| HH&MQ@

Title:

o DOMUS, User's Guide, Part Il

H: éHEBNECENTRALEN RCSL No o -R!0432} (‘p1)‘
E | Edition: 77.09.15 |
‘Author: . Dan Andersen. :

RC SYSTEM LIBRARY: FALKONERALLE 1 ‘DK-2000 COPENHAGEN F

CONTENTS

Page
PREFACE

1.1 UTILITY CALL v v vttt ee et e ee e e et e et e it iineenns 1-1
1.2 PARAMETER FORMAT vt ee et ettt et e ttee e 1-1
2.1 DEVICE HANDLING .+t vteee ettt ettt iiiaiaeaananes . 2-1
2.2 USE OF DEVICE DESCRIPTORS v vvvtvverrrraneennnennnanaennn 2-2
3.1 SYSTEM MESSAGES - vvee ettt et e eittaineeeeannnns 3-1
3.2 MESSAGE GENERATION +vvvee ittt itaaaeeeeennnnnnnannns . 3-5
4.1 STANDARD CONVERSION ..ttt iiteiiiieennnneeanns . 4-1
5.1 UTILITY PROGRAMS oottt et et ettt ieeieeennnannns . 5-1
6.1 REFERENCES v vt eee sttt eee et esieneneesannnannnnn . 6-1
APPENDICES:
Appendix A STANDARD UTILITY PROCEDURES +.vvvrvviieeeennnen A-1
Appendix B STANDARD UTILITY MESSAGES s, B-1
Appendix C STANDARD DEVICE DESCRIPTORS\ C-1

Appendix D CONVERSION TABLE FORMATccovvininnnns D-1

PREFACE

This manual describes the utility programs running under the RC 3600 DOMUS

system .

Use of utility programs is based on the DOMUS s-function 'Utility program load',

and can be reviewed as an extension of the S-commands.

The utility programs are designed in order to ease the adminitration of the disc
files, the possibility to make backup and hardcopy of the files and to help the
MUS-programmer with a set of tools in his program production.

Last the procedures used to standardize the interface between the utility programs

and the environments are described.

1-1

1.1 UTILITY CALL.

The utility call is based on the s-function:

Utility program load given by the format

< filename> [< params>]

As seen from [1] the function is defined by the filename which is not a

normal s-function.
The function is executed by loading the process placed in file < filename >,
and transferring the < params > section to the process after fundamental syn-

tax analyse and packing.

Further detailed analyse and interpretation is left to the utility program.

1.2 PARAMETER FORMAT.

In order to get a simle and standardized parameter interpretation all utility pro-

grams, with few exceptions, use the same format and check procedure.

The programs are at generation time born with a fixed number of parameters each
specified with one of four types, a mnemonic parameter name and an expected

placing in the < params > string.

The four types are NAMES, NUMBERS, TEXTS and booleans, where the first three

is defined as in [1] , and the latter is a name with either NO or YES as va-

lue.

The structure of < params > can then be defined as:

<{ params = {(sep) [(pcrcme’rer name > .] (parometer)}*

{ parameter name)» = <name>

<sep > = <space>{<spcce>}*

{parameter> ::= <fi|encme>‘<number)‘(text)Kdummy) | NO | YES
{filename> ::= (name)[: (number)]

{dummy) = ¥

As seen each parameter is called by a unique mnemonic name, which can be
typed infront of the actual parameter followed by '.', hereby changing the
position in the sequence of the parameters. This way of naming the parame-
ters can be omitted, if all parameters are assigned in the sequence predefined
by the program, and need only to be used if one or more parameters are skip-

ped, or the defined sequence is broken.

Skip of a single parameter can be done by typing '?K‘ instead of the parameter.

At program generation time each parameter has been assigned a default value
too. These default valuesaretaken if the parameters are not defined by the
operator in the call, either because they have beenskipped by the dummy para-
meter or one of the next parameters in the sequence has been selected by its

name.

If any parameter of type name is used to define a catalog entry, the catalog-
unit on which the entry resides can be transferred to the program by typing the

delimiter '':"' followed by the unit number (unit number O is default).
If any conflict between the parameters and parameter names typed and the expec-
ted format arise, the utility function is terminated with an error message on the

console (x+x PARAM).

For further explanation take following fictive utility-program MAIN:

DOMUS-UTILITY:

FORMAT:

FUNCTION:

PARAMETERS:

EXAMPLE:

SPECIAL MESSAGES:

INTERNAL EXECUTION:

CORE REQUIREMENTS:

OTHER REQUIREMENTS:

1-3

MAIN

MAIN IN. < FILE > COUNT. < NUMBER >
OP. <BOOLEAN > TX. < TEXT >

Undefined.

Default values of call are IN .$PTR COUNT.20
OP.YES TX. K0>...<0>! k
Max textlength for parameter TX is 10.

MAIN $ LPT 100 TX. 'ABCD'
MAIN $ LPT 10 OP.NO
MAIN XX:3 TX.'AB'

MAIN IN.$MTO

MAIN TX.'QV' OP.NO
MAIN $LPT « YES

4000 xx+ UNDEFINED : < name >
AS ABOVE
400 bytes dec

NONE.

1. Example

Values used by program MAIN are:

IN = SLPT
COUNT = 100
‘ oP = YES default
f TX = 'ABCD <0> <0> <0> <0> <0> <0>'
|
) 2. Example
) . Values used by MAIN are:
IN = $LPT
COUNT = 10
orp = NO
TX = K> <0><0><0> default

3. Example
Values used are:

IN =
. COUNT =
oP =
™> =

4. Example
Values used are:

IN =

and the rest

XX file on unit 3
20 Default
YES Default

‘AB <0> <0> <0> <0> <0> <0> <0> <0>'

$MTO

default.

1-5

5. Example

Values used are:

IN = $PTR Default
COUNT = 20 Default
o°P = NO

X = "QV <0> <0> .. <>

This call is an example of a different sequence of parameters than
defined by the program, therefore the parameter names must be
specified.

6. Example

Values used are:

IN = $LPT

COUNT = 20 Default as it is skipped
by *

oP = YES

TX = <Ko> L. .<0>! Default.

2-1

2.1 DEVICE HANDLING.

Only few utility programs have been designed to use special devices, and to
avoid each program from keeping track of the device characteristics in the

handling, a general way of file /O initialization has been implemented.

Documents which are not disc files are defined in catalog entries, called
device descriptors, which holds information of the driver name to use, the
document kind, the mode of operation, the status bits to giveup on and last

the document position, if actual, given by the filenumber and block-number.

