be involved in the change
of the page map, fails when using coroutines, but the following weaker condition
holds for coroutines: the calling page will be present in core when the referenced
page has been brought into core, although its position in core may have changed.

If so, the register ac3 is changed according to the new position of the page. Returns

from subroutines can be made exactly as shown in the former examples.

In order to ease the handling of coroutine calls from pages, the following procedure

is supplied:
4.1_____Procedure Comon (coroutine monitor call) _
call return link
ac0 *) *) 4+ 0: coroutine monitor call
acl *) *) + 1: return
ac2 *) *)
ac3 link corout *) = as for the coroutine monitor call

Executes the coroutine monitor call and arranges a proper return. At return the page

map may have changed.

——— e - e S e e e s e o A T S T S T "

COMON
WAITSEM

SIGNAL

Note that SIGNAL is calied normally, since a call of signal will not cause any

immediate octivation of other coroutines.

page 7

5. PAGING SYSTEM SETUP.

The paging system requires some variables to be set up in the beginning of the

program.
pspec : Add 1bé to the program descriptor word.
page size : number of words per page, i.e. 256, 512, 1024 or 2048.
page mask : minus number of words per page.
blocking factor : number of sectors occupied by 1 page, i.e. 1, 2, 4 or 8.
adr pagetable : the address of a table describing where to find the pages
on the disk. The table should contain:
pagetable : number of pages in the program: m;
pagetable + 1
irrelevant, these locations are set up
by the loader.
pagetable + m
adr pagemap : the address of a table describing the map of virtual add-
resses into core addresses. The table should contain:
pagemap : 3 (semaphore used by paging routines)
pagemap + 1
irrelevant, these locations are set up
by the loader.
pagemap + m
adr statproc : the address of a procedure used to collect statistics. This
procedure is called at every pagefault. The procedure is
described later. If no procedure is present, this variable
should be set to zero.
first of frames : the address of the first word in the core storage area used
to load the pages from disk.
top of frames : the address of the first word ofter the core storage area used
to load the pages from disk. This area should contain at
least two frames, i.e. room for two pages.
victim : the address of the next frame to be used for transfer of pages.
This should be set equal to first of frames.
pages read : counts the number of pages read into core. This should be

set to zero.

page 8

pages written : counts the number of pages written back to disk. This should
be set to zero.

page in : contains at the call of the statproc the pagenumber of the
page which is going to be read into core. Initial contents
irrelevant.

page out : contains at the call of the statproc the pagenumber of the
page which is going to be written back to disk. Initial

contents irrelevant.

adr input message : the address of the following word.
input message : contains the message used by the paging system to load
pages into core. It should be initialized to:
mess 0 : 9 (operation).
mess | : number of bytes per page.
mess 2 : byte address of victim.
mess 3 : irrelevant.
adr output message : the address of the following word.
output message : contains the message used by the paging system to write
pages back to disc. It should be initialized to:
mess 0 : 11 (operation).
mess | : number of bytes per page.
mess 2 : byte address of victim.
mess 3 : irrelevant.
pager flag : 0.
working locations : .BLK PWSIZE.

5.2 Processes

e ———— - -

The paging system also requires a variable to be set up in the process:
ccorout : should be set to zero if the process does not use the
coroutine monitor. Otherwise it should be set to point

to the first coroutine.

Also add one extra message buffer to the process, fo be used by the paging system.

page 9

5.3 Coroutines

If the process uses the coroutine monitor, some working locations should be set up in

every coroutine, just after the variable caclsave:

working locations : .BLK PCWSIZE.
These locations may be used by the coroutine but are

destroyed at every pagefault and at every call of COMON.

The first word on every page should contain the following:
virtual address of this page + page descriptor.
pagedescriptor : bit 15 : 0 read only page.
1 read/write page.
bit 14 : 0 non locked in core.

1 locked in core for the moment.

It is the users responsibility to use the lock bit properly

6. PAGING SYSTEM SETUP SUMMARY

pspec
starting adr
chain

size

name

page size

page mask
blocking factor
adr pagetable
adr pagemap
adr statproc
first of frames
top of frames
victim

pages read
pages written
page in

page out

adr input mess.

input
message

aiir output mess.

output
message

pager flag

working
locations

PROGRAM PAGETABLE

— + 1B6— m
.BLK m
PAGEMAP

256 x n 3
- 256 x n J
n (=1, 2, 4 or 8).-— BLK m
(vt = 0) :\ STATPROCE DURE
= first of frames

