MUS SYSTEM SURVEY

Keywords : RC 3600 Software System

RCSL
Author
Date

FUA)

: 44 - RT 738
: A. P. Ravn
: Septernber 1973

s

MUS SYSTEM OVERVIEW

The Multiprogramming Utility System for the RC 3600 Peripheral System attains

the aims:

- to implement parallel processing including interprocess communication
and interrupt processing.

- give a strong framework for i/o processing, both on character level
and on record oriented level.

- support the user in the operation of the system, which includes easy
operator communication, and a basic operating system that takes care
of the creation, removal of processes and loading or deletion of

programs fo core.

These goals have been reached by development of the following software modules:

1.1 A multiprogramming monitor (system supervisor), the design
of which rests heavily on the proven design of the RC 4000

multiprogramming system.

1.2 Driver programs for RC 3600 peripheral devices. These lay
down the rules which are to be followed in coding drivers
for new devices. These rules are purely a matter of overall
cleanliness, as no real dé.sfinﬁtion is made between driver

programs and ordinary programs.

1.3 Reentrant i/o procedures designed around the zone concept
of RC 4000, which has shown itself to be a clean and tidy
way to handle device peculiarities, buffering, record formatting

and - packing involved in any i/o activity.

1.4 An operating system, which caters for program load and deletion,
process creation and removal and start or sfop of existing processes.
This operating system can receive commands from the human

operator.

—~

Y am

page 2

SYSTEM CONFIGURATION

The different modules have been fitted together in a manner, which gives as

few logical dependencies as possible and eliminates non-hierarchical interfaces.

UuP \

DEVICE

* e o0

Fig. 1. Logical organization

The core store of the computer contains code for the monitor (M) and the utility
procedures (UP). The remaining part of core contains a number of processes

(independent programs), which are identified by a process name.

CPU-time is distributed among the processes by the monitor, in such.a way that

each process is executed independently of the other processes.

A process communicates with an external device through the hardware i/o-instructions
and calls of the monitor function 'wait interrupt'. This function delays a process

until an interrupt from a specified device arrives.

page 3

A process may synchronize its progress with one or more of the other processes

through monitor functions, which implement a message, answer strategy. E.g.

The process 'D' calls the monitor function 'send message' indicating 'A' as
receiver supplying the core address of the message. After the call the process

is allowed to continue until it calls another monitor function e.g. 'wait answer'.
In this case it is delayed until process 'A' has returned an answer. The process
'A' will ot some point call the monitor function 'wait event', and if a message
has been sent to it, it will be allowed to continue. When it has processed the
information of the message it returns an answer by means of the monitor function

tsend answer' . After the call the process is allowed to continue.

DRIVERS

To handle standard RC 3600 peripheral devices, a number of standard 'driver'
processes are provided with the system. These processes may be included or
excluded in a particular configuration. The reason for calling them drivers,
are that they confirm to certain standards with regard to the messages they

will accept and the answers they give.
At the moment drivers exist for the Teletype, Operator Panel, Magnetic Tape

Transport, Line Printer, Paper Tape Reader, Paper Tape Punch, Card Reader

Station, and some Communication Systems.

JOB CONFIGURATION

Within the framework mentioned above, the system may perform almost any number

of activities, that may be wanted. A particular activity as off-line

printing, output of cards to a data transmission line, conversion from paper tape media
to magnetic tape etc. is called a job. Each job involves one or more processes.

The system may be executing several jobs in parallel, only limited by the number of

availoble devices and core storage size of the particular system.

The limitation stems from the fact that a device can only be used by one job at a
time for reasons of data integrity. The only exception to this rule is the operator's
teletype, which may be shared by several jobs as it displays the identification of

the process which currently uses it.

page 4

- — m—y e —— ——

upP

I

)

Fig. 2. Job organization (2 jobs)
The system of fig. 2 has two jobs executing in parallel, one is off-line print,

the other is transmission of cards. The two jobs share the teletype for operator

communication.