Supplied with the DOMUS system are a number of predefined devicedescriptors
which can be found in appendix C of this guide, but the user can define new
entries using the utility program SET which creates new descriptors or modify

existing descriptors.
Format of the SET call is:

SET < entry name > < driver name > < filevalue > <blockvalue > <mode >
< kind > < giveup mask >.

The kind is easily given in radix 2, and can be interpreted after the scheme:

bit 15 : character oriented devices i.e.

lineprinters, paper tape reader/punch

bit 14 : block oriented devices i.e.

magtapes, card readers, disc files

bit 13 : positionable devices i.e.

magtapes, disc files

bit 12 . repeatable devices i.e.

devices supporting error recovery

t.ex. magtapes, disc files.

bit 11 d disc files only.

For mode and giveup-mask it is difficult to give rules as it depends on the

specific device driver, but normally mode = 1 means binary input and mode

= 3 binary output, and for simple devices a giveup-mask with all bits set

except bit 3,4 and 5 (soft status bit) is sufficient.

All utility programs initialize input/output with the procedure:

The entry defined by the parameter is looked up in the catalog.

If no unitnumber is specified unit = 0 is taken as default.

If the entry exists and the entry is a device descriptor the

If the entry does not exist or the entry describes a normal disc
file the input/output is transferred to/from the disc-file defined
by the parameter. In case of output a new entry is created. In

case the file exists already the program terminates to prevent

The input/output in normally done with 512 bytes blocks, unless

the block size can be changed by use of parameters.

Define the device descriptor $PTR to describe the document punched

1.
2.

file is expected on the device defined by the entry.
3.

overwrite of existing data.
4.
2.2 USE OF DEVICE DESCRIPTORS.
1.

tape with even parity:

SET $PTR PTR 0 O 9

2.

Define the descriptor describing file 10 on magtape MTO with input:

SET $MT MTO 10 1 1 2'1110

Kind is set to repeatable, positionable and blocked.

2-3

Describe the operator console used for both input and output
SET $TTY TTY 0 0 1

Describe the file PIP on catalog unit 10 with a descriptor on unit

0 with the same name:
SET PIP PIP:10 0 0 1 21110 -1
Kind must be set to disc and giveup-mask must have all bits set.

Copy file number 4 on magtape station MT2 to file number 6 on mag-

tape station MTO:

SET MTIN MT2 4 1 1 2'1110

FINIS SET

SET MTOUT MT0 6 1 3 2'1110
FINIS SET

COPY MTIN MTOUT

FINIS COPY

For devices enabling both input and output it is sufficient to specify
the mode for input as the utility programs in case of out-put always
will or the mode found with the output mode 3.

Descriptor $MT created in 2) can be used to define a new file on

same station by:
SET $MT MTO 11

as all non given parameters are taken from the existing descriptor.

3-1

3.1 SYSTEM MESSAGES.

All system messages resideson the command file SSYSE on catalog unit0, and

each message is identified by a unique number in the interval 1 to 9999.

Each error occuring in the system is converted to an appropriate message
number, and the text to output is fetched from the common file. This en-
ables the user to add, translate, change or reformulate the error-text con-

nected to the number.

In order to avoid conflicts in use of the texts they have been split in diffe-

rent groups:

Number Used by

0- 99 DOMUS Operating system
100 - 1999 Standard utility programs
2000 - 2999 Standard device errors

Each text is found by
adding a base connected
to a specific device with
the number of the left-

most status bit set

3000 - 7999 Standard application programs
8000 - 8999 Informative texts
9000 - 9999 Customer available texts, free

to use for any customer designed

texts or messages.

In the groups from 0 - 7999 the text delivered is allways defined with the heading
XXXX **x, where XXX is the textnumber.

3-2

Messages in group 1 - 99 are defined and explained in DOMUS, User's Guide,
Part | [1]

Messages in the interval 100 - 2999 can be found in appendix B of this Guide.

Messages in the groups 100 - 140 and 2000 - 2020 are used by all utility pro-
grams, and are not shown in the description of the program, where only special

messages used are given.

Message numbers used in case of errors in catalog operations are found by add-

ing base 100 to the leftmost status bit-number, when bit 3 and bit 4 are removed:

0100 ok CATALOG 1/O ERROR, FILE < name >
catalog system is malfunctioning,
possibly the catalog structure is
destroyed or there are software

errors in the catalog system.

0101 *kk FILE DOES NOT EXIST, FILE < name >

The file to work on is not present in

the catalog on the selected unit.

0106 *kx ILLEGAL OPERATION, FILE < name >
The operation requested on file
< name > is not allowed, either
because the file is protected or
another process works on the file.

Non existing unit specified.

0107 *H % NOT ENOUGH DISK SPACE, FILE < name >
There are too small a number of
free segments to hold the file

< name >.

0111

0112

% %%

* k%

FILE DOES ALREADY EXIST, FILE < name >
The entry to create is already
present in the catalog on the

selected unit.

INDEX BLOCK FULL, FILE < name >
The maximum filelength has

been reached on file < name >

Message numbers in case of errors in the initialization of input/output or data

transfer to files are found by adding base 120 to the leftmost status bit number

after removal of bit

0120

0121

0126

0127

0131

* % %

k k%

% %%

* kK

* kX

3 and bit 4:

CATALOG |/O ERROR; FILE < name >

See error 100.

FILE DOES NOT EXIST, FILE < name >

See error 101.

FILE IN USE, FILE < name >

The file to work on is reserved

for exclusive use by another process,
or a process with name < name > is

present in core.

NO FREE AREA PROCESS TO FILE < name >
The common pool of area processes
is empty. The pool can be extended

by loading more area processes.

END MEDIUM ON FILE < name >
Physical end of file found before

an expected logical end of file.

0132

* %%

MAP/FILE EXCEEDED, FILE < name >
The maximum filelength has been
reached on file < name > or no

more free segments due to a con-

figuration error on the disc.

3-4

Message numbers used in case of disc errors or device errors are found by adding

the base 2000 to the number of the leftmost bit set after removal of bit 3 and

bit 4:

2000

2001

2002

2006

2007

2008

* %Kk

* k%

* %%

* %%k

* Kk

k

DISCONNECTED, FILE < name >
The device is not ready or
set ready by the operator, or the

hardware is missing.

OFF-LINE, FILE < name >
The device is or has been setf

local by the operator.

BUSY, FILE < name >
The device is not ready to

accept input/output transfers.

RESERVED OR [LLEGAL OPERATION, FILE < name >

The driver is reserved by another process,

~or the operation is unknown to the

driver or write has been attempted

on a writeprotected device.

END OF FILE, FILE <name>

See error 0131,

BLOCKLENGTH ERROR, FILE <name>
The block read was too big
to be held in the used buffer

size.

The block output was too big
to be held on the document.

Format error in input.

