Title:

Assembler Coded Subroutines (CALL-routines)
in RC BASIC (RC3600/RC7000)
Programmer's Guide

I:E § REGNECENTRALEN RCSL No: 43-GL 6678

Edition: April 1978

A : Sti 1llgaard
RC SYSTEM LIBRARY: FALKOMNERALLE 1 DK -2000 COPENHAGEN F Ufhor' g m g

(8]

Keywords:

RC3600, RC7000, RC BASIC, DOMAC, DOMUS, COPS, Assembler Routines.

Abstract:

This guide describes how to program assembler routines that can

be called from RC BASIC programs.

Copyright © A/S Regnecentralen, 1976
Printed by A/S Regnecentralen, Copenhagen

Users of this manual are cautioned that the specifications
contained herein are subject to change by RC at any time
withéut prior natice. RC is not respansible for typographi-
cal or arithmetic errors which may appear in this manual
ond shall not be responsible for any damages caused by

reliance on any of the materials presented. .

Y

CONTENTS

1. INTRODUCTION +vvececacas o mimmRsaeTa e b8 WA § ¥ § RS
2. CODING OF ASSEMBLY LANGUAGE SUBROUTINES +..vvvevense...
2.1 The Subroutine Tablececevea.. R ——

2.2 Parameter Handlingeeeee.. WSTRIESEE E ¥ B § e

2.2.1 DParameter TYPES .ssewesssvswie R A B

2.2.2 Organization of Actual Parameters

2.3 Calling a Subroutine fram RC BASIC

2.4 Return fram a Subroutine e ceserericnnrtncnnns
2.4.1 Normal Return v.eeea.. § 8 SRR e € SR
2.4.2 Return in case of an Error ...ececececeees

2.4.3 Return in case of an Input/Output Error .

2.5 System Functions used in Subroutines
2.5.1 Arithmetic Functions

2.5.2 Fetch- and Store-functions ErEE

2.5.3 Input/Output Functions e
2.6 Variables that can be used FERTEE §
2.7 Calling Local Procedures R %6
SURROUNDINGS OF THE SUBROUTINE 4t eevovconnees S
THE ASSEMBLY AND LOADING CF THE SUBROUTINE ..v.o... %

APPENDIX A - REFERENCES

APPENDIX B - EXAMPLES

28

29

ii

This page is intentionally left blank.

Page 1

INTRODUCTION. _ 1.

Al

The RC BASIC System provides facilities which makes it possible

for the user to program assembler-coded subroutines which can
be called fram a BASIC program.

An assenmbler-coded subroutine may be useful if ‘ for instance,
input/output to or fram special devices (such as graphic displays
or analog/digital equipment) has to be carried out fast, or if
the user want to perform same kind of operation, which is not
possible to perform directly fram a BASIC-program.

The RC BASIC system is a multi-user system, where each user may
be considered as a coroutine which is executing reentrant code.
This means that each user must use its own data-areas, i.e. the
code itself cannot contain data. To every coroutine corresponds
a coroutine description (also called a user description). This
user description contains information about thel current state of
the coroutine and it also contains a data area, which can be used
in the assembler-coded subroutines (see section 2.6). The start
of the description of the coroutine, which is runnning can at any
time be found in a page-zero location, USER. This means that a
location in the user description can be accessed like this:

lda 3, wuser 7 get start of description
1da 2, offset,3 ; get the word corresponding
7 to the value of 'offset'

It should be noticed, that the RC3600/RC7000 systems does not
include any kind of memory-protection. This means that the pro-
grammer, who codes his own subroutines should be very careful.
It also means, that Regnecentralen cannot take any kind of re-
spbnsibility for system break-downs when user-coded subroutines
are included in the system.

‘The user-coded subroutlnes must be coded as a seperate process

‘ (see ref. [1]) with the process name UCALL (see section 3). If
Regnecentralen del:l_vers subroutines, these will be coded as

a pfoqess having the name RCALL.

Page 2

2 CODING OF ASSEMBLY LANGUAGE SUBROUTINES.

L]

A module containing one or more assembly language subroutines
must look like this:

Program Head

Subroutine Table

Subroutine(s)

Process Descriptor

The program head and the process descriptor can be generated by
means of two macroes defined in DOMAC, as described in chapter 3.

2.1 The Subroutine Table.

The subroutine table contains the names of the subroutines and
the address of the first word of each subroutine. '

The table is organized as follows:

address 1 address 1, address 2 . . . address n
name 1 are addresses referring to the first
address 2 ' . word of the first, second . . . n'th
name 2 subroutine, respectively.

3 name 1, name 2 . . . name n are the

. _ names of the subroutines.

Page 3

address n Each name must fill exactly 4 words 2.1
name n (8 bytes/characters) .
0 The names must be packed from left
to right and padded with nulls (i.e.
null-bytes) .

The subroutine table must be terminated
by a word containing a zero.

Example:
~ push i addr of PUSH-routine
Axt JPUSEKK<O><<O> .
7 name : PUSH

Pop i addr of POP-routine
JAxt JPOP<O> <><m<O<0> .
7 hame : POP
0 i terminate table with zero;

If the starting address of a subroutine is equal to -1,
this means that the subroutine itself is not included.

 The name of the subroutine must, however, be placed in the sub~
- routine table. This means that it is possible to program the

subroutines in different modules, which then can be linked to-
gether into one relocatable binary module by means of the lin-
kage editor, LINK. In the camand to LINK, the first input-
module must contain the program head and the subroutine table,
and the last module must contain the process—descriptor. In.

the module containing the subroutine table ; the starting address
of the subroutines must be defined as an 'external normal' sym-

bol (.EXTN). In ‘the modules containing the subroutines, the

starting address must be defined as an entry point ‘(.,ENI‘-) :

Page 4

22

i

Parameter Handling.

2.2: 1

A subroutine may have any number of formal parameters. For each
subroutine the programmer must specify the number of parameters
and for each parameter a type must be specified. These specifi~
cations must be placed as the very first words of each subroutine
i.e. the address (in the subroutine table) refers to the first

of these specification words.

The first word contains the number of parameters, and the next
n words (where n is the number of parameters) describes the type
of the parameters - one word for each parameter.