CREATION AND REMOVAL OF JOBS

One way of creating a particular configuration of processes would be to load

an absolute core image, and then start at a certain address. (This was how a job
was created in the old RC 3600 system). This solution has some defects as the
core image has to be created manually on some medium, and as it excludes the
possibility of creating a new job while another is running. The solution chosen
for the new software system is to include a process which by means of operator
commands may load processes at any time from an external device, and delete

existing processes as needed. This process is called the operating system 's'.

page 5

ve

Fig. 3. Basic Conficuation

This solution means that we only have a limited number of basic configurations
(absolute core images) which all include the operating system 's', an operator
device driver ({OCP', or 'TTY') and a load unit driver (‘MTO', 'PTR', or 'CDR').

Whenever the basic system is loaded by means of the RC 3600 AUTOLOAD feature,
the operator may at any time instruct the operating system to load or delete

the necessary processes to create a new job configuration. To ease this the
operating system includes a facility to read and execute a predefined list of
commands from the load unit, which includes the necessary job configuration

commands.

The price which is paid for this possibility of dynamic job creation and removal

is the core used for 's', it amounts to app. 3/4 K words.

When the necessary processes for a particular job configuration are in the system,
there is no problem in activating a job, as it probably will be waiting for an

operator command to start.

OPERATING SYSTEM

The operating system considers documents mounted on the load unit os consisting
of files (for MTT normal files, for PTR and CDR whotever is in the read station).

A file consists of identification and contents. A file may be divided into blocks

with a maximum blocklength of 80 bytes.

contents

- — — 4 — —}— — — — —1— — — | possible blocking

Fig. 4. File on load unit.

The identification may be empty or consist of an ASCll text which does not

contain any control characters followed by some control character (CR, NL, SP).

Only the first 5 characters are used in the identification, the remaining are

skipped.

The contents is either a binary relocatable program in which case it may be

preceeded by NULL characters, or it is a command file, which consists of a number

of ASCII texts delimited by ASCIl control characters, in which case the contents

may be preceeded by SPACE characters.

The commands which are accepted by the operating system 's’ includes:

INT {“ident"Y

KILL "rocident"
START "procident"
STOP “procident"

LOAD {"ident"} 20

search for file identified by "ident" on load
unit, and interpret the contents as commands.
The contents should end with the dummy command

END, which activates execution of the contents.
delete the identified process from the system.

include the process as an active process.

exclude the process as an active process.

1) if any idents are processes of the system delete the
"idents" from the parameter list

2) search for files with the given idents on load unit and

load any found as relocatable programs and include these

as processes.

7~

N

Example:

Suppose that a program tape contains the following files:

1)

2)

3)

4)

5)

6)

7)

0000

LOAD LDT MTO BSC CDR J1 J2
START J1

END

0001

START J2

END

LPT

"relocatable LPT driver"

CDR

"relocatable CDR driver"

BSC

"transmission driver"

J

"program to execute off-line list"
J2 '

"program to execute transmission”

Then the operator command:

INT 0000

page 7

will load the system of figure 2 and start the off-line list job, and the command

INT 0001

will start the transmission job.

Note that the operating system only uses a driver when it is executing commands,

which involve input/output from it. Thus the driver can be utilized by the user

jobs for the rest of the time.

REFERENCES

If a greater knowledge

MUS | manual RCSL: 44 - RT 614

If hard facts are wanted, refer to:

MUS 1l manual RCSL: 44 - RT 614

is wanted of the main principles of the system refer to:

~

.

Y

page 8

MusIL

When the organization of the MUS system was discussed, the concept of standard
processes -drivers and operating system, was defined. To complete the different

job configurations @ main program - running system - was left to be defined.

If every running system had to be coded in assembler code one would either have
to restrict the number of configurations severely to only standard tasks or use - as
the development of the old RC 3600 software system has shown - quite a lot of
experienced and scarce manpower to code and modify systems. In order to solve
or rather ease this problem it was decided to develop a high level language in which

running system could easily be defined. The specifications for the design were:

1. The language should utilize the i/o utility procedures
of the system.

2. It should contain adequate facilities for handling of
structured and unstructured string type data.

3. The powers for numerical computation were allowed to
be rather weak.

4, Speed outside the standard procedures were not of great
importance, as the running systems were expected to contain

only simple loops.

The outer-appearance of the resultant language resembles the programming language
PASCAL developed by N. Wirth and C.S.Hoare. This is largely a matter of taste,
but one should realize that few other existing languages give a framework strong
enough to cater for point 2 above. Point 1 and 4 lead to the conclusion, that
the code generated should be interpretative instead of directly executable, as this

is cheaper in development costs and core storage requirement.