2009 * %k DATA LATE, FILE <name>
The CPU was too busy to
respond on a memory reference
from device <name>. High speed

devices only.

2010 *okk PARITY ERROR, FILE <name>
One or more characters read

had a parity error.

2011 *kk END MEDIUM, FILE <name>

See error 0131,

2012 . POSITION ERROR, FILE <name>
The drive is unable to find

the position requested.

2013 ok ok DRIVER MISSING, FILE <name>
The driver to use is not loaded

by the operator.

2014 ok TIMEOUT, FILE <name>
The device did not respond on
the requested operation within a

maximum time.

3.2 MESSAGE GENERATION.

Supplied with the system is the common text file SSYSE. The source text out
of which the file is generated is placed in the file ERMES.

3-6

Modification of the sourcefile is done by the Text Editor, and the formatted file
SSYSE is generated by use of utility program GENER (see this).

Unused text numbers will not occupy disc space.
Maximum messagelength is 502 characters, and undefined messagenumbers re-

sult in the text *+x UNREGISTERED ERROR if fetched from the SSYSE file by
DOMUS.

4-1

4.1 STANDARD CONVERSION.

When programs output to printers data are send as ASCII characters.

As the RC 3600 lineprinters can run with a number of different print-drum

character-sets all lineprinter drivers support use of standard conversion.

This conversion is initiated by connecting a conversion table placed in core

to a specific printer driver by use of the utility program STACO.

The function of STACO is to connect a conversion-table placed in a core

item to the selected driver and to prevent the conversion-table from removal
without the drivers knowledge. A list of coreitems after the STACO call will
show that the driver is placed as owner of the coreitem containing the con-

version-table.

Regret of standard conversion can only be done by a kill of the owner driver,

and a reload of the process.

Standard conversion is only used by the drivers if the reserver program does nof
specify its own conversion-table, hereby enabling application programs with own

defined tables to run without change.

DOMUS-UTILITY:

FORMAT:

FUNCTION:

PARAMETERS:

EX AMPLE:

SPECIALMESSAGES:

INTERNAL EXECUTION:

CORE REQUIREMENT:

OTHER REQUIREMENTS:

5-1

APPEND
APPEND OUT. <file> IN. <file> <file> ...

The command activates the utility program
append which copies from IN. <file> to

OUT. <file>. Trailing zeroes in each file
are skipped. Up to 10 input files may be

specified.

The ident <file> is the name of the output
file and the input files.

APPEND $PTP DATA1 DATA2 DATA3
FINIS APPEN

The files DATA1, DATA2 and DATAS are
copied to file $PTP.

0200 =%+ NOT ENOUGH ARGUMENTS
As described above.
4410 bytes.

None.

DOMUS-UTILITY:

FORMAT:

FUNCTION:

10-19

B Y

5-2

CATLIST.
CATLIST MASK. <name mask> OUT. <file>

A sorted list of catalog entries is output on
file <file>. In <name mask> $ replace all

possible characters.

Format of the output will be for normal entries:

Entry name + YV/II %O
2: Entry attributes, with following
interpretation:
Catalog entry
Big slice extension
Link entry
Permanent entry
Write protected file
Entry only (v imyem 8- el)
Device descriptor
Extendable file
Fixed length file

TP PO

Segment number of index block
File length of file
Reserved length

> 9w

Entry optional words 1 as ASCII
string '
7: Entry optional words 2 as ASCII

string
In case of device descriptor entry:

1: Entry name
2: Entry attributes as for normal entry

3: Driver name

PARAMETERS:

SPECIAL MESSAGES:

INTERNAL EXECUTION:

CORE REQUIREMENTS:

OTHER REQUIREMENTS:

5-3

File number (decimal)
Block number (decimal)
Mode (decimal)

Kind (binary)

Giveup-mask (octal)

N>R

Namemask is a mask selecting the entries to

be printed. Any entry name that fits the mask
is listed. Character $ replace any character

i.e. PIP$ as mask will output all entries with
naome-length 4 where first three characters =

PIP.

If unitnumber is specified on parameter MASK,
the catalog on this unit is scanned for matching

filenames.

Default calues are:
CATLIST MASK.$$$$$ OUT.$TTY

i.e. all entries on unit 0 is listed on device

described by $TTY.
NONE

As above

16000 bytes dec

NONE

DOMUS-UTILITY: CHATR
FORMAT: CHATR NAME. <file> ATT. <attributes>
FUNCTION: The command activates the utility program

CHATR which changes the attributes of a file
with a specified name.

PARAMETERS: The ident <file> is the name of the file to
be changed.
The ident <attributes> is composed of file
specification characters. Allowed specifica-
tions are: B (big slice extension), P (perma-
nent file), W (write pro-tected file), V (va-
riable size i.e. extended-able), F (fixed
size).

V is default value.

EXAMPLE: CHATR PTP PW
FINIS CHATR

The file PTP is changed to have the file spec-

ifications permanent and write-protected.

CHATR WORK
FINIS CHATR

The file work is changed to not having the file
specifications permanent and write-protected,

and to be of variable size i.e. extendable.

SPECIAL MESSAGES: 0200 #»x+ NOT ENOUGH ARGUMENTS
0202 =** ILLEGAL FILE SPECIFICATION

INTERNAL EXECUTION:

CORE REQUIREMENT:

OTHER REQUIREMENTS:

As described above.

1600 bytes.

None.

5-5

DOMUS-UTILITY:

FORMAT:

FUNCTION:

PARAMETERS:

EXAMPLE:

SPECIAL MESSAGES:

INTERNAL EXECUTION:

CORE REQUIREMENTS:

OTHER REQUIREMENTS:

5-6

CONFIGURATION
CONFIGURATION LIST. <file>

All titles of modules placed in the current
DOMUS basic system are listed on <file>.

Only parameter is the list file name.

Default value is operator console.

CONFIGURATION XXX
FINIS CONFI

XXX contains after call:

*%%x DOMUS SYSTEM CONFIGURATION ##x

MUMO04

MUI104

Only standard errors.
As above.

3254 bytes dec.

Bootstrap-program DB000 or later versions must

be used for system-start.

DOMUS-UTILITY:
FORMAT:

FUNCTION:

PARAMETERS:

EXAMPLE:

SPECIAL MESSAGES:
INTERNAL EXECUTION:
CORE REQUIREMENT:

OTHER REQUIREMENTS:

5-7

COPY
COPY IN. <file> OUT. <file> BLOCK. <size>

The command activates the utility program
COPY which copies from IN. <file> to OUT.
<file>.

The ident <file> is the name of the output
file and the input file. The integer <size> is
the blocklength on the output file. Default value
is 512,

COPY $PTR $PTP

FINIS COPY

The file $PTR is copied to the file $PTP.
0200 4«4+« NOT ENOUGH ARGUMENTS
As described above.

