

CONTENTS
REFERENCES .. ccccceenasasosnscecse e oo ces e s e eeana IT-1IV
1. INTRODUCTION e ccceococsssssssncccnccsssssnns 1-1
1.1 Terminology «seeecccess e eescsccscsacsnes 1-2
1.2 TFilleS ceccesnssnses tecesesecessscecscna 1-5
1.3 DYLUVES +ccvevevscessscosscscsssnasssnsncsss 1-6
1.4 The Operating System Process S eesssece-s 1-7
1.5 Core Storage Management +ececccsccceccecn. 1-8
1.5.1 Core Items ecossese-e- cecececcans .o 1-8
1.5.2 Process Hierachy ecscccesccccnenn 1-10
2. WORKING CYCLE OF S ceccsesocesscenssssensess 2-1
2.1 The Operating Process esssccecrccaccccsce 2-2
3. THE S COMMAND LANGUAGE +cccsevsoacanencensns 3-1
3.1 Basic Elements ceececeseccncsccccocsnns 3-1
Numberscecaeces seescesanens ceeees e 3-1
Texts .t..eeas teesesessscessenacsnoenns 3-2
Names = Gececcssevee ceeseeanans .. 3=-2
ITtems @ .. eeticecacanas ceeeccesssenssaas 3-3
3.6 S-ComMMANAS «ceeeeesocsssasnssonsosnscscos 3-3

Comments, Blanks, Blind Characters ceen 3-4

4., S—-FUNCTIONS «cceoceeses

BEGIN ceesesessnnen S e e s et et e oo
BOOT cceeees et it eet it eaceet s
BREAK ceeeeeccecsnananas cesccnsnsnse .-
CLEAN ...ttt eeesaososconasnascsnssssansas
CLEAR c ettt etenceceanacsassnsassnsonns
DRIVE ¢t ceeerececescccnsososnsscsannns .o
END iiieeeseeoecsassssoscsncannnsnsnses
2
GET = tieeteeceesnscssnsscnscsnnsnacaas
) 1
INT = ceeeeceee ceeecesccaseas ceeencens
KILL e eetteeenenaeeeaaaa Ceeeeeea
LIST et teeceetsaeets e e ceseean
LOAD et ceceeearesecssaessaanna veces
START ccevceoassconsossascsse ceecccanae .o
STOP ittt et tssocecsnsesnsnncnanes oo
Utility program load «c.cccceecnccencans
APPENDICES
A. CHARACTER SET USED BY DOMUScceces
B. SURVEY OF S-COMMANDS cesececesasans ceoe
C. SURVEY OF ERROR MESSAGES AND NUMBERS ..
D. SYSTEM ERROR MESSAGES ... cceevcscncaans
E. SYSTEM BOOTSTRAP .. ceieeeencennsnns oo

F.

SYSTEM GENERATION

4-10
4-11
4-12
4-13
4-15
4-16
4-18
4-21
4-22
4-23

11

REFERENCES

44-RT759

[1] RCSL:

Keywords:

Abstract:

[2] RCSL: 43-RI0164
Keywords:

Abstract:

[3] RCSL: 43-RI0142

Keywords:

Abstract:

III

MUS-SYSTEM INTRODUCTION (I) and
MUS PROGRAMMER'S GUIDE (II).

Multiprogramming, monitor, device
handling, i/o-utility, record i/o,
operator communication, operating

system.

(I) This manual is intended as an
introduction guide to the Multi-
programming Utility System.

(II) The manual is mainly intended
for readers who are going to use the
system. The user is assumed to be
familiar with the general principles
of the system as well as with the

assembler language.

DOMUS System Programmer's Guide.

MUS, Operating System, Loader, disc.
This manual describes the interface

between assembly programs and DOMUS.

RC 3600 PAGING SYSTEM
SYSTEM PROGRAMMER'S GUIDE

MUS, Paging System, Virtual Memory,
Address Mapping.

This manual describes how to use the
RC 3600 paging system from assembly
programs under the MUS-system.

Iv

[4] RCSL: 44-RT1278 RC 3600 FILE SYSTEM
SYSTEM PROGRAMMER'S GUIDE

Keywords: File system, catalog, area process,
cat. 76.

Abstract: This Manual describes how to use the
RC 3600 file system from Assembler
programs. The user must be familiar
with the MUS system.

", [5] RCSL: 44-RT740 MUSIL

Keywords: RC 3600 MUS System Software,
Programming Language.

Abstract: Syntax Rules for MUSIL language.

Description of standard procedures.
Explanation of I/0 handling.

[6] RCSL: 43-GL1349 MUSIL COMPILER
Operators Guide

Keywords: RC 3600 Musil Compiler.

Abstract: Compiler Guide, Operators Guide.

[7] RCSL: 43-RI0432 DOMUS User's Guide PART II.

Keywords: DOMUS, MUS, Operating System, Loader,

disc.
Abstract: This manual describes the utility system
for the disc operating system DOMUS for

the RC 3600 line of computers.

[8] RCSL: 42-10276 MUSIL TEXT EDITOR

1. INTRODUCTION

The Disc Operating Multiprogramming Utility System, DOMUS,
can be used with any RC 3600 computer of 32 Kb or larger
memory, together with any combination of discs and an operator

device, e.g. a teletype.

The main features of DOMUS are:

- Parallel processing including interprocess

communication and interrupt processing.

- A strong framework for i/o processing, both

on character level and on record oriented level.

- The operating system takes care of core storage
allocation, program load from disc files, process

creation and removal.

