Title:

DOMUS, System Programmer's Guide

Edition:
Author:

RC SYSTEM LERARY FALXOMNERALLE 1| DKX-2000 COPENHAGEN F

E BREENECENTRALEN oo

43-R10164
February 1977
Philippe Gaugin

Keywords:

MUS, Operating System, Loader,

Disk

e I AR 03 Ak I | Sl AT 18

Abstract:

This manual describes the interface between

22 pages.

assembly program and DOMUS.

Copyright © A/S Regnecentralen, 1375
Printed by A/S Regnecentralen, Copenhagen

Users of this manual are cautioned that the specificat o

contained herein are subject to change by RC at any tms
without prior notice. RC is not responsible for typogmss -
cal or arithmetic errors which may appear in this mene
and shall not be responsible for any damages cawses &y
reliance on any of the materials presented.

SO P NS £ g oy

CONTENTS PAGE

1. INTRODUCTION 1

2. CORE STORAGE STRUCTURE 2
2.1 Core Items

2.2 Process Hierachy 5

3. PROGRAM AND PROCESSES 6

3.1 Program Descriptor Word 6

3.2 Program Parameters 6

3.2.1 Separators 7

3.2.2 Item types 8

3.2.3 Scanning the Parameters 10

3.2.4 Parameter Example 11

4. COMMUNICATION WITH S 12

4.1 Formats 14

APPENDIX A, SYNTAX OF S-COMMANDS
APPENDIX B, SURVEY OF S-COMMANDS
APPENDIX C, SURVEY OF ERROR MESSAGES AND

EQUIVALENT ERROR NUMBERS
REFERENCES

1. INTRODUCTION

The DCMUS-system consists of the following software components:

Monitor

Utility Procedures
Basic i/o

Character i/o

Record i/o

Paging System

Disc driver

Teletype driver

File Management System

Operating System S

The operating system S takes care of core storage management,
program/procéss load from disc files, program/process removal.
It executes commands keyed in from the teletype or send to the
process from another process in the system.. It introduces a

process hierachy among the processes defining a parent/child

relation between processes.

2. CORE STORAGE STRUCTURE.

2.1 Core Items

Programs and processes are organized as described in s
After system initialization the available core storage above
the basic system is organized as one large item of core
storage. When the system works, pieces of that core storage
is occupied by additional programs, procedures, processes Or
data. Core storage is allocated in disjoint pieces, called
core items, all chained together in ascendig order in the one

and same chaim, the core item chaim, the head of which being

addressed by the page zero location: CORE.

The core item is headed by a 7 word descriptor with the follow-

ing contents

+0 owner process

+1 current load address
+2 chain

+3 size

+4 name of core item
+5

+6

The owner process field contains the process desciption address
of the process which allocated the item. The current 1load
address field points to the first address to be used if the
core item is boaded with a procedure or a process. The chain
field points to the next core item or is set to zero if it is
the last item in the chain. The size field contains the size

of the core item. The name field contains a possible name of

the core item.

Three different kinds of core items exists:

Free core item:

The item is not used by any process.

?

chain

size

Used core item:

The item is allocated by a process.

owner process

&

chain

size

name

Utility core item

The item is allocated because of a single load

owner process

0

chain

size

name of
load file

All processes except for the processes in the basic system
are contained in exactly one core item. In a core item may
reside several processes. Thus two relations exists between

a process p and a core item C.

1] p in € = -} p lies inside the core item C
C contains p:

2) powns C = C”s owner is p
C owned by p:

2.2 Process Hierachy

The above mentioned two relations between core items and

processes introduce a relation between processes:

P, parent to Py = there exists a core item C so that
P, child of Pq: P, in C and C owned by Pq

All processes except for the processes in the basic system are
children of other processes and all these processes are organized

in a structure with respect to the relation parent to.

process

core item

%

©R
7

3.

PROGRAMS AND PROCESSES

S5l

Program Descriptor Word

The following bits of pspec are used by the system:

32

B5:

B6:

B7 :

parameter bit: if this bit is set, parameters

are placed immediately after the highest location
occupied by the code. If the program contains a
process descriptor the address of the parameter

are placed in ac 1 when the process is started.

paged program bit: the program is paged
see ref [3]

reservation bit: the process is a driver process.
Processes using this program are breaked with cause

= 8 if a reserver of the process is killed.

Program Parameters

Program parameters are placed immediately after the loaded

relocatable code, and consists of a sequence of items, each

of the form

LENGTH

SEP TYPE

PARAMETER

An item always
an item is the
separator 1is a
preceeding the
separator. The

item.

start at an even byte address. The length of
number of bytes in the item, odd or even. The
byte containing the ascii value of the separator
item or a zero if the item was preceeded by no
type is an integer denoting the type of the

3.2.1 Separators

The following values may appear in the separator field:

0: Dblank, no separator.
44 . 7

46: .

