Py

ISR N
RCSL : 44-RT 1278
Author : H. Kold Mikkelsen
Edited : 76.04.01

P AT

RC 3600 FILE SYSTEM
SYSTEM PROGRAMMER'S GUIDE

Keywords : File system, catalog, area process, cat’76.
I

Abstract This manual describes how to use the RC 3600 file system from
Assembler programs. The user must be familiar with the MUS
system.

This manual replaces the RCSL: 43-GL 741.

CONTENTS Page

1.1 INtroduction . vveineeeeeonarniiraresaentiaarneanaanenaes 1
1.2. The File System e e esesseaeeHecasaenaeesnbsrarso s 2
1.3. Disc Formatccvvnen. et 3
1.3.1. Unit Format . ..uieiitiiiiiniiiiiiieiiernniiiiaaneeosneenens 3
1.3.2. File FOrMat vt iriene sttt s ieesenaeessaneaneeesanesnncnns ' 4
1.3.3. Index Block ...eviiiiininiie it i i 4
1.3.4. Catalog ..oeviiiniiiiii i i i i SN 4
1.4. Catalog Handlervuiniunnivi it 6
T.4.7. Init Catalog vvvveeneii i i i e 6
T.4.2. Set Entry ooivniiiiiiiiiiii ittt iiieianeeeaacene s 7
1.4.3. Create Entry ... vvin ittt iiieaeanes 8
Todid. LoOk UP ENETY «uvenenenen e e aeee e eeaeeaeeee e eeeeeeans 10
1.4.5. Change Entry «.oueieiiinii ittt iiiieiereaeeiianeeenas 10
1.4.6. Remove Entry ... it 12
1.4.7. Create Area Processc.iiiiiiininininneneneenanannns 13
1.4.8. Remove Area Processccoiiuiiieiiiineneeennnannans 14
1.5. Area Processesiiiiiiiiiiiii i i e e 15
T P o (P 15
1.5.2. Transput ..ot e ieee et 17
1.5.3. Status Bits AP 20
1.6. Format for Area Process Descriptioncooiviiiienaan.n, 2]
1.7. Loading the File Systemooiiiiiiiiiiiiiiiiienennnneanns 23
1.7.7, ProdUcing COMW v evueetiiteeeineeeeanseenanaeaeenannnnas 23
1.7.2. Loading capx BT e 30
1.7.3. Initnew Catalogiciviiiiiiiiiiiiiiii ittt 30
1.7.4. Unit Numbers e 32

Page 1.

1.1. Introduction

RC 3600 file system makes it possible to divide a disc drive into smaller independent .

units, files. These files are identified by names. The descriptions of the files, file

descriptions, are kept in a catalog stored on the disc. File descriptions give among

other things the name, the length, and the starting position on the disc of the file. -

RC 3600 file system allows more discs to be coupled to the same RC 3600. Each disc
is handled as a unit, i.e. it has its own catalog, and no one unit knows about the
existence of the others. Files on different units may therefore have the same names.
To know at which unit the file system has to look for a specific file it is therefore

necessary to give the number of the unit besides the name' of the file.

With the RC 3600 file system you can create and remove files on a disc, read and
write into existing files. In addition you can change some of the information in a

file descriptor, and you can look into a file descriptor.

Operations involving reading or writing the catalog are handled in a special catalog

handler process, cat.

To avoid reading the catalog for each reading/writing into a file (to get the informa-
tion about the file's position on the disc), you have to create an area process on

the file first. When an area process is created, the file descriptor is copied to the
area process description. Read/write is now carried out by sending messages to the

area process.

Because the number of discs and area processes is not the same in every use of the
file system, you have to define these things. This is done by making an option pro-

gram containing the information needed.

The file system is able to handle all existing disc types which belong to the RC 3600

hardware system.

The file system is reentrant, i.e. many input/output operations may be processed at

the same time.

Page 2.

1.2. The File System

When a new unit is to be used by the file system, it must be initialized. To do this,
a special utility program is used (cf. 1.7.4.). Among many parameters to the utility

program are two slice sizes:

a big one (> 3 segments)

a small one (> 2 segments and <big slice)
which are used when a file is to be extended.