- The operating system itself has only a minor part
resident in core, the major part residing on a

disc. Also user programs can use this facility.

- Easy operation of the operating system by a human
operator or by user programs sending internal

commands to the operating system.

~ Support for the MUSIL TEXT EDITOR and the MUSIL
COMPILER and other utilities, and support for driver
programs for all hardware modules of the RC 3600

system.

1-2

1.1 Terminology

address

bit

character

text

descriptor

item

An address may be a word address, which is a

15 bit unsigned integer, corresponding to a
physical address in core store. Or it may be
a byteaddress, which is a word address left
shifted one and with a one added in bit 15 if
the byte addressed within the word is to the
right.

A computer word consists of 16 bits, numbered
from left to right:
BO, B1, B2, B15.

A computer word is regarded as two 8 bit bytes.
The left one bit0 to bit7 has a even address and
the right one bit8 to bit15 an odd address.

A character is a byte. The common alphabet within
the system is the ASCII alphabet see appendix A.

A text is a sequence of characters. Starting at

a byte address and containing in a left to right
packing. A text is terminated by a Null character
with byte value zero.

A collection of information, which describes an
object, is called a descriptor. Descriptors are

found as part of items and as part of zones.

An item is a core area, which is headed by a
descriptor, the first part of which usually has
a standard layout. This ensures that an item
always may be in some chain and possibly also in

field

chain

queue

a queue. The first words of an item contains
the fields:

next: next item in a queue

prev: previous item in a queue

chain: next item in a chain

size: the size of the core area of item

name: (3 words) A text identifying the
item.

A field is a displacement, which identifies a
piece of information within a descriptor. Some
important fields are predefined in the system

assembler, and/or in the musil compiler.

(linked linear list). A chain consists of a chain
head and a number of chain elements. The head and
each element point at the next item in the chain,

the last element equals zero.

(doubly linked cyclical linear list). A queue
consists of one or more queue elements. One of
the elements is the queue head. A queue element
consists of two consecutive words pointing at
the next element in the queue and the previous

element in the queue respectively.

When a queue is empty the head points at itself.
When an element is not in a queue it normally

points at itself.

The term length is used to express the number of
bytes contained in some core area.

size

program

process

monitor

device

driver

disc

drive

file

zone

The term size is used to express the number of

words contained in some core area.

A collection of instructions and data which
may be executed or accessed by one ore more
processes.

A sequential execution of programs under control
of the monitor. All information about a process

is collected in a process descriptor.

The nucleus of the system which implements
multiprogramming, i.e. a parallel execution of

several processes on a single processor.

A collection of units which can receive data
from the processor or transmit data to the
processor, often in parallel with the execution

of computer instructions.

A process executing a driver program in order

to central i/o to a device.

Any random access storage unit connected to the

computer.

A disc unit station in the system. All drives
are numbered from zero to a maximum and are
administrated by the cat process.

A logical collection of data residing on a

disc having a name (discfile). Sometimes we

shall denote a roll of paper tape or a collection
of data between to tape marks on a magtape reel

as a file too.

A collection of information and associated

storage areas neccessary to perform operation

on files and devices.

1.2 Files

Files residing on discs are identified with a name consisting
of 5 ascii characters. DOMUS only accepts filenames beginning
with a letter and continued by letters and digits, only the
first 5 characters being significant.

There exists no explicit type of the different files in the
system, they may however be classified in 4 different types:

- Text Files

Consist of a sequence of ascii characters, the NULL
char (a zero byte) being totally ignored, terminated
by an EM char (byte value 25) or the physical end of

medium.

- Relocatable Binary Files

Contain a program/process which can be loaded and
started by DOMUS. The file is terminated by the

physical end of medium.

- Absolute Binary Files

Contain a stand-alone program which can be bootstrapped
by DOMUS. The file is terminated by the physical end of

medium.

-~ Data Files

Contain data produced by user programs.
These files are of no interest for DOMUS.

1.3 Drives

Programs and processes are loaded from the files residing on

the disc mounted on the current drive.

After system bootstrap the current drive is set to a drive

of the master device. This drive is called the master drive.

The disc mounted on the master drive usually contains drivers
for alle devices connected to the computer, the system utilities

and the commonly used programs.

1.4 The Operating System Process S

The DOMUS-system consists of the following basic software

components:

Monitor

Utility Procedures
Basic i/o

Character i/o

Record i/o

Paging System

Master device driver
Operator device driver
File Management System
Operating System S

The operating system S takes care of core storage management,
program/process load from disc files, program/process removal.
It executes commands keyed in on the operator device or sent

to the process from another process in the system.

1-8

1.5 Core Storage Management

1.5.1 Core Items

Programs and processes are organized as described in [1].
After system initialization the available core storage above
the basic system is organized as one large item of core
storage. When the system works, pieces of that core storage
is occupied by additional programs, procedures, processes Or
data. Core storage is allocated in disjoint pieces, called

core items, all chained together in ascending order in the one

and same chain, the core item chain.

The core item is headed by a 7 word descriptor with the

following contents

+0 owner process

+1 current load address B
+2 chain i
+3 size

+4 name of core item

+5

+6

The owner process field contains the process description address
of the process which allocated the item. The current load address
field points to the first address to be used if the core item is
loaded with a procedure or a process. The chain field points to

the next core item or is set to zero if it is the last item in

the chain. The size field contains the size of the core item.

The name field contains the name of the core item.

These core items are classified into 3 classes.

Free core items: The item is not owned by any process,

i.e. the core is not used.