47 o/

587

61

3.2.2 Item Types

Type (0, names:

10

SEP 0

char1| char?2

char3 | char4

char5| 0

In a name item up to five characters of the name are placed,

unused positions being zeroised. Only the first five characters

of a name are significant.

Type 1, integer:

SEP 1

value of integer

Type 2, texts:

n+4
SEP 2
char1 char?2
el i

If n odd the slack byte is set to zero

Type 3, composite item:

n+4

SEP 3

parameter sequence

of length n

~

o])

The composite item contains all parameters enclosed in

parentheses. The sub sequence starts in adr (item)+2.

Type 4 dummy item:

10
SEP 4
0 0
0 0
0 0
Type 4 end item:
0
0 4

Note that the end of a parameter sequence is signified by a

dummy item type and by length = 0.

10.

3.2.3 Scanning the Parameters

The first item contains the name of the filename from where

the program was loaded:

10

file name

The next item is found using the following algorithm:

; ac2 = adr (item)
FETCH NEXT PARAMETER:

FNP; ;
LDA 0 O 2 s length:=item.length;
INCZR 0,0 s size:=(length+1) /2;
ADD 02 H adr :=adr+size;

; ac2 = adr (next item)

Note that the end of the list is found when the length equals
zero. Also note that this algorithm will never pass beyond

the end item, but will continuously give you the end item.

3.2.4 Parameter Example
COMMAND: PIP 987/'AB'
PARAMETERS:
10 |
0 0 ‘
80 73 |
80 0
0 0 |
0 1 |
987 .
!
6 ‘
47 2
65 66
0
0 4

SIS

4. COMMUNICATION WITH S

12,

After system initialization the process S goes into its idle

state where it is waiting ready to execute an S-function.

As an event arrives, S classify it as being one of the

following types of events.

i

Console command

'An answer arrives from the teletype indicating

that a human operator wants S to perform an

S~function.

Internal command

An output message from a process in the system
arrives indicating that a process want S to

perform a number of S-functions.

Internal request

An control message from a process in the system
arrives indicating that a process wants S to

perform a final operation on the process itself.

Get message

When executing console commands,

defines as S itself. When executing internal commands the

An input message from a process in the system
arrives indicating that a process in the system
wants S to deliver a message from the message

file.

operating process is the sender of the message. Internal

requests are only executed if the sender of the message is

a child of S, and the operating process is then defined

as S itself.

the operating process is

13.

Generally S accepts to operate only on core items owned by
the operating process. So the only processes S would kill
is the children of the operating process. Some special
functions however violate these rules. In [2] all functions

are described. In appendix B a survey of commands are listed.

Errormessages consists of 3 components

1. An error cause
2. Possibly a name
3. Possibly a number

When printing errormessages on the teletype the errormessage

would look like:

¥¥¥Ltext> [<name>] [<number in octal>]

where the text explains the error cause.

When returning answers to internal messages the errorcause

is represented as a positive number.

14.

4.1 Formats

Internz1 command

Message:

COUNT

ADDRESS

NAMEADDRESS

The count is the number of characters to be interpreted by S
The address is the byte address of the first character in the
message. The name address is a byte address printing to a 6

byte core storage area or zero if no area present.

If <command string> denotes the contents of the bytes in
locations address, address+l, ..., address+count-l, the command
is interpreted as if the following commands were keyed in from

the teletype:
BEGIN <nl><command string><nl>END<nl><end medium>
The scan terminates when the first END is met. Note that if the

bytecount is accurate you need not put an END as the last

command in the command string.

15

Answer:

RESULT*256

COUNT

NUMBER

NAMEADDRESS

The result is zero if the commands were executed succesfully
otherwise if contains a positive errorcode, corresponding to

an errortext. The count is equal to the count of the message.
The number is the number part of the message irrelevant if zero.
If the name field exists and contains a non null name, that name
is the name part of the errormessage. Be careful not to send a
message to S with an undefined value of mess 3.

Internal request

Message:

1B8

COUNT

ADDRESS

NAMEADDRESS

The count and address acts as for internal commands. The command
string is interpreted as if the following commands were keyed

in from the teletype:

BEGIN<nl>KILL<sender><nl>
<command string><nl>END<nl><end medium>

16.

Answer:

RESULT*256

COUNT

NUMBER

NAMEADDRESS

The answer is given immediately and the process will be

removed as fast as possible.

Get message

Message:
Sy ; ww
COUNT>32 'j
| ADDRESS |
MESSAGENUMBER l

This message asks for a transfer of the text of the system

message with the number given in mess3.