A unit should only be initialized once, but each time it is inserted in the system the

catalog must be initialized (cf. 1.4.1.).

Now the file system is able to set, create, lookup, change and remove entries, create

and remove area processes, and read and write on the file.
The slices mentioned above are used in the following way:
In set, create and change entry a file size is specified.

If file size > = big slice, then the necessary number of free big slices is

reserved.

If file size < big slice, then the necessary number of free small slices is

reserved.

When the file does not exist, an index block is created too (cf. 1.3.3.), and the file

system increments the file size by one.

When writing on a file, the reserved length may be exceeded. If so, the file system

may extend the file with free small slices regardless of the slice sizes already used.

The big slices are set on the lower part of the unit, starting at the first data segment,
and move towards the higher part. The small slices are set on the higher part of the

unit, starting at the last data segment, and move towards the lower part.

The areas used for the two types of slices will vary during run, but will not be allowed
to overlap each other. If they do so, this will cause the result (disc full) even if there

are many free slices left.

Page 3.

1.3. Disc Format

To be able to handle arbitrary disc sizes, the file system is dealing with logical units.
These may be an element of a disc pack or may cover many disc drives. These units

are described in a kit description called catw (cf. |.7.).

In the following, only the format inside the unit is described.

1.3.1. Unit Format

Segment (0:5) Reserved by the MUS system

6 System index block, contains the segment numbers of the

catalog file.

7 Map index block, contains the segment numbers of the bit
description.
8 Kit description block, contains the information of the unit
(cf. 1.7.).
9 Map block, big slices.
10 Map block, small slices.
(11:n) Reserved by the operating system, 'n' is set during the initiali-

zation of the unit (is typically equal to 32).

n+1 First data segment.

The user has no access to the first (n+1) segments, but may read from the catalog file

(name (< :sys:>)) and the map blocks (name (< :map:>).

The following segments are the data segments with the upper limit equal to the top-data-

segment.

The first big slice is occupied by the catalog file.

Page 4.

1.3.2. File Format

A file consists of a number of slices which are linked together by means of an index
block. The index block is always written in the first segment of the first slice, except
for the catalog file (cf. 1.3.1.). The slices may thus be spread over the whole unit

although the user will not see this.

1.3.3. Index Block

The file is logically contiguous by means of the index block which is written in the

first segment of the first slice of the file.

Each slice of the file is described in the index block by the size and the segment ad-
dress of the slice. The maximum number of slices the index block can hold is 127,

which in turn gives the biggest possible file size.

The user cannot read or write the index block.

1.3.4. Catalog

The catalog is organized as an ordinary file except that the index block is written in
segment number 6. The name of the catalog is <:sys:>.

P

Initially the first big slice is occupied by the catalog.

Each of the segments in the catalog can hold 15 entries, and each entry occupies
16 words. A name may consist of 5 characters with the 6th character equal to the unit

number (cf. 1.7.). It is assigned to one of the segments by a hashkey calculation.

If the number of entries exceeds the possible 15, the catalog is extended with a big

slice.

Format of an

Entry + (O:
+ (3:

+

+ (10:

Attributes:

Page 5.

Name, 5 significant characters, the 6th = binary unit number .

Optional initial content = 0. It is free for use by means of
‘setentry' and 'lookup entry' and the content is not tested

by the file system.
Attribute.

File length, during automatic extension of the file (output only),
the file length indicates the actual number of segments written.

Else the filelength = the reserved length.

Segment number of the index block, is essentially the start

address of the file (cf. 1.3.3.).
Reserved length, the number of segments occupied by the file.

Tail, as optional above.

The following attributes are possible:

- Extendable, i.e. the file is extended if necessary during output.

- Entry only, i.e. only an entry in the catalog is set with the reserved length

= 0.

- Writeprotected, i.e. it is only possible to read from the file.

- Permanent, i.e. the file cannot be removed or changed, yet change attribute

is accepted.

Page 6.

1.4. Catalog Handler

All functions which involve reading/writing in the catalog are sent as messages to the

process cat.
This is the case for the following functions:

1) Initializing a catalog on a disc,
3) Creating and releasing file descriptions,

4) Creating and removing area processes.