4254 bytes.

None.

DOMUS-UTILITY: CREATE

FORMAT: CREATE NAME. <file> SIZE. <size> ATT.
<attributes>

FUNCTION: The command activates the utility program

CREATE which creates a file with the spe-

cified name, size and attributes.

PARAMETERS: The ident <file> is the name of the file to
be created.
The integer <size> is the number of sectors
in the file. 1 is default size.
The ident <attributes> is composed of file
specification characters. Allowed specifi-
cations are: B (big slice extension of file),
P (permanent file), W (write protected file)
F (fixed size). V (extendable) is default.

EXAMPLE: CREATE WORK 100 PF
FINIS CREAT

The file work is created with size 100
sectors and with file specifications permanent

file and fixed size.

SPECIAL MESSAGES: 0200 *xx NOT ENOUGH ARGUMENTS
0202 #++ ILLEGAL FILE SPECIFICATION

INTERNAL EXECUTION: As described above,
CORE REQUIREMENT: 1520 bytes.

OTHER REQUIREMENTS: None.

DOMUS-UTILITY:

FORMAT:

FUNCTION:

PARAMETERS:

EXAMPLE:

SPECIAL MESSAGES:

INTERNAL EXECUTION:

CORE REQUIREMENT:

OTHER REQUIREMENTS:

5-9

DELETE

DELETE NAME. <file>

The command activates the utility program
delete which deletes the file with the spe-

cified name.

The ident <file> is the name of the file to
be deleted.

DELETE WORK
FINIS DELET

The file work is deleted.

0200 =++ NOT ENOUGH ARGUMENTS.
As described above.

1336 bytes.

None.

DOMUS-UTILITY:

FORMAT:

FUNCTION:

PARAMETERS:

EXAMPLE:

SPECIAL MESSAGES:

INTERNAL EXECUTION:

CORE REQUIREMENTS:

OTHER REQUIREMENTS:

DISK

DISK UNIT. <unit no>

Number of free segments and number of
used segments on catalog unit <unit no>

is output on the operator console.

Only parameter is the integer <unitno>,
which must not exceed 255.

Default value is unit =0,

DISK 2
>DISK
USED: 2500 LEFT: 1000
>S
FINIS DISK

0206 x«+ UNITNO GREATER THAN 255
0207 =x+ UNIT NOT MOUNTED

0208 «++ UNIT DOES NOT EXIST

As above.

1378 Bytes dec

None.

DOMUS-UTILITY:

FORMAT:

FUNCTION:

PARAMETERS:

SPECIAL MESSAGES:

INTERNAL EXECUTION:

CORE REQUIREMENTS:

DEVICE HANDLING:

EDIT

EDIT <filename>
This utility is the system text editor.

All functions are described in the Text
Editor manual (version two). [4]

Using the editor command H will finish
editing as described in [4] , and finish

the editor function.

If <filename> is typed the editor will per-
forme UY command on <filename> automa-
tically, and the first page is ready in edit-
buffer.

See [4] .

As above.

13714 bytes dec.

Device descriptors are not supported by the
Text Editor, for further details see [4]

DOMUS-UTILITY:

FORMAT:

FUNCTION:

PARAMETERS:

FCOPY

FCOPY FUNC. <direction> MASK. <name
mask> LIST. <file> FIL. <filenumber> MT.
<magtape no> UPDATE. <boolean>

Dumps or loads all or selected disc-files,
except system files and files with names
equal to loaded processes, to/from magne-
tic tape. A log of the disc filenames and
sizes is output on the file selected by LIST

parameter.

The direction of the transfer is selected by
<direction>, which must be the names DUMP
or LOAD, or else the call is rejected with
parameter error. <namemask> is the name(s)
of the discfile to dump or load. The charac-
ter $ means all characters, and only file-
names matching the mask is transferred. If
an unit number is appended on parameter
MASK, transfer is done to/from this catalog
unit.

Parameter FIL is the filenumber on magtape
station <magtape no> on which files are read
or written.

UPDATE is only used if LOAD is specified
in which case the value YES means that al-
ready existing files with the same name can

be overwritten, else the disctransfer is skipped.

Default values are:

FCOPY FUNC.DUMP MASK.$$$$$ LIST.$LPT
FIL.1 MT.O0 UPDATE.NO

SPECIAL MESSAGES:

CORE REQUIREMENTS:

OTHER REQUIREMENTS:

0003 xx» PARAM

6900 bytes dec

Each file on the tape contains for each
disc file one block of 32 bytes containing
the entry and a number of 512 bytes blocks
matching the file length of the file.

DOMU-UTILITY:

FORMAT:

FUNCTION:

PARAMETERS:

EXAMPLE:

SPECIAL MESSAGES:

INTERNAL EXECUTION:

5-14

GENER
GENER IN. <source> LIST. <file> OUT. <file2>

The program reads an ASCII file <source>
containing all system messages, produces

a listing on file <filel> of these messages

and of any erros detected in the text file,

and creates a disc file <file2> containing

these messages in a form accessible by DOMUS.
Number of errors is output on console, and

line and page number of each error can be

found in the listing.

Default values are
GENER IN.TRE LIST.LP OQUT.SSYSE

Please note that standard device names are

not used.

GENER ERMES $LPT MSYSE
This call causes gener to read and check the
ASCII text file ERMES and to create the file
MSYSE with listing on $LPT.

Standard error messages is not used . In case of
I/O trouble the text

xx+ DEVICE STATUS <file> <status>

is output.

<file> is the device or file causing troubles and

<status> is the octal status word.

As above.

CORE REQUIREMENTS:

OTHER REQUIREMENTS:

8400 bytes dec.

The ASCII input file contains the system
messages in ascending order each in the

form:

<number> <identification> '<message>' <NL>
The first line should contain a zero and the
identification of the file,

This line contains no message. The following
lines contains the messages.

<number> is a sequence of decimal digits.
<identification> is any sequence of charac-
ters not containing a ' <quote>. This sequence
is not checked.

<message> is a mixture of printable ASCII
characters and constructs of the form

<< number >>. In general NL and FF are
skipped outside numbers.

Characters with value > 127 are converted
into ?.

Maximum message length is 502.

DOMUS-UTILITY:

FORMAT:

FUNCTION:

PARAMETERS:

LIBE

LIBE LIB. <library> OUT. <file> FUNC.
<function> PROC. <procedure>

With this utility MUSIL-code procedure
libraries can be edited by extract, delete,
addition and list of procedures in the

library .

A code procedure is defined as a number
of relocatable binary blocks with a lead-

ing tittleblock and a trailing startblock.

Except for the listfile only discfiles are

supported by the Library Editor.