MUSIL PROGRAMS

A program consists of two main parts data and algorithmic specification of how

the data are to be treated i.e. statements.

Data are either constants, which do not change during the execution, or varigbles,

which may change. While constants have values, variables have both values and

types , which may be structured , i.e. a single variable can be considered a

collection of variables.

page 9

The sttemeris may either be in the body of the program or belong to a procedure ,
which is a collection of statements, which can be executed as a single statement

simply by writing the name of the procedure.

Commands in programs are enclosed in exclamation marks. Whenever the word

name or identifier is used in the following it indicates a string of alfanumeric

character, the first always alfabetic.
This should explain the following layout of a program:

CONST

this section

declaration of constant values .
may be ommitted

TYPE
definition of types, which are to this section
be used in declaration of variables may be omitted
VAR
declaration of variables this section
may be omitted
: (though there would

be little sense in this)

PROCEDURE "ident"

BEGIN this section
o may be repeated
procedural statements or omitted
END .,
BEGIN
program statements this section
shald always
: be present
END

Fig. 5. MUSIL PROGRAM SECTIONS

page 10

— CONSTANTS

Constants are identified by a name which is associated with a value.

"ident" = "value"

The constant declarations are separated by commas.

The value may be:

1. A string, which is enclosed in quotes (" or '). Characters that are

not ASCIIl graphics are denoted by their decimal values enclosed
in "<" and ">". E.g.:

"WVALUE 1S: <10><13>"

2. A numerical integer value, which may be signed or given in a
/\ radix different from 10. Value must be within the limits -32768
to 32767.
£.9.:
+ 1
32767
-1
210000 (radix 2)
81777 (radix 8)
3. A table, which is another way of giving a siring type. It consists

of numerical values (0< value < 255) separated by spaces or new

lines enclosed in number signs (#) E.g.:

#0 255
” 1 254
2 2534,

F 64 64 78 104 #

TYPES

Type definitions may either occur in the TYPE part, if it is convenient to nome a
type separately, or they may appear with the declaration of the variables, which

they describe. A type definition has the form

vident" = "fype" ;

ﬁ

7~

page 11

The type might be:

1.

2.2

Simple, that is integer or string ("length") where "length" is

a numerical value which gives the length of the string in bytes.

Structured, where it may describe either a record or a file .

A record is a string, which contains named substrings, called

the fields of the record.

RECORD

"field ident", "field ident" ... : "field type" ,
"field ident" : "field type" FROM "position" ,

END
The field type must be simple. The first form of field
specification denotes consecutive fields of identical type.

The second form denotes a field of the given type starting

at a specific position (byte) within the record.
RECORD

cew : string (l);
line : string (132)

select: string (1) from 2 ;

.
I

sline : string (132) from 3
END

References to field of a variable "v " of record type are

denoted by:

"v ". "field ident"

A file is o type which describes a document on some external device.

FILE

"file descriptor"

| OF "filerecord type"

page 12

The file description part contains the name of the process which
handles the device, a kind which specifies how it should be
handled, a maximal blocksize, the number of buffers to be used

and the standard record format of the document.

Furthermore it may describe a conversion table, which is a string

identifier.

And it may also specify a procedure which should be activated in

case of a specified set of i/o errors.

The filerecord type is a definition of the structure of the records

of the file.
Example:
FILE
'LPT' , ‘device!
2'10 , 'kind®
2, ‘buffers !

133 , 'blocksize maximum!

U ; lrec format!

CONYV LPTTABLE ; 'conversion table identifier!

GIVEUP LPTERROR, 817666 "{ error proc and set of i/o errors |
OF RECORD

cew : string (1) ;
line : string (132)
END

A variable of type file "f' may be used as parameter to standard i/o
procedures. The file descriptor (which corresponds to a zone descriptor
in the MUS system) is organized as a record with certain standard

fields which may be accessed as:
"fr, “fieldident"

When a input or output standard procedure has been activated, the

file contains a current file component:
llf"?
i.e. a pointer to the current file record.

Fields of the current file component are then accessible as normal

records by:

ngn $. nfield ident"

,r-\

Y

page 13

VARIABLES

Declarations of variables have the format:

"varident" , "varident" , : "type" ;
Each declaration creates as many instances of each variable of the given

type as there are identifiers.