File names. - The maximum length of the file name in the file descriptor is 5 chars.
In all calls of cat which involve reference to a file the file name occupies 6 chars.
The first five constitute the file name, and unused positions are filled in with zero
characters. The 6th character is the identification of the disc where the file has to be
located. The discs in the system are numbered from zero onwards. This character is

called the drive number and is stored binary.

To make it possible to distinguish between operations on entries and area processes

in case of errors, bit 3 or 4 in the result is set:

1b3 : error in connection with a cat entry operation

b4 : - - - - - area process operation

In the answers only messO.buf = result is relevant.

A disc must be initialized by the file handler before it is used. This is done by sending

the messages stated below to the process cat.

Message

mess0.buf 1b7
mess1.buf not used
mess2.buf driveno

mess3.buf not used

Page 7.

‘ The disc given by the binary number driveno in mess2 is initialized. In further use of

the initialized disc this driveno. must be the éth character in the file name.

The old catalog on the driveno. in question is used without any changes. The kit de-

scription (CATW) is read.

I

Result 0, catalog initialized

1l

Time 3, disc accesses

1.4.2. Set Entry

‘ To set an entry, send the message stated below to the process cat.

Message

mess0.buf 160

mess1.buf not used
mess2.buf storage address
mess3.buf not used

Sets an entry with the specified name and reserves the specified size. It works as
‘create entry' (cf. 1.4.3.), but the file descriptor should be set by the user. In this

way the optional words may be set too.

Storage address points to a 16-word area:

Address (0 : 2) name (6th character = binary driveno.)
3:5) optional
(6) attribute
7) file length (set by CAT)
(8) segmno of indexblk (set by CAT)
9) reserved length
(10 : 15) tail

. Attribute, see 1.4.3. Create Entry.

Page 8.

‘ Result = 0, entry set
Result <> 0, entry is not set
1b3+ 160, catalog i/o error

1b3+ b6, paranﬁe'rer error, i.e.

1) wrong size, file length <0,
2) wrong attribute, any bit to the left of 1bl1 is set,

3) disc not initialized.
b3+ b7, disc full
1b3+ 1b11, entry with the same name already exists

1b3+ 1b12, indexblk or mapblk full

. Time = 16 + 4 * number of slices.

If the catalog is full, then add 10 disc accesses.

e e s i e e s . . S s s v s e

To create a new file on a disc, send the message stated below to the process cat.

Message

mess0. buf 1b1

mess1.buf name address
. mess2.buf size
mess3.buf attribute

Create a new file on a disc. A file consists of a file description and some data blocks.

Name address points to a 3-word area with the name of the file. The maximum length
of the name is 5 characters, and the 6th character always gives the driveno. in binary

form of the disc where the file has to be created.

Attribute defines the type of the file:

1b15 extend possible
1b14 (not used)

1613
1b12
1b11

Page 9.

entry only, file length = 0
write protected

permanent file

Size (>1) gives the number of hole segments the file should occupy on the disc.

The reserved length is set to 'size' + a number of segments needed to have a whole

number of slices (cf. 1.2.).

After a successful call of 'create entry', the new file description has the followin
Y p g

content:

(0:2)

File descr

(3:5)

Result =

Result <>
b3+
1b3+

1b3+
1b3+

Time in disc accesses =

name, 6th character = binary unit No.
optional =0

attributes

file length - reserved length

segmno. of indexblk

reserved length

tail = 0

0, entry created
0, entry is not created
1b0, catalog i/o error
1bé, parameter error, i.e.
1. wrong size, file length <0,

2. wrong attribute, any bit to the left of Ibll
is set,

3. name format illegal,
4. disc not initialized.

1b7, disc full

1b11, entry with the same name already exists

16 + 4 * number of slices.

If the catalog is full, then add 10.

1.4.4. Look Up Entry

Page 10.

To look into a specific file descriptor, send the message stated below to the process

cat.

mess0. buf
mess1.buf
mess2.buf

mess3.buf

Message

1b2

name address

entry address

not used

Looks up the file descriptor given at name address (same format as in 'create entry')

in the given catalog and copies the file descriptor (16 words) to entry address and

onwards. For a description of file descriptor format, see 1.3.4.