Exanple:
push : 2 7 the PUSH-routine must be called with
i two parameters
array + real ; type of first parameter

real - ty,pe of second parameter

sub 0,0 ; first instruction of the subroutine

Parameter Types.

- As mentioned before each parameter must be type-specified. : S

The following ‘types may be specified:‘ REAL, REAL + REFERENCE,
REAL + ARRAY, STRING, STRING + REFERENCE, STRING + ARRAY.

When a subroutine is called from RC BASIC the type of the

actual parameters are campared with the type—spec:.flcatlons = |
'In case of a conflict, the BASIC-program is interrupted and an
errormessage is printed (see section 2.3).

The meaning of the different parameter types are:

REAL

REAL + REFERENCE

REAL, + ARRAY

STRING

STRING + REFERENCE :

STRING + ARRAY

Page 5

221,

\

: the actual parameter may be any

numeric or relational expression
(see ref. [2]).

: the actual parameter must be a nu-

meric variable or a numeric array
elanent.

: the actual parameter must be a nume-

ric array.

: the actual parameter may be any string

expression (see ref. [2]).

the actual parameter must be a string
variable or a string array element.

The actual parameter must be a string
array.

The descriptor words are build as follows:

\

bit no.: :
I WW /j %/WZ/ B
; J \L .

N

asn NN ¥od cmaasza{

N

%

45N NI ¥od c:mamt
HdAL OISV

ONTHIS € “Iv3d 0

Page ©

i,

“nlnd

or REFERENCE = 1B0

ARRAY = 1B9 "
REAL = 0
STRING = 3

The symbols REAL, STRING, ARRAY and REFERENCE are symbols
that are defined in the RC BASIC symbol tape, BAPAR (see ref.

(3.

Organization of Actual Parameters.

When a subroutine is called fram a RC BASIC program, the actual i
parameters (or information about these) are passed to the sub-

routine in a core area pointed out b%a word (U.STK) in the user
description.

If the subroutine has n parameters the core area locks as follows:

1 <—pointed out by u.stk

>- n words pointing at the actual

parameters or a description of
these

F
N

Y n descriptors of different sizes

each containing an actual para-

meter or a description of one.

® 4 B 4§ e Y PN et h &

T 8 s s emmed T N s et a .

9

Page 7 -

The descriptors have different formats according to the type R
of the parameter as follows: (The program- and data-segments
are described in section 2.5.2).

2 words containing the value of the actual parameter
(floating point).

REAL, + REFERENCE:
~ 1 word containing the address of the first word of
the variable (in the data-segment) .

REAL + ARRAY:
3 words:
word 1: address of the first word in the first element
of the array (in the data-segment).
word 2: number of rows in the array.
word 3: number of colums in the array.

STRING:
3 words:
word 1: address of the first byte of the string.
word 2: number of bytes in the string.
word 3: the nunber of the segment where the string is
stored (0: program-segment, 1: data—éegnmt) .

STRING + REFERENCE:
" 3 words:

word 1: address of the first byte of the string variable
(in the data-segment) . _ |

word 2: maximum number of bytes that can be hold in the
string variable.

word 3: address of a word (in the data-segment) containing
the actual {current) number of bytes in the string
variable.

Page 8

2wl o

STRING + ARRAY:
3 words:
word 1: address of futher description (in the data-
segment) .
word 2: number of elements in the string-array.
word 3: length of each element (in words).

Word 1 points to a part of the data-segment organized
as follows:

‘k_,pointed out by word 1.

maximum number of bytes in the first string
element.

not used.

actual (current) number of bytes in the first
string element.

>bytes in first string element.

) maximum number of bytes in the second string
AOE s, element.

actual (current) mumber of bytes in the second
string element.

>'number of words as contained in word 3.

repeated a nurber of times corresponding to

word 2.

-

233

The core area that contains the parameter descriptions is as
mentioned pointed out by a word in the user description, U.STK.
The user description is pointed out by a word, USER, in page-
zero, so the first word of the core area can be loaded into
accumulator 1 by the following sequence of instructions:

lda 3, user ;
lda 2, u.stk, 3 ; AC1:= contents (user + u.stk)
~ 1da ‘I_, 0,2 3
or
lda 3, user .

lda @1, u.stk,3;

Calling a Subroutine fram RC RASIC.

A subroutine may be called from a BASIC program in a statement

with the following format:

[r—<var;\ T
<svar> <svar>
>
CALL) .{ <mvar> ‘-
<slit> <slit>
<expr> o8

Page 9

Ladds

23

Where the meaning of <svar>, <slit>, <var>, <war> and <exXpr> can

be found in ref. [2].

Example:

CALL '""PUSH", STACK, ELEM
or

NAME$ = ''PUSH"

CALL NAME$, STACK, ELEM

Page 10

2.3.

When the CALI~statement is executed the following happens:

a.

If a module containing user-coded subroutines is
present in core, then the subroutine table in this
module is searched for the name of the subroutine.

If the name is found operation continues at point c.

As a. except that the searching is carried out in the
module containing subroutines coded by RC. If the
subroutine is not found then the BASIC program is in-
terrupted with error no. 0046: PROCEDURE DOES NOT
EXIST.

Now the number and the type of the actual parameters
are checked against the parameter specifications in
the subroutine (see section 2.2). If a conflict is
found then the BASIC program is interrupted with error
no. 0047: PARAMETER ERROR. i

The actual parameters are organized as described in
section 2.2.2 and then a jump is made to the word
following immediately after the description of the
formal parameters (see example in section 2.2).

When the subroutine is entered, the contents of the
accumulators are as follows:

ACO : undefined

AC1 : undefined _

AC2 : USER. U.STK (points at the description
of the actual parameters).

AC3: USER (points at the user description).

Page 11

2.4 Return from a Subroutine. 2.4

2

Return fram a subroutine can be carried out in three different

ways depending on whether an error is detected or not.

2.4.1 Normal Return. 2.4.1

Normal return is made by means of the instruction RET1 (which
is defined in the RC BASIC symbol tape, BAPAR (see ref. [3])).

The BASIC program will continue in the statement following the
CALIL~statement.