STATEMENTS

The statements should be self explanatory to anybody with some knowledge of

ALGOL. We will therefore only explain the available control statements:

1. IF "relation® THEN "statement"
indicates conditional execution of the statement.
2. WHVILE_ "relation” DO ‘"“statement"

indicates the repeated execution of the statement, while the

relation is true. The statement is skipped totally if the relation

is initially false.
3. REPEAT "“statement" ;e UNTIL "relation"

indicates repetition of the statements until relation becomes

true. The statements are executed at least once.
4, GOTO "number"

indicates an unconditional transfer to a statement labelled by

"number"

5. BEGIN ‘"statement" PERERE END

STANDARD PROCEDURES

The compiler recognizes a number of standard procedures, which provides for

i/o handling, operator communication, and special string handling.

f ‘-\

page 14

COMPILER

The compiler runs as a job under the system. The compilation requires specification

of a source document (in ASCIl alphabet), a object document, an operator device,

and possibly a list document.

m\ - Lot
rd
CoMPILER
OBJECT

f‘\

The object code is only output if no errors are detected by the compiler.
~

.+ EXAMPLE OF A PROGRAM LISTING

voeBn

Boal
~ Rpde
P93
av04
0vays
voae6
#4227
gags
pRv9
pe1o
vatLl
paLe
go13
va14d
gets
goa16
pRL7
va18
019
0020
_8az21
we2z
0R23
pazy
0825
0e26
vez27
2n28
0R29
pa3a
P31
0032
P33
ve34
0835
0936
0237
he38
Ba39
242
R4l
po4e
a4l
B4y
PR45
046
pay47
A48
0Ra49
2059
80251
pese
9053
#Rs54
0855
¥356
57

Ve

MUSIL COMPILER

| MUS: PAPER TAPE TO PRINTER SYSTEM

CONST

PROGRNAME= 'PTR TC LINEPRINTER<LIO>!,

LPTTABLE= # ¥ 2 @ 2 2 @2 ¢ ¢« @ @ 10 @ 12 13 2 B
2 2002020322848

33 34 35 36 37 38 39
4S5 46 47 48 49 53 S1
6 61 62 63 64 65 66
75 76 77 78 79 Ba Bi
92 91 92 93 94 95 96
74 75 76 77 78 79 8@
9P ©¥9 68 8 2V A 20
g .,

STATUS= "DISCONNECTED<IU><¢>0FFLINE<IB><A><A><><P><P><P>

42
5¢
67
82
65
81
ua

ai
53
68
83
66
62

@ 820

42
54
69
84
67
83

43
55
74
85
68
84

44
56
71
86
69
85

57
72
a7
79
B6

58
73
88
71
87

page 15

S9
74
89
72
88

73
89

EOF<1@><A>BB<1B><i>BI<19><2>PARITY<CIU><A>EMCIA><P><2><P><P>";

VAR
LPT: FILE
YLPTY,1,1,506,U;

GIVEUP LPTERRORS, 2'1102601111111111};

CONY LPTTABLE
OF STRING(S52);
PTR: FILE
COYPTRY,1,1,50,U;

GIVEUP PTRERRORS, 2'0v2A0wi111111111

OF STRING(S2);
D: INTEGER;
puMMY: STRING(10);

PROCEDURE LPTERRORS;

BEGIN
OPSTATUS(LPT,.Z8,STATUS);
OPIN(DUMMY);: OPWAIT(D);
REPEATSHARE(LPT)

END:

PROCEDURE PTRERRORS;

BEGIN
OPSTATUS(PTR,Z8,STATUS);
OPIN(DUMMY):; OPWAIT(D)

END:

BEGIN

"H OPMESS(PROGRNAME) 3
OPEN(LPT,3);
OPEN(PTR,9);

REPEAT
GETREC(PTR,D)
PUTREC(LPT,D):
MOVE(PTRt,4,LPT%,2,D)
UNTIL D<54;
CLOSE(PTR,1); CLOSE(LPT,1);

GOT0 @

END;VUQR028 ERRORS

page 16

A full description of the language, including the standard procedures are found in:

MUSIL REFERENCE MANUAL RCSL (in print)

Operation of the compiler, and explanation of errorcodes are found in:

MUSIL COMPILER OPERATION RCSL (in print)