Result =
1b3+
1b3+
-~ 1b3+

Time =

1b0,
b1,
1b6,

entry looked up
catalog i/o error
entry does not exist

disc not initialized

disc accesses

To change the file name, the file length, and the attribute for a specific file, send

the message stated below to the process cat.

mess0.buf
mess1.buf
mess2.buf

mess3.buf

Message

1b3

name address

storage address

not used

Page 11.

Used to change name, length, and attribute of file. All files excepted the permanented

can be renamed. An area process must not exist on the file.

Nome address points to a 3-word area with the name of the file in the 5 first charac-

ters, and the binary driveno. in the éth character.

Storage address points to an area with description of the new content:

Address (0 : 2)
(6)
(9

New attribute :

New file length :

New name :

Result =
1b3+
1b3+
1b3+
1b3+

1b3+

new name, 6th character = binary unit No.

new attribute

new file length

If new attribute <0, then it is not changed.

If new file length <0, then it is not changed.

If address + 0 = 0, the name is not changed.

If the file is permanented, the name is not changed,

and the result (illegal) is set.

0, entry changed

160, catalog i/o error

b1, entry does not exist

1b7, not enough disc space for file.

b6, illegal
1. name format illegal,
2. disc not initialized,
3. change of name for a permanent file,
4. wrong attribute, any bit to the left of 1bl1

5.

is set,

an area process exists on the file.

Ib11, entry with new name already exists

Page 12.

Time in disc accesses =

‘a : change attribute : 3
b : change name : 8
If the catalog is full, then add 10
c : change length
If new length > old length, then 8
If old length = 0, then add 3
If new length < old length, then 4 + 2 * number of

slices

Combinations: a + b = b. a+tc=c, b+c=b+c. a+b+c=>b+c.

To remove a file from a disc, send the message stated below to the process cat.

Message

mess0.buf 1b4
mess1.buf name address

mess2.buf not used

Name address points to a 3-word area with the name of the file in the 5 first charac-

ters, and the binary driveno. in the éth character.

Result = 0, entry removed
1b3+ 1b0, catalog i/o error
1b3+ b1, entry does not exist
1b3+ b6, illegal, i.e.

1. name format illegal,
2. disc not initialized,

3. area process exists on the file.

\
|
\

mess3.buf not used

If an area process exists on that file, the message is rejected, else the entry is deleted.

Time in disc accesses = 8 + 2 * number of slices

Page 13.

1.4.7. Create Area Process

Before reading and writing a disc file, it is necessary to create a process to which you
can send the read, write, and control messages. This is done by sending the message

described below to the process catalog.

Message

messQ.buf 1b5

mess 1. buf name address
mess2.buf not used
mess3.buf not used

Makes a file on a given disc available for the calling process as an area process. The
name of the area process is the 5-character name of the file descriptor extended by the
binary driveno. If the area process does not exist, the file descriptor is looked up in
the catalog on the given disc, and an area process descriptor is taken from the queue
of free area process descriptors and initialized according to file description. It is

chained to processchain and started as a normal MUS process.
If the area process already exists, the message is dummy.

Name address points to a 3-word area with the name of the file as the first 5 charac-

ters, and the binary driveno. as the 6th character.

Result = 0, area process created or already exists
1b4+ 1b0, catalog i/o error
1b4+ b1, entry does not exist
1b4+ 1b6, illegal, i.e.

1. name format illegal,

2. disc not initialized.

Tb4+ 1b7, no area process descriptor available

Time in disc accesses = area process exists: 0

area process does not exist: 2

Page 14.

1.4.8. Remove Area Process

When finishing the reading and writing a disc file, you can release the used area pro-

cess by sending the message stated below to the process catalog.

Message
mess0.buf 1b6
mess1.buf name address
mess2.buf not used
mess3.buf not used

If any user of the area process exists or the area process does not exist, the message is

dummy, else

- all messages in the eventqueue are returned,
- the area process is removed,

- the catalog on the disc is updated.

Name address points to a 3-word area with the name of the file as the first 5 charac-

ters, and the binary driveno. as the 6éth character.
Result = 0, process removed or usercount > 0 or process does not
exist.
b4+ 1b0, catalog i/o error
1b4+ 1b6, illegal, i.e.