2.4.2 Return in case of an Error. 2.4.2

If same kind of error (not input/output errors)” is detected in
the subroutine the user might want to return the information
about this error to the BASIC-program. This can be done by
means of the two words

ERROR

<errno>

where <errno> is the number of the error (between 0 and 99) cor-
responding to the RC BASIC error messages.

The function of the ERROR-function is:

a. <errno> is stored in a word in the user—-descrip-
tion.
b. a return is executed by means of the RETO-in-

struction (see sec. 2.7.).

When the return is executed, the BASIC-program will be interrupted
(unless an ON ERR-statement has been executed) and the error-mes-
sage will be output.

Page 12

2.4.2,

2.4.3

If one does not want to return to BASIC in case of an error
but still wants to register the error (which.can later be
fetched by means of the BASIC-function SYS(7)), this can be
done as shown in the following example:

mov 0,0 szr ; if aco = o then

Jjmp labl ;

execute ;7 execute error

erfun ; 'see sec, 2.7 !
labl: " ; -return from error !

re;ﬂ ; ‘normal return to BASIC !
erfun: ; error:

erroxr - error (31); ! SUBSCRIRT !

31 ;i ‘return to labl !

The texts corresponding to error number 90 and 91 are

0090 : USER CALL ERRCR 1
0091 : USER CALL ERROR 2

These can be used if none of the standard BASIC error messages

fits the error situation.

Return in case of an Input/Output Error.

If an error occurs during an input/output operation this will
imply that the input/output function used (see sec. 2.5.3) will
return at (link + 0).

In this case the programmer must call the system function IOERR,
which will set up the error code in the user description, set
theword in the user description corresponding to the user file
number (see sec. 2.5.3) to zero, close the zone in question and
return by means of the RETO-instruction.

Page 13

The IOERR-function is called by means of a macro, BCALL. As 2.4.3.
this macro contains two assembler—instructions,‘the call can
not be placed immediately after the call of the input/output
function. The following example shows how IOERR may be used:

lda 0 —-—- ;7 ACO = zoneaddr
lda 1 == i AC1 = character
lda 2 cur 7 ACZ2 = cur _
f.ochar i f.outchar (zone, char),
Jrp err(05 ; 1if error then goto err05
err05: bcall iocerr 7 execute iocerror,

;7 return to BASIC

2.5, System Functions Used in a Subroutine. 2.5

20505 Arithmetic Functions. 2.5.1.

If one wishes to perform arithmetic operations on numeric values,
this can be done by means of routines included in the RC BASIC sy-

stem. These routines may be called by means of a macro:

BCALL <name>

where <name> is the name of the routine to be used. The macro BCALL
will be assembled as two words

lda 3, u.s21,3

jsr(n,3

where the value of n depends on <name>,

Page 14

Zedin 14 U,s21 is a word in the user description pointing at a table, which
contains entrypoints to the routines. The macro BCALL is defined in
the RC BASIC Synbol tape, BAPAR, (see ref. [3]).

The functions that can be used are:
FIX: Convert a floating point number to a double-word integer.

call return

ACO 1. word of floating point mumber result [0:15]
AC1 2. word of floating point number result [16:31]
AC2 irrelevant destroyed

AC3 user user
call: BCALL FIX

After return, ACO [0] is the sign of the result: 0: positive,
1: negative.

FLOAT: Convert a double-word integer to flcoating point.

call return
ACO integer [0:155' result [0:151
AC1 integer [16:31] result [16:31)]
AC2 irrelevant destroyed
AC3 user user

call: BCALL FLOAT
When called, ACO [0] is the sign of the integer.

In order to carry out floating-point arithmetic, the user may call
four functions to add, subtract, multiply and divide, respectively.

The functions all operate on 2 32-bit floating-point numbers,
FN1 and FN2. When the functions are called, (ACO, AC1) should
contain (FN2 [0:13], FN2 [16:37) and AC2 must contain an ad-
dress pointing at FN1. The exact conversions, which should be
followed, are as follows:

Floating add: SUM : = FN2 + ENI1

call retum

aco m2[:1g suM [0:15]
ACT N2 fi6:31] ~ sum[ie:31]
AC2 addr of FN1 destroyed
AC3 user user

call: BCALL FADD

Floating subtract: DIF : = FN2 - FN1

call - return
ACO FN2 [0:15] DIF [0:15]
AC1 FN2 [16:31] DIF [16:31]
AC2 addr of FNI1 destroyed
AC3 user user

call: BCALL FSUB

Floating multiply: PROD : = FN2 * FN1

call return
ACO FN2 [0:15] PROD [0:15]
AC1 FN2 [16:31] PROD [16:31]
AC2 addr of FN1 destroyed
AC3 user user

call: BCALL FMPY

Page 15

2.5,

Page 16

2,5,

s

Floating divide: QUOT : = FN1/FN2

call return
ACO FN2 [0:15] ouor [0:15]
AC1 N2 [16:31) ouor [16:31]
AC2 addr of FN1 destroyed
AC3 user user

call: BCALL FDIV

If FN2 is zero then the return from FDIV is made by means of the
RETO-instruction (error no. 16: ARITHMETIC ERROR). See section 2.7.

The three functions IMPY, IMPYA and IDIV operates on 2 or 3 16-bit
integers (I1, I2 and I3). They should be used as follows:

Integer multiply: PROD = I1 x I2

ACO

AC2
AC3

call

irrelevant
11
12

user

call: BCALL IMPY

return

PROD [0:15]
PROD [16:31]
unchanged

user

Integer multiply and add: RES = I1 x I2 + I3

call

I3
I
I2

user

call: BCALL IMPYA

return

RES [0:15]
RES [16:31]
unchanged

user

Sy Ds s

Integer divide: (QUOTIENT, REMINDER) : = I1 DIV I2

A}

call return
ACO irrelevant REMINDER
AC1 I1 QUOTTENT
AC2 12 unchanged
AC3 user user

call: BCALL IDIV

Fetch- and Store-~functions.

The running BASIC-program is stored in a so called virtual sto-
rage, which means that at any time only a small part of the BA-
SIC-program will be present in the computers internal core while
the rest will be placed on the disc.