Used core item: The item is owned by a process, which
may use it for any purpose, e.g.
loading cf programs/processes, storing
data etc.

Utility core item: The item is automatically allocated
to the owner process during a load,

but the item cannot be used explicitly.

All processes except for the processes in the basic system are
contained in exactly one core item. In a core item may reside
several processes. Thus two relations exists between a process

p and a core item C.

 pinc } p lies inside the core item C

C contains p:

2) powns C = } C's owner is p

owned by p:

O

1.5.2 Process Hierachy

The above mentioned two relations between core items and

processes introduce a relation between processes:

P4 parent to P, there exists a core item C so that

P, child of Py P, in C and C owned by P,

All processes except for the processes in the basic system are
children of other processes and all these processes are organized

in a structure with respect to the relation parent to.

process

O

I

core item

e+ v e 1 e 2

K L h
> r s ANGE
b H \/

R

2. WORKING CYCLE OF S

After system bootstrap the process S goes into its idle state
where it is waiting, ready to execute an S-function. As an
event arrives, S classify it as being one of the following ty-
pes of events:

1. Console command

A human operator has keyed in a command to be executed.

2. Internal command

A process in the system has sent a message to S containing
a sequence of commands to be executed.

3. Internal request

A process in the system has sent a message to S, wanting S

to kill itself and execute a sequence of commands.

Now S starts to execute the first command. The command may force
S to read more commands from the operator device or to read more
commands from a file on the current drive. Commands may also
change the current drive to another drive in the system. All com-
mands are executed in a strict sequentiel mannexr, until there

are no more commands to execute. Some commands may be treated
differently depending on whether the execution was initiated via
the console or not. When the last command has been executed, S
returns to the idle state, resets the current drive to the mas-
ter drive and waits for the next event. '

R -

As the S-functions only take "a short time" to execute, you
may always espect S to be ready to accept a console command,

i.e. ready to perform a quick operator invention.

If an error occurs while executing a console command S will
print an errormessage on the operator device. If an error
occurs while S is executing an internal command or request,
5 will send an appropriate answer containing information

about the error.

2.1 The operating process

When executing console commands, the operating process is de-
fined as S itself. When executing internal commands the opera-
ting process is the sender of the message. Internal requests
are only accepted if the sender of the message is a child of
S, and the operating process is then defined as S itself.

Generally S accepts to operate only on core items owned by the
operating process. So the only processes S would kill is the
children of the operating process. Some special functions, how-
ever, violates this rule.

3. THE S COMMAND LANGUAGE

The following metalinguistic symbols are used, in the de-

scription of the S command lauguage:

Sequences of characters enclosed in < and > represent metal-
inguistic variables whose values are sequences of symbols.
The mark ::= means "may be composed of" and the mark | means
"or". The production (rule): <sign> ::= + | - means that any
occurence of the variable <sign> may be replaced by a + or a -.
The braces { and} signifies that the contents should be re-
garded as a single metalinguistic variable. The superscription
* means zero or more occurrencies of the preceeding variable,
whereas the superscription M means one Or more occurrencies.

The brackets [and] indicates an optional string.

3.1 Basic elements

Syntax:

<letter> ::= AIBICIDIEIFIGIHITIIJIKILIMIN]
OIPIQIRISITIUIVIWIXIYIZIZEIBIRIS
alblclidlelflglhliljlkllimIn]
olplglrislitiulviwixlylzlazlgla

<digit> t:= 01112131415!6171819

<nl> ::= ascii charactes LF, VT, FF or CR

3.2 Numbers

Syntax:

<integer> ti= <digit>+

<sign> 1= 4| -

<radix> ::= <integer>'

<numbers> ::= [<sign>][<radix>]<integer>

Semantics:

A number represents a 16 bit integer quantum. If no sign is
present the number is regarded as positive.

If - is present the two's complement of the number is used.

If no radix is present the integer is interpreted as a deci-
mal number. The radix denotes that the following integer

should be converted digit by digit as follows:
number:=number*radix+digit. All numbers are treated modulo 216.
A number is terminated by the first non digit following the

number.

3.3 Texts

Syntax:
<text> ::= '<any character except'>'
Semantics:

A text represents a sequence of charactes of any length.

3.4 Names

Syntax:

: \ %
<name> ::= <letter> { <letter>|<digit>;
Semantics:

A name is used to identify a file, a process, a program, an

S-function or is has a special meaning depending on the S-function

or utility program using the name.
Only the first 5 charactes in the name are significant. The name
is terminated by the first non letter or digit following the

name.

3.5 Items

Syntax:
<item>

<name> | <number> | <text> |

<dummy item>|<composite item>
REEE
<item> ¢ [<sep>I<item>y)

<composite item>

(
*

I

<dummy item>

.
.

e
]
»
~
I}
-~

<sep>
Semantics:
Items are the fundamental entities forming S-commands. Each item
is treated as a unit by the command intepreter of S, and any se-
parators appearing in front of an item are related to that item.
Items and the preceeding separator (if any) are packed into a
internal form by S. Consult ref [2] for further information on the
internal representation of items.

The dummy item denotes the absense of a paramter. The composite

item denotes a record of parameters consideres as one parameter.

3.6 S-Commands

Syntax:

<command>

*
<S-function> {[<sep>]<item>} <nl>]|

*
<filename> {[(sep>]<item> } <nl>|

<nl>
<S-function> ::= <name>
<filename> ::= <name>

Semantics:

If the first item is the name of an S-function, that function is
executed with the remaining items considered as parameters to the
S-function. Else the filename is looked up in the directory on
the current drive. If the file exists and contains a program, the
program is loaded with the items as paramters, and S itself con-

tinues.