1. name format illegal

2. disc not initialized

Time in disc accesses = process does not exist: 0
usercount > 0 : 0
usercount = 0 : 3

Page 15.

1.5. Area Processes

A description of how to create and remove files on disc, initialize catalogs, and create

and remove area processes is to be found in chapter 1.4.

The name of an area process consists of é characters. The first 5 correspond to the
name of the disc file, and the 6th 'character' is the number of the disc on which the

file is stored. This number should be binary.

The first block in a file has the relative number zero.

Both control and transput messages are accepted.

1.5.1. Control

Reservation for use, exclusive user, and exclusive writer are accepted. Besides these

only position is accepted.

Reservation: If it is possible, the calling process may be included as user, exclusive

user, or exclusive writer, or the user may be removed.

At the most 3 different users are possible, and each user has an open/close count

which follows the number of reservation commands to the user entry.

Count = 2 Insert user as exclusive writer.
All other processes are allowed to read the file.
The open/close count is increased.

If the user is new, the usercount is increased.

Result = 0 : The reservation is accepted.
o6 : Area process reserved for exclusive use by another
process.
b
194 + b6 : The area process is already reserved for exclusive

writing by another process.

b
164 + 1b12 : No more user entries.

Count = 3 :
Result = 0
1bé
b4 + 1b12 :
Count = 4 :
Result = 0
1bé6
1b4 + 1b6
b
184 + 1b12 :
Count = 0 :
Result = 0
1bé
1b4 + 1b11

Time = 0 disc accesses

Page 16.

Insert user.

All other processes are allowed to read the file, and
the area process may be reserved for exclusive writing

too.
The open/close count is increased.

If the user is new, the usercount is increased.

The user is inserted as a user of the area process.

The area process is reserved for exclusive use by

another process.

No more user entries.

Insert user as exclusive user.
Any other process is rejected.
The open/close count is increased.

The usercount can only be 1.

Reservation accepted.

Area process reserved for exclusive use by another

process.
Area process is being used by another process.

No user entry.

Remove user.

The open/close count is decreased. If it reaches zero,
the usercount is decreased too, and if the user was

either exclusive user or writer, this state is cleared.

The user is removed.

Area process reserved for exclusive use by another process.

The calling process is not a user of the area process.

Page 17.

Position: The position in mess3.buf within the file is set.

If the position < 0, then the position : = 0.
If the position > file size, then the position : = file size.
Result = 0. : Position accepted.

1bé : Area process reserved for exclusive use by another

process.
1b4 + 1bé : Position < 0.

1b4 + 1b11 : 1. Position is outside the file.

2. The sender is not a user of the area process.

Time = 0 disc accesses.

Other control messages: The disc is sensed to check the status.

Result = 0 : OK
b6 : Area process reserved for exclusive use by another
process.

b4 + 1b11 : The sender is not a user of the area process.

Time = 0 disc accesses.

Message Answer
mess0. buf operation status
mess1.buf bytecount number of bytes transferred
mess2 . buf byteaddress unchanged
mess3.buf (first block No.) first block No.

Bytecount in mess1.buf must be 512 bytes.

Byteaddress in mess2.buf must be even.

Input

operation

operation

Output

operation

operation

operation

operation

11

19

23

Page 18.

Input sequential mode. Reading of the file continues at the

position reached by the last transput or position message.

Mess3.buf is irrelevant in the message, but in the answer it

is set to the number of the block first read.

Input random mode. Before reading the file is positioned to

the position given in mess3.buf. Else as for operation = 1.

Output sequential mode. Writing in the file continues at the

position reached by the last transput or position message.

The file is automatically extended if attribute (extension
possible) is set for the entry at an amount corresponding

to the slice size chosen (cf.

Mess3.buf is irrelevant in the message but in the answer it

is set to the number of the block first written in answer.

Output random mode. Before writing the file is positioned

to the position given in mess3.buf. Else as for operation = 3.

Read after write in sequential mode. First an output operation
= 3 is carried out. Then the written segment is read for
check of status. For some disc devices the output buffer is

used as input buffer during the check read.