Therefore, data belonging to the BASIC-program (such as actual
parameters to subroutines) cannot be accessed by means of the
LDA and STA instructions. If the user wants to access these data

this can only be done by means of the system-functions

A.PBYTE, A.PWORD, A.PDOUBLE
A.GBYTE, A.GWORD, A.GDOUBLE

The virtual storage is divided into two segments: the program
segment (no. 0) and the data segment (no. 1).

Usually the user will only have to access the datasegment, but
when a string literal is an actual parameter, this will be pla-

ced in the program segment.

Page 17

2Bl

Page 18

2+5:2,

The functions should be used according to the following descrip—

tion.

a.gbyte: fetch one byte from (segment no, byteaddr)

call return
ACO segment no byte
AC1 byte addr unchanged
AC2 cur cur
AC3 - irrelevant user

call: a.gbyte

a.gword: fetch one word fram (segment no., wordaddr)

call return
ACO segment no word 3
AC1 wordaddr unchanged
AC?2 cur cur
AC3 irrelevant user

call: a.gword

a.gdouble: fetch two words from (segment no., wordaddr) and
(segment no., wordaddr + 1)

call return
ACO segment no word 1
AC1 wordaddr word 2
AC2 cur Cur
AC3 irrelevant user

call: a.gdouble

Page 19

a.pbyte: store one byte at (segment no., byte addr) 2:5:2%
call return (at link + 1)
ACO byte unchanged
ACT byteaddr unchanged
AC2 cur cur
AC3 irrelevant user
Link + 0 segment no destroyed
call: a.pbyte
segment no.

a.pword: store one word at (segment no., wordaddr)

call return (at link + 1)
ACO word unchanged
AC1 wordaddr unchanged
AC?2 cur cur
AC3 irrelevant user
Link + 0 segment no destroyed

call: a.pword -
segment. no.

a,pdouble: store two words at (segment no., wordaddr) and
(segment no., wordaddr + 1)

call return (at link + 2)
ACO word 1 unchanged
AC1 word 2 unchanged
AC2 cur cur
AC3 irrelevant user
Link + 0 segment no destroyedr
Link + 1 wordaddr destroyed

call: a.pdouble

segment no
wordaddr.

Page 20

2:5:2. It should be noticed that

1) An attempt to store information outside the part of the

storage belonging to the current user may cause a system
break down.

2) A call of any of the fetch- and store-functions may pro-
wvoke, that another user will be activated. Therefore,
all subroutines that call these functions must be re-
entrant.

In systems without a disc the same accessmethod must be used as

the BASIC-programs are organized in the same way as in virtual-
storage systems.

2453 Input/Output Functions.

All input/output operations must take place via a zone (see ref.
[1]). Before input or output can be carried out from or to a file,
this file must be opened (i.e. a zone must be connected to the
file). The opening of a file can only be done in a BASTC~-program
(by means of the OPEN FILE-statement). When an OPEN statement is
executed, the address of the zone used will be stored in one of
eight words in the user description. When an input/output func-
tion is used, this zoneaddr must be fetched before the function
is callgd. The eight words in the user description corresponds to
the eight user file-numbers that can be used in the BASIC pro~
gram. The nurber(s) of the file(s) to be used in the subroutine
must be given as parameters to the subroutine. The words corres-—
ponding to the 8 user filenumbers can be found in the user-de-
scription from U,UCH and on, as shown in the following example:-

,»“ -

lda 3 user 7 AC1 = filenumber
add 1,3 (0<= acl <= 7)
lda 0 u,uch,3 ; ACO:= USER. (U.UCH+FILENO)

-

The userdescription contains 3 addresses of "standardzones":
PIO, CIN and COUT:

PIO (primary input/output) is the zdne corresponding to the

terminal

CIN (current input) is usually equal to pio, but may be chan-
ged. In BATCH-mode for instance, cin will be the zone cor—

responding to the card reader.

cour (current output) is usually equal to pio, but may be chan-
ged. The RUNL-conmand for instance will set cout to the

Zone corresponding to the lineprinter.

The input/output functions all have two returning points. If an er—

ror occurs during the input/output operation, return is made to
(link + 0). '

In this case AC2[§:1$] contains an error code corresponding to
the RC BASIC error-messages with values larger than 100. ACZ[}]
is equal to one. In case of an input/output error the system
function IOERR should be called as described in section 2.4.3.

Page 21

2.5.3.

Page 22

2:543s

—

The input/output functions should be used according to the follow-

ing description.

f.ochar: output one character
return (error)
call link + 0
ACO zoneaddr zoneaddr
AC1 character character
AC2 cur errorcode
AC3) irrelevant user
call: f.ochar
f.otext: output a text
return (error)
call link + 0
ACO zoneaddr zoneaddr
AC1 byteaddr byteaddr
AC2 cur errorcode
AC3 irrelevant user

call: f.otext
The text must be termminated by a null-byte.

f.oblock: empty an output-buffer
return (error)
call link + 0
ACO zoneaddr zoneaddr
AC1 irrelevant destroyed
AC2 cur errorcode
AC3 irrelevant user

call: f.oblock

return (ok)

link + 1
zoneaddr
character
cur

user

b

return (ok)
link + 1

Tzoneaddr

byteaddr
cur

user

return (ok)

link + 1
zoneaddr
destroyed
cur

user

f.ichar:

f .cheof:

ACO

AC2
AC3

return to

input one character

return (error)

call link + 0
zoneaddr zoneaddr
irrelevant destroyed
cur errorcode
irrelevant user

call: f.ichar

see if end of file

call

zoneaddr
irrelevant
cur

irrelevant

call: f.cheof
link + 0 if end of

has been reached

return (true)
link + 0

zoneaddr

unchanged

cur

user

file

return to link + 1 if not end of file

f‘setpos:

ACO
AC1
AC2
AC3

Page 23

2-5.3‘

return (ok)

link + 1
zoneaddr
character
cur

user

return (false)
link + 1
zoneaddr

unchanged

cur

user

set position to a certain record number

call

zoneaddr
record no
cur

irrelevant

call: f.setpos

return (error)

zoneaddr
record no
errorcode

user

return (ok)

zoneaddr
record no
cur

user

Page 24

2.5.3. It should be noticed, that

a) If the user file has not been opened, the corresponding
word in the userdescription will be equal to zero. If an
input/output function is called with zoneaddr. equal to
zero, this will cause a system-break-down.

b) Incorrect use of the input/output functions may cause
system-break-down, and in certain cases data can be de-

stroyed (on a secondary storage).
c) A call of any of the input/output functions may cause

that another user will be activated. Therefore, all sub-
routines that call these functions must be reentrant.