4. S-FUNCTIONS

S-functions are executed by S itself. If it is impossible to
execute the function properly, an errormessage is printed on
the operator device if the S-function was executed as a con-
sole command. If the execution was initiated via an internal
command or request an answer containing the error cause is re-
turned. See ref [2] for further information. When an error oc-
curs, the function is aborted and S skips remaining commands

in a command sequence and goes into the idle state.
Errormessages consist of 3 components:

1. An errorcause

2. Possibly a name

3. Possibly a number

When printing error messages on the operator device the mes-

sages has the format:

***k<text> [<name>] [<number in octal>]

where the text explains the error cause. A list of errormes-

sages are presented in appendix C.

In the following each S-function is listed using this scheme:

S-FUNCTION: name of S-function.
FORMAT: format of commands activating the function.
FUNCTION: explanation of the function when executed as

a console command.

EXAMPLES: one or more examples of the use.

ERRORS: list of errormessages that may appear and an
equivalent errornumber. The following error-

messages may appear in all contexts:

***SYNTAX (1)
***TOO MANY PARENTHESIS (2)
***END MEDIUM, FILE <filename or (4)
operator device>
***T700 MANY COMMANDS (5)
***GYSTEM ERROR <number> (22)
@ INTERNAL
' EXECUTION: Modifications, if any to the above explanation

of the function, when the command is executed

as an internal command or request.

S~FUNCTION:

FORMAT:

FUNCTION:

EXAMPLES:

ERRORS:

INTERNAL
EXECUTION:

BEGIN

BEGIN

The function causes S to read a sequence of com-
mands from the operator device. The reading
continues until an END command has been read.
Then S starts to execute the commands one by

one up to and including the first END, INT or
another BEGIN command. Note that no internal
commands or requests can interrupt the above
sequence, before an END command has been execu-
ted.

BEGIN ILOAD AND LIST PTR DRIVER!
LOAD PTR
LIST PTR

END

** X DARAM (3)

The command is dummy.

S-FUNCTION:

FORMAT :

FUNCTION:

EXAMPLES:

ERRORS:

BOOT

BOOT <filename>

The function loads an absolute binary program
from the file specified. The file should re-
side on the current drive. The command termi-
nates the normal execution of the DOMUS sys-
tem and replaces it with a stand alone program,

perhaps being another MUS system or the like.

BOOT BACRES !terminate the DOMUS system and
bootstrap the program BACRES!

***DARAM (3)
***STATUS, FILE <filename> <status> (6)
***UUNKNOWN, FILE <filename> (7)
***RESERVATION, FILE <filename> (8)
***LLEGAL PROGRAM, FILE <filename> (17)

The file does not contain a absolute
binary program.

***SIZE ERROR, FILE <filename> (18)
No more core available during the
creation of the absolute core image
of the program.

***CHECKSUM ERROR, FILE <filename> (19)

S-FUNCTION:

FORMAT:

FUNCTION:

EXAMPLES:

ERRORS:

INTERNAL
EXECUTION:

BREAK
BREAK <process name>

The function performs a break on the process
given by <process name>. The processes in the
basic system including S itself are not allowed

to be breaked. The process is started in its
break address with errornumber = 2.

BREAK MAIN

*E*pARAM (3)
##¥NOT ALLOWED (15)
*#*PROCESS DOES NOT EXIST, PROCESS (21)

<process name>

As described above.

S-FUNCTION:

FORMAT:

FUNCTION:

EXAMPLES:

ERRORS:

INTERNAL
EXECUTION:

CLEAN

CLEAN <process name>

The function performs a stopprocess and a clean-
process on the process given by <prccess name>.
The processes in the basic system including S
itself are not allowed be cleaned. The func-
tion should not be used unless you know the con-
sequences of cleaning processes, and should on-

ly be used during program debugging.

CLEAN MAIN
#% pARAM (3)
¥¥¥NOT ALLOWED (15)
*¥% PROCESS DOES NOT EXIST, PROCESS

<{process name> (27)

As described above.

S=FUNCTION:

FORMAT:

FUNCTION:

EXAMPLES :

ERRORS:

INTERNAL
EXECUTION:

CLEAR

CLEAR [<core item name>]

The function clears either the specified core
item or if no core item name is present, all
utility core items owned by the operating process.

Clear specified core item:

CLEAR <core item name>clears the core item spe-
cified in the following way: First all processes
inside the core item are killed (see KILL),
causing the load address to be adjusted to the
lowest possible address. If the core item is a
utility core item, the core item is returned to
the pool of free items. It is not allowed to
clear a core item not owned by the operating

process.

Clear all utility items:
CLEAR acts as a sequence of clears on alle u-
tility core items owned by the operating pro-

cess.
CLEAR A
**¥*DARAM (3)
##*¥COREITEM DOES NOT EXIST, ITEM <core

item name> (11)
¥®#¥NOT ALLOWED (15)

As described above.

S=-FUNCTION: DRIVE
FORMAT: DRIVE <driveno>
FUNCTION: The function selects the drive specified by

driveno as the current drive. This drive re-
mains the current drive for all succeding exe-
cutions of commands within a command sequence,
i.e. until the END command or another DRIVE

command is executed. All files used in INT,

LOAD and BOOT commands are supposed to reside
on the current drive. The connection between

drives and the physical environment on an in-
stallation is fixed at system generation time.
The DRIVE command does not check if the selec-

ted drive is operable.