Read after write in random mode. Works as operation = 19,

except that output operation = 7 is carried out.

Time in disc access:

Input

Output

Page 19.

If position is in the position entries in the area process,

then 1, else 2.

If position is in the position entries in the area process,

then 1, else
if position is inside the reserved file, then 2, else 10.

If read after write in mode, then add 1.

Page 2p.

1.5.3. Status Bits

1.

UWIN|OD SIY4 Ul $41q JOJI2 BY4 O} POPPD Si S4lq 9SAY4 JO BUO ‘pauoijusw s| esja Buiyjou 4| (

o *
) - - - gLat
jno-aw | jno-awi | jno-swi | - y19l
- - - - gLqal
“(LLgL+) 41> Bulysixe apis *(yql +) s@144ud Jasn sJow ou
Jo119 uoljisod aipompioy -}n0 ‘10445 UOI}Isod SIDMPIDH (Joa43 uoljisod) Jotse e9g “11n3 »20]q xepul 1o doyy AL
“(F9L+) 2|1 343 SpIsino S| uoH
-1sod “(pa1+) ss@20.d DaJD JO
S}y osip Buiysixs jo pug 413 Buiysixs jo puj - Jasn jou ‘(gq|+) sisixd \A:cm L149l
10149 Aj1ioy 10149 Aj1ing Joa4a Ajling - oLql
- - 84p| bib(- 64l
ss21ppoaidq PPO - $s34ppoaidq PO - 891+941
lo119 >do|g lo119 >o0|g Jouts 3ooig - 891
*sassad0.d DaID SI0W OU
- - - “(€qL+) Hny 2sia 91
*yndyno ul pajosjoid-ajlim ‘pubw
-WOD SALIP PI|DAUL pPa4d8|ds 41un
ou Jo a|di}jnw ‘}sIxd jou secp j1un indjno ui payosjold-aiipp 151X Jou ssop }1un - 991 +691
“(Ajuo - 9q|) -peAtasal
ssaooud pauo ‘(> yibusj a1y
ssad0.d ss920.d ss920.d ‘10149 34nqluyp ‘pazi|piyiul
layjoun Aq pantesal Janti(1ayjoup Aq paAiasal JaAali(layjoup Aq pantasal Jaall(jou osip ‘|pbBa||l pwIo) BWDN| 991
pajoajoid-afiipg pajoajoid-afiiM - - g9l
- - - ssao0ud paID wolj abossayy ¥4l
- - - YTITANVH Ly D wouy abossayy £q1
- - - - Al
- aul|] HO - is1xa jou seop Aujug 191
*@|gp|IDAD JOu jlun ‘Iolia pioy * spupwiwod jdasop *((z1) =4ompioy) uoljounjjow
‘1j0 1amod ‘pajosuuodsi(04 a|qoun ‘pajdauuods| (] ‘a|qpo|10AD JOU 41U lou12 o/) Bojpip) 091
9z ‘Sz ‘ve ‘€T "zt 1728 DY 29 h'T< 7698 DY (» VAL + 10 €L + 9£1¥D Lig

0592€ Od
@

o

Page 21.

1.6. Format for Area Process Description

An area process description occupies 74 words, the first 25 correspond to a normal
driver process description (including reser.proc.), see MUS Programmer's Guide,

Part 2, 2.4-2.5. The remainder of the area process description is:

address.proc. +25 attribute
+26 file length (= actual length < reserved length)
+27 segment number of start of first slice

(= address of the index block)

+(29:42) work locations (to make the catalog systems re-entrant,

+28 reserved length (= the sum of all the reserved segments)
for internal use only)
|

user positions:
+43 next position entry (= next victim when a position is

not found among the current user positions)

+(44 :46) user position 1. Contents:
+44 segment number of the slice
+45 first block number rel. to file start

+46 top block number rel. to file start
+(47 :49) user position 2. Contents as for position 1.

+(50:52) user position 3. Contents as for position 1.

user entries:

+53 exclusive writer
+54 user count (see 1.5)

+(55:57) user entry 1. Contents:
+55 user identification (= process descriptor address of user)

+56 user position rel. to file start (after a transput,
mess3.buf : = user position)

+57 open/close count (see 1.5)

+(58.: 60)
+(61:63)

, message buffer:

+(64:73)

Page 22.

user entry 2. Contents as for user entry 1.

user entry 3. Contents as for user entry 1.

message buffer (see MUS Programmer's Guide, Part 2,
2.6)

Page 23.