2.6. Variables That Can Be Used. -

As mentioned in section 1, the subroutines should as a main rule
be reentrant. This is expecially important if a change of user
can occur when the subroutine is executed. (A change of user may
occur if any kind of input/output is performed or if the "fetch-
and store functions" (section 2.5.2.) is used). In order to pro-
vide the possibility of coding reentrant subroutines, there must
be a data-area for each user that might enter the subroutine. This
data-area is a part of the user-description and therefore it must
always be accessed relatively to the current value of USER.

21 consequtive words may be used:
USER.U.S00 - USER.U.S21 , for instance
lda 3, user

lda 0, U.s01,3
sta 2, U.518,3

2t

Page 25

Calling Local Procedures. 257,

As mentioned before, the subroutines must be reentrant. This means,
that if a local procedure is used the return—address can not be
saved locally. Consider the following example:

; start of call routine

.
& 1

A) jsr proci ; first call of procedure
B) jsr procl # second call of procedure
r
' H
retl ; return to BASIC
procl: 7 start of procedure
sta 3, proc2 i sSave return address

jup @ proc2 ; return

proc2s: 0

-

If one user calls the procedure at B) then proc2 = B) + 1. Now if
a change of user occurs in the procedure, and the next user calls
the procedure at A) then proc2 = A) + 1. When the first user re-

turns fram the procedure, he will return to A) + 1 instead of

B) + 1.

In order to avoid this problem, another way of calling a local pro—
cedure has been implemented in the RC BASIC system. A procedure can
be called by means of the instruction '

EXECUTE

<procedure>

Page 26

el

where <procedure> is the address of the actual procedure (i.e.
procl in the example). The return-address is autamatically stored
in the actual user description by the system. Returning from the

procedure can be carried out by means of one of the instructions
RET0, RET1, RET2

RETO: return to the first word after <procedure>

RET1: return to the second word after <procedure>

RET2: return to the third word after <procedure>

The example might now lock like this:

i 7 start of call-routine
execute ;
proc] ;
Jmp oct1 i if reto
Jmp oct2 ; if reti
. 7 if ret2
execute
proci
proci; . + start of procedure

mov 0,0 snr ;7 1f ACO = 0 then

ret0 , . ret0 else
inc# 0,0 snr ; if ACO = -1 then
- retl ‘ retl else
ret2 : ret?2

Page

The BASIC-system calls the user-coded subroutine by means of 2.7
the EXECUTE-instruction. If return is made by means of RETO,

this is interpreted as if an error has occured (i.e. the RASIC-
program will be interrupted). Otherwise (REI'1 or RET2) execu-
tion of the BASIC-program continues after the CALL~statement.

27

Page 28

SURROUNDINGS OF THE SUBROUTINE.

1

The user-coded subroutines must be included in a MUS-process (see
ref. [1]). This means, that the module containing the subroutines
must be started with a programhead and concluded with a process-
descriptor. The RC BASIC symbol tape, BAPAR (see ref. [3]) contains
two macro-definitions which, when used, will make DOMAC assemble a

program-head and a process descriptor respectively.

Besides the program-head, the macro PRDE1 also defines the follow—
ing:

.title UcA01
qrel 7 relocatable binary output from DOMAC
Lrdx 10 ;7 radix 10
txtm 1 7 packed fram left to right
Axtn 1 ;7 no null-bytes if even nurber
; of bytes ’

Furthermore the PRDE1 macro contains two instructions which will
make the process stop when it is loaded.

The first word after the macro PRDE1 must be the first word of the
subroutine-table (see section 2.1.).

The macro PRDE2 defines a process—descriptor which must be placed
after the subroutines

ex.: PRDEI] 7 Pprogram head
. ; subroutine table
¥ ; and subroutines
PRDE2 - i Pprocess—descriptor and

; .end-operation.

The name of the defined process is UCALL.

Appendix B contains an example showing a subroutine—souréetext and
a listing produced by DOMAC.

o/

THE ASSEMBLY AND LOADING OI' THE SUBROUTINES.

When the programmer has prepared the module containing the source-
text of the subroutines(s), this module can be assembled using the
DOMAC-macro—-assembler. Before doing this, the user must be sure,
that the semi-permanent symbols and macroes defined in BAPAR (see
ref. [3]) are 'known' by DOMAC.

The command

DOMAC BIN.BCALL LIST.ELPT ACALL

will assemble the sourcetext in ACALL, A listing will be produced
on the lineprinter and the relocatable binary output will be sto—
red in the file BCALL.

For further information about DOMAC, please see ref. [4] and ref.

[5].

When the subroutines have been assembled, they can be loaded (in
a moving-head-disc system) by means of the command LOAD BCALL.

The subroutines must always be loaded before the RC BASIC-inter-

preter (COPS). In a processor-expansion system the subroutines must

be loaded in the same cpu as COPS.

The process-name of the module containing user coded subroutines
is UCALL, i.e. the routines can be removed -by means of the KILL
UCALL~cammand. If a system contains subroutines coded by Regne-
centralén, then the processname of these is RCAIL.

If the subroutines should be included in a floppy-disc-system, they

must be linked together with the other modules contained in such a
system. In the link-command, the module must be placed before COPS.

Page 29

Vi

Page 30

This page is intentionally left blank.

Page A - 1

APPENDIX A - REFERENCES

Y

[1] MUS~-SYSTEM INTRODUCTION (I) and MUS PROGRAMMER's
GUIDE (II).

Keywords: Multiprogramming, monitor, device handling,
I/0-utility, record I/0, operator communica-
tion, operating system.

Abstract: (I) This manual is intended as an introduc-
tion guide to the Multiprogramming Utility
System.

(ITI) The mamual is mainly intended for readers
who are going to use the system. The user is
assuned to be familiar with the general prin-
ciples of the system as well as with the as-

sembler language.
[2] RC BASIC, Operating Guide.