<library> is the discfile containing the
library to work on.

<file> is the logfile

<function> is a name defining the opera-
tion: |

LIST: List code procedure names and sizes

on logfile.
ADD: Insert the code procedure contained
in file <procedure> in the library.

Library file is created if non existing.

DEL: Remove the code procedure with title
<procedure> from the library.

EXT: Place the codeprocedure with title

SPECIAL MESSAGES:

INTERNAL EXECUTION:

CORE REQUIREMENTS:

OTHER REQUIREMENTS:

<procedure> on a discfile with same
name. The procedure remains un-

touched in the library.

Default values of QUT and FUNC are:
QUT. $TTY FUNC.LIST

None

As above

7828 bytes dec.

A workfile is created the file with the
same name as the library, except for the

first character which is replaced by '.!
(dot).

DOMUS-UTILITY:

FORMAT:

FUNCTION:

PARAMETERS:

SPECIAL MESSAGES:

CORE REQUIREMENTS:

DEVICE HANDLING:

5-18

MUSIL

None

MUSIL high-level language compiler.
Runtime parameters can be entered after
loading, when MUSIL READY is output
on console.

For parameter format and entering please
find the description in MUSIL COMPILER,
Operating Guide [5]

See [5]

13336 bytes dec.

Device-descriptors are not supported by the
MUSIL-compiler, for further details see [5].

Process name of compiler: COMP,

DOMUS-UTILITY:

FORMAT:

FUNCTION:

PARAMETERS:

EXAMPLE:

SPECIAL MESSAGES:

INTERNAL EXECUTION:

CORE REQUIREMENTS:

OTHER REQUIREMENTS:

NEWCAT

NEWCAT UNIT. <unitno> BIG. <sizel>
SMALL. <size2> SEG. <number>

A new and empty catalog is created on
unit = <unit no> with big slice size =
<size2>, small size = <sizel> and <number>

segments.

Unit-number must not be 0 as unit0 is the
system disc at running time, and maximal
unitnumber accepted is 255.

Slices sizes must fulfil the condition 1

< size2 < sizel < 255.

NEWCAT 1 24 6 4872

All files on catalog unitl is removed, and a
new and empty catalog is created.

Slice sizes are selected to be 6 and 24.
Total number of segments in unitl is 4872,

i.e. a 2.4 mb disc is used.

0209 #++ ILLEGAL UNITNUMBER
0210 ##+ ILLEGAL DISC SIZE

As above
1382 bytes dec

Catalog initialization process CATI must be

loaded, or else error

WARNING:

5-20

2013 x++ DRIVER MISSING, FILE CATI

is output on console.

All files on selected unit are deleted

independent of attribute protection.

DOMUS-UTILITY:

FORMAT:

FUNCTION:

PARAMETERS:

EXAMPLE:

SPECIAL MESSAGES:

5-21

PRINT

PRINT IN. <file1> LINE. <boolean> OUT.
<file2>

File <filel> is output on the file <file2>
(normally the lineprinter). Character tab
with ASCIl value 9 is converted to spaces.
If LINE=YES, linenumbers are output in
front of each line as a four digit number.
Linenumbers are equivalent to linenumbers

printed by MUSIL compiler.

First parameter is the name of the file to

be printed.

Third parameter is the output file, and se-
cond is a boolean with value YES or NO

specifying if linenumbers should be printed.

Default values are:

PRINT IN.$PTR LINE.NO OUT.$LPT
PRINT QQ LINE.YES

File QQ is printed on device $LPT with

linenumbers.
PRINT QW:1 YES $SP

File QW on catalog unit 1 is printed on

device $SP with linenumbers.

Only standard messages are used.

INTERNAL EXECUTION:

CORE REQUIREMENTS:

OTHER REQUIREMENTS:

As cbove.

3116 bytes dec

Depending on printer-drum standard con-
version can be used, by connecting a
conversiontable to the printerdriver with
program STACO.

It is recommended to use program COPY

for datatransfer to non printer files.

5-22

DOMUS-UTILITY:

FORMAT:

FUNCTION:

PARAMETERS:

EXAMPLE:

SPECIAL MESSAGES:

5-23

PUNCH

PUNCH IN. <file> MODE. <modename>
PNO. <punch num>

File <file> is output on punch number
<punch num> with the type defined

in <modename>.

Modename = NO : no parity

Modename = ASCI| : even parity
Modename = EVEN : even parity
Modename = ODD : odd parity

Default value of mode is EVEN and for
punchnumber 0.

Only first character in modename is
checked, and if any other character than
A, E, N, or O is found no parity punch

is performed.

PUNCH PIP A 1

File PIP is transferred to PTP1 in even

parity .
PUNCH PAP: 2 NO
File PAP is punched on PTP without parity.

2026 x++ PUNCH RESERVED
2031 «++ PAPER LOW ON PUNCH
2033 *++ PUNCH DRIVER NOT LOADED
2034 »++ PUNCH ERROR OR TIMEOUT

%

INTERNAL EXECUTION:

CORE REQUIREMENT:

OTHER REQUIREMENTS:

As above

2440 bytes dec

None

5-24

DOMUS-UTILITY:
FORMAT:

FUNCTION:

PARAMETERS:

EXAMPLE:

SPECIAL MESSAGES:

INTERNAL EXECUTION:

CORE REQUIREMENT:

OTHER REQUIREMENTS:

5-25 -

RENAME

RENAME OLD. <file> NEW. <file>

The command activates the utility program
RENAME which changes the name OLD.

<file> to NEW. <file>

<file> is an ident and indicates current name

and new name of the file.

RENAME WORK SAVE
FINIS RENAM

The file WORK is renamed SAVE and the

name WORK is removed from the catalog.

0200 xxx NOT ENOUGH ARGUMENTS
0201 ++x UNIT NUMBER CONFLICT

As described above.

1518 bytes

None

5-26

DOMUS-UTILITY: SET

oh. V.S . thnTust Mlung

r
FORMAT: SET NAME. <entry> DEVICE <docname>

FILE. <filno> BLOCK. <blockno> MODE.
<modevalue> KIND. <kindvalue> MASK.

<givup>

FUNCTION: This utility creates a new device descrip-
tor or change an existing devicedescriptor

according to the values given at call.

PARAMETERS: The ident <entry> is the name of the device-
descriptor to change or create.
The ident <docname> is the name of the
eqvivalent document name i.e. the driver
name.
Integer <filno> and <blockno> are the
wanted position of the document when the
descriptor is used and referenced.
The integers <kindvalue> and <givup> are
the values used in the filedescriptor when
the user utility inputs from/ outputs to the

document.