EXAMPLES: Let file SCOM on drive 2 have the following
contents:
LOAD A B C
END
Then the files A, B and C on that drive could
be loaded by the commands:
BEGIN
DRIVE 2
INT SCOM
END

ERRORS: **¥PARAM (3)

INTERNAL
EXECUTION: As described above.

S-FUNCTION: END
FORMAT: END
FUNCTION: The command acts as terminator for a seguence

of commands, when S is reading, either from
operator device caused by the BEGIN command,
or from a disc file caused by the INT command.
When the command is executed S returns to its
idle state.

EXAMPLES: File SCOM contains the following S commands
LOAD X Y
LIST X
END
These commands would be executed if you enter
the console command:
INT SCOM

ERRORS: none.

INTERNAL
EXECUTION: As described above.

S-FUNCTION: FREE
FORMAT: FREE <core item name>
FUNCTION: The function returnes the core item specified

to the pocl of free core. The core item should
be owned by the operating process, and it may

not contain any process.

EXAMPLE: FREE A
ERRORS: ** ¥ pARAM (3)
¥*%COREITEM DOES NOT EXIST, ITEM <core
item name> (11y
*#¥COREITEM NOT CLEARED, ITEM <core
item name> (12)

The item contains a process desérip—
tor. Clear the item, using the CLEAR
command .

*¥¥¥NOT ALLOWED (15)
The owner of the item is not the ope-

rating process.

INTERNAL
EXECUTION: As described above.

S-FUNCTION:

FORMAT:

FUNCTION:

EXAMPLES:

ERRORS:

INTERNAL
EXECUTION:

GET

GET <core item name> [<size>]

The function allocates a core item with the
specified name. If size is specified the func-
tion allocates a core item with size equal to
the number of words specified, or larger using
a first fit strategy, else the maximum core
item is allocated. The owner of the core item

is set to the operating process and the current
load address is set to the first word after the
core item head. After a succesful allocation,
the core item is a used core item owned by the
operating process.

GET A 512
LIST/CORE A
A 17334 1000 17343 s

¥%¥EDARAM (3)
®¥*¥¥COREITEM EXISTS, ITEM <core item
name> (9)

It is impossible to get an item with
the name of an alreadv existing core
item name.

¥R¥SIZE (10)
It is impossible to get an item of

the specified size.

As described above.

S-FUNCTION:

FORMAT:

FUNCTION:

EXAMPLES:

ERRORS:

INTERNAL
EXECUTION:

INIT
INIT <drive no>

The function sends an init catalog message

to the file handler containing the specified
driveno, see ref [4]. The master drive is al-
ways operable, but the other drives in the
system cannot be used before the INIT command

has been executed for that drive.
INIT 1 ! Initialise drive 1!
*¥¥pARAM

#E¥ASPATUS, DEVICE CAT <status>

Drive not operable

As described above.

S

N

S

S
o

NS

S=-FUNCTION:

FORMAT:

FUNCTION:

EXAMPLES:

INT

INT <filename>

The function causes S to read a sequence of com-
mands from the file specified. The file should
reside on the current drive. The reading con-
tinues until an END command has been read. Then
S starts to execute the commands one by one up

to and including the first END, INT or BEGIN com-
mand. Note that no other commands can interrupt
the above sequence before an END command has been
executed. By putting INT commands in a command
file you can chain a number of command files. If

you do this make sure that the chain is finite.

File SCOM1 contains the commands
LOAD A B
LIST A B
INT SCOM2

END

File SCOM2 contains the commands

LOAD C

LIST/CORE C
END
When you enter the command INT SCOM1 the files
A and B will be loaded and the processes A and
B will be listed. Then the commands in SCOM2

will be executed, as shown below:

INT SCOM1
A 17145 A
B 22022 B

c 22113 1011 s

ERRORS:

INTERNAL
EXECUTION:

* %% PARAM

¥¥¥STATUS, FILE <filename>
¥¥¥UNKNOWN, FILE <filename>
¥**RESERVATION, FILE <filename>
¥**ENTRY NOT A FILE, ENTRY <filename>

As described above.

(3)
(6)
(7)
(8)
(13)

S—-FUNCTION: KILL
FORMAT : KILL <process name>
FUNCTION: The function kills the specified process in

the following way. All core items owned by the
process are cleared (see CLEAR function) and

are returned to the pool of free items. Then

the process itself is removed, and if the sur-
rounding core item is a utility item, the item
is also returned to the pool of free items,
otherwise the load address of the surrounding
core item is adjusted. The adjustment of the
load address is done if there are no processes
in the core item with a process description ad-
dress higher than the process description address
of the process to be removed, and the load add-
ress is reset to the value used when the process
was originally loaded. It is only allowed to re-
move a process being a child of the operating

process.
EXAMPLES: KILL MAIN
ERRORS: *%*¥PARAM (3)
*#¥NOT ALLOWED (15)
***PROCESS DOES NOT EXIST, PROCESS
<process> (21)

INTERNAL
EXECUTION: As described above.

S-FUNCTION:

FORMAT:

FUNCTION:

LIST
LIST [/PROGRAM|/CORE] <name>*

The function lists items in one of three chains,
the process chain, the program chain or the core
item chain. The items are listed on the operator
device. The function lists selected items or, if
no <name> is present, all items in the chain. All

numbers are printed in octal.

Process list:
LIST <name>* selects the process chain, and the
output has the following format:

<name> <address> [] [«<core item namer]

<name> is the name of the process.
<address> is the process description address
of the process.