Keywords: RC BASIC, DOMUS, Logical Disc.

Abstract: This manual describes how to use the RC BASIC
system under the DOMUS operating system. The
creation and use of. logical discs is shortly
described.

[3] BAPAR, RC BASIC Symbol Tape.

Keywords: DOMAC, COPS, RC BASIC, RC3600/RC7000.

Abstract: Definition of symbols used, when the COPS/
RC BASIC system is assembled by DOMAC.

Page A - 2

[4]

(5]

Introduction to DOMAC Assembler,

LS

Keywords: Beginners guide, DOMUS, DOMAC, RC3600,
assambler.

Abstract: This manual contains a short introduction
to the RC3600 assembler language description
of how to invoke the DOMAC assembler, and a
list of possible error messages fram the
DOMAC assembler. |

DOMAC, Programmer's Reference Manual.

LI

APPENDIX B - EXAMPLLS

The following pages shows an example of a module containing the
two subroutines PUSH and POP.

The example illustrates the use of the macroes PRDE1, PRDE2 and
BCALL. Also the use of same of the fetch- and store-functions,
local procedures and the return mechanism is shown.

The module is shown in two 'versions':

1) The source text.

2) The listing produced by DOMAC, when the module is
assembled.

Page B - 1

Page B - 2

B.1

EXAMPLE, SOURCE TEXT.

PRDE1

;: MACRQ: PROGRANM HEAD

s

s Ne wy wa

CALLING SFQUENCES:

PUSH: <STN> CALL "PUSH" , <MV AR>,<EXPRY
POP KSTN> CALL "POP",<MYARD »<NVAR>

WHERE =
<STHh> IS A STATEMENT NUMBER .

<MVARD> IS A NUMERTC ARRAY ToO BE USED
AS A STACK, -

<CEXPR> IS A NUMERIC EXPRESSION TO BE
PLACED ON TOP OF THE STACK,

<NVARD> IS A NUMERTIC VARIARBLE OR
A MUMERIC ARRAY ELEMENT T0
RECEIVE THE VALUE ON TOP
OF THE STACK,

THE FIRST ELFMENT OF <MVAR> MUST RE INITIALIZED
T0 0O,

T'F 0010 LOWBOUND=1
0020 pIM A(N)
THEN
0100 CALL "PUSH",A,Xx+Y

CORRESPONDS TO

0100 LET A(1)=A(1)+1 :
0110 IF AC1)>N THEN STOP <% ERROR 31 %>
0120 LET ACA(1))=X+y

AND
0200 CALL "POP",a,7

CORRESPONDS TO

N200 IF AC1)=0 THEN STOP <# ERROR 31 %>
1210 LET Z=A(AC1)); AC1)=A(1)=-1

Page B - 3

Page B - 4

W %o Wy e W " WS NWe ws

WEs s WE WE ws wa

e Me WE Wy We We "y e wa

; SUBROUTIME TABLE

PUSH 5 STARTING ADDRESS OF 'PUSH!
«TXT "PUSHLO>CO><D><O>" ; NAME: & BYTES

POP s STARTING ADDRESS OF 'POR!

o TXT "POPO>KO><»<(O><0>" ; MAME: B BYTES

0 » TERMIMATE TAHLE WITH ZEROQ

UPON ENTRY TO PUSK THE COREAREA POIMTED OUT &Y
U.STKk LOOKS AS FOLLOWS:

STACK + (2 X
+ 1: Y
X x + 2: ADDRESS OF <MVAF>
+ 3: NUMHER OF ROWS
+ 4 NUMBER OF COLOUMNS
i + S5: <EXPR> (FIRST WORD)
+ A (SECOND WORD)

AND UPON EMTRY TO POP:

STACK + 0: X
+ 1 Y
Xt + 2: ADDRESS OF <MVARD>
+ 3: NUMRBRER OF ROWS
+ 41 NUMBER OF COLOUMNS
Y + 5: ADDRESS OF <NVAR>

PUSH:

PSHU1:

POP:

POPNT:

2

ARRAY+REAL

REAL
SUBZL 1.1

EXECUTE

PSPOP

RETO
STA 1 PSHO1
LDA 0 43,2
LDA 1 +4,2
LDA 2 CUR

A.PDOUBLE

1

0

RET1

e

ARRAY4REAL
REFERENCE+REAL

ADC 1.1
EXECUTE
PSPOP
RETO
INC 1.1
INC 1.1
surzL Q.0
LDA 2 CUR
A.GDOUBLE
LDA 3 UaSTK,3
LDAQ 3 +1,3
STA 3 POPON
A.PDOUBLE
1
0
RET1

sPROCEDURE PLISH

s VAR A: ARRAY OF REALs
X REAL);

BEGIN

ADJUST(1,ADPRESS)
IF ERROR THEN RETURNO;

H

H

H

M

;

;

H

ro AR =X

H

FEND;

sPROCEDURE POP

; (VAR A: ARRAY (OF REAL:

¢ VAR Xt REAL):

BEGIN :
ARDJUST(=1,ADR):

IF ERROR THEN RETURND;

ADDR:=ANDDRESS(X)

;

;

;

; VALUE:=sACACTI)I+1);
;

;

H

; X:=VALUE

I

ENDZ

Page B = 5.

Page B - 6

PSPOF

PSPO1

ER3T:

LOA 2 +(0 .2
STA 1 U.S00,3
LDA 1 +0.2
suRrzL 0.0
LDA P CUR
A.GDOURLE
BECALL FIX
LDA 0 UaS00.,5
ADD Go1
LD p U.STK,3
LDA 0 +1.,2
SGE 1,0
MOVZL 1,0 S2C
JMP ER31
LDA 2 +0,2
ADD 2,0
STa 0 U.s0,3
STA 2 PSPO1
suB 0,0
BCALL FLOAT
LDA P CUR
A.PDOUELE
1
0
LDAQ 2 U,STK,3
LDA 1 b.S00,3
RET1
ERROR

31

JPROCEDURE ADJUSTCADD.,

ANDRESS)

;BEGIN

-
’
.
’
.
’
.
]
"
4
.
.