1.7. Loading the File System

The file system consists of the following sections:

The file handler program, named cat.
2. An option program, named catw.

An option program, named capx, where x = number of area processes
4 .
le.g. cap8),

4. One or more disc drivers, their names are given in catw.

When all these programs exist as binary tapes and the MUS system is loaded in
RC 3600, you load them into RC 3600 by means of the S-command LOAD.

1.7.1. Producing catw

Each RC 3600 installation must make its own option program catw, which

1. gives the configuration of the discs connected to RC 3600,

2. contains the number of area process descriptions the system will use

simultaneously.

The option program is translated with a MUS assembler to produce the binary tape.

The format for catw is given below together with an example.

. Format of catw

Start word

+ 0 program specification (= 1b0 + 1b1 + 1b7 + 1)

+ 1 start of program
+ 2 program chain (set by the MUS system)
+ 3 size of ! program

+ (4:9 name of program (= < : catw <0> : >)

+ 7 first area process

+ 8 top area process = first area process
. ; head of unit chain:

+ 9 head of unit chain

+ 10 chain of head of unit chain

unit chain (a):
+ 11
+ 12
+(13:15)
+(16:18)
+(19:20)

unit parameters:

+(21:28)

Page 24.

chain of unit <a>, points to the next unit in the chain

size of unit <a> descriptor (= 18)

name of unit : < : unit <a> <0> : >

name of driver which handles the unit

kit displacement = number of segments prior to unit <a>,
which is handled by the driver.

additional descriptor

+21

+22

+23

+24

+25

+26

+27

+28

normal slice size (= big slice size),

constant set by user: 2 < size < 256.

increment slice size (= small slice size),

constant set by user: 1 < size < normal.

number of segments on unit <a>,

constant set by user.

number of free segments on unit <a>, init. value = number
of data segments = number of segments on unit <o> - first data

segment, set by user, changed by cat during run.

first data segment, points to the catalog file for unit <a>,

constant set by user.

top data segment, points to the last segment +1 of unit <a>,

= number of segments on unit <a>, constant set by user.

min. slice, the last reserved normal slice number and is
used to calculate the limit for extension with increment
slices, init. value : = 0 by the user, changed by cat

during run.

max. slice, the last reserved increment slice number and
is used to calculate the limit for extension with normal
slices, init. value : = 0 by the user, changed by cat

during run.

. unit chain (b):

+(29:46)

Page 25.

contents as for unit chain (a) except that the unit number must be
.

unit chain (n), the last unit in the chain:

last. addr+ 0
last.addr+ (1:17)

chain of unit <n> : = 0, i.e. no more units in the chain.

contents as for unit chain <a> (12:28) except that the unit

number must be <n>.

The unit chain is followed by:

1 area process:

process descriptor:

start address of catw

. blk <expression>

where <expression>

The next 22 words contain the normal MUS process description
(including save.cur). The name is <: catw <0>:>, and the

priority is -1.

program (word (+1)):

A piece of code which inserts the catw-process and the code as
an area process in the area process chain, which means in turn
that the catw-process is removed (the catw-program is still in

the program chain).

size of (catw-process descriptor)

+ o+

size of (catw-program code)

size of area process = 74

An example of a disc description is given in the following pages. It contains two disc

units and one flexible disc.

Page 26.

Please note that the unit descriptors are structured as programs. but neither the spe-

cification nor the program start makes any sense, and for this reason those two first

words are omitted from the unit chain, but if the basis system should be able to

handle the chains, the chain pointer must take into account the lack of the first

two words. This is the reason for the "-2" in the chain pointers.

. rc3600 disc catalog system cat76é, disc description.