(@ indicates that the process is a driver pro-
cess and that no process has reserved the driver.
<core item name>is the name of the surrounding
core item, blank if the process reside in the ba-

sic system.

Program list:
LIST/PROGRAM <name>* selects the program chain,
and the output has the following format:

<name> <address>

<name> is the name of the program.

<address>is the address of the program head,
equal to the relocatable base of the program when
it was loaded.

Core item list:
LIST/CORE <name>* selects the core item chain,
and the output has the following format:

[<name>]<address><size>

<current load address><owner process name>

<name> is the name of the core item, blank if the
core item is free.

<address>is the address of the core item descrip-
tor.

<size> is the size of the core item.

<current load address> is the relocatable base
for the next load into this core item, or it is
printed as if the item is a utility item.
<owner process name> is the name of the process

owning the core item.

Generally:
If a name appears in the name list: <name>¥* and

it does not exist in the selected chain, no out-
put is generated for that name.

EXAMPLES: LIST LPT SPT
LPT 40377 SPT
!NOTE THE PROCESS SPT DID NOT EXIST!
LIST/CORE SPT
SPT 40370 276 S

ERRORS: ###PARAM (3)

INTERNAL
EXECUTION: The command is dummy.

S-FUNCTION:

FORMAT:

FUNCTION:

LOAD

LOAD [/<core item name>[/<size>]]
{{ <filename>| (<filename> <params>) }

L

-+
[/<process name>] +

The basic function of S, making it possible

to load programs and processes from files. The
function loads a list of files specified by
<file name> or (<file name> <params>).

If the program accept parameters, the first

form results in <filename> being the only para-
meter, and the second form results in <filename)>
<params> being the parameters. If the file con-
tains a process descriptor the address of the pa-
rameters are delivered to the process through an
accumulator, see [2] for further information.
Each process loaded can be renamed by adding the
/<process name> to the filename. Otherwise the

process name in the process descriptor is used.

Load into free core:
LOAD {{ <filename>|(<filename><params>) }
+
[/<process name>]}

When using this format the load will take place
in the largest free core item in the core item
chain. When each file has been loaded and the
parameters are appended to the program, the core
item is cut to the minimal size still containing
the program, the name of the core item is set to
the name of the file from where the program was
loaded. the load address is set to zero and the
owner to the operating process.

Thus a utility item is created.

Load into a specific core item:
LOAD / <core item name>[/<size>]

{ { <file name>| (<file name><params>)}

[/<process name>]}f)

When using this format, each file is loaded
into the specified core item, starting at the
current load address of the core item. When
each file has been loaded and the parameters
are appended to the program, the current load

address is adjusted.

The load can never exceed the core storage oc-
cupied by the core item. The size parameter
forces S to check that the load does not over-
write the core storage behind the first <size>
locations of the core item. So you can protect
information in the core item from being destroyed
by a load. It is only allowed to load into a core

item owned by the operating process.

EXAMPLES: LOAD PTR :load of a paper tape reader driver!
LOAD SPT/LPT :load of a serial printer driver and
renaming the process to IPT!
LOAD PTP (PIP 1 2 3)
+load of a paper tape punch driver
and a utility program with parameters!
LOAD/A PPP +load the program PPP into the core
item A!

ERRORS: #*¥IDARAM (3)
Errors in the format. Note that the
format is checked before any load.

¥*¥STATUS, FILE <file name> <status> (6)
*#RUNKNOWN, FILE <file name> (7)
¥**RESERVATION, FILE <file name> (8)

¥¥¥CORE ITEM DOES NOT EXIST, ITEM

<core item name> (11)

INTERNAL
EXECUTION:

##*¥ENTRY NOT A FILE, ENTRY <catalog (13)
entry>
##¥NOT ALLOWED (15)

*#%¥NO SPACE FOR PAGES, FILE <file name> (16)
The disc file used for saving the
pages of paged programs is filled during
the load of the program on file <file
name>. Usually a system generation error.
¥*#ILLEGAL PROGRAM, FILE <file name> (17)
The file <file name> does not con-
tain a relocatable binary program.
#%##31ZE ERROR, FILE <file name> (18)
No more core available for the load
of the program on file <file name>.
*#XCHECKSUM ERROR, FILE <file name> (19)
Checksum error during load of the
program on file <file name>
##*YIRTUAL ADDRESS ERROR, FILE <file
name> (20)
The program contains an illegal virtual
address or an errorneous page map.

As described above.

S~FUNCTION:

FORMAT:

FUNCTION:

EXAMPLES:

ERRORS:

INTERNAL
EXECUTION:

START

START <process name>

The function performs a startprocess on the
process given by <process name>.

The processes in the basic system including
S itself are not allowed to be started.

START MAIN
#E% b ARAM (3)
¥¥NOT ALLOWED (15)
*#¥PROCESS DOES NOT EXIST, PROCESS

<process name> (21)

As described above.

21

NN
|
N
)]

S~FUNCTION: STOP
FORMAT : STOP <process name>
FUNCTION: The function performs a stopprocess on the

process given by <process name>.
The processes in the basic system including

S itself are not allowed to be stopped.

EXAMPLES: STOP MAIN
ERRORS: *¥*¥ PARAM (3)
*¥#%¥NOT ALLOWED (15)
#%%*PROCESS DOES NOT EXIST, PROCESS
<process name> (21)
INTERNAL

EXECUTION: As described above.