Default values are when devicedescriptor is

created:

FILE.1 BLOCK.1 MODE.1 KIND.1
MASK .8'163777

If descriptor exists default values are the values

found in this entry.

5-27

EXAMPLE: SET $PTP PTP MODE.11
FINIS SET

Devicedescriptor $PTP describes the docu-
ment punched tape with ASCII even parity.

SET $MTO MTO 4 1 1 2'1110
FINIS SET

Devicedescriptor $MTO describes file 4 on
MTO. Kind is set to repeateable, position-
able and blocked.

Define the task to copy from MT1 file # 2
to file 10 on MTO:

This can be done by:

SET MTOUT 10 1 3 2'1110
FINIS SET 77

SET MTIN MTI 211 211110
FINIS SET |

COPY MTIN MTOUT

FINIS COPY

SPECIAL MESSAGES: 0211 xx+ NOT DEVICE DESCRIPTOR, ENTRY
<entry>
0212 «#% FILE OR BLOCK TOO LARGE
INTERNAL EXECUTION: As above

CORE REQUIREMENTS: 1670 bytes dec

OTHER REQUIREMENTS: None

5-28

DOMUS-UTILITY: STACO
FORMAT: STACO <drivername>. <item name>
FUNCTION: The program searches for the driver

<driver name> and inserts the table loaded
in the utility core item <item name> as

standard conversion.

The owner of the core item containing the
table is changed to be the driver. Thus
the table may only be removed from core

by killing the driver.

PARAMETERS: No default values.

EXAMPLE: LOAD LPT TAB7
STACO LPT. TAB7
FINIS STACO

Table found in item TAB7 is taken as

standard conversion in LPT driver.

SPECIAL MESSAGES: *xk SYNTAX
%k DRIVER DOES NOT EXIST
* %k NOT DRIVER PROCESS
ok DRIVER RESERVED
ko STANDARD CONVERSION EXISTS
ko TABLE DOES NOT EXIST
* %k TABLE NOT UTILITY COREITEM

INTERNAL EXECUTION: As above
CORE REQUIREMENTS: 460 bytes dec
OTHER REQUIREMENTS: For table format and coding see appendix D

of this guide.

DOMUS-UTILITY:
FORMAT:

FUNCTION:

PARAMETERS:

EXAMPLE:

SPECIAL MESSAGES:

INTERNAL EXECUTION:

CORE REQUIREMENTS:

OTHER REQUIREMENTS:

5-29

TYPE
TYPE IN. <file> LINE. <boolean>

File <file> is output on the operator con-
sole.

Tab character (ASCIl value 9) is converted
to spaces.

If LINE=YES linenumbers are output in front
of each line as a four digit number, and
linenumbers are equivalent to linenumbers

printed by MUSIL-compiler.

First parameter is the file to be output.
Second paramter is a boolean with value
YES or NO, specifying if line numbers are

wanted in front of each line.

Default values are:

TYPE IN. $PTR LINE.NO

TYPE QQ YES
File QQ is typed with linenumbers.
TYPE LINE. YES

Paper tape in reader is output with line-

numbers .
Only standard messages.

As above.
2452 bytes dec

None

DOMUS-UTILITY:

FORMAT:

FUNCTION:

PARAMETERS:

EXAMPLE:

SPECIAL MESSAGES:

INTERNAL EXECUTION:

CORE REQUIREMENTS:

OTHER REQUIREMENTS:

5-30

XREF
XREF IN. <source> QUT. <file>

This utility makes a cross-reference list
of all constants, types, variables, proce-
dures and lables on file <file> in a
MUSIL source on file <source>.

A sorted list of all types declared is
produced, with linenumbers in which

they appear.

Default values are:

XREF IN. $PTR OUT.S$LPT

XREF SOURCE $SP

Cross-reference list of file source is ouf-

put on device $SP.

0203 #++ COMMUNICATION ERROR WITH §
0204 *+x SHORT OF CORE STORAGE
0205 #*+ NON-ASCII CHARACTER IN INPUT

As above

5136 bytes dec and coreitem XREFC for

internal sort.

None

REFERENCES
] RCSL:
[2] RCSL:
[3] RCSL:

RCSL:

43-R10165

Keywords:

Abstract:

43-R10164

Keywords:

Abstract:

42-i0344

Keywords:

Abstract:

42-i0337

6-1

DOMUS, User's Guide, Part |

DOMUS, MUS, Operating System,

Loader, Disc.

This manual describes the disc ope-
rating system DOMUS for the RC 3600
line of computers.

DOMUS System Programmer's Guide
MUS, Operating System, Loader, Disc
This manual describes the interface
between assembly programs and DOMUS

MUSIL Programming Guide

Programming, coding, MUSIL RC 3600,

source language.

This manual shows how to program an

RC 3600 in the MUSIL high-level .anguage

TEXT EDITOR (version two)

Lo

6-2

RCSL: 43-GL1349 MUSIL COMPILER
Operators Guide

Keywords: RC 3600 Musil Compiler

Abstract: Compiler Guide, Operators Guide.

APPENDIX A, STANDARD UTILITY PROCEDURES.

Following three procedures have been made to ease the programming of utility
programs when fetching parameters, making 1/O with devicedescriptors and

finish theutilityfunction.

The procedures will when used give a standard interface to the operator and

the operating system.

FETCH OF PARAMETERS.

Fetch of parameters can be done with the codeprocedure GETPARAMS (P0085),

which is called with three parameters each of type string.

The first parameter is a constant string defining the expected format of the pa-

rameters, the parameter names, types and sequence.

The format of the string is:

'<5 bytes parameter name> <lbyte parameter type>

<5 bytes parameter name> <1 byte parameter type>
<255>!

Last byte in the description string is 255, terminating the parameter list. In case
the parameter name is less than 5 characters, zero bytes must be inserted in the

end of the parameter name.

A-2

4 values of parameter types exist:

VALUE TYPE OF PARAMETER

134 NAME (STRING(6))
130 INTEGER (INTEGER)

129 BOOLEAN (STRING(1))

The string equals <255> if
parameter = 'YES' and <0> if
parameter = 'NO'.

VALUE <128 TEXT (STRING (VALUE))
Or as an example:

CONST

DESC ="
IN <0> <0> <0> <134> ! Parameter name = IN, Type = NAME!
COUNT <130> ! Parameter name =COUNT, Type = INTEGER!
OP <0> <0> <0> <129> ! Parameter name = OP, Type = BOOLEAN!
TX <0> <0> <0> <10> ! Parameter name = TX, Type = STRING (10).
<255>, ! Terminator!

The second parameter is a constant string defining the default of all the defined
parameters. These values are taken if some of the parameters are not specified

in the utility call:

INIT ="'
$PTR <0> <0> ! FIRST PARAMETER DEFAULT!
<0> <20> ! SECOND PARAMETER DEFAULT!
<255> _ ! THIRD PARAMETER DEFAULT!