We Wa W Wa s W N W W W W N

™a ws s

.
4

.
’
’

SO00:=ADD#
VALUE:=A(1);
VALUE:=FIXC(VALUE)
VALUE:=VALUE+ADD
IF (VALUE>=A.D1) OR
(VALUE<QO) THEN
ERROR(31) .

| INDEX ERROR !
ADDRESS:=A ADR+VALUEX2;

VALUE:=FLOT(VALUE)

AC1)r=VALUE

sENDS

;ERROR: .SET ERRORCODE?

’

RETURND;

-

Page B - 7

PRDE?Z ; MACRO: PROCESS=DESCRIPTOR

Page B - 8

B.2

EXAMPLE, DOMAC-LISTING.

noogY UCADT DOMUS

01
02
03
04

06
07
08
09
10
11
T2
13
14
5
14
17
18
19
20
21
22
23

L]
r

«TITL

«NREL
000012 «RDX
000601 +TXTM
000001 JTXTN

PPOD:
00000'100001
00001 '00nco7!
00602000000
00003000125
Q0004'052503
040514
(46000

PPOS:
noon7r'o0s013
oue1n'o00r??

PRDEN
UCAN

10
1
1

18041215
PPOS

0
PP10=PP(
« TXT

STOPPROC
JMP

MACRO ASSEMELFR REV 01.05

; MACRO: PROGRAM HEAD

s USER=CODED SUBRCUTINES 78,05.01

/ RADIX 10

; PACKED FROM LEFT TO RIGHT

: NO NULL=-BYTES TF EVEN NUMBER OF BYTAS

PROGRAM START

r
; DESCRIPTOR
¢/ START
¢ CHATIN
0 ; SIZE
UCALLL ; NAME "
ESS H
PPOS ;

O

07

Page B - 9

10002 uca01
01 ;
02
03
04
05
06

CALLING SEQUEMCES:
PUSH: <STN> CALL "PUSH",<MVARD,<EXPR>»

POP: SSTN> CALL "POP"»<MYARP,<NVAR>
NR
0o
10
14
12
3
4
15
14
17
18
19
20
21
22
23
XA
25
26
27
28
29
30
31
2
5
34
35
36
37
38
39
40
41
L2
43
4ia
45

WHERE 3 :
<STH> TS A STATEMENT NUMRBRER.

<MVAR> IS A NUMERIC ARRAY TO RE USED
AS A STACK.

<SEXPR> IS8 A NUMERIC EXPRESSION TO BF
PLACED OM TOP OF THE STACK.

<NVARD [S A MUMERIC VARIABLE OR
A NUMERIC ARRAY ELEMENT TO
RECEIVE THE VALLE ONM TOP
OF THE STACK. "~

THE FIRST ELEMENT OF <MVAR> MUST BE INITIALIZED
T0 O.

IF 0010 LOWBOUND=1
0020 DIM a(N)
THEN:
G100 CALL "PUSH" R, X+Y

CORRESPONDS TO

0100 LET AC1)=AC(1)+1
0110 TF A(1)>N THEN STOP <*x ERROR 31 =»x>
0120 LET ACA(1))=X+Y
AND
0200 CALL "POPRP",A,Z

CORRESPONDS T0

0200 IF AC1)=0 THEN STOP <% ERRQOR 31 x*>
0210 LET Z=A(A(1)); A(1)=AC1)=1

M We Ma WE v We We e WE wr W v Mr We WE s Ve Me Ve W2 Ny e %s Ws %a We Wa W e Nr s % e Ve Ve Mo s N Ws %s N W %

Page B - 10

10003 UcAGH

01
02
03
N4
05
06
07
08
09
10
11
12
13
14
15
14
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

00011'000024
00012'050125
051510
000000
000000
000146'000043!
00017050117
050000
000000
000000
00023'000000

wa

s we ME Wa Me %a Ne e Wy WE M s % we We W WS WE WA WE s %z By W

!(.e—? k]
; SIUUBROUTINE TARLE
PUSH s STARTING ADDRESS OF 'PLUSH!'
« TXT "PUSHLO)»<O><0><)>" ¢ NAMFE: 8 BYTES
POP " 7 STARTING ADDRESS QF 'pPOP!?
«TXT "POPO><><><N><(>" ; NAME: 8 BYTES
A~
0 > TERMINATE TABLE WITH ZERO
UPON ENTRY TO PUSH THE COREAREA POINTED OUT BY
U.STK LOOKS AS FOLLOWS:®
STACK + 0= X
+ 1 Y
X3 + 2: ADDRESS OF <MVAR>
+ 3: NUMBER OF ROWS
+ 4: MUMBER QOF COLOUMNS
Y + 5: <EXPR> (FIRST wWORD)
+ 61 (SECOND WORED)
AND UPON ENTRY TO POP: i&

STACK + (O X

+ 1 Y
) O + 2: ADNDRESS OF <MVARD>
+ 3: NIUMBER OF ROWS
4+ 4t NUMBER OF COLOUMMS
Y + 5: ADDRESS OF <NVAR>

10004 ucaQn

01
02
03
04
05
0é
v
08
09
10
11
12
13
14
15
14
17
18
19
20
21
22
23
24
25
26
v
28
29
3N
31
5¢é
33
34
35
36
37

-
r

00024'000002 PUSH:

0Qoes'aen1on
00026'000000
u0027'126520
00030'002240
000311000066
00032'002241
00033'044406
C0034'0210603
00035'025004
00036'030040
00037'007105
00040000001
00041'000000
00N&2'002242

0L043Y000002
00044 (100100
QUN4L5'100000
D0U46'126000
00047'002240
0ROsDN'000066
00051'002241
00use'125400
00053'125400
coosav102s20
Q0055'030040
00054007102
000O57'035463
N0Gen*' 037401
000617054403
00062'007105
00N&63'000001
00064 'N0DOND

000651002242 .