.+

V| —|O|O|O|O

2 & page size
2 * first of frames
0

.+ 1

11

2 ¥ page size

2 x first of frames
0

0

.BLK PWSIZE

resident code
part 1

\

/‘

-

resident code
part 1

M

resident code
part 2

~_ __—

resident code
part 2

top of program

page 10

no of pages

sector adr 1. page

sector adr last
page

semaphore
map of 1. page

map of last page

first frame

last frame

PAGING SYSTEM SETUP SUMMARY (continued)

next
pnev
chain
size

name

ccorout

one exfra
message
buffer

first on page

PROCESS
COROUTINE
l
— /
.BLK PCWSIZE
PAGE

.+ page descr.

page 11

ident
link
exit
clatop
crefurn
caclsave

working area
at pagefault

page 12

7. HOW TO USE THE STATPROC.

The statproc should fulfil the conventions:

call return link
ac0 destroyed + 0: return
acl destroyed + 1: special return
ac2 program unchanged
ac3 link destroyed

At the entry the following variables in the program are set to relevant values:

victim : frame to be used for transfer.

pages read : number of pages read before this pagefault.
pages written : number of pages written before this pagefault.
page in : page to be read.

page out : page to be written.

It is possible but not recommendable to change victim in the statproc. If this is done,
the return should be made to link + 1 where victim will be checked and the statproc

will be reentered with the new values of victim and page out.

&. ERRORS.

If an error occurs, the process will be breaked with errornumber = 7, and acl

containing an errorcause:

acl = 0 : addressing error.
acl =1 : too many frames locked.

acl # 0 and 1 : disk error, acl = status.

page 13

9. EXECUTION TIMES.

Execution times for procedures when no pagefaults:

COMON (- coroutine monitor call) 140/.;
executed from resident part 68/0
CALL point (0 : 0) set 74/u
otherwise 24/u
GOTO point (0 : 0) set 70)1
otherwise 20/.;
GETADR point (0. : 0) set 69 p
otherwise 19/.;
GETPOINT result point (0 : 0) set 75/u
otherwise 43/.)

If a pagefault occurs, add the time for a pagefault to the above execution times.

Pagefault administration 300 p

input transfer 1000 p

output transfer 1000 p

coroutine adm. 200 P
PAGEFAULT 1300 - 2500/)
Transfer time of 1 page to/from disk 4 - 200 ms

average 70 ms

10. EXAMPLE.

T ; PROGRAMNMING EXAMPLE:
(2 JTITLE EXxAamp

3 CNREL

A 00012 LRDX 10

s GUoONT LT xT™ 19

(é

G 00QUUYI01000 PO 18L+1R6

C&
(9
1c
1

12
13
14
15
1¢
17
18

“q

21
22
23
rL
25
26
27
28
29
3C
31
32
33
34
35
3¢
37

oY
INE
41
42
4“3
YA
45
4é

GUoDIYGo2077 PG
QoOe2r000000 i
guonltLu210s PGAU=PGD
L TXT JEXANE,
NQDNLYCL2530
GOOOSTO6L0515
NODLVETUS0DGO
QU1000 PYSLIZE=H1Y
00003 PYyNO=E

Qo007 YCO1000 PVS1ZE
con10v177000 -PVS1ZE
Q0011000062 PVSIZF/256A
Q00120000530 PGT AR
00013000057 PomAR
00014'000063" PGSTAT
Quo1Istoooo7??? PGFOF
00016002077 PGTOF
poe17'00Q077"! PGFOF
00020000000 0
00021000000 0

000022 PAGEIN=_=PGD
00022°'000000 0
00023'000000 0]
00024000025 ot
0u025'000011 Q
00026'002000 PVSIZExX?
00Q27'000176" PGFCFwP
Q0030000000 {) ‘
00031'000032" -t
PONzZ2Y 000013 11
00G:%'002000 PYSIZExX?
000:."000176" PGFOF*2
o003~ 000000 i)
QoGS - 000000 0