<> <0> <0> <0> <0> <0>! FOURTH PARAMETER DEFAULT!

A-3

As seen the parameter OP has been assigned the default value 'YES'.

Third parameter is a variable string, which after call holds the parameters
typed by the operator, or the assigned default value if the parameter is

skipped by the operator.

It can be build as a record in MUSIL, and must as the first element contain

a string (6), which is sat to the loadname of the user program:

VAR

PAR: RECORD
LNAME: STRING(6) ; 'SPACE FOR LOADNAME!
INV : STRING(6) ; !FIRST PARAMETER !
COUN : INTEGER ; !SECOND PARAMETER .
BOOL : STRING(1) ; !THIRD PARAMETER .
TEXT : STRING(10) !FOURTH PARAMETER .

END;

The content of the fields in PAR after call of GETPARAMS are either the default
value specified by the DESC string, if the parameter is not typed by the operator,

else the value assigned by the operator.

1. To ex. the cdll

< program name >

will result in

PAR.LNAME = ' < program name >'
PAR.INV = ' $PTR <0> <O>!
PAR.COUN = 20

PAR.BOOL = ' < 255> ('YES')

PAR.TEXT t 0> <0> <0> <0> <0> <0> <0> <0> <0> <0>'

as all default values are taken.

It

2. The call

< program name > MT

will result in

3. and

4. and

Il

PAR.LNAME
PAR.INV =
PAR.COUN
PAR.BOOL
PAR.TEXT

il

It

I

< program name > MT

PAR.LNAME
PAR.INV =
PAR.COUN
PAR.BOOL

PAR.TEXT =

< program name > MT

PAR.LNAME =
PAR.INV

PAR.COUN
PAR.BOOL =
PAR.TEXT

I

l

30 YES 'ABCD'.

< program name > '
' MT <0> <0> <0> <0> '
30
1< 255> ('YES')
' ABCD <0> <0> <0> <0> <0> <0> !

OP.NO in

< program name > '
' MT <0> <0> <0> <0> !

20 ! DEFAULT!
' <0> !
' <0> <0>'! DEFAULT.

: 2 TX. '"QUERTY' in

' < program name > '

©MT <0> <0> <0> <2> ' ! UNIT IN BYTE 6!
20 ! DEFAULT !
t< 255 > ! DEFAULT !

" QUERTY <0> <0> <0> <0>'

A-5

If there is any conflict between the parameters typed by the operator and the
names and types specified by the program, the procedure will not return, but
output an error message on the console and finis the execution of the utility

program.
The procedure declaration is

PROCEDURE GETPARAMS (DESC : STRING(1) ; INIT : STRING(1) ;
VAR PARAMS : STRING(1)} ;

CODEBODY P0085; -

UTILITY PROGRAM TERMINATION.

When the utility program has compleated the job it is convenient to remove the

process, and thereby free the core reserved.

This can be done by the procedure FINIS (P0084), which is called with a single

integer parameter containing information about the result of the job.

This result is not used by the operating system, but can be used by other programs

using internal commands for special jobs.
At present the simple convention exist:
RESULT < > 0 : job execution OK

and

RESULT = 0 : job execution not OK.
Declaration of procedure is:

PROCEDURE FINIS (RESULT : INTEGER);
CODEBODY P0084 ;

It is the programmers responsibility that all devices and files used during run

are closed before use of this procedure.

FILE CONNECTION.

The use of utility programs is related to the disc system, and normally the
data input or output by the program is placed on a discfile . However utility
programs may be able to produce output or take input on non-disc devices

(magtapes, paper tape, cards etc).

As these devices have different behaviour seen from the program all the charac-
teristics connected to these devices can be placed in devicedescriptors, which
are catalog entries created with utility program SET (consult the description
for further information) and marked with a special aftribute (entry only (1b13)

and devicedescriptor (1b14)).

The zones used by the utility program can then be openedby use of the procedure
CONNECTFILE (P0086). Three parameters are neccesary in the call, they are:

The zone to open,
the mode in question and
the name identifying the filename or

the devicedescriptor name.

Declaration is then

PROCEDURE CONNECTFILE (FILE F; MODE: INTERGER;
IDNAME: STRING(6));

CODEBODY P008¢;

The function of the procedure is:

1. The entry indentified by IDNAME is looked up in the catalog.

2a. If the entry found is a devicedescriptor the zone F is initialized
with the kind, device name, giveup mask. The zone is opened
with the or'ed value of parameter MODE and the mode found in
the entry. Last the position is set according to filenumber and block-

number found in the entry.

2b. If the entry is not a devicedescriptor, or the file is not existing
the parameter MODE is examined. It mode is output an enfry is
created with the name = IDNAME, size = 1 and attribute = ex-

tendable.

Last the zonekind is set to disckind, and the zone is opened with

the specified mode and positioned on block zero.

It should be mentioned that the buffersize must be 512 if discfiles are expected,
and the giveup procedure can be called in connectfile (To example when the

output disc file already exists).

The entry format of a devicedescriptor is:

word no,
. —_ +0
| ENTRY NAME _|
B NOT USED |
ATTRIBUTE +6
G IVEUPMASK +7
0_
O . s
- p— +10
- DEVICE NAME _
DEVICE KIND 113
DEVICE MODE +14
FILENO* 256 + BLOCKN +15

FETCH OF SYSTEM ERROR TEXTS.

The DOMUS system has all standard error-texts placed on the file SSYSE, and
the texts can be delivered on request from the operating system if specified

by a text number.

Fetching of texts is done by sending the S-process a message with operation =35,
mess 3 = error number, and the rest of the message as a normal transput message
with bytecount and byte address. [2]

Bytecount must be greater than 32.

. InMUSIL this can be done by use of zones [3] . Imagine following declarations
in the program:

VAR

ERR : FILE 'S', 1, 1, 100, U; ! PROCESS S'!
GIVEUP SERR, 8'177777 OF STRING(100);

I : INTEGER;
ERRNO : INTEGER;

Following procedure will then get the errortext defined by the integer ERRNO, and
output the text on the operator device:

PROCEDURE SHOWERROR:

BEGIN

OPEN (ERR, 5);

ERR.Z BLOCK : = ERRNO; ! MESS3 SET TO ZBLOCK *
GETREC (ERR, I);

OPMESS (ERR#); ! DO NOT WORRY ON TEXT-!
CLOSE (ERR, 1); ' LENGTH AS LAST BYTE = ¢ !

END;

The procedure can be used in case of any error if the errornumber is repre-
sented on the file SSYSE by a text, and the text-length is less than 100
bytes.