Answer :

RESULT+256

COUNT

e e —

NUMBER

0

The count is the number of characters in the text including
a terminating zero byte. If count of message is too small,

only a part of the text is delivered.

APPENDIX A, SYNTAX OF S—-COMMANDS

The following metalinguistic symbols are used:

Sequences of characters enclosed in < and > represent metalinguistic

variables whose values are sequences of symbols. The mark ::=

means ,"may be composed of" and the mark | means "or". The production
(rule) : <sign> ::= + | - means that any occurence of the variable
<sign> may be replaced by a + or a -. The braces and signifies

that the contents should be regarded as a single metalinguistic
variable. The superscription * means zero or more occurrencies

of the preceeding variable, whereas the superscription + means

one or more occurrencies. The brackets [and] indicates an

-optional string.

<conmand> ::= <nl>* <name> { [ksep>] <item>}* <nl>
<item> ::= <name> | <number> | <text> |
<dummy item> | <composite item>

<composite item> = (<item> { [<sep>] <item> }*)

<name> ::= <letter> { <letter> | <digit>} *

<number> ::= [<sign>] {<digit>™ }* <digic> *

<text> ::= '<any character except'>'

<dummy item> $i= %

<sep> se= Ll 1 s = 1

<sign> =+ | -

<letter> ::=A |BICIDIEIF IGIHII IJIKIL IM IN |
OIPIQIRISITIUIVIWIXIYIl Z| EI @1 Al
$ |
alblcldlel flglhliljlklllimlnl
olplglrisitiulviwixlylzlalgla

<digit> ::=0111213141516171819

<nl> ::= ascii characters LF,VT,FF or CR

The ascii characters: SP and HT and the sequence ! <any characters except :>.

are blind outside texts, except for being terminators of names and numbers.

APPENDIX B, SURVEY OF S COMMANDS

BEGIN Read a sequence of command lines from the teletype.
Terminate at an END command.

BOOT <filename> Bootstrap a stand-alone program.

BREAK <process> Break the selected process.

CLEAN <process> Stop and clean the selected process.

CLEAR [<coreitem>] Kill all processes in the selected coreitem or in

all utility coreitems.
CREATE <file><type><size>Create a file on the current drive.

DELETE <file> Delete the selected file.

DRIVE <driveno> Select the specified drive as current drive.

END Terminate a sequence of commands and execute these
commands.

FREE <coreitem> Free the specified coreitem.

GET <coreitem> [<size>] Get the specified coreitem.

INIT <driveno> Initialise the catalog on the disc drive.

INT <file> Read a sequence of command lines from the specified

file. Terminate at an END command.
KILL <process> Kill the specified process.
L1sT [/CORE | /PROGRAM] <name> *
List all or selected processes, programs Or coreitems.

LOAD [/<coreitem> [/<size>]] {{< file> | (<file> <params>),}[/<procname>] }+
Load a coreitem from the specified file(s).

START <process> Start the specified process.
STOP <process> Stop the specified process.

<filename><params> Load a utility coreitem from the specified file.

APPENDIX C, SURVEY OF ERROR MESSAGES AND EQUIVALENT ERROR NUMBERS

ik #*%* SYNTAX

2 #%% TOO MANY PARENTHESES

3 *** PARAM

4 **%* END MEDIUM, FILE <filename>

5 *** TOO MANY COMMANDS

6 *x% STATUS, FILE <filename><status>

7 *%% UNKNOWN, FILE <filename>

8 *#*%* RESERVATION, FILE <filename>

9 *%% COREITEM EXISTS, ITEM <itemname>

10 *%% STZE

11 **% COREITEM DOES NOT EXIST, ITEM <itemname>
12 *%*% COREITEM NOT CLEARED, ITEM <item>

13 #%#% ENTRY NOT A FILE, ENTRY <catalog entry>
14 *%% STATUS, DEVICE <device name><status>

15 #%% NOT ALLOWED

16 *¥** NO SPACE FOR PAGES, FILE <filename>

157 *** TLLEGAL PROGRAM, FILE <filename>

18 *¥** STZE ERROR, FILE <filename>

19 *** CHECKSUM ERROR, FILE <filename>

20 *** VIRTUAL ADDRESS ERROR, FILE <filename>
21 *** PROCESS DOES NOT EXIST, PROCESS {process>
22 *** SYSTEM ERROR <number>

23 #¥#% PROCESS EXISTS' PROCESS <process>

References:

[l

§2]

55

a1

RCSL:

RCSL:

RCSL:

RCSLi:

44-RT 759

43-RI0165

43-RI0142

44-RT1278

Mus System Introduction and

Programmer's Guide

DOMUS User's Guide Part I

RC 3600 Paging System,

System Programmer's Guide

RC 3600 FILE SYSTEM,

System Programmer's Guide