000614 BLK PuSTZE

Q0SS 3000003 PGTABIPVAG
(00063 BLK PUNO

QLes7'000003 PGMAPRP: 3
C000C3 +BLK PVhO

PAGED

He we Nx %3 s

We e %o NE NE Ws We e hs NE We Wy W3 N8 W4 e My Wy Ws N2 s % Nr s w3

e

page 14

PRCGRAM

PSPEC

STAKTING ADDRESS
CHAIN

SI1ZE

NAME

SIZ¢ OF PAGES In VIRTUAL MEMORY
NO OF PAGES IN VIRTUAL MEMORY

PAGE SIZE

PAGE MASK
BLOCKING FACTOR
PAGE TABLE

PAGE mAP

PAGE STATISTICS PROCEDURE
FIRST OF FRAMES
TOP OF FRAMES
VICTINM

PAGES READ
PAGES WRITTEN

PAGE 1IN

PAGE OUT

ADVDRESS INPUT MESSAGE

INPUT MESSAGE: OPERATION
PAGE LENGTH
FIRST ADR

ADDRESS OUTPUT MESSAGE

OUTPUYT MESSAGE: OPERATION
PAGE LENGTH
FIRST ADR

PAGER FLAG
WORKING LOCATIONS

FAGE TABLE

PRGE MAP

1
ne

G5
e
07
U
(7
1¢
11
12
13
14
15
16
17
1&
19
20
21

27

24
25
26
27
28
29
3C
39
32
33
34
35
34
37
38
39
40

RS

43
Ld
45
Lé
47
48
49
50
51
52
53
S4
5¢
564
57

VONA3IN54413
nookL 38022
POUBS (24405
00668137000
O0uk7'011400
HUOTZUL L2406
G071 000777
QUO72'LONUTPR!
N00730u0000
QeN74 Y GAOGO0
OGS Lo00cn
QOO76Y0H000U

ge1aon

00000
020606
006367
137000
021400
006367
(101400
103003
0020060

01000
01001
1002
010n03
(01004
01005
01006
01007

062000
006366
103001
006365
1601001
003000

02000
02001
02002
02003
02004

003000
125400
001400

030049
03001
o30Ge

1G2001
102001
Goe102!
004000

0300 .
0300
03007

002077

020771024055
02130006365
N2101'101001
021u2'0300u0
02103'006G13

0021451
0216450000000
nuz2ica!

page 15

PGSTAT: ; STATISTIC PROCEDURE
STA 3 PGS ; COMPUTE FREQUENCY COUNT PER PAGE
LoA 3 PAGEIN,2 7 AC3:= PAGE TO LOAD
Lo 1 PGSTO ; AC1:= ADR FREQUENCY COUNT TABLE
anb 1,3 ; FREQUENCY COUNT(PAGEIN):=
1s2 Csr3 ; FREQUENCY COUNT(PAGEIN) + 1.
ImMPg FGST1 ; RETURN
JuiP =1

PGSTO: . +0 5 FREQUENCY COUNT TABLE
y ; PAGE 2
i) ; PAGF 3

PaST1:H

PGFOF: JLUC PVSTZF ; FIKST OF FRAMES:

J kR awkkkkkkAw Ak k PAGE 1 dkrkkokdekkkkdkokok

Pvi: ot ; READ ONWLY PAGE

Fvihe LpA { PV 11 ; ACUgs= POINT CASE TABLE
GETADF ; GET ADDRESS OF CASE TABLE
80 1,3 ’
Lna £ Ued ; ACO:= POINT(I)
GETALK ; GET ADDRESS OF POINTC(I)
JMP CLs5 s GO10 POINTC(LD)

Pvitl: APV 31 ; POINT CASE TABLE

«LOC «/PYSTZE+T%xPVYSIZE ; FILL uP SPACE

] kkkkkkkkkwkkwkkk PAGE 2 Adkkkkkkkkkxokkx

LA Rt ; READ ONLY PAGE

Pv2z0s: CALL
mPV 30
GOTO
APV1O

»LOC «/PVSIZE+1%PVSIZE ; FILL UP SPACE

s o dkkkkkkokkgkokkkk PAGE X ook ki kok kokokodkokok

PV3: »+0 3 READ OMLY PAGE

Pv3gs: INC 1.1 ; SURRQUTINHE: le= I+1
Jmp 0,3 ¢ RETURN

; CASE TARLE

PV31: aPv2U
APVl
PG2

«LOC - /PVSI1ZE41%xPVYSTZE ; FILL UP SPACE

5 koo Kk gt ok % sk R ok ok o ok ok K ke ok o ok ok ok Wk ok ok ok e ok R ok ke

o OC PVSTZEx2+PGFOF ;3 Tw(Q FRANMES

PGTOF 2 s TOP (OF FRAMES

PGi: LNA 1 0 ; START: 1= 0O
GOTO ;
APVIO

PGZ: LoA Py CUR ;
STORFPRGOCESS H

; kmkkwxkkkdk PKOCESS DESCRIPTOR *kkdkkkkkxk

FG10 H owe

LOC PEINSCCOROUT
i

wEND PGIG

11.

REFERENCES.

MUS - SYSTEM INTRODUCTION
AND
MUS PROGRAMMERS GUIDE

RCSL: 44 - RT 759

DGC - EXTENDED ASSEMBLER MANUAL

DGC: 93 - 000040

page 16