As seen from the comments the last byte delivered in the text is always zero,
which makes it simple to use the OPMESS or OUTTEXT procedures.

INTERNAL COMMANDS.

If string
LOADCOM = 'LOAD MYCHILD <10>',

is added to the declarations in the last page, this command can be send to
the S-process as if it was typed on the operator console, with the exception
that the process will be the owner of the loaded process, and thereby protect

the process from being removed by others.

The message send to the S-process must have operation = 3, and usual byte

count and byteaddress as transput messages. In normal use MESS 3 must be

zero. A further detailed description of the message and use of a non-zero
mess 3 can be found in DOMUS, System Programmer’s Guide [2]

In case of error the message is returned, and the giveup procedure is called.
Status is the S-error number *256. The numbers can be found in [1] , and the

connected texts are placed in the error-text file identified by the same number.

The giveup procedure is simple if one use the procedure SHOWERR in previous

section:

PROCEDURE SERR;
BEGIN

ERRNO : = ERR.ZO SHIFT (-8);
END;

A-10

Then the program sending the command LOAD MYCHILD can look like:

BEG IN
ERRNO : = 0,
OPEN (ERR, 3);
ERR. ZBLOCK : = 0; t NO ERROR NAME WANTED !
OUTTEXT (ERR, LOADCOM);
CLOSE (ERR, 1); t MESSAGE IS SEND !
IF ERRNO < > 0 THEN
SHOWERR; t OUTPUT ERROR TEXT IN !

¢ CASE OF ERROR !

The process MYCHILD is now loaded and running if ERRNO =0 , and only re-
moved if program sends a likewise command KILL <process>, or the owner program

is removed by its owner.

APPENDIX B, STANDARD MESSAGES Rev. 0l

0200

0201

0202

0203

0204

0205

0206

0207

* k%

* kX

*kk

* %k

*kk

* k%

k%%

* k%

NOT ENOUGH ARGUMENTS
Non or too small a number of parameters has been

assigned.

UNIT NUMBER CONFLICT
The operation requested is only allowed within same

catalog unit.

ILLEGAL FILE SPECIFICATION
An illegal attribute type has been specified. Only
B, P, W, F or V are allowed.

COMMUNICATION ERROR WITH S
Due to errors the resources requested from S was not

available.

SHORT OF CORE STORAGE

There is not enough space in core to hold the work
data.

NON ASCIl CHARACTER IN INPUT

Character with value > 127 found in input.

UNITNUMBER GREATER THAN 255

Only unitnumbers 0 to 255 are defined in the system.

UNIT NOT MOUNTED
The disc pack holding the requested catalog unit was

not ready

B-1

0208

0209

0210

0211

0212

2026

2031

2033

2034

* kK

* k%

* k%

* %%k

* k%

k%%

* k%

* k%

* %%

UNIT DOES NOT EXIST
The catalog unit to work on is not defined in the

system,

ILLEGAL UNITNUMBER
It is not allowed to overwrite the specified catalog

unit or the unit is not defined in the system,

ILLEGAL DISC SIZE

The disc size specified is to small to hold a catalog.

NCT DEVICE DESCRIPTOR, ENTRY <name>
The entry <name> is not a device descriptor as attribute

entry only and devicedescriptor is not set (bit 13 and
bit 14)

FILE OR BLOCK TOO LARGE

Maximum file or blocknumber in a devicedescriptor

is 255.

PUNCH RESERVED

The punch driver is used by another process.

PAPER LOW ON PUNCH

Almost the whole paper roll has been used.

PUNCH DRIVER NOT LOADED

The driver has not been loaded by the operator.

PUNCH ERROR OR TIMEOUT
The character to output was not punched within a

maximum time. Properly the paper has run out.

2041 «x+ STATION OFF-LINE, STATION <name>
The magtape station is or has been set local by

the operator.

2042 wox TAPE REWINDING, STATION <name>
The station is unable to operate as the tape is
rewinding.

2043 * %k NOISE RECORD, STATION <name>

A noise record was met before the block read.

2045 . WRITE LOCK, STATION <name>

The write enable ring is not mounted on the tape.

2046 LA ILLEGAL OPERATION, STATION <name>
In attempt to write on the tape has been rejected

as the writeenable-ring was not mounted.

2047 - * ok END OF FILE, STATION <name>

End-of-file mark read before logical end of data.

2048 *%k BLOCK LENGTH ERROR, STATION <name>
The buffer size used was too small to hold the block

read. Data format error.

2049 *kk DATA LATE, STATION <name>
Due to overload one or more characters was lost

during last transfer.

2050 * ko PARITY ERROR, STATION <name>

The last block read/written has a parity error.

2051 . END OF TAPE, STATION <name>
The read/write head is positioned after the EOT mark

2052 ok POSITION ERROR, STATION <name>

The position requested is not defined.

2053 - DRIVER MISSING, STATION <name>
The driver is not loaded by the operator.

2054 ok TIMEOUT ERROR, STATION <name>
The station did not respond on the operation within

a maximum specified time.

C-1

APPENDIX C

DOMUS system

in

Standard device descriptors

Don't care.

*

indyno/yndus adoy oyyesspd |

LLL191 otll L L | L 0LD 01D $
indino/induy adobow ///19] oLLL L _ _ OLW 0lW $,
indjno puo 4ndut A1l 0 L L . . ALL ALL Q
soikq Ao 177191 ol | x . ¥ad N¥ad ﬁ
UOL4DUIULID} UY4IM |DWIOSP LL2191 ol w 6 * W " ¥dd ¥ad w
A4idod ou £z01 L € x . did Ndld mw
M Aytand usns £201 L Lt x x dld dld w
A4taod ou £901 L L * x dld Nild m
Ajriod usns 4901 L 6 * * dld dld $
| pa4owiogun LLL19L | € x * 1dD 1dD w
pa4ouuojun LLL191 L € % % dS dS w
pa4owoun LLL19] L £ x x 1d1 1d1°$

120 "NIig ‘030 '03d "03d
LNawwoD ASYW anNi JA0OW 30014 ER|E REVAYRe IWVYN

* a

APPENDIX D, CONVERSION TABLE FORMAT.

The conversion tables used for standard conversion on lineprinters and initiated

by program STACO must start in the sixth word aofter the program item head.
Tables can be made either in MUSIL code or assembler code.
In MUSIL-code the format is:

CONST

TABLE = 4 <table values> # ;
BEGIN

END;

and in assembler coding:

<program item head>

.BLK 5

TABLE START: <table values two bytes per word>
. END

Tables coded in this format may also be accessed from MUSIL programs using code-
procedure CHANGETABLE, however an assembly coded table must then be provided

with a process descriptor and some code stopping the process when started or breaked.