S~FUNCTION:

FORMAT:

FUNCTION:

EXAMPLES:

ERRORS:

tility program load

<file name>[<params>]

if <file name> is not identical to any other
S-function, the command works as the command :
LOAD (<file name> [<params>]).
See LOAD for futher information

PRINT PIP
**% pARAM (3)
**¥ STATUS, FILE <file name><status> (6)
*¥¥ UNKNOWN, FILE <file name> (7)
**¥* RESERVATION, FILE <file name> (8)
***ENTRY NOT A FILE, ENTRY <file name> (13)
***NO SPACE FOR PAGES (16)

The disc file used for saving the
pages af paged program is filled du-
ring load of the program on file
<file name>. Usually a system genera-
tion error.

**¥ ILLEGAL PROGRAM, FILE <file name> (17)
The file <file name> does not con-
tain a relocatable binary program.

***SIZE ERROR, FILE <file name> (18)
No more core available for the load
of the program on file <fiel name>

*** CHECKSUM ERROR, FILE <file name> (19)
Checksum error during load of the
program on file <file name>

#¥¥¥VIRTUAL ADDRESS ERROR, FILE <file -
name> (21)
The program contains an illegal vir-
tual address or an errorneous page

map.

APPENDIX A, CHARACTER SET USED BY DOMUS

V N C V N C vV N C v N C

0 NUL blind | 32 SP blank 64 72 ill. 96 ~ ill.
1 SOH ill. 33 65 A 97 a

2 SsTX ill. 34 " ill. 66 B 98 b

3 ETX ill. 35 # ill. 67 C 99 ¢

4 FOT ill. 36§ 68 D 100 4a

5 ENQ ill. 37 % ill. i69 E 101 e

6 ACK ill. 38 & ill. 170 P 102 £

7 BEL ill. 39 ! 71 G 103 g

8 BS ill. 40 (72 H 104 h

9 HT blank |41) 73 I 105 i

10 LF nl. 42 * 74 J 106 j

11 VI' nl. 43 + 75 K 107 k

12 FF nl. 44 , 76 L 108 1

13 CR nl. 45 - 77 M 109 m

14 so ill. 46 . 78 N 110 n

15 s1 ill. 47 / 79 O 111 o}

| 16 DLE ill. 48 0 80 P 112 p

17 DCtT 4ill. 49 1 81 Q 113 g

18 DC2 1ill. 50 2 82 R 114 r

19 DC3 ill. 51 3 83 S 115 s
20 DC4 ill. 52 4 84 T 116 t

217 NAK ill. 53 5 85 U 117 u
22 SYN il1l. 54 6 86 V 118 v

23 ETB ill. 55 7 87 W 119 w

24 CcAN ill. 56 8 88 X 120 x
25 EM em. 57 9 89 Y 1217y

26 SUB ill. 58 90 2 122 Z ;
27 EsC ill. 59 ; ill. 91 B 123 & |
28 Fs ill. 60 < ill. 22 ¢ 124 ¢ [
29 Gs ill. 61 = 93 A 125 &
30 RS ill. 62 > ill. 94) ill. 126 ill.
31 Us ill. 63 2 ill. 95 <« ill. 127 DEL 1ill.
V = 7 bit value of character

N = name of character

C = comments

If no comments the characters are recognized by DOMUS according
to the syntax of S commands.

ill. means that the character is illegal outside texts and comments.

em. means that the character signifies end of medium.

nl. means that the character is regarded as the terminator of a
command line.

APPENDIX B, SURVEY OF S-COMMANDS

BEGIN

BOOT <file name>

BREAK <process name>

CLEAN <process name>

CLEAR <core item name>

DRIVE <driveno>

END

FREE <core item name>

GET <core item name>

[<size>]

INIT <driveno>

INT <file name>

KILL <process name>

Read a sequence of command lines from the
operator device. Terminate at an END com-
mand.

Load an absolute binary program.

Break the specified process.

Stop and clean the specified process.

Clear specified core item, or all utility

items.

Select the specified drive as the current

drive.

Terminate a sequence of commands and exe-

cute these commands.

Free the specified core item.

Get the specified core item.

Initialise the catalog on the specified
drive.

Read a sequence of command lines from the
specified file. Terminate at an END com-

mand.

Kill the specified process.

LIST [/PROGRAM|/CORE] List all or selected processes, programs oOr

< name>* core items.
LOAD [/<core item name>{/<size>]]
+
{{<file name>| (<file name><params>)}{ [/<process name>]}
Load the specified file(s).
START <process name> Start the specified process.

STOP <process name> Stop the specified process.

<filename>[<params>] Load the specified file.

APPENDIX C, SURVEY OF ERROR MESSAGES AND NUMBERS

1 ¥#XSYNTAX
The command to S does not fulfill the syntax

described in appendix A (all functions).

2 #¥#*¥700 MANY PARENTHESES
The command to S contains too many parentheses.

Implementation restriction (all functions).

3 *#¥PARAM
The selected S-functions cannot interprete the
parameters in a meaningful way (BEGIN, BOOT,
BREAK, CLEAN, CLEAR, FREE, GET, INIT, INT, KILL,
LIST, LOAD, START, STOP, Utility program load).

4 *¥#¥END MEDIUM FILE <filename>
The reading from a file is terminated due to
physical end of medium on a file, or an end medium

character during command reading (all functions).

5 ##¥TO0 MANY COMMANDS
The command (sequence) too long, because there is
not enough free core storage available, or because

of an implementation restriction (all functions).

6 *¥#ISTATUS, FILE <filename> <status>
The reading from a file is terminated due to a
status error from the file management system.
The octal status is shown (BOOT, INT, LOAD,
Utility program load).