.titl catw
.nrel
. Ixtm
.rdx 10
dwO:
1b0 + 1b1 + 1
dw4
0
dw5 - dw0

dwl:

Axt .catw <02,

darea

darea

; head of unit chain:

dhead -2

dhead: dk0 -2

; chain of units:

dkO:

dk4 -2

dk4 -dk0O

Jxt Lunit < 0>,
.txt .fd0 <0> <0>.
0

0

.blk 8

; program (catw)

specification
program start
program chain
size of program

name of program

first area process

top area process

. head of unit chain

. chain of head of unit chain

. unit 0: chain of unit O

size of unit O descriptor
name of unit 0

name of rc 3650 disc driver
kit displacement (0:15)

kit displacement (16:31)

unit O parameters

dk4:

dk5:

dk4 -2
dk5 -dk4

Jxt Lunit <42,
.txt .dkp0 <0>.

0
0
.blk 8

0
darea -dk5

Lixt Lunit <52,
.txt .dkp0 <0>.

0
9744
.blk 8

; unit 4: chain of unit 4

size of unit 4

name of unit 4

name of rc 3652 disc driver
kit displacement (0:15)

kit displacement (16:31)

unit 4 parameters

; unit 5: chain of unit 5; last unit

size of unit 5

name of unit 5

name of rc 3652 disc driver
kit displacement (0:15)

kit displacement (16:31)

unit 5 parameters

Page 27.

1 area process:

darea:

dw5:

dw4:

dw’/:

dwé:

; process descriptor:

0

0

0

dwé - dw5

.txt .catw < 0>,
dwb + event

dw5 + event

; start address of catw:

1da 2 cur
Ida 0 process
Ida 1 areap
rechain

Ida 2 cur

stopprocess
.blk 74-dw7+dw5

.end dw5

Page 28.

(used as area process later on)

; process (catw)
‘next process
prev. process
chain

size of process
name of process
first event
last event
buffer

program

state

timer

priority

break address
ac0

acl

ac?2

ac3

psw

save

; top of process (catw)

Page 29.

1.7.2. Loading capx

If the user wants more than 1 area process (given by catw), he may either link
free core to the area-process chain or use the utility program capx, where x =

number of area processes to be added.

Every time the capx is loaded by the MUS system, x area processes are linked to
the existing area processes in the area process chain. The core occupied by the
capx is used as area process area and the capx process is removed. Only the first

7 words remain in the core.

By combining different capx-programs the user may have exactly the number of

area processes he wants.

When a new disc unit is to be used, it must be initialized. To do this, the follow-

ing output messages are sent to the process cati.

Message

mess0.buf 1b8 + 3
mess1.buf bytecount = 18
mess2.buf byteaddress

mess3.buf not used
The byte address must point to an 18-byte record with the content:

wordaddress = byteaddress

+0 Unit number of the unit to be initialized

+(1:8) Unit parameters as described in 1.7.1., start word +(21:28).

It should be noted that the unit catalog and the maps are cleared regardless of the

original content.

Page 30.

The process cati will only accept the commands: reservation and output with 1b8.
The commands position, cathandler, input and output without 1b8 are illegal. All

other commands will only sense the disc driver.

Result = 0 : Unit initialized
1b6 : The process is reserved by another user
1b3 + 1b6 : The kit or unit description is not found (catw)
b4 + 1b6 : lllegal command

1. Catmessage received (cf. 1.4.)
2. Position command received

3. Output message but not initnew

1b3 + 1b8 : Bytecount <> 18

Time = 17 disc accesses

Page 31.

1.7.4. Unit Numbers

The binary unit numbers in the names and in catw are free for use within the limits
(0~255). In catw the connection between the unit number and the physical disc is

made by the driver name and the kit displacement.

It is recommended to use the unit start number corresponding to the different type
of discs as shown below. The main idea is for the user of a given configuration to

start with the unit numbers listed.

For some special applications the user might have many catalogs (and thus units)
on each physical disc kit, and the unit numbers will exceed the start number of the
next disc type in the list. But in these cases the next disc type is implicitly ex-

cluded and the correspondﬁ'\g unit numbers are free.

Disc Type Size Stcrt Unit No.
RC 3650 1/4 Mbyte 0
RC 3652 2.5 Mbytes 4
RC 8221 12 - 8
RC 8222 18 - 16
RC 8223 33 - 32
RC 8224 66 - 48
RC 8225 124 - 64

RC 8226 248 - 128