PSHOT ¢

POP:

POPO1T s

l

ARRAY+REAL

REAL
SUBZL 1.1

EXECUTE

PSPNP

KETO
STA 1 PSHO1
LDA () +3,¢2
LDA 1 +4,2
DA 2 CUR

ALPDOUBLE

1

0

RET1

é

ARRAY+RFEAL
REFERENCE+REAL

4apC 1.1
EXFCUTE
PSPOP
RETO
InC 1.1
NG 1.1
SuBzZL 0,0
LDA 2 cue
A.GNOLIBLE
LDA 3 UaSTKk,3
LDAG 5 +1,3
STA 3 POPO1
A.PNDOUBLE
1
0

RETT

-
»

.
4

.
’
.
#
.
L4
-
’
.
'
.
»
[
’
.
r
.
»
.
r
-
[
-
.
-
L4

PROCEDI!IRE PUSH
(VAR A:
X: REAL);

BEGIN

Page B - 11

ARRAY OF REAL:

ADJUSTC(1,ADDRESS)
TF ERROR THEN RETURNQ;

ACAC1))i=X

END/

+PROCEDURE POP

.
’

-
’

(var A:
VAR X3

ARRAY OF
REAL);

sBEGIN |

Me Ws W WE Ws Ne We We We Ne We Be %o Wa W

ADJUST(=1,ABR);

REAL ;

IF ERROR THEN RETURNO;

VALUE:=AC(A(T)+1)

ADDR:=ADDRESS(X);

X:t=VALUE

END/

Page B - 12

10005 ucai

01
02
03
04
0s
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
2R
29
30
31
32
33
34
35
36
37
38

.
’

00064'031000 PSPOP:

D0067'045464
00070'025000
00071'102520
N00072'030040
00073'007102

00074'035511
00075'0074C0
00076'021444
00077'107000
00100'033463
00101'021001
00102'122032
00103'121122
00104000417
00105'0310Q00
N0106'143000
00107'041464
00110'050407
00111'102400

00112'035511
00113'007401
00114'030040
00115'007105
00116'000001
00117'000000
00120'033463
001211025464
00122'002242

FSPO1:

00123'006244
00124'000037

ER31:

LDA 2 +0,2
STA 1 U.500,3
LDA 1 +0,2
SyBzL G.,Q
LDA P CUr
A_.GDOUBLE
RCALL FIx
LDA 3 UaS21.3
JSRa +0,3
LDA 0 UaS0D.3
ADD 0,1
LDAQ 2 U.STK»3
LDA 0 +1.,°2
SGE 1.0
MOVZIL 1.0 SZC
JMP ER31
LDA 2 +0,2
ADD 2.0
STA 0 U.SOL,3
STA 2 PSPO1
SuR 0,0
BCALL FLOAT
LDA 3 UaS21+3
JSRa +1,3
LDA 2 CUR
A.PDOUBLE
1
0
LDAA 2 UeSTK#3
LDA 1 U.SO0,3
RET1
ERPROR
31 &

e We %e W2 %2 we W

+sPROCEDURE ADJUST(ADD.,
’ ADDRESS)

JREGIN
S0Ny=ADD;

VALUE:=A(1):
VALUE:=FIX(VALUE)

e Wes We wa e

VALUE:=VALUE+ADD:

IF (VALUE>=A.D1) OR |
(VALUE<CD) THEN
ERRORC(31):
- ! INDEX ERROR !}
ADDRESS;=A . ADR+VALUERXZ;

Wwe We Wa We WE We WE WE e e e Wa we

VALUE:=FLOT(VALUE),

A(1):=VALUE

END»

+ERROR: SET ERRORCODE:
H RETURNO

L0006 UCcAD1

01
02
03
04
us
s
0v
N8
09
10
11
12
13
14
15
14
17
18
19
20
21
2l
23
24
25
26
27
28
29

(0125'000000
001246'0000N00
00127°'000000
00130'000C25
00131'052503%
040514
N46000
00134'000134
00135'000134"
00134'000000
00137'000000°
00140'000000
N0141'000000
30142000001
00143000007
(10144000125
C0145'000000
00146000125
00147 '000000
N0150'000014"
00151000000

PP10:

PP15:

0000 SOURCE LINES IN

PRDE?2

{
0}
U

PP15=PP10

-TXT

—

«t+U
=

0

PPUO

0

0

1

PPOS
PP10G

0

PP1C

G
PPL5*2
0

ERROR

SUCALL.

-END

Wa W M2 N e We Ve W WE We s Ny Wa Wa

-
4

Page B - 13

MACRO: PRQOCESS=DESCRIPTOR '
PROCESSDESCRIPTOR:

NEXT

PREV

CHATHN

SIZE

NAME

FIRST EVENMT
LAST EVENT
BIFFE
PROGRAM
STATE

TIMER
PRIORITY
BREAK

ACO

AC1

AC?2

ACS

PSW |
SAVE

PP10

Page B - 14

0607

ALLAS
ALLOC
ALSTIZ
BCAILL
CILAS
c1s1z
comups
ER31
FADD
FDIV
FILAS
FILER
FISIZ
FIx
FLOAT
FMPY
FSUB
ToIV
[MPY
IMPYA
IOERR
MAINC
MCALL
MCLAS
MCSTZ
POP
POPNDA
PPN
PPOS
PP1D
PP15
PRDE1
PRDE?Z
PSHO1
PSPO1
PSPOP
PIJSH
TTLAS
TIMIN
TIst1Z

HCAdM

07106
onN7074
0po0012
gaooo0o0n
007137
000003
007134
000123
177775
177772
007130
007104
0o0022
177777
177776
1777273
177774
177767
1777271
177770
177764
0onyg137
007000
0n7150
000011
000043
No0né4
Qoaoan
ogooay
npu12s
0Qu1s?2
000211
000274
000041
0on117
GN00&s
000024
007134
007130
0o0Nn04

mc

MC
MC

5/11

5/20
5712
5/12

5/12
5712
5/12
5/12
5712
5112
5/12
5/12

3/09
4/33
1/11
1793
1/15
6/09
1/03
6/03
4/10
5/24
4/08
3/04

5/26

5137
5/14

5/14

5/14
5/14
5/14
5/14
57114
5/14
5/14
5/14

4/19
Li36
1715
1/20
6/05
6/28

4/16
5/32
4/24
4/03

5/27

. afer

5127
5/27
5/27
5/27
5/27
5/27
5/27
5/27

6/16
1/22
6/049

5/03

5/29
5129

5/29
5/29
5/29
5/29
5/29
5429
5/29

6/20
6/21

6/25
6/23

6/29