7 ###UNKNOWN, FILE <filename>
The filename does not exist in the directory on
the current drive (BOOT, INT, LOAD, Utility
program load).

10

11

12

13

14

15

###RESERVATION, FILE <filename>
The file is reserved for exclusive use by
another process in the system (BOOT, INT,
LOAD, Utility program load).

*¥#¥COREITEM EXISTS, ITEM <core item name>
The core item should not exist in order to

execute an S-function (GET).

*AHSTZE
Not enough core storage available to execute
an S-function (GET).

¥##COREITEM DOES NOT EXIST, ITEM <core item name>
The core item should exist in order to execute
an S-function (CLEAR, FREE, LOAD).

#¥%COREITEM NOT CLEARED, ITEM <core item name>
The core item contains some processes, when
it should not (FREE).

#¥¥*ENTRY NOT A FILE, ENTRY <filename>
The filename does exist in the directory on the
current drive, but it is not a disc file (BOOT,
INT, LOAD, Utility program load).

#¥¥#STATUS, DEVICE <device name> <status>
Communication trouble with a process. The octal
status is shown (INIT).

##ANOT ALLOWED
The execution violates some restrictions. Check
with description of S-functions (BREAK, CLEAN,
CLEAR, FREE, KILL, LOAD, START, STOP).

16 *%#%NO SPACE FOR PAGES, FILE <filename>
(LOAD, Utility program load)

17 **¥* ILLEGAL PROGRAM, FILE <filename>
A relocatable or absolute binary program does
not fulfil the conventions for these type of
files (BOOT, LOAD, Utility program load).

18 #¥#*SIZE ERROR, FILE <filename>
A program is to big to be loaded at the moment.
Try to FREE more core (BOOT, LOAD, Utility

program load).

19 ¥#3%# CHECKSUM ERROR, FILE <filename>
Checksum error in a relocatable or absolute
binary file (BOOT, LOAD, Utility program load).

20 #i## VIRTUAL ADDRESS ERROR, FILE <filename>
Illegal coding in paged programs (LOAD, Utility

program load).

21 *¥#% PROCESS DOES NOT EXIST, PROCESS <{process>
The process should exist in order to execute
an S—-function (BREAK, CLEAN, KILL, START, STOP).

22 ##3# SYSTEM ERROR <number>
The S process cannot execute the command. See the

list of system errors in appendix D (all functions).

#%%# BREAK <cause> <acl1> <address> <address>
The S process has been breaked. Malfunction of

the system. The message appears on the teletype.

APPENDIX D, SYSTEM ERROR MESSAGES

The format of a system error message is:
##*SYSTEM ERROR <number> where the number refers to the

following list:

Bootstrap errors

The error occurs during the bootstrap of the DOMUS system
Operator device malfunction
Master drive undefined

Master device malfunction

Paging file error

1
2
3
4 File management system malfunction
5
6 System configuration error

1

0-16 System malfunction

Runtime errors

21 Internal request error. An error occurs
after the sending process is removed.

Non fatal error.
22 DOMUS stack overflow. An implementation
restriction has been violated. Fatal error,

the system may fail to operate properly.

25 Core storage structure destroyed. Fatal

error, the system may fail to operate

properly.

APPENDIX E, SYSTEM BOOTSTRAP

The DOMUS system is usually bootstrapped using the master

drive of the system. The disc should be initialised using the
program RC36-90068: SYSGEN, and should be mounted on the master
drive. If you use the RC 3652 2.4 mb disc drive as master drive,
mount the disc in unit 0, set the front panel switches on the

CPU to 100073 (octal) and press the autoload bottom. The the DOMUS

system will be bootstrapped, and the message:

DOMUS REV nn.nn
will be printed on the operator device.
If there exists a file on the master drive named SSYSI, the
commands in that file will be executed as if you had entered
the command INT SSYSI on the operator device. Otherwise the
system will invite you to enter commands by printing a

>S

on the operator device.

APPENDIX F, SYSTEM GENERATION

A DOMUS system is installed on a disc using the program
RC 36-90068: SYSGEN. The program generates a DOMUS disc
using a magtape. When loaded the program prints:

INITIALISE CATALOG (NEW/OLD) :

If you answer NEW an empty catalog will be written on the disc.
Then the necessary files will be created in order to use the
disc as a DOMUS master disc. If you answer OLD the disc is al-
ready a DOMUS disc, i.e. it has been used before as a DOMUS
master disc, and the program uses the old catalog on the disc.
Now a number of files will be copied to the disc, including
drivers for the common devices and the common utility programs.
Each file copied is verified on the operator device. When the
program has finished the message:

END SYSGEN

is printed and the program stops.
Now the disc is formatted in the following way:

sector 0-31: used by the bootstrap system and the
file managment system.
sector 32-N: used as file space, N depends on the

disc type.

file: SYS the catalog file see ref [4].
MAP the sector allocation map file, see ref [4].
BASIS used by the bootstrap program
SSYSP used by S for saving pages of paged programs.

The next page shows a run of a sysgen program.

>S

INT SYSG

>SYSG

DOMUS SYSGEN REV @2.0¢

INITIALIZE CATALOG (NEW/OLD): NEW

THIS IMPLIES THAT ALL EXISTING FILES ARE DELETED.
CONFIRM (YES/NO): YES

BASIS
CAP8
BOOTS
PTR
PTP
MT@XX
MT7XX
CRD
LPT
SPT
EDIT
CMO
DUMP
MUSIL
BACRE
MUPT

END SYSGEN

BREAK 3

